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Abstract Activity recognition focuses on inferring current user activ-
ities by leveraging sensory data available on today’s sensor rich envir-
onment. Supervised learning has been applied pervasively for activity
recognition. Typical activity recognition techniques process sensory data
based on point-by-point approaches. In this paper, we propose a novel
Cluster Based Classification for Activity Recognition Systems, CBARS.
The novel approach processes activities as clusters to build a robust clas-
sification framework. CBARS integrates supervised, unsupervised and
active learning and applies hybrid similarity measures technique for re-
cognising activities. Extensive experimental results using real activity re-
cognition dataset have evidenced that our new approach shows improved
performance over other existing state-of-the-art learning methods.

Keywords: Activity recognition, Cluster based classification, Hybrid
similarity measure

1 Introduction

There is a general consensus on the need for effective automatic recognition of
user activities to enhance the ability of a pervasive system to properly recognise
activities and react to circumstances. Recognizing human activities based on
sensory data has recently drawn much research interest from the pervasive com-
puting community. Activity recognition system focuses on inferring the current
activities of users by leveraging the rich sensory environment. Sensor readings
are collected and interpreted to recognise various human activities. Systems that
can recognise human activities from sensory data opened the door to many im-
portant applications in the fields of healthcare, social networks, environmental
monitoring, surveillance, emergency response and military missions.
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Activity recognition (AR) is typically viewed as a classification problem
where many traditional machine learning techniques can be applied [1]. In most
existing supervised learning approaches in AR, the training data is collected,
a classification model is generated offline from the collected data, and finally
the obtained model is deployed to recognise the activity. A wide range of clas-
sification models has been used for activity recognition such as Decision Trees,
Naive Bayes and Support Vector Machines. A typical activity recognition sys-
tem builds the learning model with annotated data to recognise new data and
predict human activity type based on the learning model.

We propose a novel cluster based classification method for robust activity
recognition across users. We coined our technique CBARS, which stands for
Cluster Based Activity Recognition System. CBARS adapts hybrid similarity
measure classification for both accurate activity recognition and active learning
for the new/unlabelled sensory data. Our proposed technique extends the state-
of-the-art in AR by providing the following advantages.

– Adaptability to the nature of activity recognition data: People perform activ-
ities in a sequential manner (i.e., performing one activity after another).
Therefore, activity recognition data stream typically composites of sequence
of chunks that represents various activities. Different from other activity re-
cognition systems, CBARS is a cluster based classification that deals with
activities as clusters rather than processing each point. The novel approach
is adapted for activity recognition data nature. Therefore, computation and
processing time are conserved when dealing with the entire cluster instead
of processing each point.

– Hybrid similarity measure: Learning model in CBARS contains clusters
that represent different activities. When new cluster is emerged, hybrid simil-
arity measure is deployed to match up similarities of the new cluster/activity
with the existing ones. These measures are namely distance, density, gravity
and within cluster standard deviation (WICSD). Applying the aforemen-
tioned similarity measures for activity recognition shows superiority over
the use of individual ones, and therefore enhances the system robustness
across users.

– Combination of modelling techniques: The system combines supervised, un-
supervised and active learning all in one data stream model. We initially
build the learning model with supervised learning. When new data received,
unsupervised learning is deployed to cluster activities. Active learning is also
employed in the event of confusion on cluster labels.

– Framework for adapted model and evolving data stream: One of the char-
acteristics of CBARS framework is the flexibility to be updated as the data
evolves. Therefore, the updated model is personalised and adapted to the
most recent changes detected in the user’s activities. In this paper, we present
the framework that allows adaptation over time. However, the implementa-
tion of the adaptation is not in the scope of this paper.

To the best of our knowledge, no other existing activity recognition system
addresses all aforementioned points in a single framework. The rest of the paper
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is organised as follows. Section 2 provides a discussion of the research context.
Explanation of the proposed framework and its details are presented in Section
3. Section 4 reports the experimental results and analysis. Finally, Section 6
concludes the paper with a summary.

2 Research Context

An efficient approach based on data mining has been recently proposed in a num-
ber of research projects considering the activity recognition from the machine
learning perspective. Methods commonly used for activity classification were
reviewed in [1]. Supervised learning has been deployed pervasively for activity
recognition. One example system is explained in [2]. In this system, three clas-
sification techniques from WEKA [3] are used to induce models for predicting
the user activities. Some other systems used fuzzy classifiers for activity recogni-
tion as in [4] and [5]. Few studies considered unsupervised learning techniques for
activity recognition and change detection. In [7], the feasibility of applying a spe-
cific type of unsupervised learning to high-dimensional, heterogeneous sensory
input was analysed. The correspondence between clustering output and classific-
ation input was proposed as well. Typically there is only a small set of labelled
training data available in addition to a substantial amount of unlabelled train-
ing data. Therefore, some studies considered labelling only profitable samples of
data or continue learning while system is running. Longstaff et al. Longstaff et
al. [8] investigated methods of further training classifiers after a user begins to
use them using active and semi-supervised learning.

To the best of our knowledge, none of these techniques has considered com-
bining supervised, unsupervised and active learning for building a robust activity
recognition system across users. Typical activity recognition stream is formed
from a sequence of data chunks representing activities. Therefore, we propose a
novel approach that treats data input as a stream and uses clustering to avoid
having to respond to each input data point. As the stream evolves, there is a
need to assess old and new clusters and this is handled with a hybrid similarity
measure.

3 CBARS : Cluster Based Classification for Activity
Recognition Systems

CBARS mainly composites of three consecutive phases. Illustration of the dif-
ferent phases is presented in this section.

3.1 Phase 1: Build Learning Model

Initially, supervised learning is applied on labelled data to train and generate
the learning model. The generated model consists of set of clusters. Each cluster
represents one of the labelled activities that applied while training the model.
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CBARS creates k clusters of k activities in the training data. The cluster label
is the majority label among cluster instances. Training examples typically con-
tain outliers and noisy data that might affect the quality of the model directly.
Therefore, we add a filtration step that aims to purify clusters and therefore
build more accurate learning model.

Model Purification: While creating new cluster from training data, cluster
is purified by considering only true-labelled instances inside the cluster and ig-
noring other mis-clustered examples (instances with different labels). Building
on the purified clusters, characteristics are extracted for each cluster and all raw
points are then dismissed.

CBARS extracts features from each cluster and dismisses all raw data at
the end of this phase. Cluster characteristics are the basic information describes
the cluster. Characteristics of a cluster include basically the cluster centroid,
density, within cluster standard deviation and boundaries. The learning model is
formed from set of clusters/activities that are deployed in training. The extracted
features represent clusters/activities and raw data is dismissed.

3.2 Phase 2: Unsupervised Learning for New Data

This step aims to create clusters of various activities exist in data received. When
unlabelled data emerged, we apply clustering on data to generate clusters of the
performed activities . Various clustering techniques such as k-means, Expecta-
tion Maximisation and DBScan [9] have used and compared to reach the best
performance. Clusters Characteristics are extracted and all raw data is dismissed
similar to the learning model building procedure. The output of this phase is
the set of clusters’/activities’ characteristics ready for the recognition phase.

3.3 Phase 3: New Activity Recognition

As the stream evolves, we assess new and learning model clusters to predict new
clusters’ labels. This is handled with a hybrid similarity measure approach. As
raw data has been dismissed, characteristics of the new cluster are compared to
the existing learning model ones. The predicted label is based on the charac-
teristics of the most similar cluster in the learning model. Clusters are similar
if they match based on the hybrid similarity measure approach. For each new
formed cluster, the algorithm checks how similar it is to other clusters already
exist in the learning model. We apply various measures to test similarities among
clusters. Each measure votes for its own ” candidate” cluster from the measure
respective. The predicted label is the candidate cluster with the majority of votes
among all measures, while the true label of a cluster is the majority label among
cluster instances. There are three cases expected from the voting procedure as
follows.

1. Correct prediction: This case occurs when the majority of votes have
chosen the candidate cluster/activity with the true label.



Cluster Based Classification for Activity Recognition Systems 5

2. Active learning: In case of equal votes are assigned to a specific two
clusters, user input is required to label the cluster. In this case, equal votes
are assigned for exactly two clusters. The algorithm inquires about the cor-
rect label from user in an active learning mode with either of the labels of
the two nominated clusters.

3. Incorrect prediction: The cluster is incorrectly classified when a total
confusion with lowest confidence among all measures for candidate clusters
or when voting for an incorrect cluster.

Hybrid similarity measure technique implements four measures namely dis-
tance, density, gravitational force and within cluster standard deviation. We con-
cern in these measures about the distance among the cluster centroids, clusters
density, how strong is the gravitational force among clusters and the cohesion
inside the cluster. Learning model LM consists of n clusters/ activities.

LM = {C1, C2, C3, ....Cn} (3.1)

When new cluster Cnew arrives, the algorithm deploys the various similarity
measures to choose the best candidate cluster Ci from n clusters of LM . The
four measures are:

– Distance: Cluster centroid is an n dimensional array of mean n- dimen-
sional instances inside the cluster. Ci is the candidate cluster from distance
perspective if distance between Cnew and Ci centroids is the shortest among
n clusters in LM .

– Density: Each cluster has its own density that distinguishes it from other
clusters. Cluster density reflects the distribution of data points inside the
cluster. It is described by the Formula 3.2 :

ClusDens =
SizeOfCandidate

AvgDist
(3.2)

AvgDist =

∑m
i=1(Pi − ClusCntr)

m
(3.3)

Where (m) is the number of points in the cluster, (P) is a n- dimensional
data point inside the cluster and (ClusCntr) is the cluster centroid. the
average Distance(avgDis)is the within-cluster sum of the distances between
cluster’s examples and respective cluster centroid divided by the number of
examples within cluster.Two clusters are similar from density perspective if
they have the smallest difference in density. Ci is the candidate cluster if the
difference between Cnew and Ci density is the minimum among n clusters in
LM .

– Gravitational force: Gravitational force has been previously applied in
machine learning such as in [10] , [11], and [12] . There exists a natural
attraction force between any two objects in the universe and this force is
called gravitation force. According to Newton universal law of gravity, the
strength of gravitation between two objects is in direct ratio to the product
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of the masses of the two objects, but in inverse ratio to the square of distance
between them. The law is described in Equation 3.4:

Fg = G
m1m2

r2
(3.4)

Where Fg is the gravitation between two objects (clusters); G is the constant
of universal gravitation; m1 is the mass of object 1 (size of cluster 1); m2

is the mass of object 2 (size of cluster 2); r the distance between the two
objects ( Euclidean distance between clusters’ centroids) .
According to Equation 3.4, each cluster generates its own gravitational force
created from its weight. The bigger the weight of the candidate the stronger
the gravitational force produced around it. Therefore, the probability it could
attract more data object would be increased. When the gravitational force
between Cnew and Ci is bigger than with other clusters existing in LM ,
then Ci is the candidate cluster from gravitational force perspective.

– WICSD ( Within Cluster Standard Deviation): This measure con-
siders the cohesion inside each cluster. Standard deviation of n dimensional
points inside the cluster is calculated as the equation 3.5.

WICSD =

√∑m
i=1 EDistance(Pi,ClusCntr)2

m
(3.5)

Where EDistance is the Euclidean Distance, (m) is the number of points
into the cluster, (P) is a n- dimensional data point inside the cluster and
(ClusCntr) is the cluster centroid.
Clusters that have similar standard deviation are more likely to present the
same activity/label. Ci is the candidate cluster form WICSD perspective if it
has the smallest difference in standard deviation measure with Cnew among
n clusters in LM .

4 Experimental Study

This section reports the experiments conducted to study how CBARS performs
in practice. Activity recognition systems deal with high-dimensional, multi-modal
streams of data. In the recently started European research project [13], the OP-
PORTUNITY dataset has been recorded to recognise complex activities. The
dataset has labels for five users across five segments with annotated activit-
ies such as (sitting, walking and running) streaming form accelerometer sensors
attached to the user’s body.

Let Fc = total existing class instances correctly classified, Fa = total ex-
isting class instances trigger active learning, Fi = total existing class instances
misclassified, S = total instances the dataset. We use the following performance
metrics to evaluate our technique. Mc: % of class instances correctly classified =
Fc ∗ 100

S
, Ma: % of class instances requires active learning =

Fa ∗ 100

S
, and ERR:

% of misclassification class instances =
Fi ∗ 100

S
.
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CBARS is tested on the OPPORTUNITY dataset. Part of the data is used
to build the learning model; other new date is applied for testing. Testing data
is a new data that has not used for training the model. Learning and testing
data could be for the same user but different segments or for different users.

4.1 Cluster purification and learning model

Model purification is an essential step for pruning and refining the learning
model. It has a superior advantage of building a robust model that filters out-
liers and wrong-labelled examples. Therefore, purified model represents activity
of majority label with high confidence. Figures 1 and 2 show the effect of model
purification on Mc with different runs N . Different runs are for different combin-
ations of training and testing datasets for same user (N= 1,2) or various users
(N= 3,4,5,6). As shown in figure 1, model purification shows better performance
for most of the runs.

Figure 1: Cluster Purification and Recognition accuracy

The impact of the purification step on the various measures is shown in
Figure 2. Eliminating outliers and wrong-labelled instances affects the position
of clusters’ centroids. Therefore, purification boosts measures that rely mainly
on the coordinates of centroids. That include distance, gravity and WICSD as
shown in Figure 2(a)(b)(d). On the other hand, purification might eliminate
instances belong to low dense clusters that seemed to be outliers. Therefore,
density might be affected badly with purification as showed in Figure 2(c). Al-
though, purification has not enhanced the performance of all the measures, it
has an overall positive effect on Mc when combining all of these measures as
explained in Figure 1.

We evaluate CBARS performance with various clustering techniques de-
ployed in phase 2. The algorithm implements Weka [3] clustering techniques,
namely k-means, EM and DBScan. Experimentally, clustering accuracy has a
direct influence on the system performance. Therefore, we apply the EM clus-
tering in all our experiments unless otherwise stated.

4.2 Combining various measures

In the recognition phase, we apply a hybrid similarity measure technique for
predicting new cluster’s label. For the four similarity measures implemented in
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(a) Gravity (b) WICSD

(c) Density (d) Distance

Figure 2: Cluster Purification and Measures accuracy

CBARS, each has its own average accuracy for correct prediction Mc of cluster’s
label. Distance measure has the best average accuracy of 68.48 % followed by the
WICSD measure accuracy of 61.46%. Gravitational force and density measures
come next with average accuracy of 54.17% and 53.13% respectively.

Combining the four measures benefits from the strengths of each one and
eliminates encountered problems of using an individual measure and therefore
helps enhancing the performance of single similarity measure techniques. Four
different measure combinations showed the best performance. The four combin-
ations are as follow. Comb1 is for only the top accurate individual measures
(distance, WICSD). Applying measures in Comb1 attained a metrics of Mc=
79.76%, Ma= 20.24%. The recognition accuracy, Mc increased to 86.84%, while
Ma decreased to 13.16% using Comb2. This combination adds density to the
before mentioned combination (Comb1). Comb3 includes gravity, distance and
WICSD. Applying Comb3 had the performance metrics of Mc= 85.96%, Ma=
10.21%. The highest correct recognition percentage attained when combining all
measures in Comb4. It has the recognition performance of Mc= 89.36% and Ma=
6.81%. As active learning percentage becomes higher, more frequent requests are
sent to user to label confusing clusters. Therefore, the large percentage of active
learning such as in Comb1 and Comb2 makes the system inefficient. Although
ERR increases by 3.83% when combining all measures, this increase is not from
the correct recognition rather than active learning percentage.

4.3 CBARS and other classification techniques

Table 1 illustrates the performance of CBARS across various learning and test-
ing datasets in comparison to other iconic classifications techniques. Names of
different datasets indicate the subject number such as S1, S2, S3 followed by
segment no such as ADL1, ADL2, ADL3.

Decision tree and the other classification techniques shows a good accuracy
when the testing and training data are for the same user. However, testing data
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Table 1: CBARS Recognition Performance

Train Test
CBARS

DecisionTree Naive Bayes SVM RFTree
Mc Ma

S1 −ADL4 S3 −ADL3 94.70% 0.00% 34.78% 60.20% 47.83% 64.59%

S1 −ADL4 S1 −ADL1 100.00% 0.00% 79.57% 69.88% 82.47% 92.03%

S1 −ADL4 S2 −ADL3 68.56% 0.00% 37.86% 53.79% 70.70% 74.32%

S1 −ADL4 S1 −ADL3 100.00% 0.00% 88.17% 86.43% 90.31% 93.50%

S1 −ADL4 S2 −ADL1 72.92% 0.00% 44.51% 54.13% 58.80% 64.56%

S3 −ADL3 S1 −ADL4 53.19% 46.81% 42.41% 83.53% 66.42% 59.55%

S3 −ADL3 S2 −ADL3 68.56% 31.44% 48.36% 82.24% 58.87% 61.24%

S3 −ADL3 S2 −ADL1 100.00% 0.00% 51.76% 66.82% 56.36% 59.94%

S3 −ADL3 S1 −ADL1 100.00% 0.00% 39.79% 72.87% 65.09% 76.72%

S1 −ADL1 S1 −ADL3 59.17% 40.83% 83.90% 89.35% 90.94% 92.66%

S1 −ADL1 S2 −ADL3 82.31% 0.00% 53.86% 79.45% 72.93% 77.22%

S1 −ADL1 S3 −ADL3 94.70% 0.00% 40.27% 58.07% 51.70% 58.18%

Average 79.75% 15.64% 53.77% 71.40% 67.70 % 72.88%

across users confuses the decision tree and therefore has a negative impact on the
recognition accuracy. On the other hand, CBARS shows stable high accuracy
in recognising new activities either for the same or across users. The recognition
accuracy (100%) in CBARS means that ”all” new activities/clusters formed in
testing phase have been successfully assigned a correct label. In case of active
learning, CBARS is confused between two clusters labels . Therefore, user input
is required to assign the true activity label. Figure 3 shows the percentage of
incorrect prediction in CBARS and other classification techniques on various
runs. Different runs are for different combinations of training and testing datasets
for same user or across users. As shown in Figure 3, CBARS has the lowest ERR
among all other techniques for all runs.

Figure 3: Incorrect Recognition for CBARS and other Classification techniques
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5 Conclusion

In this paper we present a novel classification framework for activity recognition
(AR) systems, named CBARS. This framework integrates supervised, unsuper-
vised and active learning to build a robust and efficient recognition system. In
comparison to state-of-art models, CBARS provides high performance results
with the minimum error rate especially when dealing with recognition of activ-
ities across users.
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