1,435 research outputs found

    DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

    Full text link
    Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques to more memory-centric techniques, thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.Comment: Our open source software is available at https://github.com/CMU-SAFARI/DAMO

    Cost-effectively 3d-printed rigid and versatile interpenetrating polymer networks

    Get PDF
    Versatile acrylate–epoxy hybrid formulations are becoming widespread in photo/thermal dual-processing scenarios, especially in 3D printing applications. Usually, parts are printed in a stereolithography or digital light processing (DLP) 3D printer, after which a thermal treatment would bestow the final material with superior mechanical properties. We report the successful formulation of such a hybrid system, consisting of a commercial 3D printing acrylate resin modified by an epoxy– anhydride mixture. In the final polymeric network, we observed segregation of an epoxy-rich phase as nano-domains, similar to what was observed in a previous work. However, in the current work, we show the effectiveness of a coupling agent added to the formulation to mitigate this segregation for when such phase separation is undesired. The hybrid materials showed significant improvement of Young’s modulus over the neat acrylate. Once the flexible, partially-cured material was printed with a minimal number of layers, it could be molded into a complex form and thermally cured. Temporary shapes were readily programmable on this final material, with easy shape recovery under mild temperatures. Inspired by repairable 3D printed materials described recently, we manufactured a large object by printing its two halves, and then joined them covalently at the thermal cure stage with an apparently seamless unionPeer ReviewedPostprint (author's final draft

    Devices for protecting bridge superstructure from pounding and unseating damages: an overview

    Get PDF
    Previous earthquakes have highlighted the seismic vulnerability of bridges due to excessive movements at expansion joints. This movement could lead to the catastrophic unseating failure if the provided seat width is inadequate. Moreover, seismic pounding is inevitable during a strong earthquake due to the limited gap size normally provided at the expansion joints. Various types of restrainers, dampers and other devices have been proposed to limit the joint movement or to accommodate the joint movement so that the damages caused by excessive relative displacements could be mitigated. To select and design appropriate devices to mitigate the relative displacement-induced damages to bridge structures during earthquake shaking, it is important that results from the previous studies are well understood. This paper presents an overview on various pounding and unseating mitigation devices that have been proposed by various researchers. Based on an extensive review of up-to-date literatures, the merits and limitations of these devices are discussed

    3D advanced integration technology for heterogeneous systems

    Get PDF
    International audience3D integration technology is nowadays mature enough, offering today further system integration using heterogeneous technologies, with already many different industrial successes (Imagers, 2.5D Interposers, 3D Memory Cube, etc.). CEA-LETI has been developing for a decade 3D integration, and have pursued research in both directions: developing advanced 3D technology bricks (TSVs, µ-bumps, Hybrid Bonding, etc), and designing advanced 3D circuits as pioneer prototypes. In this paper, a short overview of some recent advanced 3D technology results is presented, including some latest 3D circuit's description

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    The MAVEN Magnetic Field Investigation

    Get PDF
    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight

    Reversible energy absorbing meta-sandwiches by 4D FDM printing

    Get PDF
    The aim of this paper is to introduce dual-material auxetic meta-sandwiches by four-dimensional (4D) printing technology for reversible energy absorption applications. The meta-sandwiches are developed based on an understanding of hyper-elastic feature of soft polymers and elasto-plastic behaviors of shape memory polymers and cold programming derived from theory and experiments. Dual-material lattice-based meta-structures with different combinations of soft and hard components are fabricated by 4D printing fused deposition modelling technology. The feasibility and performance of reversible dual-material meta-structures are assessed experimentally and numerically. Computational models for the meta-structures are developed and verified by the experiments. Research trials show that the dual-material auxetic designs are capable of generating a range of non-linear stiffness as per the requirement of energy absorbing applications. It is found that the meta-structures with hyper-elastic and/or elasto-plastic features dissipate energy and exhibit mechanical hysteresis characterized by non-coincident compressive loading-unloading curves. Mechanical hysteresis can be achieved by leveraging elasto-plasticity and snap-through-like mechanical instability through compression. Experiments also reveal that the mechanically induced plastic deformation and dissipation processes are fully reversible by simply heating. The material-structural model, concepts and results provided in this paper are expected to be instrumental towards 4D printing tunable meta-sandwiches for reversible energy absorption applications

    Pathfinding Interplanetary Bus Capability for the Cal Poly CubeSat Laboratory Through the Development of a Phobos-Deimos Mission Concept

    Get PDF
    With the rise of CubeSats and the demonstration of their many space applications, there is interest in interplanetary CubeSats to act for example as scientific investigations or communications relays. In line with the increasing demand for this class of small satellites, the Cal Poly CubeSat Lab (CPCL) seeks to develop a bus that could support an interplanetary science payload. To facilitate this, a mission concept to conduct science of the moons of Mars, Phobos and Deimos, is investigated by determining the mission needs for a CubeSat in a Phobos-Deimos cycler orbit through the development of a baseline design to meet mission objectives. This baseline design is then compared by subsystem to CPCL’s current capabilities to identify technology, facility, and knowledge gaps and recommend a path forward to close them. The resulting baseline design is a 16U bus capable of transferring from an initial low Mars orbit to a Phobos-Deimos cycler orbit using a combined chemical and electric propulsion system. The bus is designed for a 3.5 year mission lifetime collecting radiation data and images, utilizing a relay architecture to downlink payload data. Estimates for mass, volume, and power available for an additional payload are up to 2.3 kg in ~4U with power consumption up to 13 to 38 W. This baseline requires further iteration due to non-closure of the thermal protection subsystem and improvement of other subsystems but serves as a starting point for exploration into CPCL’s next steps in becoming an interplanetary bus provider. Major subsystem areas identified for hardware performance improvement within CPCL are propulsion, communications, power, and mechanisms
    • …
    corecore