450 research outputs found

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Timing Acquisition Performance Metrics of Tc-DTR UWB Receivers over Frequency-Selective Fading Channels with Narrow-Band Interference: Performance Analysis and Optimization

    No full text
    International audienceThe successful deployment of Impulse Radio (IR) Ultra Wide Band (UWB) wireless communication systems requie that they coexist and contend with a variety of interfering signals co–located over the same transmission band. In fact, if on the one hand the large transmission bandwidth of IR–UWB signals allows them to resolve multipath components and exploit multipath diversity, on the other hand it yields some new coexistence challenges for both unlicensed commercial and military communication systems, which are required to be robust to unintentional and intentional jammers, respectively. In particular, the design and analysis of low–complexity receiver schemes with good synchronization capabilities and high robustness to Narrow–Band Interference (NBI) is acknowledged as an important issue in IR–UWB research. Motivated by this consideration, in [1] we have recently proposed a low–complexity receiver design, the so–called Chip–Time Differential Transmitted–Reference (Tc–DTR) scheme, and have shown that it is more robust to NBI than other non–coherent receiver schemes available in the literature. In this paper, we aim at generalizing the results in [1] and at developing the enabling analytical tools for the analysis and design of timing acquisition algorithms for non–coherent receivers over frequency–selective fading channels with NBI. Furthermore, we move from the proposed analytical framework to tackle the optimization problem of devising optimal signature codes to reduce the impact of NBI on the performance of the Tc–DTR synchronizer. Analytical frameworks and findings are substantiated via Monte Carlo simulations

    UWB communication systems acquisition at symbol rate sampling for IEEE standard channel models

    Get PDF
    For ultra-wideband (UWB) communications, acquisition is challenging. The reason is from the ultra short pulse shape and ultra dense multipath interference. Ultra short pulse indicates the acquisition region is very narrow. Sampling is another challenge for UWB design due to the need for ultra high speed analog-to digital converter.A sub-optimum and under-sampling scheme using pilot codes as transmitted reference is proposed here for acquisition. The sampling rate for the receiver is at the symbol rate. A new architecture, the reference aided matched filter is studied in this project. The reference aided matched filter method avoids using complex rake receiver to estimate channel parameters and high sampling rate for interpolation. A limited number of matched filters are used as a filter bank to search for the strongest path. Timing offset for acquisition is then estimated and passed to an advanced verification algorithm. For optimum performance of acquisition, the adaptive post detection integration is proposed to solve the problem from dense inter-symbol interference during the acquisition. A low-complex early-late gate tracking loop is one element of the adaptive post detection integration. This tracking scheme assists in improving acquisition accuracy. The proposed scheme is evaluated using Matlab Simulink simulations in term of mean acquisition time, system performance and false alarm. Simulation results show proposed algorithm is very effective in ultra dense multipath channels. This research proves reference aided acquisition with tracking loop is promising in UWB application

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    Data-aided timing synchronization for FM-DCSK UWB communication systems

    Get PDF
    Frequency-modulated differential chaos shift keying (FM-DCSK) ultrawideband (UWB) communication systems convey information by transmitting ultrashort chaotic pulses (in the nanosecond scale). Since such pulses are ultrashort, timing offset may severely degrade the bit error rate (BER) performance. In this paper, a fast data-aided timing synchronization algorithm with low complexity is proposed for FM-DCSK UWB systems, which capitalizes on the excellent correlation characteristic of chaotic signals. Simulation results show that the BER performance of such systems is fairly close to that of perfect timing thanks to the proposed new algorithm. Moreover, the new algorithm requires less synchronization searching time and lower computa-tional complexity than the conventional one for transmitted reference (TR) UWB systems existing in the current literature

    Performance Analysis and Optimization of Tc-DTR IR-UWB Receivers over Multipath Fading Channels with Tone Interference

    No full text
    International audienceIn this paper, we analyze the performance of a particular class of transmitted-reference receivers for impulse radio ultra wideband communication systems, which is called chip-time differential transmitted-reference (Tc-DTR). The analysis aims at investigating the robustness of this receiver to single-tone and multi-tone narrowband interference (NBI) and comparing its performance with other non-coherent receivers that are proposed in the literature. It is shown that the Tc-DTR scheme provides more degrees of freedom for performance optimization and that it is inherently more robust to NBI than other non-coherent receivers. More specifically, it is analytically proved that the performance improvement is due to the chip-time-level differential encoding/decoding of the direct sequence (DS) code and to an adequate design of DS code and average pulse repetition time. The analysis encompasses performance metrics that are useful for both data detection (i.e., average bit error probability) and timing acquisition (i.e., false-alarm probability Pfa and detection probability Pd). Moving from the proposed sem-analytical framework, the optimal code design and system parameters are derived, and it is highlighted that the same optimization criteria can be applied to all the performance metrics considered in this paper. In addition, analytical frameworks and theoretical findings are substantiated through Monte Carlo simulations

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations
    • 

    corecore