23 research outputs found

    Multilayer Feedforward Neural Network for Internet Traffic Classification

    Get PDF
    Recently, the efficient internet traffic classification has gained attention in order to improve service quality in IP networks. But the problem with the existing solutions is to handle the imbalanced dataset which has high uneven distribution of flows between the classes. In this paper, we propose a multilayer feedforward neural network architecture to handle the high imbalanced dataset. In the proposed model, we used a variation of multilayer perceptron with 4 hidden layers (called as mountain mirror networks) which does the feature transformation effectively. To check the efficacy of the proposed model, we used Cambridge dataset which consists of 248 features spread across 10 classes. Experimentation is carried out for two variants of the same dataset which is a standard one and a derived subset. The proposed model achieved an accuracy of 99.08% for highly imbalanced dataset (standard)

    Bayesian gravitation based classification for hyperspectral images.

    Get PDF
    Integration of spectral and spatial information is extremely important for the classification of high-resolution hyperspectral images (HSIs). Gravitation describes interaction among celestial bodies which can be applied to measure similarity between data for image classification. However, gravitation is hard to combine with spatial information and rarely been applied in HSI classification. This paper proposes a Bayesian Gravitation based Classification (BGC) to integrate the spectral and spatial information of local neighbors and training samples. In the BGC method, each testing pixel is first assumed as a massive object with unit volume and a particular density, where the density is taken as the data mass in BGC. Specifically, the data mass is formulated as an exponential function of the spectral distribution of its neighbors and the spatial prior distribution of its surrounding training samples based on the Bayesian theorem. Then, a joint data gravitation model is developed as the classification measure, in which the data mass is taken to weigh the contribution of different neighbors in a local region. Four benchmark HSI datasets, i.e. the Indian Pines, Pavia University, Salinas, and Grss_dfc_2014, are tested to verify the BGC method. The experimental results are compared with that of several well-known HSI classification methods, including the support vector machines, sparse representation, and other eight state-of-the-art HSI classification methods. The BGC shows apparent superiority in the classification of high-resolution HSIs and also flexibility for HSIs with limited samples

    Exclusive lasso-based k-nearest-neighbor classification

    Get PDF
    Conventionally, the k nearest-neighbor (kNN) classification is implemented with the use of the Euclidean distance-based measures, which are mainly the one-to-one similarity relationships such as to lose the connections between different samples. As a strategy to alleviate this issue, the coefficients coded by sparse representation have played a role of similarity gauger for nearest-neighbor classification as well. Although SR coefficients enjoy remarkable discrimination nature as a one-to-many relationship, it carries out variable selection at the individual level so that possible inherent group structure is ignored. In order to make the most of information implied in the group structure, this paper employs the exclusive lasso strategy to perform the similarity evaluation in two novel nearest-neighbor classification methods. Experimental results on both benchmark data sets and the face recognition problem demonstrate that the EL-based kNN method outperforms certain state-of-the-art classification techniques and existing representation-based nearest-neighbor approaches, in terms of both the size of feature reduction and the classification accuracy
    corecore