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Abstract—Activity recognition focuses on inferring current
user activities by leveraging sensory data available on today’s
sensor rich environment. Supervised learning has been applied
pervasively for activity recognition. Typical activity recogni-
tion techniques process sensory data based on point-by-point
approaches. In this paper, we propose a novel cluster-based
classification for activity recognition Systems, termed StreamAR.
The system incorporates incremental and active learning for
mining user activities in data streams. The novel approach
processes activities as clusters to build a robust classification
framework. StreamAR integrates supervised, unsupervised and
active learning and applies hybrid similarity measures technique
for recognising activities. Extensive experimental results using
real activity recognition datasets have evidenced that our new
approach shows improved performance over other existing state-
of-the-art learning methods.

I. INTRODUCTION

Activity recognition has become one of the emerging appli-
cations in the area of ubiquitous computing. The availability
of real time sensory information through sensors has led to
emerging research into Activity Recognition (AR) . This fo-
cuses on inferring the current activities of users by leveraging
the rich sensory data that is available from on-body sensors,
environmental sensors, today’s smartphone and rich infor-
mation sources. Successfully recognising people’s activities
enables a wide range of pervasive computing applications in
the fields of healthcare, social networks, environmental moni-
toring, surveillance, emergency response and mobile services.

The state of the art in mobile activity recognition research
has focused on traditional classificatory learning techniques.
First, data is collected and annotated by users. Then, labelled
data is deployed to build and train the classifier learning model.
When the model is ready, system is used to predict activities
from the sensory data. A wide range of classification models
has been used for activity recognition such as Decision Trees,
Naive Bayes and Support Vector Machines. However, this
approach has no notion of adaptation or refinement of the

model that is already built. In realistic conditions, change of
activities may emerge over time which includes modifying
user activities patterns. Current approaches do not allow re-
finement of the deployed model. Moreover, personalisation of
model to suit a specific user had a little focus in the research
area. Typically, walking for one user may well be running
for another, therefore tuning the general model to recognise a
given user’s personal activity is crucial for building a robust
activity recognition system.

We propose an adaptive system for robust activity recog-
nition with evolving sensory data streams. We coined our
technique StreamAR. The novel system integrates supervised,
unsupervised and active learning for activity recognition.
StreamAR extends the state-of-the-art in AR by providing the
following advantages.

• Build an adaptable model with evolving sensory data
streams: One of the characteristics of StreamAR frame-
work is the flexibility to be updated as the data evolves.
Thus, the updated model is personalised and adapted to
the most recent changes detected in the user’s activities
in streaming data.

• Combination of modelling techniques: The system com-
bines supervised, unsupervised and active learning all in
one data stream model. We initially build the learning
model with supervised learning. When new data received,
unsupervised learning is deployed to cluster activities.
Active learning is also employed in the event of confusion
on cluster labels.

• Adaptability to the nature of activity recognition data:
People perform activities in a sequential manner (i.e.,
performing one activity after another). Therefore, activity
recognition data stream typically composites of sequence
of chunks that represents various activities. Different from
other activity recognition systems, StreamAR is a cluster
based classification that deals with activities as clusters
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rather than processing each point. The novel approach is
adapted for activity recognition data nature. Therefore,
computation and processing time are conserved when
dealing with the entire cluster instead of processing each
point.

• Robustness with hybrid similarity measure: Learning
model in StreamAR contains clusters that represent dif-
ferent activities. When new cluster is emerged, hybrid
similarity measure is deployed to match up similarities
of the new cluster/activity with the existing ones. These
measures are namely distance, density, gravity and within
cluster standard deviation (WICSD). Applying the afore-
mentioned similarity measures for activity recognition
shows superiority over the use of individual ones, and
therefore enhances the system robustness across users.

To the best of our knowledge, no other existing activity
recognition system addresses all aforementioned points in a
single framework. The rest of the paper is organised as follows.
Section 2 provides a discussion of the research context. Ex-
planation of the proposed StreamAR framework and its details
are presented in Section 3. Section 4 reports the experimental
results and analysis. Finally, Section 6 concludes the paper
with a summary.

II. RELATED WORK

Our technique is related to both data stream classification
and activity recognition. An efficient approach based on data
mining has been recently proposed in a number of research
projects considering the activity recognition from the machine
learning perspective. Methods commonly used for activity
classification were reviewed in [1]. Supervised learning has
been deployed pervasively for activity recognition. One ex-
ample system is explained in [2]. In this system, three clas-
sification techniques from WEKA [3] to induce models for
predicting the user activities are decision trees (J48), logistic
regression and multilayer neural networks. Some other systems
used fuzzy classifiers for activity recognition as in [4] and [5].
Parkka et al [6] implemented a real time classification method
using a binary decision tree with only four nodes. The system
used default parameters that have been trained to give optimum
performance for average users. The user might be interested
in personalising the activity-recognition algorithm to achieve
better recognition accuracy.

Few studies considered unsupervised learning techniques
for activity recognition and change detection. For example,
Lee et al. [7] used unsupervised learning for abnormality
detection. To detect whether a pattern is registered or not, a
probability model based on the past activity pattern is created.
The Expectation-Maximisation (EM) algorithm [8] is used
with the feature vectors to decide whether the activity is
abnormal behaviour or not. In [9], the feasibility of applying
a specific type of unsupervised learning to high-dimensional,
heterogeneous sensory input was analysed. The correspon-
dence between clustering output and classification input was
proposed as well. Typically there is only a small set of labelled
training data available in addition to a substantial amount of

unlabelled training data. Therefore, some studies considered
labelling only profitable samples of data or continue learning
while system is running. Longstaff et al. [10] investigated
methods of further training classifiers after a user begins to
use them using active and semi-supervised learning. StreamAR
combines supervised, unsupervised and active learning for
building a robust activity recognition system across users.
Typical activity recognition stream is formed from a sequence
of data chunks representing activities. Thus, StreamAR treats
data input as a stream and uses clustering to avoid having
to respond to each input data point. As the stream evolves,
there is a need to assess old and new clusters and this is
handled with a hybrid similarity measure. None of the above
systems and as far as we know have dealt with the streaming
nature of unlabelled sensory data for recognising different
activities. Practically, unlabelled data streaming from sensors
requires real time classification. Current recognition systems
use a static training model which is built offline to recognise
new data. Yet, there is no notion to expand the model after
it is already deployed. Indeed, analysing sensory data for real
time model adaptation and personalisation is crucial to reflect
changes in activities with evolving data streams.

Data stream classification has been an interesting research
topic for years, and many approaches are available. Data
stream classification techniques maintain and incrementally
update a classification model and effectively respond to
concept-drift discussed in [11], [12] and [13]. Cluster based
technique for data stream is represented in [14]. This tech-
nique detected novel concepts in an unsupervised incremental
learning fashion and applied to intrusion detection in computer
networks. However, this is also a ”single-class” technique,
where authors assume that the learning model has only one
labelled class. Thus, it not directly applicable to activity
recognition environment with multi classes.

Masoud et al. [15] integrated classification with novel
class detection in concept-drifting data streams. However, The
system focused on detecting novel classes but not adaptation
and refinement of the initial learning model. It processed each
point and test similarities and differences with the normal data
to detect novel classes.

Our approach is different from the above in several aspects.
First, most of the existing novelty detection techniques assume
that the initial model is static. Existing techniques focus
on novelty or outlier detection rather than learning model
refinement and adaptation. Second, existing techniques test
data stream individually in a point based approach, whereas
our technique deals with data collectively to recognise ac-
tivities and update the model according to the most recent
changes in data stream. Third, our framework initial model
composites of multi- classes. Thus, it can recognise and refine
different activities. On the other hand, most of the existing
streaming techniques can only deal with one normal class.
And therefore, considered as ”one-class”classifiers. Finally,
Our technique integrates active learning with stream mining
for activity recognition.



Fig. 1. Top Level Algorithm

III. STREAMAR: STREAM LEARNING TECHNIQUE FOR
ACTIVITY RECOGNITION

In this section we present StreamAR, our novel approach
for incremental and active learning for activity recognition
in sensory data streams. We start with describing the top
level algorithm. Then we introduce the four phases applied
for implementing the novel framework .

A. Top Level Algorithm

An overview is shown in Figure 1. In terms of the learning
paradigm, it may be divided in four phases. A supervised
learning phase, where a learning model is built from a set
of examples that describe the data domain. An unsupervised
learning phase, where chunks of unlabeled examples arriving
from a data stream form new clusters. Recognition of new
formed clusters is assessed by a hybrid similarity measure
approach in phase 3. Based on the recognition, the learning
model is refined and updated in real time to reflect recent
changes as in phase 4.

B. StreamAR Phases

1) Phase 1: Build Learning Model : Initially, supervised
learning is applied on labelled data to train and generate
the learning model. The generated model consists of set of
clusters. Each cluster represents one of the labelled activities
that exist in data domain. After creating K clusters using
the supervised algorithm, we extract and save summary of
the statistics of the data points in each cluster as a micro-
cluster and discard the raw data points. We will refer to the
K micro-clusters built from training data as a learning model.

We use these micro-clusters of the learning model to classify
unlabelled received data.

Learning Model Purification: Each cluster lin the learn-
ing model has a label of the majority label among cluster
instances. Training examples typically contain outliers and
noisy data that might affect the quality of the model directly.
Therefore, we add a filtration step that aims to purify clusters
and therefore build more accurate learning model.

While creating new cluster from training data, cluster is
purified by considering only true-labelled instances inside the
cluster and ignoring other mis-clustered examples (instances
with different labels). Building on the purified clusters, char-
acteristics are extracted for each cluster and all raw points are
then dismissed.

Considering computational, time and space complexity,
StreamAR extracts features from each cluster and dismisses
all raw data at the end of this phase. Micro clusters contain
the basic information describes the learning model. Statistics
about cluster include basically the cluster centroid, density,
within cluster standard deviation and boundaries.

2) Phase 2: Unsupervised Learning for New Data: This
step aims to create clusters of various activities exist in data
received. When unlabelled data emerged, we apply clustering
on data to generate clusters of the performed activities .
Various clustering techniques such as k-means, Expectation
Maximisation and DBScan [16] have used and compared
to reach the best performance. Clusters Characteristics are
extracted similar to the learning model building procedure.
The output of this phase is the set of clusters’/activities’
characteristics ready for the recognition phase.

3) Phase 3: Prediction Phase : As the stream evolves, we
assess new and learning model clusters to predict new clusters’
labels. This is handled with a hybrid similarity measure
approach. As raw data has been dismissed, characteristics of
the new cluster are compared to the existing learning model
ones. The predicted label is based on the characteristics of the
most similar cluster in the learning model.

Clusters are similar if they match based on the hybrid
similarity measure approach. For each new formed cluster, the
algorithm checks how similar it is to other clusters already
exist in the learning model. We apply various measures to test
similarities among clusters. Each measure votes for its own ”
candidate” cluster from the measure respective. The predicted
label is the candidate cluster with the majority of votes among
all measures, while the true label of a cluster is the majority
label among cluster instances. There are three cases expected
from the voting procedure as follows.

1) Correct prediction: This case occurs when the majority
of votes are for the micro cluster in the learning model
with the true label. As showed in Figure 2(a), the
majority of measures have chosen the candidate micro
cluster with the true label - label of C1 .

2) Active learning: In case of equal votes are assigned
to a specific two micro clusters, user input is required
to label the new cluster. Active learning is explained in
Figure 2(b). In this case, exactly two measures vote for



Ci and other two measures vote for Cj . The algorithm
inquires about the correct label as an input from user in
an active learning mode with either the label of Ci or
Cj .

3) Incorrect prediction: The cluster is incorrectly classified
when a total confusion with lowest confidence among all
measures for clusters or voted for an incorrect cluster.
In this case, the algorithm has an incorrect prediction as
explained in Figure 2(c).

(a) Correct
Prediction

(b) Active
Learning

(c) Incorrect
Prediction

Fig. 2. Illustration of Prediction Cases

Hybrid similarity measure technique implements four mea-
sures namely distance, density, gravitational force and within
cluster standard deviation. We concern in these measures about
the distance among the cluster centroids, clusters density,
how strong is the gravitational force among clusters and the
cohesion inside the cluster. Learning model LM consists of n
micro clusters/ activities.

LM = {C1, C2, C3, ....Cn} (III.1)

Micro Clusters contain statistics summary of the data points
belong to the clusters. The summary includes the following
statistics: the total number of points, the centroid of the cluster,
boundary and density of the cluster. When new cluster Cnew

arrives, the algorithm deploys the various similarity measures
to choose the best candidate micro cluster Ci from n clusters
exist in LM . The four measures are:

• Distance: Micro cluster centroid is an n dimensional
array of mean n- dimensional instances inside the cluster.
Ci is the candidate micro cluster from distance perspec-
tive if distance between Cnew and Ci centroids is the
shortest among n clusters in LM .

• Density: Each cluster has its own density that distin-
guishes it from other clusters. We first define the Cluster
Radii.
Def: Cluster Radii: This measure gives a better under-
standing of the boundaries of cluster and how various
clusters are close or far away from each other. It is
considered as the maximum distance between any point
insides the cluster and the cluster centroid as described
in Equation III.2:

ClusRadii = max(EDistance(Pi,ClusCntr)) ∀Pi ∈ C;
(III.2)

Where (C) is the cluster tested, (EDistance) is the
Euclidean Distance, (P) is a n- dimensional data point
inside the cluster and ClusCntr is the cluster (C) centroid.
Cluster density reflects the distribution of data points
inside the cluster. It is described by the Formula III.3:

ClusDens =
ClusMass

ClusV olume
(III.3)

ClusV olume =
4

3
πClusRadii3; (III.4)

Where (Clus Mass) is the number of points in the cluster,
(Clus Volume) is the volume of the cluster as a sphere.
(ClusRadii) the maximum distance between any point
insides the cluster and the cluster centroid.
When new cluster merged with an existing one, density
of the new merged cluster is recalculated. There are two
possible options may occur in case of merging. First,
the density of the new cluster is bigger than the original
one. Thus, the new emerged cluster increases the density
of existing cluster. Second, density decrease when new
cluster is merged with the learning model cluster.
In order to select the best candidate micro cluster in the
LM from density perspective, we check the density gain/
loss if the new cluster merged with each of the existing
LM micro clusters. Density gain is the difference between
the new density of micro cluster Ci when merged with the
new cluster Cnew and old density before merging. Ci with
the highest gain/ lowest loss among n clusters in LM is
chosen as the candidate cluster by density measure.

• Gravitational force: Gravitational force has been previ-
ously applied in machine learning such as in [17] , [18],
and [19] . There exists a natural attraction force between
any two objects in the universe and this force is called
gravitation force. According to Newton universal law of
gravity, the strength of gravitation between two objects
is in direct ratio to the product of the masses of the
two objects, but in inverse ratio to the square of distance
between them. The law is described in Equation III.5:

Fg = G
m1m2

r2
(III.5)

Where Fg is the gravitation between two objects (clus-
ters); G is the constant of universal gravitation; m1 is the
mass of object 1 (size of cluster 1); m2 is the mass of
object 2 (size of cluster 2); r the distance between the two
objects ( Euclidean distance between clusters’ centroids)
.
According to Equation III.5, each cluster generates its
own gravitational force created from its weight. The
bigger the weight of the candidate the stronger the
gravitational force produced around it. Therefore, the
probability it could attract more data object would be
increased. When the gravitational force between Cnew
and Ci is bigger than with other micro clusters existing
in LM , then Ci is the candidate micro cluster from
gravitational force perspective.



• WICSD( Within Cluster Standard Deviation): This mea-
sure considers the cohesion inside each cluster. Standard
deviation of n dimensional points inside the cluster is
calculated as the equation III.6.

WICSD =

√∑m
i=1EDistance(Pi,ClusCntr)2

m
(III.6)

Where EDistance is the Euclidean Distance, (m) is the
number of points into the cluster, (P) is a n- dimensional
data point inside the cluster and (ClusCntr) is the cluster
centroid.
Clusters that have similar standard deviation are more
likely to present the same activity/label. Ci is the can-
didate cluster form WICSD perspective if it has the
smallest difference in standard deviation measure with
Cnew among n micro clusters in LM .

4) Phase 4: Model adaptation: StreamAR periodically up-
dates the learning model to ensure that it represents the recent
changes of users’ activities. In case of incorrect and active
learning of activity, user labels new clusters and feed it into
the system for real time model adaptation.

Learning model micro clusters are updated to reflect
changes in data stream in four aspects.

• Micro Cluster Centroid: As stream evolves, it is crucial to
update the cluster centroids for maintaining high system
accuracy. A numerically stable algorithm is given below
in Algorithm 1. It computes the mean due to Knuth et al
[20] that has been thoroughly analysed in [21].

Algorithm 1 UpdateCentroid(data, Centroid )
for x in data
n = n+ 1
delta = x - Centroid
Centroid = Centroid + delta/n

Where n is the micro cluster size before update. The new
cluster has the majority of a single true label. The system
inquires about the entire cluster label instead of labelling
each point. Cluster Centroid is updated inclemently by
adding each point to micro cluster.

• WICSD: Centroid update algorithm is extended for up-
dating variance and standard deviation [20]. Algorithm 2
illustrates the incremental update for WICSD.

Algorithm 2 UpdateWICSD(data, Centroid , WICSD)
M = (WICSD ∗ n)2
for x in data
n = n+ 1
deltaa = x - Centroid
Centroid = Centroid + delta/n
M = M + delta*(x - Centroid)
End for
variance = M /n
WICSD= SQRT(variance)

Where n is the micro cluster size before update.
• Cluster Gravity: Cluster gravity is automatically updated

according to Equation III.5 with the updated sizes and
centroids.

• Micro Cluster Density: Equation III.3 explained the cal-
culation of density in creating the learning model. When
adding new points into cluster Ci, we recalculate the
density based on the new parameters. The algorithm
updates micro cluster’s mass by adding up the Cnew
size to the old size (prior to update). The updated cluster
Radii relies on position of the new cluster, Cnew. As
illustrated in Figure 3, three cases occur when updating
the Radii of Ci. Radii remains the same if the new cluster
is fully contained inside the micro cluster Ci, as shown in
Figure 3 (a). The other two cases are illustrated in Figure
3 (b)(c). These cases occur when Cnew intersects with or
fully separated from Ci. The radii is adapted as Equation
III.7

NewRadii =
EDis(Ceni, Cennew) +Radi +Radnew

2
(III.7)

Where EDis is the Euclidean Distance,Ceni is the
learning model cluster centroid, Cennew is a centroid
of the new cluster, Radi is the radius of Ci, and Radnew
is the new emerged cluster radii.

(a) Contained (b) Intersected (c) Separated

Fig. 3. Radii Update Cases

IV. EMPIRICAL RESULTS

In this section we discuss the data sets used in the experi-
ments, the system setup, the results, and analysis.

A. Experimental setup

We conducted our experiments on two real activity recog-
nition data sets.

• OPPORTUNITY dataset [22]
In the recently started European research project, the
OPPORTUNITY dataset has been recorded to recognise
complex activities from accelerometer sensors in addition
to highly rich environmental sensors. They designed the
activity recognition environment and scenario to gener-
ate many activity primitives, yet in a realistic manner.
Thus, the dataset has labels for user activities like (sit-
ting, walking and running) streaming form accelerom-
eter sensors attached to the user’s body. It consists of
an annotated complex, multidimensional and naturalistic



activities, with a particularly large number of atomic
activities (around 30000 for each segment), collected in
a very rich sensor environment. The OPPORTUNITY
dataset contains annotated four activities for five subjects
across five different segments.

• COSAR dataset [23]
This dataset is for 10 different activities performed both
indoor and outdoor by volunteers having different attitude
to physical activities. Each activity was performed by 4
different volunteers. While performing activities, volun-
teers wore one sensor on their left pocket and one sensor
on their right wrist to collect accelerometer data, plus
a GPS receiver to track their current physical location.
the dataset is composed of 5 h of activity data. The
dataset is composed of 18,000 activity instances. For each
activity instance, accelerometer readings were merged
to build a feature vector composed of 148 features,
including means, variances, correlations, kurtosis, and
other statistical measures.

To measure our system performance, we define some terms
as performance meters. Let Fc = total existing class instances
correctly classified, Fa = total existing class instances trigger
active learning, Fi = total existing class instances misclassi-
fied, S = total instances the dataset. We use the following
performance metrics to evaluate our technique. Mc: % of
class instances correctly classified = Fc ∗ 100

S
, Ma: % of class

instances requires active learning = Fa ∗ 100
S

, and ERR: % of

misclassification class instances = Fi ∗ 100
S

.

StreamAR is tested on the OPPORTUNITY and COSAR
datasets. Part of the data is used to build the learning model;
other new date is applied for testing. Testing data is a new data
that has not used for training the model. Learning and testing
data could be for the same user but different segments or for
different users. The default chunk size = 50 unless otherwise
stated. For each chunk of incoming data stream we apply k-
means clustering with k=2.

B. Learning model purification

Model purification is an essential step for pruning and
refining the learning model. It has a superior advantage of
building a robust model that filters outliers and wrong-labelled
examples. Therefore, purified model represents activity of
majority label with high confidence. We built the learning
model with Subject 2 data - S2, while applying data for S2,
S3 and S4 in testing the System. As shown in Table I, the
system shows better performance with purified learning model.

Purification of the learning model has different effect on
the various measures deployed. Purification reduces confusion
among measures and therefore reduces active learning occur-
rence, Ma. Eliminating outliers and wrong-labelled instances
affects the position of clusters’ centroids. Therefore, purifi-
cation boosts measures that rely mainly on the coordinates
of centroids (i.e. distance). On the other hand, purification
might eliminate far away instances or instances belong to low
dense clusters that seemed to be outliers. Therefore, density

TABLE I
LM PURIFICATION AND StreamAR PERFORMANCE

LM Dataset Mc Ma ERR
S2 Pur S1 69.28% 14.16% 16.56%
S2 S1 41.56% 45.73% 12.71%
S2 Pur S3 61.59% 17.87% 20.54%
S2 S3 50.58% 29.47% 19.94%
S2 Pur S4 57.59% 20.93% 21.48%
S2 S4 50.51% 29.72% 19.77%

and gravity might be affected negatively with purification.
Although, purification has not enhanced the performance of all
the measures, it has an overall positive effect with increasing
Mc and reducing Ma when combining all measures.

C. Model adaptation
We conducted our experiments on both static and adaptable

model. Dealing with streams that evolves over the time, model
adaptation is essential to cope with recent changes. Figure
4 shows the StreamAR performance with both static and
adaptable learning model. All runs are deployed on a purified
learning model.

Fig. 4. StreamAR Performance with Adaptation

Adaptable technique out performed the static one for all
runs. Indeed, feeding the system with true labelled points that
have previously actively or mis-classified enhances the system
accuracy. Figure 5 shows the error reduction due to adaptation
for the same datasets.

Fig. 5. StreamAR Performance with Adaptation

D. Chunk size
StreamAR allows user to specify chunk/window size for

recognition. Bigger chunk size gives more exposure to data



and allows better recognition. However, processing large data
chunk has other drawbacks especially with time and complex-
ity. Figure 6 illustrates the performance trend with various
chunk sizes with COSAR dataset. Big chunks allow better
understanding of data, therefore Mc showed better accuracy.
Moreover, Ma and ERR gradually decreased as the data
chunk enlarges.

(a) Mc vs. Chunk Size

(b)Ma vs.Chunk Size

(b)ERR vs. Chunk Size

Fig. 6. Chunk Size and StreamAR performance

E. StreamAR and other classification techniques

Table II illustrates the performance of StreamAR across
various learning and testing datasets in comparison to other
iconic classifications techniques. Across-users test deployed;
We built the learning model with data from one user and test
the system with different users. Learning model is adaptable
and purified for all runs. Chunk size is set to 500 instances.
The static classification methods applied are Weka built in
methods namely: Support Vector Machine, Naive Bayed, De-
cision Trees and Random Forest Tree. To the best of our
knowledge, there is no approach that applied stream mining
for activity recognition. Therefore, we compare our system
with the static classification methods applied pervasively in
AR. However, all of these techniques are static and cannot
adapt with evolving data and concept drift streams.

TABLE II
StreamAR RECOGNITION PERFORMANCE

Test StreamAR SVM N.Bayes DTree RFTree
Mc Ma

D1 74.7% 11.61% 77.8% 78.1% 63.3% 55.3%
D2 70.4% 12.1% 76.9% 90.2% 75.5% 37.9%
D3 72.3% 13.6% 75.6% 90.4% 73.2% 42.25%
D4 55.1% 20.7% 48.0% 72.8% 52.5% 58.6%
D5 69.4% 11.1% 52.5% 76.9% 53.9% 53.9%
D6 49.2% 30.3% 67.6% 40.9% 24.7% 34.72%
D7 60.0% 16.54% 41.1% 44.9% 29.6% 22.3%
D8 60.0% 16.5% 52.6% 46.2% 22.2% 30.3%
D9 59.6% 24.8% 46.5% 52.4% 22.0% 34.4%
D10 67.2% 17.4% 52.0% 73.8% 51.9% 61.0%

V. CONCLUSION

We address a realistic problem of stream mining with
activity recognition. The novel technique combines active
and incremental learning approach for recognising various
activities. We integrate supervised, unsupervised and active
learning to build a robust and efficient recognition system.
Previous approaches for stream classification did not address
this vital problem. We tested our technique on real datasets
and discussed the system performance compared to other
classification techniques.
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