2,277 research outputs found

    A secure link-layer connectivity platform for multi-site NFV services

    Get PDF
    Network Functions Virtualization (NFV) is a key technology for network automation and has been instrumental to materialize the disruptive view of 5G and beyond mobile networks. In particular, 5G embraces NFV to support the automated and agile provision of telecommunication and vertical services as a composition of versatile virtualized components, referred to as Virtual Network Functions (VNFs). It provides a high degree of flexibility in placing these components on distributed NFV infrastructures (e.g., at the network edge, close to end users). Still, this flexibility creates new challenges in terms of VNF connectivity. To address these challenges, we introduce a novel secure link-layer connectivity platform, L2S. Our solution can automatically be deployed and configured as a regular multi-site NFV service, providing the abstraction of a layer-2 switch that offers link-layer connectivity to VNFs deployed on remote NFV sites. Inter-site communications are effectively protected using existing security solutions and protocols, such as IP security (IPsec). We have developed a functional prototype of L2S using open-source software technologies. Our evaluation results indicate that this prototype can perform IP tunneling and cryptographic operations at Gb/s data rates. Finally, we have validated L2S using a multi-site NFV ecosystem at the Telefonica Open Network Innovation Centre (5TONIC), using our solution to support a multicast-based IP television service.This article has partially been supported by the European H2020 FISHY Project (grant agreement 952644), and the TRUE5G project funded by the Spanish National Research Agency (PID2019-108713RB-C52/AEI/10.13039/501100011033)

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Deploying an NFV-Based Experimentation Scenario for 5G Solutions in Underserved Areas

    Get PDF
    Presently, a significant part of the world population does not have Internet access. The fifth-generation cellular network technology evolution (5G) is focused on reducing latency, increasing the available bandwidth, and enhancing network performance. However, researchers and companies have not invested enough effort into the deployment of the Internet in remote/rural/undeveloped areas for different techno-economic reasons. This article presents the result of a collaboration between Brazil and the European Union, introducing the steps designed to create a fully operational experimentation scenario with the main purpose of integrating the different achievements of the H2020 5G-RANGE project so that they can be trialed together into a 5G networking use case. The scenario encompasses (i) a novel radio access network that targets a bandwidth of 100 Mb/s in a cell radius of 50 km, and (ii) a network of Small Unmanned Aerial Vehicles (SUAV). This set of SUAVs is NFV-enabled, on top of which Virtual Network Functions (VNF) can be automatically deployed to support occasional network communications beyond the boundaries of the 5G-RANGE radio cells. The whole deployment implies the use of a virtual private overlay network enabling the preliminary validation of the scenario components from their respective remote locations, and simplifying their subsequent integration into a single local demonstrator, the configuration of the required GRE/IPSec tunnels, the integration of the new 5G-RANGE physical, MAC and network layer components and the overall validation with voice and data services

    IP addressing, transition and security in 5G networks

    Get PDF
    The number of devices on the Internet is always increasing and there is need for reliable IP addressing. 5G network will be built on two main technologies; SDN and NFV which will make it elastic and agile compared to its predecessors. Elasticity will ensure that additional devices can always be added to the network. IPv4 addresses are already depleted and cannot support the expansion of the Internet to ensure the realization of future networks. IPv6 addressing has been proposed to support 5G networking because of the sufficient number of addresses that the protocol provides. However, IPv4 addressing will still be used concurrently with IPv6 addressing in networks until they become fully IPv6 based. The structure of IPv4 header is different from IPv6 header hence the two protocols are incompatible. There is need for seamless intercommunication between devices running IPv4 and IPv6 in future networks. Three technologies namely; Dual Stack, Tunneling and Translation have been proposed to ensure that there is smooth transition from IPv4 to IPv6 protocol. This dissertation demonstrates Tunneling of IPv6 over IPv4. Also, this research work reviews network security threats of past networks that are likely to be experienced in 5G networks. To counter them, reliable IP security strategies used in current networks are proposed for use in next generation networks. This dissertation evaluates and analyzes IPv4, IPv6 network and Tunneling models in an SDN network environment. The performance of an IPv4 only network is compared to the IPv6 only network. Also, devices addressed with both protocols are connected. The results obtained illustrate that IPv4 and IPv6 devices can effectively communicate in a 5G network environment. In addition, a tunnel is used to run IPv6 protocol over an IPv4 network. The devices on both ends of the tunnel could communicate with each other effectively

    Towards 5G Software-Defined Ecosystems: Technical Challenges, Business Sustainability and Policy Issues

    Get PDF
    Techno-economic drivers are creating the conditions for a radical change of paradigm in the design and operation of future telecommunications infrastructures. In fact, SDN, NFV, Cloud and Edge-Fog Computing are converging together into a single systemic transformation termed “Softwarization” that will find concrete exploitations in 5G systems. The IEEE SDN Initiative1 has elaborated a vision, an evolutionary path and some techno-economic scenarios of this transformation: specifically, the major technical challenges, business sustainability and policy issues have been investigated. This white paper presents: 1) an overview on the main techno-economic drivers steering the “Softwarization” of telecommunications; 2) an introduction to the Open Mobile Edge Cloud vision (covered in a companion white paper); 3) the main technical challenges in terms of operations, security and policy; 4) an analysis of the potential role of open source software; 5) some use case proposals for proof-of-concepts; and 6) a short description of the main socio-economic impacts being produced by “Softwarization”. Along these directions, IEEE SDN is also developing of an open catalogue of software platforms, toolkits, and functionalities aiming at a step-by-step development and aggregation of test-beds/field-trials on SDNNFV- 5G
    • …
    corecore