5,255 research outputs found

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Self-tuning routine alarm analysis of vibration signals in steam turbine generators

    Get PDF
    This paper presents a self-tuning framework for knowledge-based diagnosis of routine alarms in steam turbine generators. The techniques provide a novel basis for initialising and updating time series feature extraction parameters used in the automated decision support of vibration events due to operational transients. The data-driven nature of the algorithms allows for machine specific characteristics of individual turbines to be learned and reasoned about. The paper provides a case study illustrating the routine alarm paradigm and the applicability of systems using such techniques

    Power transformer dissolved gas analysis through Bayesian networks and hypothesis testing

    Get PDF
    Accurate diagnosis of power transformers is critical for the reliable and cost-effective operation of the power grid. Presently there are a range of methods and analytical models for transformer fault diagnosis based on dissolved gas analysis. However, these methods give conflicting results and they are not able to generate uncertainty information associated with the diagnostics outcome. In this situation it is not always clear which model is the most accurate. This paper presents a novel multiclass probabilistic diagnosis framework for dissolved gas analysis based on Bayesian networks and hypothesis testing. Bayesian network models embed expert knowledge, learn patterns from data and infer the uncertainty associated with the diagnostics outcome, and hypothesis testing aids in the data selection process. The effectiveness of the proposed framework is validated using the IEC TC 10 dataset and is shown to have a maximum diagnosis accuracy of 88.9%

    Fault propagation, detection and analysis in process systems

    Get PDF
    Process systems are often complicated and liable to experience faults and their effects. Faults can adversely affect the safety of the plant, its environmental impact and economic operation. As such, fault diagnosis in process systems is an active area of research and development in both academia and industry. The work reported in this thesis contributes to fault diagnosis by exploring the modelling and analysis of fault propagation and detection in process systems. This is done by posing and answering three research questions. What are the necessary ingredients of a fault diagnosis model? What information should a fault diagnosis model yield? Finally, what types of model are appropriate to fault diagnosis? To answer these questions , the assumption of the research is that the behaviour of a process system arises from the causal structure of the process system. On this basis, the research presented in this thesis develops a two-level approach to fault diagnosis based on detailed process information, and modelling and analysis techniques for representing causality. In the first instance, a qualitative approach is developed called a level 1 fusion. The level 1 fusion models the detailed causality of the system using digraphs. The level 1 fusion is a causal map of the process. Such causal maps can be searched to discover and analyse fault propagation paths through the process. By directly building on the level 1 fusion, a quantitative level 2 fusion is developed which uses a type of digraph called a Bayesian network. By associating process variables with fault variables, and using conditional probability theory, it is shown how measured effects can be used to calculate and rank the probability of candidate causes. The novel contributions are the development of a systematic approach to fault diagnosis based on modelling the chemistry, physics, and architecture of the process. It is also shown how the control and instrumentation system constrains the casualty of the process. By demonstrating how digraph models can be reversed, it is shown how both cause-to-effect and effect-to-cause analysis can be carried out. In answering the three research questions, this research shows that it is feasible to gain detailed insights into fault propagation by qualitatively modelling the physical causality of the process system. It is also shown that a qualitative fault diagnosis model can be used as the basis for a quantitative fault diagnosis modelOpen Acces
    corecore