8 research outputs found

    Data rate enhancement in optical camera communications using an artificial neural network equaliser

    Get PDF
    In optical camera communication (OCC) systems leverage on the use of commercial off-the-shelf image sensors to perceive the spatial and temporal variation of light intensity to enable data transmission. However, the transmission data rate is mainly limited by the exposure time and the frame rate of the camera. In addition, the camera’s sampling will introduce intersymbol interference (ISI), which will degrade the system performance. In this paper, an artificial neural network (ANN)-based equaliser with the adaptive algorithm is employed for the first time in the field of OCC to mitigate ISI and therefore increase the data rate. Unlike other communication systems, training of the ANN network in OCC is done only once in a lifetime for a range of different exposure time and the network can be stored with a look-up table. The proposed system is theoretically investigated and experimentally evaluated. The results record the highest bit rate for OCC using a single LED source and the Manchester line code (MLC) non-return to zero (NRZ) encoded signal. It also demonstrates 2 to 9 times improved bandwidth depending on the exposure times where the system’s bit error rate is below the forward error correction limit.publishe

    An Indoor Visible Light Positioning System Using Tilted LEDs with High Accuracy

    Get PDF
    The accuracy of the received signal strength-based visible light positioning (VLP) system in indoor applications is constrained by the tilt angles of transmitters (Txs) and receivers as well as multipath reflections. In this paper, for the first time, we show that tilting the Tx can be beneficial in VLP systems considering both line of sight (LoS) and non-line of sight transmission paths. With the Txs oriented towards the center of the receiving plane (i.e., the pointing center F), the received power level is maximized due to the LoS components on F. We also show that the proposed scheme offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted Tx VLP at a dedicated location within a room using a low complex linear least square algorithm with polynomial regression. The effect of tilting the Tx on the lighting uniformity is also investigated and results proved that the uniformity achieved complies with the European Standard EN 12464-1. Furthermore, we show that the accuracy of VLP can be further enhanced with a minimum positioning error of 8 mm by changing the height of F

    Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging

    Get PDF
    In this paper, we investigate the performance of a vehicular visible light communications (VVLC) link with a non-collimated and incoherent light source (a light-emitting diode) as the transmitter (Tx), and two different optical receiver (Rx) types (a camera and photodiode (PD)) under atmospheric turbulence (AT) conditions with aperture averaging (AA). First, we present simulation results indicating performance improvements in the signal-to-noise ratio (SNR) under AT with AA with increasing size of the optical concentrator. Experimental investigations demonstrate the potency of AA in mitigating the induced signal fading due to the weak to moderate AT regimes in a VVLC system. The experimental results obtained with AA show that the link’s performance was stable in terms of the average SNR and the peak SNR for the PD and camera-based Rx links, respectively with <1 dB SNR penalty for both Rxs, as the strength of AT increases compared with the link with no AT

    The Utilization of Artificial Neural Network Equalizer in Optical Camera Communications

    Get PDF
    In this paper, we propose and validate an artificial neural network-based equalizer for the constant power 4-level pulse amplitude modulation in an optical camera communications system. We introduce new terminology to measure the quality of the communications link in terms of the number of row pixels per symbol , which allows a fair comparison considering the progress made in the development of the current image sensors in terms of the frame rates and the resolutions of each frame. Using the proposed equalizer, we experimentally demonstrate a non-flickering system using a single light-emitting diode (LED) with of 20 and 30 pixels/symbol for the unequalized and equalized systems, respectively. Potential transmission rates of up to 18.6 and 24.4 kbps are achieved with and without the equalization, respectively. The quality of the received signal is assessed using the eye-diagram opening and its linearity and the bit error rate performance. An acceptable bit error rate (below the forward error correction limit) and an improvement of ~66 in the eye linearity are achieved using a single LED and a typical commercial camera with equalization

    Visible Light and Camera-based Receiver Employing Machine Learning for Indoor Positioning Systems and Data Communications

    Get PDF
    Indoor location-based services have played a crucial role in the development of various Internet of Things applications over the last few decades. The use of radio frequency (RF)-based systems in indoor environments suffers from additional interference due to the high penetration rate and reflections of the RF, which may severely affect positioning accuracy. Alternatively, the optical technology using the existing light-emitting diode (LED)-based lights, photodetectors (PDs), and/or image sensors could be utilised to provide indoor positioning with high accuracy. Because of its resilience to electromagnetic interference, license-free operation, large bandwidth, and dual-use for illumination and communication, visible light positioning (VLP) systems have shown great potential in achieving high-precision indoor positioning. This thesis focus is on investigating VLP systems based on employing a single PD, or an array of PDs in the form of a single image sensor (i.e. a camera) for both localization and data communication. Following a comprehensive literature review on VLP, the key challenges in existing positioning methods for achieving a low-cost, accurate, and less complex indoor positioning systems design are highlighted by considering the design characteristics of an indoor environment, position accuracy, number of light-emitting LED, PD, and any additional sensors utilized. The thesis focuses on the major constraints of VLP and provides novel contributions. In most reported VLP schemes, the assumptions of fixed transmitter (Tx) angle and height may not be valid in many physical environments. In this work, the impact of tilting Tx and multipath reflections are investigated. The findings demonstrated that tilting Tx can be beneficial in VLP by leveraging the influence of reflections from both near- and far-walls. It also showed that proposed system offers a significant accuracy improvement by up to ~66% compared with a typical non-tilted Tx VLP system.Furthermore, increasing robustness of image sensor-based receiver (Rx) is a major challenge, which is being addressed using a novel angle of arrival-received signal intensity and a single LED. Experimental results show that the proposed algorithm can achieve a three-dimensional root mean squared error of 7.56 cm. Visible light communications employing a camera-based Rx is best known as optical camera communications (OCC), which can also be used for VLP. However, in OCC the transmission data rate is mainly limited by the exposure time and the frame rate of the camera. In addition, the camera's sampling introduces intersymbol interference Indoor location-based services have played a crucial role in the development of various Internet of Things applications over the last few decades. The use of radio frequency (RF)-based systems in indoor environments suffers from additional interference due to the high penetration rate and reflections of the RF, which may severely affect positioning accuracy. Alternatively, the optical technology using the existing light-emitting diode (LED)-based lights, photodetectors (PDs), and/or image sensors could be utilised to provide indoor positioning with high accuracy. Because of its resilience to electromagnetic interference, license-free operation, large bandwidth, and dual-use for illumination and communication, visible light positioning (VLP) systems have shown great potential in achieving high-precision indoor positioning. This thesis focus is on investigating VLP systems based on employing a single PD, or an array of PDs in the form of a single image sensor (i.e. a camera) for both localization and data communication. Following a comprehensive literature review on VLP, the key challenges in existing positioning methods for achieving a low-cost, accurate, and less complex indoor positioning systems design are highlighted by considering the design characteristics of an indoor environment, position accuracy, number of light-emitting LED, PD, and any additional sensors utilized. The thesis focuses on the major constraints of VLP and provides novel contributions. In most reported VLP schemes, the assumptions of fixed transmitter (Tx) angle and height may not be valid in many physical environments. In this work, the impact of tilting Tx and multipath reflections are investigated. The findings demonstrated that tilting Tx can be beneficial in VLP by leveraging the influence of reflections from both near- and far-walls. It also showed that proposed system offers a significant accuracy improvement by up to ~66% compared with a typical non-tilted Tx VLP system.Furthermore, increasing robustness of image sensor-based receiver (Rx) is a major challenge, which is being addressed using a novel angle of arrival-received signal intensity and a single LED. Experimental results show that the proposed algorithm can achieve a three-dimensional root mean squared error of 7.56 cm. Visible light communications employing a camera-based Rx is best known as optical camera communications (OCC), which can also be used for VLP. However, in OCC the transmission data rate is mainly limited by the exposure time and the frame rate of the camera. In addition, the camera's sampling introduces intersymbol interference

    Sistemas de posicionamento baseados em comunicação por luz para ambientes interiores

    Get PDF
    The demand for highly precise indoor positioning systems (IPSs) is growing rapidly due to its potential in the increasingly popular techniques of the Internet of Things, smart mobile devices, and artificial intelligence. IPS becomes a promising research domain that is getting wide attention due to its benefits in several working scenarios, such as, industries, indoor public locations, and autonomous navigation. Moreover, IPS has a prominent contribution in day-to-day activities in organizations such as health care centers, airports, shopping malls, manufacturing, underground locations, etc., for safe operating environments. In indoor environments, both radio frequency (RF) and optical wireless communication (OWC) based technologies could be adopted for localization. Although the RF-based global positioning system, such as, Global positioning system offers higher penetration rates with reduced accuracy (i.e., in the range of a few meters), it does not work well in indoor environments (and not at all in certain cases such as tunnels, mines, etc.) due to the very weak signal and no direct access to the satellites. On the other hand, the light-based system known as a visible light positioning (VLP) system, as part of the OWC systems, uses the pre-existing light-emitting diodes (LEDs)-based lighting infrastructure, could be used at low cost and high accuracy compared with the RF-based systems. VLP is an emerging technology promising high accuracy, high security, low deployment cost, shorter time response, and low relative complexity when compared with RFbased positioning. However, in indoor VLP systems, there are some concerns such as, multipath reflection, transmitter tilting, transmitter’s position, and orientation uncertainty, human shadowing/blocking, and noise causing the increase in the positioning error, thereby reducing the positioning accuracy of the system. Therefore, it is imperative to capture the characteristics of different VLP channel and properly model them for the dual purpose of illumination and localization. In this thesis, firstly, the impact of transmitter tilting angles and multipath reflections are studied and for the first time, it is demonstrated that tilting the transmitter can be beneficial in VLP systems considering both line of sight (LOS) and non-line of sight transmission paths. With the transmitters oriented towards the center of the receiving plane, the received power level is maximized due to the LOS components. It is also shown that the proposed scheme offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted transmitter VLP. The effect of tilting the transmitter on the lighting uniformity is also investigated and results proved that the uniformity achieved complies with the European Standard EN 12464-1. After that, the impact of transmitter position and orientation uncertainty on the accuracy of the VLP system based on the received signal strength (RSS) is investigated. Simulation results show that the transmitter uncertainties have a severe impact on the positioning error, which can be leveraged through the usage of more transmitters. Concerning a smaller transmitter’s position epochs, and the size of the training set. It is shown that, the ANN with Bayesian regularization outperforms the traditional RSS technique using the non-linear least square estimation for all values of signal to noise ratio. Furthermore, a novel indoor VLP system is proposed based on support vector machines and polynomial regression considering two different multipath environments of an empty room and a furnished room. The results show that, in an empty room, the positioning accuracy improvement for the positioning error of 2.5 cm are 36.1, 58.3, and 72.2 % for three different scenarios according to the regions’ distribution in the room. For the furnished room, a positioning relative accuracy improvement of 214, 170, and 100 % is observed for positioning error of 0.1, 0.2, and 0.3 m, respectively. Ultimately, an indoor VLP system based on convolutional neural networks (CNN) is proposed and demonstrated experimentally in which LEDs are used as transmitters and a rolling shutter camera is used as receiver. A detection algorithm named single shot detector (SSD) is used which relies on CNN (i.e., MobileNet or ResNet) for classification as well as position estimation of each LED in the image. The system is validated using a real-world size test setup containing eight LED luminaries. The obtained results show that the maximum average root mean square positioning error achieved is 4.67 and 5.27 cm with SSD MobileNet and SSD ResNet models, respectively. The validation results show that the system can process 67 images per second, allowing real-time positioning.A procura por sistemas de posicionamento interior (IPSs) de alta precisão tem crescido rapidamente devido ao seu interesse nas técnicas cada vez mais populares da Internet das Coisas, dispositivos móveis inteligentes e inteligência artificial. O IPS tornou-se um domínio de pesquisa promissor que tem atraído grande atenção devido aos seus benefícios em vários cenários de trabalho, como indústrias, locais públicos e navegação autónoma. Além disso, o IPS tem uma contribuição destacada no dia a dia de organizações, como, centros de saúde, aeroportos, supermercados, fábricas, locais subterrâneos, etc. As tecnologias baseadas em radiofrequência (RF) e comunicação óptica sem fio (OWC) podem ser adotadas para localização em ambientes interiores. Embora o sistema de posicionamento global (GPS) baseado em RF ofereça taxas de penetração mais altas com precisão reduzida (ou seja, na faixa de alguns metros), não funciona bem em ambientes interiores (e não funciona bem em certos casos como túneis, minas, etc.) devido ao sinal muito fraco e falta de acesso direto aos satélites. Por outro lado, o sistema baseado em luz conhecido como sistema de posicionamento de luz visível (VLP), como parte dos sistemas OWC, usa a infraestrutura de iluminação baseada em díodos emissores de luz (LEDs) pré-existentes, é um sistemas de baixo custo e alta precisão quando comprado com os sistemas baseados em RF. O VLP é uma tecnologia emergente que promete alta precisão, alta segurança, baixo custo de implantação, menor tempo de resposta e baixa complexidade relativa quando comparado ao posicionamento baseado em RF. No entanto, os sistemas VLP interiores, exibem algumas limitações, como, a reflexão multicaminho, inclinação do transmissor, posição do transmissor e incerteza de orientação, sombra/bloqueio humano e ruído, que têm como consequência o aumento do erro de posicionamento, e consequente redução da precisão do sistema. Portanto, é imperativo estudar as características dos diferentes canais VLP e modelá-los adequadamente para o duplo propósito de iluminação e localização. Esta tesa aborda, primeiramente, o impacto dos ângulos de inclinação do transmissor e reflexões multipercurso no desempenho do sistema de posicionamento. Demonstra-se que a inclinação do transmissor pode ser benéfica em sistemas VLP considerando tanto a linha de vista (LOS) como as reflexões. Com os transmissores orientados para o centro do plano recetor, o nível de potência recebido é maximizado devido aos componentes LOS. Também é mostrado que o esquema proposto oferece uma melhoria significativa de precisão de até ~66% em comparação com um sistema VLP de transmissor não inclinado típico. O efeito da inclinação do transmissor na uniformidade da iluminação também é investigado e os resultados comprovam que a uniformidade alcançada está de acordo com a Norma Europeia EN 12464-1. O impacto da posição do transmissor e incerteza de orientação na precisão do sistema VLP com base na intensidade do sinal recebido (RSS) foi também investigado. Os resultados da simulação mostram que as incertezas do transmissor têm um impacto severo no erro de posicionamento, que pode ser atenuado com o uso de mais transmissores. Para incertezas de posicionamento dos transmissores menores que 5 cm, os erros médios de posicionamento são 23.3, 15.1 e 13.2 cm para conjuntos de 4, 9 e 16 transmissores, respetivamente. Enquanto que, para a incerteza de orientação de um transmissor menor de 5°, os erros médios de posicionamento são 31.9, 20.6 e 17 cm para conjuntos de 4, 9 e 16 transmissores, respetivamente. O trabalho da tese abordou a investigação dos aspetos de projeto de um sistema VLP indoor no qual uma rede neuronal artificial (ANN) é utilizada para estimativa de posicionamento considerando um canal multipercurso. O estudo considerou a influência do ruído como indicador de desempenho para a comparação entre diferentes abordagens de projeto. Três algoritmos de treino de ANNs diferentes foram considerados, a saber, Levenberg-Marquardt, regularização Bayesiana e algoritmos de gradiente conjugado escalonado, para minimizar o erro de posicionamento no sistema VLP. O projeto da ANN foi otimizado com base no número de neurónios nas camadas ocultas, no número de épocas de treino e no tamanho do conjunto de treino. Mostrou-se que, a ANN com regularização Bayesiana superou a técnica RSS tradicional usando a estimação não linear dos mínimos quadrados para todos os valores da relação sinal-ruído. Foi proposto um novo sistema VLP indoor baseado em máquinas de vetores de suporte (SVM) e regressão polinomial considerando dois ambientes interiores diferentes: uma sala vazia e uma sala mobiliada. Os resultados mostraram que, numa sala vazia, a melhoria da precisão de posicionamento para o erro de posicionamento de 2.5 cm são 36.1, 58.3 e 72.2% para três cenários diferentes de acordo com a distribuição das regiões na sala. Para a sala mobiliada, uma melhoria de precisão relativa de posicionamento de 214, 170 e 100% é observada para erro de posicionamento de 0.1, 0.2 e 0.3 m, respetivamente. Finalmente, foi proposto um sistema VLP indoor baseado em redes neurais convolucionais (CNN). O sistema foi demonstrado experimentalmente usando luminárias LED como transmissores e uma camara com obturador rotativo como recetor. O algoritmo de detecção usou um detector de disparo único (SSD) baseado numa CNN pré configurada (ou seja, MobileNet ou ResNet) para classificação. O sistema foi validado usando uma configuração de teste de tamanho real contendo oito luminárias LED. Os resultados obtidos mostraram que o erro de posicionamento quadrático médio alcançado é de 4.67 e 5.27 cm com os modelos SSD MobileNet e SSD ResNet, respetivamente. Os resultados da validação mostram que o sistema pode processar 67 imagens por segundo, permitindo o posicionamento em tempo real.Programa Doutoral em Engenharia Eletrotécnic

    Single and Multi-Hop Vehicular Visible and Infrared Light Communications

    Get PDF
    Visible light communications (VLC) have been proposed as a complementary technology in vehicular networks due to its several merits including high security, high scalability than RF technology. Notably, the RF technology established for vehicular networks best known as the dedicated short-range communications, supports many applications but doubts still exist on the capability of this technology to meet the low latency (where not more than 20 ms is required for pre-crash sensing and cooperative collision mitigation) and high reliability requirements in intelligent transport systems (ITS), when considering issues such as network outages as well as security issues. Of interest is the wide increase in the use of light emitting diode (LED)-based vehicle and traffic lights, and cameras in vehicles (rear and dashcams), traffic and security cameras, hence opening more opportunities for the VLC technology as part of ITS. Remarkably, camera-based VLC (i.e., optical camera communications) offers even further capabilities such as vehicle localization, motion and scene detection and pattern recognition. However, the VLC system has few challenges that needs addressing for the practical implementation of this technology as part of ITS. Consequently, this thesis focuses on addressing the key challenges and proposing novel technical analytical and experimental solutions. Firstly, increasing the robustness to sunlight induced noise is one of the major challenges in vehicular VLC, hence this thesis proposes an infrared (IR) transmission, as the amount of solar irradiance is lesser in the IR band than in the visible band. Performance of the proposed scheme is validated through numerical simulations with realistic emulated sunlight noise from empirical measurement. Investigations on the effects of turbulence with aperture averaging and fog on vehicular VLC is also carried out via experiments. Secondly, increasing the communication range is another major challenge, consequently the feasibility of using different vehicle taillights (TLs) as the VLC transmitter are evaluated via simulations based on empirical measurements of the radiation characteristics and transmit powers of the TLs. Results obtained indicate that, only a very low link span of 89 m at the forward error correction (FEC) bit error rate (BER) limit of 3.8 × 10-3, compared to 4.5, 5.4, and 6.3 m for the BMW vehicle-based TL at data rates of 10, 6, and 2 Mbps are achieved under realistic sunlight conditions. While, to increase the communication distance of camera-based VLC links, reducing the spatial bandwidth of the camera in its out of focus regions is proposed, mathematically analysed, and experimentally demonstrated where up to a 400 m link span at a 100 % success reception rate is achieved at a data rate of 800 bps, which is the longest so far reported. Relay-assisted links are also investigated using amplify-and-forward (AF) and decode-and-forward (DF) relaying schemes under the emulated sunlight noise. A mathematical and simulation-based system model is developed, where different transmitter/receiver geometries are considered and AF and DF schemes. Results obtained via simulations shows that the DF scheme is a suitable candidate for vehicular VLC connectivity under emulated sunlight noise, offering at the FEC BER limit of 3.8 × 10-3 up to 150 % increase in the link distance by the end of the 2nd hop. Proof of concept experimental demonstration of AF and DF schemes for vehicular VLC are also carried out showing that DF is the preferred option. Moreover, insights are provided into the impact of various system parameters on the relay-assisted links. Finally, increasing the mobility of the vehicular VLC system is another major challenge, hence analysis on the required angular field of view (AFOV) for vehicular links considering necessary geometry parameters is investigated. Mathematical expressions to determine the required AFOV based on key system parameters are also derived. Furthermore, the relevance of the choice of the receiver parameters for an enhanced AFOV is also analysed, consequently a means to mitigate the effects of beam spot offset induced power losses at the photodiode caused by the misalignment of the transmitter and imaging receiver is proposed
    corecore