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Abstract Conventionally, the k nearest-neighbor (kNN)

classification is implemented with the use of the Eu-

clidean distance-based measures, which are mainly the

one-to-one similarity relationships such as to lose the

connections between different samples. As a strategy to

alleviate this issue, the coefficients coded by sparse rep-

resentation (SR) have played a role of similarity gauger

for nearest neighbor classification as well. Although SR

coefficients enjoy remarkable discrimination nature as

a one-to-many relationship, it carries out variable se-

lection at the individual level so that possible inherent

group structure is ignored. In order to make the most of

information implied in the group structure, this paper

employs the Exclusive Lasso (EL) strategy to perform

the similarity evaluation in two novel nearest neighbor

classification methods. Experimental results on both
benchmark data sets and the face recognition problem

demonstrate that the EL-based kNN method outper-

forms certain state-of-the-art classification techniques

and existing representation-based nearest neighbor ap-
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proaches, in terms of both the size of feature reduction

and the classification accuracy.
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1 Introduction

The k-nearest neighbor (kNN) algorithm [1] has en-

joyed much attention since its inception as an intu-

itive and effective classification method. Conventional-

ly, kNN is implemented with the use of the Euclidean

distance-based measures. However, such measures only

embrace the distance information between two samples,

thus the sight of certain meaningful information, such

as distribution information of training set and class
structure information is ignored.

In order to comfort this defection, many efforts, such

as mahalanobis distance [2], generalized mean distance

[3], the nearest feature line (NFL) [4] and the center-

based nearest neighbor (CNN) [5], have been devoted

to improve the performance of the Euclidean distance.

Specifically, the mahalanobis distance represents the co-

variance distance of the data and takes into account the

relationships between the various samples. The gener-

alized mean distance is defined as the generalized mean

of the k distances between the query sample and each k

nearest neighbors. The NFL classifier defined a new dis-

tance measure between a query sample and a straight

“line” which passed through two samples of the same

class. The classification by NFL is carried out with the

use of the minimum distance between the feature point

of the test and the feature line’s. The CNN classifier is

proposed to solve the classification task as an improve-

ment of NFL. CNN defines a new distance between the

test sample and a “line” called the center-based line
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which passed through a sample point with known label

and the center of the sample class.

Distinct from the one-to-one measures, the sparse

representation (SR) [6] [7] approach reconstructs a query

sample by selecting a small subset from a large data

set, meanwhile making the reconstructing error as small

as possible. In general, the sparse reconstructive coeffi-

cients can reflect inherent geometric similarity informa-

tion and fully consider the neighborhood relationship of

samples. In [8], it has been proved that the representa-

tion coefficients can effectively indicate the true nearest

neighbors of a given query sample. Therefore, the sparse

coefficients can serve as an effective similarity measure

for searching the nearest neighbors. In most cases, the

SR-based classification is implemented in the form of

Least Absolute Shrinkage and Selection Operator (Las-

so) [9] which exploits the classical `1-norm regulariza-

tion [10–16]. Particularly, in [10], the SR-based classi-

fication (SRC) was proposed to generalize the classical

nearest neighbor method. In [11], the sum of coefficients

(SoC) plays a role of the indicator to obtain more dis-

criminative information from sparse coefficients. In [12],

a two-stage strategy was proposed to select the near-

est neighbors by using sparse coefficients, first coarsely

and then finely. Two novel kNN-based methods were

proposed in [13], in which the classification decisions

were made in light of two weighted voting strategies.

In [14], an element-wise sparsity coefficient matrix was

designed to identify exclusive k values for different test

samples and the majority voting is used as the deci-

sion rule. Moreover, SR has been successfully applied in

pattern recognition such as in face recognition [15, 16].

In [15], a general classification method based on SR

is proposed for object recognition which can help han-

dle errors due to occlusion and corruption uniformly. In

[16], a new model which is much more robust to outliers

is proposed, where the maximum likelihood estimation

solution of the sparse coding problem is obtained.

To develop Lasso-based SR classification systems,

Group Lasso (GL) [17] [18], which uses the `2-norm

within a group and the `1-norm between groups, has

been applied to obtain sparse coefficients [19–23]. In

[19], a locality-constrained GL coding method is used

for microvessel image classification and realizes the au-

tomatic ”hot spot” detection of angiogenesis for human

liver carcinoma. In [20], a novel collaborative double s-

parse period-GL algorithm, which is based on two main

priors of the fault bearing signal provided by the res-

onance frequency and the fault characteristic frequen-

cy respectively, is proposed. The method proposed in

[21] utilized an `1-norm regularization and an `2,1-norm

regularization to generate the element-wise sparsity for

determining the value of k of each test sample and the

row sparsity for determining the noisy training sam-

ples, respectively. In [22], GL is used to construct the

objective function, which can make collaborative repre-

sentation well-structured, to solve the lack of samples’

problem in face recognition. In [23], the KSVD opti-

mization method is used to obtain the sparse GL so-

lution which can guarantee that k most relevant class

groups are selected. In this way, those unrelated groups

can be filtered out by using GL in group level, instead

of individual sample level.

In the aforementioned SR-based classification meth-

ods, Lasso treats different coefficients equally and car-

ries out variable selection at the individual level. How-

ever, this may result in excessive compression of param-

eters due to certain large absolute values and possible

neglect of the inherent group structure of data samples.

Whilst such defects may be reduced by GL through the

exploitation of intra-group non-sparsity (via `2-norm)

and inter-group sparsity (via `1-norm), each group of

variables are either selected or discarded, entirely. In

so doing, the results selected by GL may suffer from

redundant information or deficient information. To ad-

dress this deficiency, in this paper, the sparse coeffi-

cients gained by the use of Exclusive Lasso (EL) [24]

are employed as the similarity measure to implement

an improved kNN classification system. The EL regu-

larization is designed to retain the group structure of

the variables using the `1-norm and `2-norm to obtain

intra-group sparsity and inter-group non-sparsity, re-

spectively. From this, EL guarantees the selection of at

least one variable from each group. In particular, with

the use of distinct decision indicators, two EL-based

kNN algorithms are proposed herein. The experimen-

tal results on benchmark and face recognition data sets

are conducted to evaluate the classification performance

of the proposed methods. The results of experiments

manifest the proposed methods have promising perfor-

mance.

The contributions of this paper are outlined below:

– Two SR-based kNN classification methods are pre-

sented, where the representation coefficients of EL

are employed to act as the similarity gauger to sup-

port the nearest neighbor computation.

– The SR coefficients of EL are employed to help cap-

ture and reflect inherent geometric similarity infor-

mation, enabling a full consideration of the neigh-

borhood relationship of data samples, thereby form-

ing a sharp contrast with conventional Euclidean

distance-based kNN classification.

– SR is implemented from group level to take into

consideration of possible inherent group structure

between data samples, encouraging similar elements

in different groups to co-exist, thereby differing from
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approaches represented by existing Lasso-based kNN

classification,

– Both proposed methods guarantee the selection of

at least one variable from each group, entailing more

meaningful information while avoiding redundant

or deficient information, thereby improving perfor-

mance over GL-based kNN classification.

The remainder of this paper is structured as follows.

In Section 2, the preliminary of kNN-based methods,

sparse representation-based classification and Exclusive

Lasso are reviewed. Section 3 introduces the algorithms

of Exclusive Lasso-based kNN classification. In Section

4, the comparative experimental results are presented

and discussed. The paper is concluded in Section 5, with

a brief discussion regarding important further work.

2 Theoretical Background

Notationally, in the following, T = {(xi, li)}, i = 1, . . . , n

denotes a dataset which contains n distinct objects and

is divided into M categories C = {c1,c2,. . .,cM}, where

li ∈ C.

2.1 Distance-weighted k nearest neighbors

The kNN classification method [1] works by assigning a

query sample to a decision class that is most common

amongst its k nearest neighbors. By virtue of majority

voting for decision-making, in kNN, the k neighbors of

a query sample have an identical weight. In so doing,

the classification performance is sensitive to the quality

of the instances.

As a solution to this important issue, the distance-
weighted k-nearest neighbor (DWkNN) rule has been

proposed in the literature [25]. Given a query data sam-

ple y, let TNN
sort−k

= {(xNNsort−i, l
NN
sort−i

)|i = 1, . . . , k}, de-

note the k nearest neighbors arranged in an increasing

order according to the distances d(y, xNNsort−i). The cor-

responding weight of xNNsort−i is defined by

ŵi =
d(y, xNNsort−k)− d(y, xNNsort−i)

d(y, xNNsort−k)− d(y, xNNsort−1)
×

d(y, xNNsort−k) + d(y, xNNsort−1)

d(y, xNNsort−k) + d(y, xNNsort−i)
.

(1)

When the weights are set to be 1, DWkNN is reduced

to the classical kNN.

Using DWkNN, the label of y is determined in light

of the weighted majority vote of the k nearest neighbors

such that

ly = arg max
cj∈C

k∑
i=1

ŵ
(cj)
i , (2)

where ly is the label of the query sample y. Here, ŵ
(cj)
i

is induced as follows:

ŵ
(cj)

i =

{
ŵi, if lNN

sort−i = cj ,

0, otherwise.
i = 1, . . . , k and j = 1, . . . ,M.

(3)

Since the Euclidean distance used in such conven-

tional kNN classification systems only embraces the dis-

tance information between two data samples, meaning-

ful information embedded within the training dataset

(such as the distribution of the data samples and the

information on class structure) is ignored. In order to

reduce this deficiency, the similarity measures produced

by SR are often introduced to instance-based learning

classification.

2.2 Sparse representation-based classification

Sparse representation-based classification (SRC) [10] ap-

proximately represents a query sample y by the follow-

ing representation coefficients of a linear system:

α̂ = arg min
α
{‖y −Xα‖22 + λ‖α‖1}, (4)

where X = [x1, x2, . . . , xn] is the matrix of all train-

ing samples; α̂ = [α̂1, α̂2, . . . , α̂n]T is the optimal solu-

tion to represent y. Moreover, the optimisation problem

shown in Eq. (4) is also known as Lasso [9], which can

effectively prevent overfitting and yield sparse solution

to select the important variables and reduce the com-

plexity of the model. In the light of the resulting α̂, y

is classified into the category which has the minimum

class-given residual reconstructed by SRC:

ly = arg min
cj∈C

‖y −Xα̂(cj)‖2, (5)

where α̂(cj) is the reconstruction vector induced by α̂

as follow.

α̂
(cj)
i =

{
α̂i, if li = cj ,

0, otherwise.
i = 1, . . . , n and j = 1, . . . ,M

(6)

An alternative decision strategy for SRC is the sum

of coefficients (SoC) [11], which is defined as follows:

ly = arg max
cj∈C

∑
α̂(cj). (7)

By this manner, y is classified into the category which

has the maximal sum of coefficients. In general, when
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the residual strategy suffers from small gaps between d-

ifferent classes, the resulting erroneous prediction may

be accordingly corrected by SoC which is more discrim-

inative and enjoys larger margins between classes [11].

2.3 Exclusive Lasso

Since SRC is proposed based on Lasso, it weights differ-

ent coefficients with the identical degree. This may re-

sult in excessive compression for the samples that have

large absolute value. In order to identify the diversity

of the samples from group level, the Group Lasso (GL)

algorithm [17] was proposed to maintain the inherent

group structure of variables as follow [26].

α̂G = arg min
α
{‖y −Xα‖22 + λ

G∑
g=1

‖αg‖12}, (8)

where X = [x1, x2, . . . , xn] is the matrix of all train-

ing samples; the coefficients in α are divided into G

groups and αg represents the coefficient vector of the

g-th group. The composite regularization in Eq. (8) is

termed as `2,1-norm [27] which achieves the intra-group

non-sparsity via `2-norm and inter-group sparsity via

`1-norm.

In general, GL forces the sparsity of variables at the

inter-group level, so that the variables belong to differ-

ent groups are competing to survive. Since each group

of variables will be either selected or discarded entire-

ly, the resulting selected groups by GL may suffer from

redundant information or lack of partial useful informa-

tion. To overcome this drawback of GL, the Exclusive

Lasso (EL) algorithm was presented [24].

The optimal solution of EL is defined as follows.

α̂E = arg min
α
{‖y −Xα‖22 + λ

G∑
g=1

‖αg‖21}, (9)

where the regularization term is an `1,2-norm that im-

plements the intra-group sparsity via `1-norm and the

inter-group non-sparsity via `2-norm. For instance, in a

three-dimensional space, let the first two variables, α1,1

and α1,2, are in one group. The third variable, α2,1,

is in another group. In Fig. 1(a), the relationship be-

tween `1,2-norm and `1-norm is displayed. Relatively,

Fig. 1(b) illustrates the relationship between `1,2-norm

and `2-norm. Fig. 1(c) concludes that `1,2-norm inherits

properties from both `1-norm and `2-norm.

Compared to GL, EL performs the variable selec-

tion by ensuring that at least one element will be s-

elected from each group. In so doing, EL can support

(a)

(b)

(c)

Fig. 1 Unit ball for exclusive lasso in a 3D space.

the coexistence of similar features in different groups. In

[28], it is indicated that the EL penalty is virtually the

tightest convex relaxation for the group regularization

constraints which require the solution vector to contain

at least one variable from each group.

As with SR regularization-based approaches, EL has

also been used to perform the task of feature selection

[29, 30], where it acts to capture the underlying de-

scriptors for typically, a certain class predictor. As a

result, features that are highly correlated to the de-

cision classes are selected. For instance, in [8], it has

proved that the SR coefficients can effectively indicate

the true nearest neighbors of a given query sample. Re-

flecting this viewpoint, in this paper, EL is employed

to play the role of a similarity gauger in kNN classifica-

tion. Particularly, the resulting SR coefficients are used

to implement two EL-based kNN algorithms as distinct

decision indicators.
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3 Exclusive Lasso-Based k-Nearest Neighbor

Classification

Within the neighborhood located by EL, two kNN clas-

sification methods are implemented as EkNN-C and

EkNN-R, which are with the coefficient and residual

decision indicators, respectively.

By solving the optimization problem in Eq. (9), the

samples TNN
k = {(xNNi , lNNi )}, i = 1, 2, . . . , k, which

enjoy the k largest elements α̃ = {α̃1, α̃2, . . . , α̃k} in the

optimal solution α̂E , are assigned to be the k nearest

neighbors of y. Within TNN
k , the decision indicators of

EkNN-C is

ly = arg max
cj∈C

k∑
i=1

α̃
(cj)
i . (10)

Here, α̃(cj) ∈ Rk is the reconstruction vector induced

by α̃ as follows.

α̃
(cj)

i =

{
α̃i, if lNN

i = cj ,

0, otherwise.
i = 1, . . . , k and j = 1, . . . ,M.

(11)

Following the above discussion, the EkNN-C algo-

rithm can be summarized in Algorithm 1.

Algorithm 1: The EkNN-C algorithm
Input:
C = {c1,c2,. . . ,cM}: the set of class labels;
T = {(xi, li)} i = 1, . . . , n : the training set, li ∈ C;
y : the test sample;
k : the number of nearest neighbors;
λ : a parameter of regularization.
Output: class label ly

1 α̂E ← Solve Eq.(9).//Get sparse coefficients.
2 α̃ ← k largest elements of α̂E ;
3 for j=1,. . . ,M do

4 α̃(cj) = α̃;
5 for i=1,. . . ,k do

6 if lNN
i 6= cj then

7 α̃
(cj)

i = 0;
8 end

9 end

10 end

11 ly ← maxcj∈C
∑k

i=1 α̃
(cj)

i .

Analogously, within TNN
k , the residual distance be-

tween y and xNNi is defined as:

dr(y, x
NN
i ) = ‖y − α̃ixNNi ‖2. (12)

Considering the residual distance with respect to

xNNi as its contribution to the sparse reconstruction

representation of y, the residual distance-weighted func-

tion is defined as follow.

wi =


dNNmax − dr(y, xNNi )

dNNmax − dNNmin

, if dNNmax 6= dNNmin ,

1 , if dNNmax = dNNmin .

(13)

Here, dNNmax and dNNmin are the maximum and minimum

of all residual distances, respectively. With the use of

both the sparse coefficients and the residual distance

weights of the k nearest neighbors, EkNN-R predicts

the class label ly of y in light of the following equation.

ly = arg max
cj∈C

k∑
i=1

wi × α̃
(cj)
i . (14)

The EkNN-R algorithm is outlined in Algorithm 2.

Algorithm 2: The EkNN-R algorithm
Input:
C = {c1,c2,. . . ,cM}: the set of class labels;
T = {(xi, li)} i = 1, . . . , n : the training set, li ∈ C;
y : the test sample;
k : the number of nearest neighbors;
λ : a parameter of regularization.
Output: class label ly

1 α̂E ← Solve Eq.(9).//Get sparse coefficients;
2 α̃ ← k largest elements of α̂E ;
3 TNN

k ← k nearest neighbors;
4 for j=1,. . . ,M do

5 α̃(cj) = α̃;
6 for i=1,. . . ,k do
7 if lNN

i 6= cj then

8 α̃
(cj)

i = 0;
9 end

10 end

11 end

12 for i=1,. . . ,k do

13 dr(y, xNN
i ) ← ‖y − α̃ix

NN
i ‖2

14 end
15 for i=1,. . . ,k do
16 if dNN

max 6= dNN
min then

17 wi ←
dNN
max −dr(y,x

NN
i )

dNN
max −dNN

min

;

18 else

19 wi ←1;
20 end

21 end

22 ly ← maxcj∈C
∑k

i=1 wi × α̃
(cj)

i ;

As reported in [8], the representation coefficients can

effectively indicate the true nearest neighbors of a given

query sample. Let y be a query sample which is rep-

resented as y =
∑n
i=1 ᾱixi, where ᾱ=[ᾱ1, ᾱ2, . . . , ᾱn]
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denotes the sparse solution returned by the SR-based

classification system. The xi is not the neighbor of y

when ᾱi = 0, since ᾱi = 0 signifies xi does not lie in

the best representation linear subspace of y. Thus, y

can be further represented as y =
∑n

′

i=1 ᾱixi, where

ᾱi 6= 0 and n
′ ≤ n, with ᾱi being computed by

ᾱi =
1

2
(d2(

n′∑
t=1,t6=i

ᾱtxt, xi)− d2(y, xi)). (15)

where d(y, xi) is the Euclidean distance between y and

xi. The detailed derivation of Eq. (15) is beyond the s-

cope of this paper but can be consulted in [8]. Yet, gen-

erally, the d2(
∑n′

t=1,t6=i ᾱtxt, xi) denotes the weighted

sum of Euclidean distance from xi to any other xt, t 6= i,

with d(y, xi) expressing the Euclidean distance between

y and xi. The larger d2(
∑n′

t=1,t6=i ᾱtxt, xi) and the s-

maller d(y, xi) (equivalently, the larger ᾱi), the more

similar y is to xi. Hence, a larger ‖ᾱi‖ implies that xi
is more likely to be in the neighborhood of y. Converse-

ly, the interpretation os ᾱi < 0 is that there is a high

probability that xi does not fall into the same class as

y. Thus, data samples whose corresponding coefficients

are less than 0 are out of the scope of consideration

(which can therefore be set to 0). It can be seen from

Eq.(15) that sparse coefficients cover not only the Eu-

clidean distance between two samples, but also linearly

reflects the contribution of xi to its neighbor structure.

To intuitively illustrate the advantage of the SR co-

efficients produced by EL as similarity measures, com-

parisons with the Euclidean distance and Lasso on the

datasets sonar and wpbc [31] are shoiwn in Figs. 2 and

3, respectively. For each data set, the 80 training sam-

ples (40 from class 0 and 40 from class 1 ) and one query

sample from class 0 are randomly chosen. In Figs. 2 and

3, the similarity measure index corresponding to sam-

ples from class 0 is marked with red bar and that from

class 1 is marked with black bar. It can be seen from

Figs. 2 and 3 that sparse coefficients of EL can retain

sufficient information to entail high discriminating abil-

ity than Euclidean distances. In most cases, the sparse

coefficients of samples from the same class (class 0) as

the query sample are always predominant and the ones

from other class (class 1) are small or tend to be 0.

Thus, sparse coefficients are the better similarity met-

ric to determine the nearest neighbors of a given query

sample. Moreover, EL can select more similar samples

than Lasso. Therefore, EL is better to deal with the

sensitivities to k in kNN-based methods.

Computationally, there are two loops in the opti-

mization algorithm of EL: one to cover the iterative

optimization process and another to iterate through the

groups. Let the maximum number of iterations and the

(a) Euclidean distances

(b) Sparse coefficients via Las-
so

(c) Sparse coefficients via Ex-
clusive Lasso

Fig. 2 Illustrative examples on dataset sonar.

quantity of the groups be denoted by I and G, respec-

tively. In the worst case (where the optimization pro-

cess reaches I), the complexity of EL is O(I ·G). More-

over, the complexity of making decision by EkNN-C is

O(Mk) and that by EkNN-R is O(Mk + 2k). Thus,

the complexity of EkNN-C is O(I · G + Mk) and the

complexity of EkNN-R is O(I ·G+Mk + 2k).

Although the decision framework of the proposed

EL-based methods are similar to those of Euclidean dis-

tance and Lasso-based kNN methods, the distinguished

distribution of neighborhood will grant the proposed

approaches a significant discriminative nature. In gen-

eral, EL results in an intervening performance between

Lasso and Euclidean distance, in terms of sparsity. Thus,

sparse coefficients of EL enjoy more meaningful infor-

mation than those of Lasso and more discriminative in-

formation than those of Euclidean distance. Such merit

can endow the EL-based kNN methods with an abun-

dance of choices of neighborhood and a hindrance of

the existence of redundant instances.
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(a) Euclidean distances

(b) Sparse coefficients via Las-
so

(c) Sparse coefficients via Ex-
clusive Lasso

Fig. 3 Illustrative examples on dataset wpbc.

4 Experimental evaluation

This section presents a systematic evaluation of EkNN-

C and EkNN-R experimentally. The results and dis-

cussions are divided into three different parts, after an

introduction to the experimental set-up. The first part

compares EkNN-C and EkNN-R with other nearest-

neighbor methods in term of classification accuracy.

The second part compares EkNN-C and EkNN-R a-

gainst the state of the art in term of classification ac-

curacy. The last part investigates the performance of

EkNN-C and EkNN-R on the application of face recog-

nition.

4.1 Experimental set-up

Twenty-four benchmark data sets [31] [32] [33] are used

for the experimental evaluation. The basic information

about the data sets as summarized in Table 1. More-

over, three face recognition data sets, including AR [34],

Yale [35] and IMM [36] are used to verify the perfor-

mance of EkNN-C and EkNN-R, compared to their

Lasso-based parallels.

Table 1 Benchmark data sets used for evaluation

No. Data set Samples Attributes Classes

1 LSVT 127 310 2
2 wpbc 197 32 2
3 arcene 200 10000 2
4 sonar 208 60 2
5 ionosphere 230 34 2
6 spectfheart 267 44 2
7 setap 275 85 2
8 bupa 345 6 2
9 liver 345 7 2
10 ILPD 583 11 2
11 Hill−Valley 606 101 2
12 transfusion 748 4 2
13 QSAR 1054 39 2
14 steel 1941 33 2
15 coil2000 9822 85 2
16 wine 178 13 3
17 seeds 210 7 3
18 vehicle 846 13 4
19 cleveland 297 14 5
20 warpAR10P 130 2400 10
21 led7digit 500 7 10
22 multifeat 2000 650 10
23 optdigits 5620 64 10
24 penbased 10992 16 10

The experiments conducted on these date sets ap-

ply stratified 10-fold cross-validation (10-FCV) for da-

ta validation. In 10-FCV, the original data set is par-

titioned into 10 subsets. Of these 10 subsets, a single

subset is retained as the testing data for the classifier,

and the remaining 9 subsets are used for training. The

cross-validation process is then repeated 10 times (the

number of folds). The 10 sets of results are then ag-

gregated to produce a single classifier estimation. The

advantage of 10-FCV over random sub-sampling is that

all objects are used for both training and testing, and

each object is used for testing only once per fold. The

stratification of the data prior to its division into folds

ensures that each class label (as far as possible) has e-

qual representation in all folds, thus helping to alleviate

bias/variance problems [37].

In addition, the Wilcoxon Signed Rank (WSR) Test

is utilized to provide statistical analysis of the resulting

classification accuracy. This is done in order to ensure

that results are not discovered by chance. In the WSR

test, the null-hypothesis should be rejected with a 0.95

confidence interval (or a 0.05 level of significance), when

the value of the statistics is lower than 1.96. In Tables
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2 and 3, the results on statistical significance by WSR

test are summarized in the last three lines, where Z

represents the standard score and the p-value reflects

the information of significant degree. The true or false

significant difference (SD) is recorded in the final line

of each table.

4.2 Part 1 - Comparison with alternative nearest

neighbor methods

Here, EkNN-C and EkNN-R are compared with five

nearest-neighbour classification methods: DWkNN [25],

generalized mean distance-based k nearest neighbors

(GMDkNN) [3], multi-local means-based k-harmonic n-

earest neighbor (MLMkHNN) [38], CWkNN [13] and

RWkNN [13]. In order to comprehensively evaluate the

performance of the proposed classification approaches,

k is increasingly set between 1 and 11 in different run-

s performed by 10-FCV. The results can been seen in

Figs. 4 and 5.

From the experimental results presented, it can be

seen that for most cases, EkNN-C and EkNN-R outper-

form kNN, DWkNN, GMDkNN, MLMkHNN, CWkNN

and RWkNN. In particular, the performance of EkNN-

C transcends those of the alternative competitors, con-

sistently. Furthermore, the classification accuracy of both

proposed classification systems remains on a general-

ly upward trend as the value of k grows. These ex-

perimental results manifest that, compared with Eu-

clidean distance-based and Lasso-based kNN strategies,

the proposed methods are more robust (or less sensi-

tive) regarding the number of nearest neighbors and

hence, embrace less redundant information in each neigh-

borhood of interest.

4.3 Part 2 - Comparison with the state of the art: use

of different aggregators

This section experimentally compares EkNN-C and EkNN-

R with several leading classifier learners that represent

a cross section of the most popular approaches, includ-

ing DGC [39], NB [40], JRip [41], J48 [42], AdaJ48 [43],

RF [44], Bagging [45], and DNN [46]. For completeness,

a brief summary of these methods is provided below:

– Data Gravitation-based Classification (DGC) [39] is

based on the concept of data gravitation. Its main

principle is to classify data samples by comparing

the data gravitation between the different data class-

es. A larger gravitation from a class means the data

sample belongs to a particular class.

– Naive Bayes (NB) [40] is a classification method

based on Bayes’ theorem and strong (naive) inde-

pendence assumptions. For a given training data set,

the joint probability distribution of input/output is

first learned based on the independent assumption

of feature conditions. Then based on this model, the

output with the maximum posterior probability is

obtained by using Bayes’ theorem for the given in-

put.

– JRip [41] learns propositional rules by repeatedly

growing rules and pruning them. During the growth

phase, features are added greedily until a termina-

tion condition is satisfied. Features are then pruned

in the next phase subject to a pruning metric. Once

the rule set is generated, a further optimization is

performed where classification rules are evaluated

and deleted based on their performance on random-

ized data. In this paper, JRip is set with folds=3,

minNo=2, optimazations=2 and seed=1.

– J48 is based on ID3 [42] and creates decision trees by

choosing the most informative features and recur-

sively partitioning a training data table into subta-

bles based on the values of such features. Each node

in the tree represents a feature, with the subsequent

nodes branching from the possible values of this n-

ode according to the current subtable. Partitioning

stops when all data items in the subtable have the

same classification. In this paper, J48 is set with the

pruning confidence threshold C=0.25.

– In AdaBoostM1 (AdaM1) [43] algorithm , each train-

ing sample is given a weight and the weight repre-

sents the probability that the sample will be listed

in the training sample set by the next weak learn. If

a sample can be accurately classified by the curren-

t weak learn, the probability that the sample will

be selected will be reduced when constructing the

training sample set of the next weak learn; on the

contrary, If a sample fails to be classified correct-

ly by the current classifier, its weight will be in-

creased accordingly, which strengthens the classifi-

cation ability of the harder samples. The final classi-

fication output depends on the comprehensive effect

of all classifiers. In this paper, AdaBoostM1 is set

with J48 classifier, num Iterations=10, seed=1 and

weight Threshold=100.

– Random Forests (RF) [44] is an algorithm that inte-

grates multiple trees with the idea of ensemble learn-

ing. Its basic unit is decision tree. For each tree, the

training set used is sampled from the total training

set in a way that is put back. When the nodes of

each tree are trained, the features used are extract-

ed from all the features in a certain proportion in
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(a) LSVT (b) wpbc (c) arcene

(d) sonar (e) ionosphere (f) spectfheart

(g) setap (h) bupa (i) liver

(j) ILPD (k) Hill−Valley (l) transfusion

Fig. 4 Comparisons with other alternative nearest-neighbour algorithms on data sets 1-12.

a random way without putting back. In this paper,

RF is set with numTrees=100 and seeds=1.

– Bagging [45] is one of the most basic integration

technologies. It is based on a bootstrapping statis-

tical approach, which makes many statistical eval-

uations of complex models feasible. It can reduce

overfitting.

– Deep Neural Networks (DNN) [46] is a feedforward

artificial neural network model, which belongs to

nonparametric estimation and can be used to solve

classification and regression problems. In this paper,

DNN is set with activation=’relu’, batchSize=100,

trainingTime=500, learningRate=0.3 and 2 hidden-

Layers, where the numbers of the hidden nodes are

set as the summation and the average of the val-

ues of Attributes and Classes as shown in Table 1,

respectively.

The results are listed in Tables 2 and 3, together

with a statistical comparison of each method against

EkNN-C and EkNN-R, respectively. The baseline ref-

erences for the p-tests carried out are the highest classi-

fication accuracies obtained by the proposed classifiers

for each data set as shown in Fig. 4 and 5. From the re-

sults of this experimentation, across all data sets used,
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(a) QSAR (b) steel (c) coil2000

(d) wine (e) seeds (f) vehicle

(g) cleveland (h) warpAR10P (i) led7digit

(j) multifeat (k) optdigits (l) penbased

Fig. 5 Comparisons with other alternative nearest-neighbour algorithms on data sets 13-24.

it can be seen that the resulting average accuracies of

the proposed algorithms systematically beat the rest.

Particularly, EkNN-C and EkNN-R statistically out-

perform DGC, NB, JRip, J48, RF and DNN, since the

p-values are smaller than 0.05, and the performance im-

provement over that achievable by DGC, NB, JRip and

J48 is highly significant, given that p-values< 0.01. Oc-

casionally, the differences between the resultant average

accuracies obtained by the proposed methods and those

attainable by AdaJ48, RF and Bagging are not statis-

tically significant. Nonetheless, the results returned by

the proposed are still greater than those achievable by

the rest numerically.

4.4 Part 3 - Face Recognition

The data sets employed in this experimental evaluation

are IMM [36] (as shown in Fig. 6), Yale [35] (as shown in

Fig. 7) and AR [34] (as shown in Fig. 8). Specifically, the

IMM data set contains 240 images of faces, involving a

total of 40 people (7 women and 33 men) and each

people with 6 face images. The Yale data set consists

of 15 classes, each of which includes 11 samples. And

the AR data set consists of 2600 images of faces from

100 people (50 women and 50 men), each of which has

26 face images.

The respective experimental results on these three

data sets are shown in Figs. 9, 10 and 11. The high-

est accuracies of each classification method on these
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Table 2 Classification accuracy: EkNN-C versus others

dataset EkNN-C DGC NB Jrip J48 AdaJ48 RF Bagging DNN

LSVT 83.13 62.37 56.41 74.68 75.45 79.83 81.73 66.67 84.61
wpbc 80.86 76.64 68 69.87 73.13 76.18 74.24 79.18 76.7
arcene 90.89 57 68.7 71.5 75 43.58 75.7 75.9 85
sonar 70.83 66.22 67.88 76.95 71.17 79.13 71.67 76.9 72.02

ionosphere 86.96 90.63 83.91 86.52 87.83 90.09 88.26 87.83 88.20
spectfheart 79.43 68.86 68.63 78.25 74.91 79.04 79.83 81.65 77.11

setap 68.45 67.56 66.51 73.82 66.65 73.38 69.43 68.02 63.63
bupa 68.97 56.25 53.86 65.84 67.87 68.37 68.71 71.93 69.22
liver 70.12 59.12 55.39 64.64 68.71 69.42 69.89 69.58 66.06
ILPD 71.48 58.16 55.74 70.15 68.79 70.46 71.85 71.52 68.26

Hill−Valley 71.43 53.98 50.67 49.34 50.33 50.33 58.76 59.83 84.82
transfusion 77.54 63.87 75.4 77.14 77.81 77.44 72.86 79.15 72.62

QSAR 85.2 67.09 76.84 81.69 83.01 85.69 84.82 84.91 82.24
steel 98.09 56.28 55.48 100 100 100 99.33 100 97.42

coli2000 94 91.97 78.08 93.91 93.95 91.64 92.82 93.87 89.94
wine 96.11 98.30 97.22 92.68 94.41 97.19 98.3 94.97 97.25
seeds 96.19 62.38 91.43 86.67 91.9 92.67 92.86 92.86 91.90

vehicle 79.43 70.69 44.8 69.39 72.47 75.59 74.94 72.1 83.34
cleveland 57.59 52.48 56.6 52.18 51.87 53.18 54.9 57.6 47.99

warpAR10P 98 70.32 72.15 59.69 70.31 83.92 74.38 74.31 46
led7digits 70.16 50.62 70.8 71 71.2 72.1 70.4 72 71.99
multifeat 98.75 80.84 95.35 93.1 94.75 97.7 96.55 96.25 98.24
optdigits 98.74 83.66 91.33 91.25 90.68 97.35 96.92 95.32 97.54
penbased 99.54 79.04 85.86 96.39 96.52 98.92 98.97 97.75 98.91

Average 82.99 68.51 70.29 76.94 77.86 79.30 79.92 80.00 79.61

Z - -4.09 -4.17 -3.17 -3.6 -1.71 -2.37 -1.63 -2.11

p-value - 0.00004 0.00003 0.00152 0.00032 0.08647 0.01771 0.1034 0.03448

SD - TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE

(a) (b)

Fig. 6 Two samples of dataset IMM

(a)

(b)

Fig. 7 Two samples of dataset Yale

(a) (b)

Fig. 8 Two samples of dataset AR

data sets, along with the corresponding values of k,

are concluded in Table 4. Overall, for most values of

k, the EkNN-C and EkNN-R outperform their Lasso-

based parallels, respectively. Only for 6 cases of k, i.e.,
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Table 3 Classification accuracy: EkNN-R versus others

dataset EkNN-R DGC NB Jrip J48 AdaJ48 RF Bagging DNN

LSVT 83.25 62.37 56.41 74.68 75.45 79.83 81.73 66.67 84.61
wpbc 79.75 76.64 68 69.87 73.13 76.18 74.24 79.18 76.7
arcene 88.96 57 68.7 71.5 75 43.58 75.7 75.9 85
sonar 74.63 66.22 67.88 76.95 71.17 79.13 71.67 76.9 72.02

ionosphere 87.01 90.63 83.91 86.52 87.83 90.09 88.26 87.83 88.2
spectfheart 80.17 68.86 68.63 78.25 74.91 79.04 79.83 81.65 77.11

setap 69.15 67.56 66.51 73.82 66.65 73.38 69.43 68.02 63.63
bupa 68.42 56.25 53.86 65.84 67.87 68.37 68.71 71.93 69.22
liver 67.47 59.12 55.39 64.64 68.71 69.42 69.89 69.58 66.06
ILPD 71.51 58.16 55.74 70.15 68.79 70.46 71.85 71.52 68.26

Hill−Valley 71.43 53.98 50.67 49.34 50.33 50.33 58.76 59.83 84.82
transfusion 74.21 63.87 75.4 77.14 77.81 77.44 72.86 79.15 72.62

QSAR 85.57 67.09 76.84 81.69 83.01 85.69 84.82 84.91 82.24
steel 97.12 56.28 55.48 100 100 100 99.33 100 97.42

coli2000 93.63 91.97 78.08 93.91 93.95 91.64 92.82 93.87 89.94
wine 97.15 98.30 97.22 92.68 94.41 97.19 98.3 94.97 97.19
seeds 91.43 62.38 91.43 86.67 91.9 92.67 92.86 92.86 91.90

vehicle 79.08 70.69 44.8 69.39 72.47 75.59 74.94 72.1 83.34
cleveland 60.68 52.48 56.6 52.18 51.87 53.18 54.9 57.6 47.99

warpAR10P 99.5 70.32 72.15 59.69 70.31 83.92 74.38 74.31 46
led7digits 71.42 50.62 70.8 71 71.2 72.1 70.4 72 71.99
multifeat 98.79 80.84 95.35 93.1 94.75 97.7 96.55 96.25 98.24
optdigits 98.74 83.66 91.33 91.25 90.68 97.35 96.92 95.32 97.54
penbased 99.89 79.04 85.86 96.39 96.52 98.92 98.97 97.75 98.91

Average 82.87 68.51 70.29 76.94 77.86 79.30 79.92 80.00 79.61

Z - -4.11 -4.17 -3.14 -3.11 -1.17 -2.31 -1.28 -2.06

p-value - 0.00004 0.00005 0.00167 0.00184 0.24142 0.02065 0.19854 0.03967

SD - TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE

k = 1, 2, 3 by EkNN-C on the IMM data set, k = 3 by

EkNN-R on the Yale data set and k = 4, 5 by EkNN-R

on the AR data set, the proposed methods endure a

inferior performance compared to the Lasso-based ap-

proaches.

Table 4 Highest classification accuracies of different nearest
neighbour algorithms

dataset IMM Yale AR

EkNN-C 0.9374(11) 0.9531(9) 0.9905(11)
CWkNN 0.9073(9) 0.9400(6) 0.9883(11)
EkNN-R 0.8548(11) 0.9333(1) 0.9566(11)
RWkNN 0.8397(11) 0.9298(1) 0.9500(1)

In summary, examining all of the results obtained, it

has been experimentally shown that with the use of the

coefficients of EL, the kNN classification offers a better

and more robust performance than the other classifiers.

(a)

(b)

Fig. 9 Classification accuracy with respect to different k val-
ues for dataset IMM
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(a)

(b)

Fig. 10 Classification accuracy with respect to different k

values for dataset Yale

(a)

(b)

Fig. 11 Classification accuracy with respect to different k

values for dataset AR

5 Conclusions

In this paper, two novel k nearest neighbor classifica-

tion strategies are proposed by the EL regularization.

The sparse coefficients of EL are employed to perform

the similarity evaluation which carries out variable se-

lection at the group level. To demonstrate the efficacy

of the proposed methods, systematic experiments have

been carried out from the perspective of classification

accuracy on both benchmark data sets and face recog-

nition applications. The results of the experimental e-

valuation show that the EL-based k nearest neighbors

methods generally outperform a range of state-of-the-

art learning classifiers for these classification tasks.

Topics for further research include a more compre-

hensive study of how EL could be used for other tasks

such as attribute reduction. Also, due to the feature

selection capacity of EL, the concept of data reliabil-

ity based on the proposed nearest neighbor strategies

is a worthwhile avenue of exploration. An investigation

into how such work may be combined with the alter-

native classification indicators, in order to reinforce the

potential of these approaches, remains active research.
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