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Abstract 

Indoor location-based services have played a crucial role in the development of various 

Internet of Things applications over the last few decades. The use of radio frequency 

(RF)-based systems in indoor environments suffers from additional interference due to 

the high penetration rate and reflections of the RF, which may severely affect positioning 

accuracy. Alternatively, the optical technology using the existing light-emitting diode 

(LED)-based lights, photodetectors (PDs), and/or image sensors could be utilised to 

provide indoor positioning with high accuracy. Because of its resilience to 

electromagnetic interference, license-free operation, large bandwidth, and dual-use for 

illumination and communication, visible light positioning (VLP) systems have shown 

great potential in achieving high-precision indoor positioning. This thesis focus is on 

investigating VLP systems based on employing a single PD, or an array of PDs in the 

form of a single image sensor (i.e. a camera) for both localization and data 

communication. Following a comprehensive literature review on VLP, the key challenges 

in existing positioning methods for achieving a low-cost, accurate, and less complex 

indoor positioning systems design are highlighted by considering the design 

characteristics of an indoor environment, position accuracy, number of light-emitting 

LED, PD, and any additional sensors utilized. The thesis focuses on the major constraints 

of VLP and provides novel contributions. In most reported VLP schemes, the assumptions 

of fixed transmitter (Tx) angle and height may not be valid in many physical 

environments. In this work, the impact of tilting Tx and multipath reflections are 

investigated. The findings demonstrated that tilting Tx can be beneficial in VLP by 

leveraging the influence of reflections from both near- and far-walls. It also showed that 

proposed system offers a significant accuracy improvement by up to ~66% compared 

with a typical non-tilted Tx VLP system.Furthermore, increasing robustness of image 

sensor-based receiver (Rx) is a major challenge, which is being addressed using a novel 

angle of arrival-received signal intensity and a single LED. Experimental results show 

that the proposed algorithm can achieve a three-dimensional root mean squared error of 

7.56 cm. Visible light communications employing a camera-based Rx is best known as 

optical camera communications (OCC), which can also be used for VLP. However, in 

OCC the transmission data rate is mainly limited by the exposure time and the frame rate 

of the camera. In addition, the camera's sampling introduces intersymbol interference 
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(ISI), which will degrade the system performance. In this thesis, a VLP system with an 

artificial neural network-based equaliser with the adaptive algorithm is proposed for the 

first time to mitigate ISI and therefore increase the data rate. The data rates achieved were 

the highest in the OCC field, recorded as 12 kbps at the exposure time of 2, 1, and 0.5 

ms using a single source and the Manchester line code non-return to zero encoded signal. 

Finally, a non-flickering Constant Power- Pulse-amplitude modulation-based OCC 

system using a single LED is proposed and investigated offering data rates of up to 18.6 

and 24.4 kbps with and without the equalization, respectively. The quality of the received 

signal is assessed in terms of eye diagrams, system linearity, and the bit error rate 

performance. 
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(𝑈, 𝑉). 

𝑗 The pixel’s row index number 

𝑣𝑘
(𝑚) Threshold factor 

𝜔𝑘
𝑡𝑖𝑙𝑡 Tilted irradiance angle from the kth Tx to the Rx 

 𝑡̂𝑘 Tilted Tx normal 

𝑃𝑡 Transmitted power 

(𝑥𝑐 , 𝑦𝑐) Tx centre coordinates 

𝑟𝑐 Tx Radius  

𝑤𝑘𝑛(𝑡 + 1) Updated weight  

(𝑇𝑘)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  Vector that represents the difference between the 

coordinates of the kth Tx and point F (𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹), 
𝑣 Vertical pixels in the image plane 

𝑤𝑘𝑛 Weight between the junction point of 𝑥𝑘 and 𝑘𝑡ℎ 

𝜉 Weighted input 

𝑤𝑘𝑛
(𝑚) Weights of the nth input to the kth neuron 
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Chapter 1  

Introduction 

1.1 Background 

Precise localization and tracking technologies for use in indoor and outdoor 

environments have attracted a considerable amount of attention for centuries. For 

millennia, humans have developed various tools to determine their accurate location, 

some include tracking the movements of the sun with sundials, the use of water clocks, 

candle clocks, sextants, hourglasses, clocks, accelerometers, maps, etc. The advent of the 

global positioning system (GPS) has facilitated position estimation in outdoor 

environments and is considered as one of the major successes of modern human 

civilization. Unfortunately, GPS and similar satellite navigation systems cease its 

operation in indoor environments due to the lack of line-of-sight (LoS) links to satellites. 

Indoor positioning systems (IPSs) have a prominent contribution to day-to-day activities 

in applications including health care centres, airports, shopping malls, manufacturing, 

underground locations, etc. Alternatively, both radio frequency (RF) and optical wireless-

based technologies could be adopted for localization [1], [2]. It may include the use of 

Bluetooth [3], [4], ultrasound [5], wireless local area network [6], the ultra-wide band [6], 

[7], and RF identification [8], [9]. The accuracy of IPSs using low frequencies RF 

technology is relatively low due to the high multipath fading as compared with optical 

signals. For instance, existing localization research proved its ability to provide a degree 

of accuracy measured in meters using different technologies such as geo-magnetism [10], 

WiFi [11], and frequency modulation (FM) broadcast technology [12]. Although the RF-

based global positioning system offer higher penetration rates with reduced accuracy (i.e., 

in the range of a few meters), it does not work well in indoor environments (and not at all 

in certain cases such as tunnels, mines, etc.) due to the very weak signal and no direct 

access to the satellites [1], [2], [9]. 

Many researchers have attempted to provide a standard solution for indoor positioning, 

however, diverse technologies have been pursued based on the accuracy and cost trade-

offs. Light-emitting diodes (LEDs)-based visible light communication (VLC) systems 
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have been introduced in recent years, which have shown great potential in achieving high-

precision indoor positioning due to the use of optical signals. These systems are known 

as visible light positioning (VLP), in which VLC signals are utilized to broadcast anchor 

locations prior to detecting these signals using off-the-shelf resource-constrained smart 

devices to enable the internet of things (IoT) [13], [14]. VLP technologies have gained 

increasing attention due to its robustness to RF interference, operate on a free license, and 

attain cost-effectiveness and directive propagation [1]. In addition, the local character of 

light reduces the impact of reflections, which leads to high accuracy and low overhead 

costs. 

Most research reported on VLP has focused on the investigation of geometrical properties 

using triangulation/trilateration, fingerprinting, or proximity methods to determine the 

transmission distance based on establishing a one-to-one relationship between the target 

location and its received signal strength (RSS). In such works, the use of well-developed 

algorithms, which have been developed for other technologies was leveraged [15], 

including the angle of arrival (AoA) [16], time of arrival (ToA) [17], [18], proximity, 

scene analysis, and RSS [19]. RSS, AoA, and ToA have been explored in VLP systems 

with the positioning error of 10 to 40 centimeters [20].  Proximity and scene analysis (i.e., 

fingerprinting) are considered the simplest methods with relatively low positioning errors 

i.e., typically in a range of 10 to 45 cm, depending on the fingerprint database [16], [17], 

[21]. Furthermore, the recent advent of machine learning (ML) technology has resulted 

in increased localization performance using the fingerprinting method. In [22]–[24], the 

authors showed an ML-based RSSI fingerprinting with a few centimetres of precision and 

decreased latency at the cost of increased system complexity. 

In the scene analysis technique, the estimation process of the relative position can be 

obtained by comparing the measured value with a pre-measured location of each position 

and then matching it to determine the real position. However, the measurement can be 

affected by the distributions of base stations, i.e., transmitters (Txs), shadowing and 

blocking, as well as the absolute location (i.e., probabilistic and correlation) dependency 

on pattern recognition techniques [16].  

In VLC-based IPSs LEDs are used as Txs while a single photodiode (PD) or an array 

of PDs forming a CIS PDs or image sensors (ISs) (i.e., cameras) are used as the receiver 

(Rx). Compared to PDs, ISs-based IPSs offer several key features such as (i) providing 

much more useful information on the location of LEDs for use in vision processing based 
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algorithms; (ii) the ability to separate light sources, thus no need for complex multiplexing 

mechanisms; (iii) offer parallel transmission capabilities; and (iv) offering significantly 

high accuracy which may be utilized in autonomous navigation system where accuracy 

plays a crucial factor in intelligent transportation systems (ITS) to ensure the safety of the 

pedestrians.  

A VLP using two PDs and an IS was proposed in [21], [25], [26]. Note, VLC with IS 

(composed of a large PD array) naturally fits well with multiple inputs multiple-output 

systems in indoor and outdoor applications. In IS-based VLP, image-processing 

techniques can be used to determine the position but at the cost of increased complexity 

[27]. Note that, in VLP the transmission speeds (i.e., data rates) of the PD and IS are not 

critical at all since the aim is to achieve positioning with high accuracy [28]. Likewise, 

the IS deployment enables range imaging to resolve the distance between the IS and the 

subject for each point of the image based on the time-of-flight, which can be obtained 

through measuring the round trip time of an artificial light signal provided by a laser or 

an LED [29]. Furthermore, the usage of IS may be used to generate the illusion of a three-

dimensional picture. The illusion of depth is achieved in images or movies by providing 

a separate image to each eye [30].In this Chapter indoor positioing systems (IPS)based 

VLC system, its merits and challenges were outlined. The aims, objectives and the 

original contributions of this research are also presented. Likewise, the structure of this 

thesis, a list of publications generated during the PhD research and awards are presented. 

1.2 Problem Statement 

1.2.1 Impact of The Tx Tilting Angles  

Most of the research on VLC-based IPS reported are on the investigation of geometrical 

properties based on triangulation/trilateration, fingerprinting or proximity methods to 

determine the transmission distance via the received signal strength (RSSI) based on 

intensity modulation, AoA [8], or ToA [9].  In most of these methods, it is often assumed 

that power from two or more different light sources can be easily separated. In addition, 

to remove angular dependency in RSS based localization, it is also assumed that the height 

of the receiver is fixed, and the receiver is in a parallel plane to the transmitters  [31]. 

However, the assumptions of fixing the angle, height, and the Rx pose cannot be 

accommodated easily in a physical environment. Likewise, additional problems such as 
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the computational and the implementation costs and system complexity needs to be 

further investigated. 

1.2.2 Multipath Reflection Impact 

The multipath effects on the accuracy of the VLP system were not fully and consistently 

considered. For example, the works reported in [23], [24] considered only LoS paths in 

the analysis of positioning performance without taking into account the multipath nature 

of the channel. Note, for systems using Txs and Rxs with a wide beam and a field of view 

(FOV), respectively the impact of multipath reflections is inevitable and therefore must 

be considered as was reported in [34]. The results showed that, the positioning errors  of 

0.4 and 46.4 cm were achieved for the entire room without and with multipath reflections, 

respectively. 

1.2.3 IS-VLP Utilization  

Advances made in optical systems have triggered image-based positioning methods to 

become an attractive solution for indoor navigation systems. In which, the camera can 

either utilise its received optical reflectiveness characteristics of the obtained scenes 

(measurements of visual features), or to receive the transmitted coordinates of LEDs by 

means of optical camera communications (OCCs). Moreover, from the received 

information, it is possible to estimate the distances between LEDs and the camera, and 

so, the position of the camera [35]. 

In addition, ISs (i.e., cameras) are now considered the key sensor for enabling the IoT 

applications as part of the current and future smart environments, in which 

complementary metal-oxide-semiconductor (CMOS) ISs have been the most widely used 

devices in many applications in the last decade, with a revenue quadrupling between 2010 

and 2019 to reach over $18 billion [36]. As a result, the ability to construct an IS-based 

VLC link to enable various applications like as location and sensing to supplement vision 

might be regarded as an emerging technology. However, VLC systems using LEDs and 

either a single PD or camera for localization and communication purposes are still in the 

preliminary stages.  Several factors need to be taken into account when establishing these 

systems as:  
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1.2.3.1 Limited frame rate 

The drawbacks of ISs-based Rx are low transmission bandwidth due to the camera frame 

rate 𝑅𝑓 limitations and higher costs compared with PDs [35]. The maximum data rates of 

conventional commercial cameras are relatively low within a range of a few kbps [37]–

[44]. Different approaches can be adopted to improve the data rates in OCC with CMOS-

based ISs including (𝑖) high-speed cameras, which are highly costly and with limited 

applications; (𝑖𝑖) multiple transmitters, which may suffer from flickering [45]; and (𝑖𝑖𝑖) 

a special IS with a built-in PIN PD array has been used to increase the data rate to 55 

Mbps using an optical orthogonal frequency division multiplexing [46]. However, the 

fabrication process of this IS is too complex and not commercially available.Limited 

bandwidth 

The IS requires a higher sampling duration and lower number of quantization levels 

compared with the PDs due to the light integration time (known as the exposure time 

𝑇exp), and the built-in analog to digital converter circuit [2]. The sequential-readout nature 

of CMOS IS-based Rx allows each pixel-row to capture the incident light at a different 

time, thus resulting in the so-called rolling shutter (RS) effect [2]. Note that, the 

performance of VLC with IS-based Rx is limited mainly by the camera capabilities, i.e., 

the frame rate Rf, 𝑇exp, and FoV. As a result, in OCC, the transmission bandwidth is rather 

low and limited to a few tens of kHz compared to the PD-based VLC systems [35].  

1.2.3.2 Flickering issue  

In OCC, lower Rb may result in the flickering effect at the Tx [3, 4]. In IEEE 802.15.7m 

standard [5], different schemes have been proposed for OCC to mitigate flickering and to 

increase Rb [6]. For example, in [7], an optical orthogonal frequency division 

multiplexing VLC with a special IS-based Rx with a built-in PD-array was used to 

achieve a very high Rb of 55 Mbps. However, the fabrication process of the IS was too 

complex and, therefore, not commercially available.  

1.2.3.3 Number of Txs  

The majority of the studies in the IS-based VLP literature reviews used either multiple 

LEDs for positioning or an extra sensor to determine the location.However, in most 

scenarios, the narrow FoV of the front-facing camera receiver restricts the number of Txs 
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being captured at the IS, thus making bilateration or trilateration impractical. In addition, 

unilateration allows less complex and low-cost implementation of the VLC system. Also, 

the deployment of more LEDs will certainly add some constraints to the implementation 

of VLP.  
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1.3 Research Aims and Objectives 

The aim of this research is to carry out comprehensive mathematical analysis, model 

development and experimental investigations of VLC system using LEDs and either a 

single PD or a camerafor localization and communication purposes.  To achieve the aim 

of this thesis, the key objectives of the study are: 

• Carry out in-depth literature surveys and analytical studies on indoor localization-

related works. 

• System design and performance evaluation of VLP system with multipath induced 

reflections. Furthermore, to develop and simulate a novel approach to investigate 

and mitigate the influence of LED tilting on positioning accuracy.  

• Experimental implementation of novel IS based VLPs to mitigate the impact of 

the exposure times and reduce the induced positioning errors. 

• Develop an artificial neural network-based equalizer to ameliorate the low-pass 

filtering effect of the camera sampling duration of the RS-based communication 

system to overcome the bandwidth limitation of the camera receiver. 

• To establish a flickering-free OCC system with improved data rates using a single 

LED and an artificial neural network (ANN)-based equalizer. Furthermore, to 

develop an efficient signal extraction algorithm for the proposed system. 
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1.4 Original Contributions to Knowledge 

As outcomes of the conducted research, the following original contributions to the 

research field have been made: 

1. In Chapter 3, the use of the Tx titling angles is leveraged to improve the IPS 

accuracy. The proposed scheme offers a significant accuracy improvement of up 

to ~66% compared with a typical non-tilted Tx VLP at a dedicated location within 

a room using a low complex linear least square algorithm with polynomial 

regression. The effect of tilting the Tx on the lighting uniformity is also 

investigated (see research output J3). 

2. In Chapter 4, the usage of a visible light positioning system in an indoor 

environment was investigated to deliver a three-dimensional (3D) high-accuracy 

solution.. A novel method was proposed and experimentally tested to mitigate the 

error induced by the lens at the receiving side (see research output J1). 

3. In Chapter 5, An ANN-based equaliser with the adaptive algorithm is employed 

for the first time in the field of OCC to mitigate ISI and therefore increase the data 

rate. Experimental test-bed for the proposed system was developed to evaluate the 

system performance in terms of the data rate, bit error rates (BER) and eye 

diagrams (see research output J10). 

4. In Chapter 6, comprehensive and systematical investigation of the applicability of 

constant power 4-level pulse amplitude modulation for the LED- and camera-

based VLC is presented. Furthermore, an experimental testbed of a non-flickering 

system using a single light-emitting diode is developed. The performance of the 

proposed system is evaluated in terms of the Tx’s frequency, eye diagrams, and 
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the BER with and without the ANNs-based equalizer (see research output J6, and 

C21). 

The summary of the contributions of this thesis is illustrated in Figure 1.1 where the coloured 

blocks show the research works carried out (with brief descriptions below) and their 

respective Chapter locations. 
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Figure 1-1. Summary of original contributions. 
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1.5 Thesis Structure 

This thesis is organized into seven chapters. Chapter 1 introduces IPS based VLC 

system, its merits and challenges. The aims, objectives and the original contributions of 

this research are also presented. Chapter 2 provides an in-depth review of several IPS 

technologies, with a focus on the application of VLP in the indoor environment. It also 

includes a thorough examination of major characteristics of VLPs in terms of their 

complexity, accuracy, and cost of implementation. Chapter 3 presents the first original 

contribution to knowledge, in which the systematic analysis showed that the accuracy of 

RSS-based VLP is primarily limited by the tilting angles of both Tx and Rx as well as the 

multipath reflections. Subsequently, a novel approach was proposed to demonstrate that 

Tx tilting may improve the VLP accuracy as compared with a conventional non-tilting 

Tx case, and hence achieve a highly accurate indoor VLP system. In Chapter 4, an 

overview of the merits/application, as well as the experimental reports on IS based VLPs 

were outlined where details of utilized technology, the number of Tx and Rx, test 

conditions and the accuracy achieved so far reported in literature were highlighted. The 

2nd contribution of thesis was presented in this chapter, in which a novel technique was 

also proposed to mitigate the error induced by the lens at the receiving side, hence, leading 

to reduced positioning errors. The experimental results showed that, the proposed method 

offers immunity against different exposure times within the standard range of 250 µs to 

4 ms. In Chapter 5, an overview of the OCC link capabilities reported in the literature was 

initially explored. The standard IS-based Rx was modelled and a trade-off between the 

gain and the required bandwidth was outlined. Furthermore, a 3rd contribution of the work 

was done in this chapter, in which a novel OCC system with an ANN adaptive equaliser 

was proposed to mitigate ISI and therefore increase the data rate. The proposed system is 

theoretically investigated and experimentally evaluated.  In Chapter 6, the last 

contribution was presented in this chapter, in which an experimental setup was developed 

to demonstrate non-flickering communications using a single light-emitting diode. An 

ANN-based equalization technique was proposed for a CP 4-pulse amplitude modulation 

(PAM) based OCC system. The ability to mitigate the intersymbol interference was 

demonstrated and hence to transmit a signal with an acceptable BER (below the FEC 

limit) for unequalized and equalized systems, respectively. The limitation of the proposed 

system was assessed by the system complexity, including the associative memories 
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needed for the look-up table training data as well as the IS resolution, gap-time and 

exposure time, and reading time. Finally, in Chapter 7, conclusions are given and 

recommendations for future work. 

1.6 List of Publications and Awards 

This section includes the list of the published work related in chronological order as 

follows:  

1.6.1 Peer Reviewed Journal Papers 
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Chapter 2  

Overview of Indoor Positioning Systems  

2.1 Introduction 

This Chapter provides an overview of various indoor positioning systems IPSs and 

technologies. IPSs are identified based on the (i) positioning technology, which signifies 

the method in which the localization information is gathered; and (ii) positioning 

technique, which describes the way the position is obtained based on the available light 

information [47]. The chapter presents the advancements in the domain of IPS, and how 

the current research addresses the gaps in the existing positioning methods to achieve its 

foremost goal of facilitating the design of a low-cost, accurate and less complex IPS.  

2.2 Indoor Positioning System  

With the evolution of the IoT, there has been an exponential growth in the production 

and utilization of smart devices. Examples of this are a sharp increase in the volume of 

IoT connected devices such as smart light bulbs, connected vehicles, smart home devices, 

and connected industrial equipment that are more than 16 billion units for 2022. The total 

installed IoT-based connected devices worldwide is projected to step over 30 billion by 

2025 [48], which presented a vast network supporting large devices, different latency 

requirements, low power consumption, and low costs per unit. Establishing a reliable 

communication channel between these devices requires prior information about their 

locations. The use of GPS can facilitate positioning estimation in outdoor environments, 

but GPS and similar satellite navigation systems have major issues when operating in 

indoor environments due to the lack of line-of-sight paths to satellites.  

IPS, also known as an indoor localization system, is seen as an essential technology to 

enable location-based services in numerous applications including location tracking, 

navigation, ITs, shelf-level advertising in supermarkets and shopping malls, robot 

movement control, manufacturing, medical surveillance, etc [49]–[51]. The positioning 

systems can be used in both indoor and outdoor settings. In indoor environments, there is 
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a range of positioning systems that could be utilised to ensure availability and the quality 

of service  [52].  

Although the classification of the positioning systems presented is based on 

techniques/technologies/topologies, other classifications and taxonomies are also used. 

For instance, in [53], the authors classified the IPSs into (i) device-based systems, in 

which the tracked entities have a specific device used for localization purposes; and (ii) 

device-free systems, where the infrastructure can provide the localization services 

without any hardware on the tracking targets. An example of such a system is a vision-

based IPS that identifies the presence of humans in an indoor scenario.   This classification 

is also known as active vs. passive placement [54]. Further classification distinguish IPSs 

in terms of the infrastructure-based or infrastructure-free systems [55]. The former 

involves the installation of specific Txs or other infrastructure, whilst the latter does not 

require any changes to the indoor environment. Compared to the infrastructure-free 

systems, which offer a low installation cost, the interest in infrastructure-based solutions 

have substantially increased since they provide greater accuracy and robustness. An IPS 

that uses the earth's magnetic field to identify the users' position is an example of an 

infrastructure-free system. Lastly, due to the increased use of smartphone-friendly 

technology, in [56], the authors distinguished IPSs based on the smartphones 

compatibilities. 

The general overview of technologies utilized in IPS is discussed in the following 

section, in which a brief introduction outlining the main characteristics, advantages and 

drawbacks of each category is highlighted.  
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2.3 Indoor Positioning Technologies 

The necessity for indoor location-based services has been growing over the past decades 

because of its significance in the development of various applications, such as smart home 

appliances, robots, supermarkets, shopping malls, hospitals, etc. IPS with high precision 

and low cost has become one of the most exciting features of next-generation indoor 

optical wireless communication systems [57]. The deployment of IPS may differentiate 

based on the technology that is used to obtain the information related to localization. This 

classification is used most often in literature to differentiate between IPS.  

Various conventional indoor positioning technologies are based on RF technologies [1], 

[2], for instance, wireless local area network [6], Wi-Fi [58], ultrasound  [5], [59], radio 

frequency identification (RFID) [8], [9], ultra-wideband (UWB) [6], [7], Bluetooth  [3], 

[4], amongst others. The low frequencies RF-based approaches suffer from the influence 

of reflections, which may severely affect positioning accuracy (PA) [60]. Likewise, the 

accuracy of IPSs using RF technologies with low frequencies is relatively low. For 

instance, existing localization research proved its ability to provide a degree of accuracy 

measured in meters using different technologies such as geo-magnetism [10], Wi-Fi [11], 

and FM broadcast technology [12]. Note that, RF signals suffer from additional 

interference due to the high penetration rate of the RF compared with light-based signals.  

OWC-based IPS have been introduced in recent years, which have shown great 

potential in achieving high-precision indoor positioning due to the use of optical signals 

(i.e., infra-red, ultraviolet, and visible light). The electromagnetic spectrum is shown in 

Figure 2-1, in which, the optical spectrum is three orders of magnitude larger than the 

entire RF spectrum [61].  

 

Figure 2-1. The entire electromagnetic spectrum. The combined infrared and visible light spectra 

are 2600 times larger than the entire RF spectrum [62]. 
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Note, at low levels, all light sources are harmless to humans and depending on the 

wavelength have different use in many applications  [63]. Remarkably, even though IR 

technology is rather a niche, their implementations vary widely. IR signals are used 

mainly to provide positioning services [64]. For instance, active beacon systems have 

fixed infrared Rxs or Txs placed at known locations in indoor environments, and mobile 

Txs or Rxs whose positions are unknown. IR pulses sent from the Txs are used to 

determine the location of the mobile nodes. An example of this technology is the HTC 

VIVE [65], a virtual reality system that uses two infrared base stations to determine the 6 

degrees of freedom position of the headset and the controller. Another example is 

Microsoft Kinect, which uses a continuously projected IR structured light to detect the 

environment with an infrared camera [66]. 

Alternatively, visible light-based IPS, known as a VLP, has attracted significant 

attention over the past decade [14]. In VLP, the LEDs-based lighting infrastructures are 

utilized for positioning in addition to illumination and data communications, hence 

considered an energy efficient and low cost solution compared to other technologies 

reported previously [39][40]. In addition, VLP offers inherent security at the physical 

layer since lights emitted from the sources and reflected surfaces are maintained within a 

confined space.  

VLP can be used in numerous applications including location tracking, navigation, ITS, 

shelf-label advertising in supermarkets and shopping malls, robot movement control, 

manufacturing, medical surveillance, street advertising, etc. [50], [51], [60]. In indoor 

VLP systems, LEDs are used as Txs, and a PD, or an array of PDs in the form of a single 

IS are used as the Rx. Table 2.1 summarises the existing positioning technologies along 

with their advantages and drawbacks. 
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Table 2.1 Comparison of existing IPS technologies 

Ref. 

IPS 

technol-

ogies 

Accur-

acy (m) 
Advantages Constraints 

Re-use of 

existing 

infrastruc

ture 

[15], 

[68] 
GPS 6-20 

Complete earth 

coverage 

Suitable for outdoor 

only, requires 

expensive 

infrastructure 

Yes 

[69], 

[70] 
Wi-Fi 1-5 

Re-use of 

existing 

infrastructure 

Highly environment 

dependant when 

fingerprinting 

method is employes, 

involves high 

deployment cost for 

building database 

Yes 

[71], 

[72] 

Bluetoot

h 
1-5 

Low cost, low 

power 

consumption 

Limited coverage 

range, low accuracy, 

susceptible to noise, 

limited user mobility 

No 

[73], 

[74] [7] 

UWB 

and 

Ultrasou

nd 

0.1-1 

Good 

positioning 

accuracy, 

immune to 

interference 

Expensive, limited 

coverage range 
No 

[75], 

[76] 
RFID 1-2 

Low power 

consumption, 

wide coverage 

range 

High response time, 

low accuracy, 

limited user mobility 

No 

[77], 

[78] 
Infrared 1-2 

low power 

consumption 

Short-range and 

requires special IR 

LEDs 

No 

[79], 

[80] 
VLC 

0.01-

0.35 

Low cost, high 

accuracy, allows 

dual usage of 

LEDs 

Need to modify the 

existing 

infrastructure for the 

dual purposes, range 

might be affected by 

obstacles 

Yes 
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2.4 VLC-based-IPSs Techniques  

Various wireless technologies were explored in the previous section, in which VLC-

based IPSs have shown the capability to provide high accuracy with low 

implementation costs. However, these factors may vary depending on the state-of-

the-art of proposed VLC-based-IPSs. This section introduces a taxonomy to evaluate 

the VLC IPSs based on the research works reported in the literature. Various 

localization techniques are studied and analyzed based on their common 

characteristics. The VLC IPSs are categorized based on three key characteristics: 

mathematical, sensor-assisted, and positioning optimization methods. Three 

distinctive categories of fingerprinting, range-free and range-based methods are 

grouped into a mathematical approach based on the VLP class. The detailed 

descriptions of the VLP techniques and the background studies are outlined in the 

following subsections. The sensor-assisted technique highlights the VLC-based-IPSs 

works done with the aid of additional sensors. Here, the image sensor and sensor 

fusion categories are discussed. The positioning optimization methods are then 

introduced in the following subsection. 

2.4.1 Mathematical Method  

2.4.1.1 Fingerprinting Technique 

The fingerprinting approach, also known as scene analysis, relies on a distinct feature 

or characteristic of signals to estimate the position of the Rx. It correlates the real-time 

measurement data to fingerprints of pre-measured signal properties at all points in a 

confined indoor environment. The signal characteristics leverage the use of all available 

positioning techniques stated previously, such as AoA, ToA, time difference of arrival 

(TDoA), and RSS [14]. Because of its simplicity, RSS-based fingerprinting is the most 

widely used fingerprinting technology. However, the existence of diffraction and 

reflection might substantially impact the accuracy of the VLP system. Typical 

fingerprinting methods can be categorized into a radio-map and map-free based 

localization. The map-based fingerprint localization consists of two stages, the offline 

training stage, in which the database is generated based on pre-measured signal 

characteristics, and the online stage, where the real-time position is estimated based on 

the comparison between the measured values at an unknown position with the pre-
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measured values. The accuracy of this approach is mainly dependent on the utilised signal 

characteristics [20].  

Numerous studies that employ fingerprint technology in VLP systems were introduced. 

For instance, in [81] the information signal with a unique address was transmitted via the 

LED-based Tx, whereas the NRZ- on-off keying (OOK) modulation technique was used 

for data communication. The fingerprint and combination of correlation values 

techniques were applied to estimate the position based on the RSS information. An 

accuracy of 4.38 cm for the mean distance error was achieved among 36 points with 

dimensions of 1 × 1 × 1.2 m3. Moreover, an iterative ML approach for positioning systems 

based on RSS measurements was proposed in [82]. Using the proposed system; mean 

square error (MSE) performance similar to that of Cramer-Rao bound could be obtained 

at the cost of higher complexity (i.e., the longer time and higher computational analysis). 

In [83], a self-localization technique was deployed to attain high robustness VLP system. 

A Bayesian signal model was utilized, and LEDs were detected using the proposed 

inherent sparsity to deliver a fully autonomous system. A probabilistic model was used 

to estimate the position and an approximate accuracy of 0.81 cm were achieved. 

Furthermore, the LED-based Txs were modulated in different frequencies in [84], and the 

received power spectral density was detected and utilised to create the fingerprinting map 

at the Rx side. The simulation and experimental results showed that the proposed system 

could achieve an accuracy of 15-20 cm.  

Similarly, a LAT (localization, access and transmission) indoor multiple-input 

multiple-output (MIMO)-VLC system was introduced in [85], which consisted of (i) RSS 

measurements  to build the fingerprinting database for positioning; (ii) MIMO system for 

adaptive pulse position modulation to provide higher data rates; and (iii) time division 

multiple access for VLC accesses links. The proposed system was simulated and 

experimentally established in an open office with a dimension of 10× 9× 3 m3. 

Furthermore, [86] introduced a VLP system that utilizes a correlation approach to match 

the pre-estimated address for each LED light with the detected signals at the Rx. The 

experiment was conducted in an indoor environment with dimensions of 30× 30× 50 cm3, 

and positioning error p of 1.495 and 0.651 cm were evidenced for the maximum and 

mean values, respectively. 

In [87], and [88], time division multiplexing (TDM) was deployed to mitigate the 

impact of interferences that occurred at the transmitted signals, and an average p of 1.68 
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cm was obtained for the proposed systems. A fingerprint-based VLP system has also been 

investigated for indoor environment, in which an infrared LED was used to localize the 

Rx position. A map-based fingerprinting was used by exploiting the Tx characteristics, 

including the impulse responses and the uniform deployment of LED-based Txs [89].  

Furthermore, the recent advent of machine learning (ML) technology has resulted in 

increased localization performance using the fingerprinting method. In [22]–[24], the 

authors showed an ML-based RSSI fingerprinting with a few centimetres of precision and 

decreased latency at the cost of increased system complexity. 

 

Likewise, The VLC-based positioning using fingerprint technology and the image 

sensor was introduced in [90]–[95], and the obtained accuracies were reported in Table 

2.2. The performance of the fingerprint-based VLP systems is highlighted in Table 2.2, 

in which the system metrics are evaluated in terms of cost, complexity, significant 

features, and accuracy. 
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Table 2.2 Comparison of existing fingerprinting based VLP. 

Ref. Algorithm 
p (cm) Test 

condition(m) 

Cost Complexity 

Note Experimental  Simulation  (L: Low, M: Medium, H: 

High) 

[81] 

Fingerprint 

< 5  1 × 1 × 1.2 L L - 

[82] - 

< 10 

6 × 6 × 4 L M - 

[83] - 
30 × 30 × 

0.25 
L L - 

[84] 15-20  1.8 × 1.2 ×1 L M - 

[85] - 1-2 10 × 9 × 3 M M PPM technique 

[89] - 20-80 10 × 9 × 3.1 L L Infrared LED 

[86] - < 10 
0.3 × 0.3 × 

0.5 
L L  

[87] - 1.69 
0.9 × 0.9 × 

1.5 
L M TDM scheme 

[88] < 5  0.6 × 0.6 × 1 L L  

[90] - 7 - L L Image sensor 

[91] 5  
1.5 × 1.5 × 

1.95 
L M Image sensor 

[96] - <10 
1.8 × 1.8 × 

3.5 
M M Two image sensors 

[93] - 85 2 × 2 × 2.7 M M Two image sensors 

[94] - 

<10 

- L M  

[95] - - M M 
Two image sensors, and extended 

kalman filter 
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2.4.1.2 Range-free Technique 

Range-free solutions (also known as proximity-based or coverage solutions) deliver 

semantic location information (i.e., identify the position based on the range of a 

recognised station or a nearby reference). The simplicity of range-free techniques is their 

major advantage. However, the precision is limited by the amount of Tx reference nodes 

available and the configuration of lighting fixtures  [15], [20]. The positioning accuracy 

can be enhanced by increasing the number of deployed Tx anchors, which may impose 

additional system costs [97]. As a result, range-free positioning is best suited for less 

demanding applications (e.g., to display location-specific content in a museum). Various 

investigations were performed on range-free based VLP systems [98]–[104]. For 

example, a VLP preliminary design and implementation were done in [100], in which the 

system comprises of a mobile phone and LED lights, which consistently transmit its  ID 

or coordinates, allowing the mobile phone to calculate the precise location using the data 

received. Both passive and active beacons were investigated, and the demonstrated error-

free range was up to 4.5 m. Furthermore, a range-free based VLP was experimentally 

investigated in [98], in which a frequency-shift-keying modulation scheme was used to 

transmit the unique positions of up to 29 Tx sources. The relative Rx position was 

assigned to the region where the Tx is situated.  

In [99], a VLP system was proposed to mainly provide a solution to visually impaired 

individuals, in which the accurate position and travel directions were estimated using 

LED light sources and a geomagnetic sensor. An approximate positioning error p of 1-2 

m was obtained without considering the azimuth accuracy. In [101], a hybrid system that 

combines VLC and ad-hoc wireless network architecture was investigated. Non-carrier 

and 4 MHz carrier VLC-based hybrid designs were demonstrated in two configurations 

for the proposed VLP system. The recorded error-free communication range for a low 

data rate situation was between 33-40 cm. However, an approximate range between 0.57-

47.9 cm was deployed in a high data rate and wide-range reception situation.  

Moreover, the accuracy of a system that employs VLC plus a 6-axis sensor ( 

geomagnetic and gravity acceleration sensors) is greater than that of a basic VLC-based 

positioning system [102]. It shows that more than 30% improvement can be achieved 

using a switching estimated receiver position (SERP) technique.  In [103], the rotation 

matrix and support vector machines (SVMs) were utilized to determine the precise field 

of view (FOV) limit as well as the potential azimuth and tilt angulations. Thus, this model 
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could save at least 80% of computations compared with conventional geometric optics 

calculations. Alternatively, a long-range VLP solution was described in [104], in which 

a hybrid system combines a five-hop ZigBee wireless network with VLC to provide 

positioning. The proposed system provides minimal power consumption, robust security, 

and a large coverage area. Table 2.3 summarises the performance work implemented on 

the range-free-based VLP systems.
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Table 2.3 Comparison of existing rang-free based VLPs. 

Ref. Algorithm 
p (cm) 

Test condition(m) 

Cost Complexity 

Note 
Experimental Simulation 

(L: Low, M: Medium, H: 

High) 

[98] 

Range-free 

< 200  8 × 3.88 ×1.2 L L 
binary frequency shift 

keying modulation scheme 

[99] 100-200  

A walk of distance 

50 m and a height 

of 2.7 m 

L L 

Voice navigation for 

visually impaired 

individuals 

[100] 450  - L L  

[101] < 480  1.8 × 1.2 ×1 M M 
Hybrid system VLC and 

ad-hoc wireless system 

[102] - 30-60 10 × 9 × 3 L L 
6-axes sensor and SERP 
technique 

[103] - 30-60 10 × 9 × 3.1 L L 
rotation matrix and Support 

Vector Machines 

[104] - 40 0.3 × 0.3 × 0.5 M M 
Hybrid system VLC and 

ZigBee wireless network 
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2.4.1.3 Range-based Technique 

In comparison to range-free approaches, the geometrical properties of circles, 

spheres or triangles are employed to estimate the Rx position. It may require a pre-

knowledge about the direct (shortest LOS) path for the transmitted signal, which can 

be obtained either through lateration, which relies on distance measurements between 

the known reference points (fixed lights, also known as landmarks) and the unknown 

position, or angulation, which locates the position based on the angle of the 

information arrival with respect to the reference point. The lateration approach 

requires a minimum of three non-collinear reference points that are measured using a 

PD or an IS to locate the 2D Rx position. The distance information from light 

landmarks can be calculated using different measurements such as the ToA, TDoA 

[18], RSS [19], and direct detection [97], [105], and p of 10 to 40 cm could be 

achieved using these methods [20]. The implementation detail of each approach is 

presented subsequently.  

 AoA 

AoA- based VLP systems determine the angle of arrival of the received signals, and 

the position is measured using geometrical relationships by intersecting several 

directions of wireless received signals from different stations [106]. It is also noted 

that at least two reference stations are required to establish the AoA technique. AoA 

is not utilized widely in radio-based systems that are not usually reliant to LoS, such 

as Wi-Fi and Bluetooth. However, this is not the case in VLP systems wherein the 

direct light of sight carries a significant amount of transmitted power. Although AoA 

is susceptible to the external environment and has a lower accuracy than ToA, it does 

not require any time synchronization between the Tx and the Rx. Furthermore, there 

is no need to consider path loss and disturbance from background illumination sources 

reflected components for image transformation approaches [107]–[118]. Next, AoA-

based VLP was referenced in various studies, see Table 2.4. For instance, [114] 

demonstrated a high-precision system based on AoA with an accuracy of 10 cm. 

Likewise, [119] adopted AoA for wearables devices, in which a flicker-free with 

polarization-based modulation was deployed, and the results show an accuracy of < 

40 cm can be obtained using smartphones and Google Glass.  
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Besides, a light sensor and accelerometer were deployed to estimate the position of 

the Rx [120] [121]. The intensity of the received light, as well as the Rx orientation, 

were measured in both works and the experimental demonstration showed that the 

system is capable of achieving an accuracy of 0.5 cm. Similarly, [122] presented a 

truncated weighting approach for an AoA-based VLP system, with simulation results 

indicating that truncated weighting can outperform traditional VLP methods and 

achieve an accuracy of 5-30 cm. Furthermore, the AoA-based VLP system was 

introduced in [123], in which the authors derived Cramer-Rao bound (CRB) 

mathematical bounds and showed that, with a simulation accuracy of 8 cm could be 

achieved. To achieve differential photocurrent detection of the incident light AoA, the 

system [106] demonstrated that the RSS approach had a four times higher accuracy 

than AoA, which may reach 5 cm by employing three PDs at the Rx.  The authors 

also stated that systematic errors, angular precision, and geometry are the main factors 

that may impact the accuracy of AoA-based VLP systems.  
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Table 2.4 Comparison of existing AoA range-based VLPs. 

Ref. Algorithm 
p (cm) 

Test condition(m) 
Cost Complexity 

Note Experimental  Simulation  (L: Low, M: Medium, H: 

High) 

[121] 

AoA 

50 - 5 × 3 × 3 M M Accelerometer 

[124] - < 15 4 × 6 L L - 

[125] 29.8  5 × 1 ×1.5 L M Inertial sensor 

[126] - 13.95 4 × 4 × 3.5 L M Inertial sensor 

[127] 8.2 mm  8 × 8 × 0.4 H M 
Aspherical lens on 

LED  

[128] - 12.9 5 × 3 × 3 H M 
Biconvex Lens on 

LED 

[129] 100-200  4 × 6 M M 
Data rate between 

300-400Mb/s 

[114] ~10 - 0.71×0.73×2.46 M M 

Uses roller shutter 

effect of image 

sensor 

[119] < 40 - 2.4 ×1.8 ×3 M M  

[120] 25 - 5 ×3 ×3 M M Accelerometer 

[122] - 5-30 5 × 3 × 3 H H 
Truncated-weight 

method 

[130] 10  - H H - 

[123] - 8 - × - ×1-3 H H - 

[106] - 5 - M M - 
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 ToA and TDoA 

Time of arrival is the most popular ranging technique utilized mainly in the GPS [68]. 

This approach relies on knowing the signal propagation time tp (i.e., the precise time for 

the signal to travel from a reference location to the target position) and the signal's speed 

(typically the speed of light 𝑐). Hence, the distance is computed as 𝑐× tp, and the set of 

possible location is determined using the trilateration method. ToA requires few 

references points (at  least  three  for  two-dimensional (2D)  or  at  least  four  for  3D) 

and exact synchronization between the Tx and the Rx to estimate the position [131], 

[132]. The theoretical boundaries of the ToA-based VLP system were investigated in 

[133], [134], a Cramer-Rao bound was derived based on various factors that consist of a 

perfect synchronization based on the geometrical room dimensions, the power and 

frequency of the propagated signal, and the characteristics of both Txs (i.e., LEDs) and 

the Rx (i.e., a PD). The evaluation showed that an average p ranging between 2 and 6 cm 

could be achieved [89] [135]. Likewise, the ToA based VLP approach was developed in 

[134]. The Tx and the Rx were assumed to be perfectly synchronized, and white LEDs 

were employed for illumination and signal transmission at the Tx side. The emitted 

signals were captured at the Rx, and the range was determined based on the ToA signal 

measurements. Thus, p of 5 cm was demonstrated for the proposed system. 

Alternatively, the TDoA method was proposed to overcome the need for time-critical 

synchronization between the reference points and target, yet it still requires time 

synchronization between the reference points involved in positioning [136], [137]. Like 

the ToA, the estimated time is converted into the distance by multiplying the speed of 

propagation. In [138], the use of TDoA based VLP system was proposed, in which the 

use of TDoA and phase difference algorithms were deployed for localization purposes. 

The VLP system performance was evaluated by computer simulation, and indoor location 

accuracy of ≤ 1 cm was obtained in a room dimension of 5× 5× 3 m3. Moreover, the use 

of the intensity modulation/ direct detection  (IM/DD) and subcarrier BPSK schemes for 

optical signal modulation was investigated in [139]. The TDOA and nonlinear recursive 

least square algorithm were deployed to estimate the Rx position. Similarly, mathematical 

modelling of a VLP system was introduced in [140].  

The received signal was assumed to be contaminated with Gaussian noise, and the TDOA 

based position estimation process involved three steps: distance estimation, position 

estimation, and error minimization. 
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Similarly, a measurement scheme based on a TDoA technique employing a dual optical-ultrasound system was adopted in [59].  The 

proposed system utilised the same principle as the cricket technology with a few modifications to provide distance estimation between both 

the base station and mobile node at the same time. The results reveal that both base station and mobile node devices can determine distance 

with equal precision (around 2% error). 

The VLP system was simulated using Matlab®, and p was minimized using the two-step approximate maximum likelihood algorithm. 

Hence, an accuracy of ≤ 2 cm was obtained in the room space of 5× 5× 3 m3.  Table 2.5 summarises the existing ToA or TDoA range-based 

VLPs. 

 

Table 2.5 Comparison of existing ToA or TDoA range-based VLPs. 

Ref. Algorithm 
p (cm) 

Test condition(m) 

Cost Complexity 

Note Experimental  Simulation  (L: Low, M: Medium, 

H: High) 

[141] 

ToA or TDoA 

 2-5 - × - × 2.5 H H  

[138]  1 5 × 5 × 3 M H  

[136]  3.9 5 × 5 × 3 L M 

No ID information was 

transmitted through the pilot 

signal 

[139]  < 30 - M M  

[140]  2 -× -×3 H H 

KF and Maximum 

Likelihood were compared 

with the conventional 

system  
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 RSS 

RSS-based trilateration is widely utilized in VLPs, which requires a minimum of 

three lighting sources to estimate the Rx position. It relies on the propagation loss 

measurements of the emitted signal based on the received signal strength. The range 

can be estimated using a standardized path loss model [15]. The implementation of 

RSS-based systems is also simpler compared with ToA and AoA-based positioning 

systems since (i) they do not require highly accurate transceiver synchronization or 

an Rx with efficient detection of the incidence angle [142]; and (ii) it may deliver a 

relatively good positioning accuracy due to the availability of LoS channels for most 

indoor environments. Table 2.6 shows most of the previous studies have been focused 

on RSS-based VLP systems [67], [143]–[146], where the strength of the received 

power Pr is used to estimate the Rx's position [19].  

Although designing an RSS-based IPS using this technique is relatively simple, 

there are still several challenges to be addressed when designing this system in an 

indoor environment. For instance, the concurrent transmission of the optical signals 

using multiple light sources (i.e., LEDs) may introduce complexity to recover the 

signals using a single PD-based Rx [147]. Different modulation techniques have been 

investigated. For instance, an orthogonal frequency division multiplexing (OFDM) 

VLP system was proposed to mitigate the multipath effects [147], in which the 

performance of the IM/DD as a single-carrier modulation and OFDM as a multi-

carrier modulation scheme were evaluated. The results show that increasing the 

number of subcarriers enhances positioning performance at the cost of greater 

complexity and a higher peak-to-average power ratio (PAPR).  

In [148], the impact of subcarrier numbers on the VLP system was investigated, in 

which Cramer–Rao bound analysis was utilized to assess the theoretical accuracy of 

the VLP system. The theoretical analysis demonstrated that the estimated accuracy of 

triangular LED array's is higher than the square array, and the simulated VLP system 

may achieve a precision accuracy of 4.78 cm. Likewise, a state estimation model was 

employed to study the user mobility and dynamic device orientation on the VLP 

system [149]. A Kalman filter (KF) recursive estimation was utilized, and the results 

reveal that an approximate p of 5 cm can be achieved.  

Alternatively, the multipath impact on the RSS-based VLP system was investigated 

in [150],[151],[152],[153]. A Gaussian mixture sigma-point particle filter (GM-
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SPPF) was used at the Rx side to reduce p [150]. Similarly, the combined 

deterministic and modified Monte Carlo techniques (CDMMC) were deployed to 

estimate the impulse response and a system accuracy of 55 cm was recorded [151]. 

Furthermore, OOK modulation and  CDMMC methods were proposed in [152], in 

which the authors show that an accuracy of 80.64 cm can be obtained. Likewise, the 

impact of diffuse light reflection on the RSSI-based VLP system performance was 

investigated [153]. The proposed system was simulated using LoS and NLoS with 

three bounces communication channel. It shows that the diffuse reflection 

significantly impacts p, in which p of ≥ 1.46  m and 30 cm were recorded in high 

and low reflectivity surfaces conditions, respectively. 

Another issue identified in the RSS-based VLP system is that the Rx and the Tx are 

often assumed to be positioned in parallel (i.e., with no tilting angle), which may 

increase the p [154]. Various studies were conducted to overcome this challenge by 

combining additional information about the Rx with the trilateration approach using 

an auxiliary sensor, such as an accelerometer, gyroscope, or magnetometer. In [121], 

an accelerometer to determine the Rx orientation with an RSS-based VLP system was 

utilized to enhance the positioning accuracy. The irradiance angles of Txs (i.e., LEDs) 

was assumed to differ from the incidence angle at the Rx, and the results demonstrated 

that an average p of ≤ 0.25 m can be achieved using three Txs, an accelerometer, and 

a single Rx. Similarly, multiple optical receivers and an accelerometer were used to 

establish a VLP system that supports user mobility. The experimental results show 

that mean p of ≤ 6 cm was achieved for a mobile Rx with an average speed of 1.3 

m/s [155]. Likewise, a performance analysis of a VLP system was simulated when 

the Rx is tilted in [156], and the results show that the error induced by the Rx tilting 

can be compensated using a gyroscope and a weighting factor algorithm to minimize 

the p.  
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Table 2.6 Comparison of existing RSS range-based VLPs. 

Ref. Algorithm 
p (cm) 

Test condition(m) 

Cost Complexity 

Note Experimental Simulation (L: Low, M: Medium, H: 

High) 

[157] 

RSS 

2.4 - - × - × 2.5 L M - 

[158] 40 - 5 × 5 × 3 L M - 

[159] - 5.9 5 × 5 × 3 L M - 

[149] - 5 - M M KF 

[153] - 30 -× -×3 H H - 

[150] 9 - 6 × 6 × 4.2 M L - 

[151] - <90 8 × 8 × 3.5 L L 
Examine the 

multipath reflections 

[160] 6 - 0.6× 0.6× 0.6 M M  

[156] 1.66 0.74 1 × 1 × 1 L L 
Rx tilting 

compensation  

[161] 0.05 -0.73 - 3 × 3 × 3 L M OOK 
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2.4.2 Sensor-Assisted Method 

2.4.2.1 Image Positioning Camera-based VLC IPS 

The use of an IS-based VLPs is usually dependent on the use of image processing to 

find the required position, which will require large processing resources. Advances in 

optical systems have triggered image-based positioning methods to become an attractive 

solution for indoor navigation systems. In which, the camera can either utilize its received 

optical reflectiveness characteristics of the obtained scenes (measurements of visual 

features) or to receive the transmitted coordinates of LEDs by means of OCCs. Moreover, 

from the received information, it is possible to estimate distances between LEDs and the 

camera, and so, the position of the camera [21]. The wide usage of the camera in modern 

handheld devices, (i.e., the IS), allows utilization in IPS. The IS-based VLPs offers many 

unique features compared to single PD-based systems, such as a larger FOV and the 

light's spatial and wavelength separation [162]. It captures the image of the light beacons 

in a periodic way and processes them in a positioning application in order to evaluate the 

location of the receiver. The information of the light beacons in the image is provided 

based on the image coordinates.  

 In a real-world environment, the complexity of the system can crucially impact the 

positioning accuracy and the cost of the system. Table 2.7 presents the recent works 

reported in IS-based VLP. For example, in [163], a distance estimation technique was 

implemented using photography and IS-based communication (i.e., OCC), in which 

average estimation p of 10 cm using 3-Txs was reported. Likewise, 4-LED and IS were 

used at the Tx - to transmit location information simultaneously using multiple frequency-

shift keying - and the Rx, respectively, with a maximum p of 2 cm at a linkspan of 100 

cm [164]. In [165], a hybrid IS-based VLP and pedestrian dead reckoning for indoor 

application was proposed. The experimental results showed that, the proposed scheme 

could achieve both cell recognition and three-dimensional (3D) positioning by capturing 

an image of a single Tx (i.e., LED) with the 2D and 3D average p values of 2.46 and 13.4 

cm, respectively. In [166], a VLP system with a single LED lamp and the commercial 

mobile phone-based Rx was investigated. A LED-based Tx detection algorithm was 

proposed for identifying the edge of the light source based on brightness weakening, 

Sobel operator, and the least-square error (LSE) fitting. The experimental results revealed 

confirmed p of a few cm for different Rx orientations.  
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In most of the works reported in the literature studies, either multiple LEDs have been 

used for positioning or an additional sensor has been employed to obtain the position, see 

Table 2.7. 

However, in most scenarios, the narrow FoV of the front-facing camera in smartphones 

restricts the number of Txs being captured at the IS, thus making bilateration or 

trilateration impractical. In addition, unilateration allows less complex and low-cost 

implementation of the VLC system. Also, the deployment of more LEDs will certainly 

add some constraints to the implementation of VLP. Therefore, to overcome these issues, 

different technologies were investigated in [165], [167]–[170]. For example, in [169] a 

VLP system using a single LED-based Tx and an IS was reported,  where the AoA of the 

transmitted light was determined using the IS and the projection model of the lens. The 

IS acts simultaneously as a PD for measuring the RSS. Both measurements were utilised 

as the fingerprint to estimate the Rx’s position. The k nearest neighbours in the feature 

space algorithm were deployed to achieve a more accurate coordinate estimation of the 

Rx at the cost of increased complexity. The preliminary experimental results showed that, 

the proposed positioning scheme achieved a high precision where the 95th percentile 

accuracy was 1.97 cm. Likewise, both AoA and RSS were used in indoor VLP in [170], 

which was based on a  particular frame reception technique designated as the bokeh effect. 

The system was set intentionally to generate a frame in an out-of-focus condition, thus, 

avoiding optical power saturation by spreading Pr to the adjacent pixels. The experimental 

results showed  p of < 10 cm.  

2.4.2.2 Sensor Fusion  

It is the process in which multiple types of sensors are merged to improve the system's 

performance. The evolution of the sensor market is growing significantly, with smart 

sensors being leveraged across industries, thanks to the Internet of Things, the 

digitalization of manufacturing, also known as Industry 4.0, and ever-increasing digital 

transformation efforts in all areas of the economy and society. For instance, magnetic 

compass, gyroscopes, accelerometers, and various other sensors can be incorporated into 

intelligent and portable devices and deployed for location and orientation estimation. For 

example, the use of an IMU sensor with OCC was reported in [165], [167], [168] with p 

of several centimeters. In [171], a VLP method uses a single LED luminaire and a 

commercial off-the-shelf smartphone camera as the Tx and the Rx, respectively. Note, 
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the inertial measurement unit (IMU) and the IS were deployed for localization purposes, 

whereas projective geometry was used to calibrate the orientation measurements. The 

experimental results showed that an average p of 11.2 cm was achieved. Furthermore, in 

[172], the visible light, IS, and IMU were fused simultaneously to provide VLPs with 

high accuracy. The proposed strategy showed that the average accuracy achieved was 2.1 

cm for stationary localization and the average computational time was around 33 ms. 
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Table 2.7 Listed studies of sensor-assisted based VLPs. 

Ref. Algorithm 
p (cm) Test 

condition(m) 

Cost Complexity 
Note Experimental  Simulation  (L: Low, M: Medium, 

H: High) 

[163] 

Sensor-

Assisted 

Method 

10 - - × - × 2 L M OCC 

[164] 2 - - × - × 2.6 M H 
Rolling shutter and multiple 

frequency-shift keying 

[165] - 
decimetre-

level 
14× 1.6 × 2.3 M H 

IMU, and pedestrian dead 

reckoning algorithm 

[169] 

1.97 

- 0.7× 0.3× 0.2 H H 

Both AoA and the RSS with k 

nearest neighbours in feature 

space algorithm 

[170] <10 - 1 × 1× 2.4 H H 

AoA and RSS with a 

geomagnetic field sensor and 

an accelerometer 

[166] 
Average 2D/3D 

were 3.17/4.45 
- - × - × 1.2 M H 

Rolling shutter and piecewise 

fitting. LED 

[171] 16 - 1.8 × 1.8 × 2 L M IMU 

[173] 7.5 - - × - × 2.8 M M 
OOK modulation scheme was 

used for ID transmission 

[167] 5.44 - 2.7× 1.8× 1.8 M M 
IMU and a plane intersection-

line scheme  
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2.4.3 Positioning Optimization Method 

Previous research have shown that mathematical and sensor-assisted approaches can 

assist VLPs deployment with varying degrees of accuracy, cost, and complexity. Instead, 

the researchers are still exploring new methods to enhance VLPs performance. Various 

supplementary methodologies or positioning environments have been developed.  

2.4.3.1 Machine Learning Techniques 

The use of machine learning in RSS-based VLP systems has been explored in [174]. 

The authors proposed the usage of K-Means clustering algorithm to achieve a 0.31 m of 

PA for a room of dimension 4.3×4×4 m3. Moreover, a PA of 3.65 cm along with a height 

tolerance of 15 cm was achieved using a backpropagation algorithm -for an indoor VLP 

system in [175]. Additionally, an innovative solution was proposed for indoor positioning 

based on the dual-function machine learning algorithms that contain machine learning 

classification and machine learning regression functions. in [176]. Classification 

algorithms, such as random forest and support vector machines (SVM), were used to 

obtain the highest PA of 8.6 and 10.2 cm, respectively. The results showed that, SVM is 

the optimal solution for VLP systems with a low 𝜀𝑝.  

An ANN has been utilized in RSS-based positioning systems. In [177], both RSS and 

ANN methods were proposed to achieve an accurate indoor VLP system with a diffuse 

optical channel. An accuracy of 6.4 cm was achieved with the averaged 𝜀𝑝 being ~13 

times smaller than RSS-based positioning system. In addition, a low-cost indoor VLP 

system was proposed using a machine learning algorithm in [9], which was achieved 𝜀𝑝 

of 3.7 cm with a height tolerance of 15 cm in LoS environment. In [178], a new 2-D 

ANN-based VLP system was proposed, where the LEDs were grouped into blocks, and 

the block coordinates were encoded using under-sampled modulation. A camera was used 

as an Rx to decode the block coordinate, and the system achieved a mean 𝜀𝑝 of 1.5 cm in 

LoS channel. In [33], a VLP system based on the RSS and a deep ANN-based Bayesian 

regularization VLP system was proposed, where only the LoS transmission was 

considered). The results showed that, using only 20 training points a minimum 𝜀𝑝 of 3.4 

cm was achieved. In [32], an ANN-based approach was proposed exploiting the 

distortions caused by inaccurate modelling (i.e., phase and intensity models) in both phase 

difference of arrival (PDOA) and RSS-based positioning systems. The pre-trained models 
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were applied to the ANN-based VLP system for reduced complexity and enhanced 

robustness, showing an 𝜀𝑝 of 12 cm in an indoor LoS channel. 

2.4.3.2 Filtering Techniques 

Filtering techniques are also explored in VLPs, mainly divided into two classes: 

Kalman or Extended Kalman filter  (KF or EKF) and particle filter (PF). [95] proposes 

an LED-assisted and encoder-based navigation system to estimate the location and pose 

of a vehicle travelling in a 2D plane. The navigation was accomplished using LEDs, a 

high-speed camera, and two encoders. The front wheels were fitted with a high-speed 

camera and encoders. The LED location and their ID were estimated using the captured 

frames, and the EKF was deployed to fuse measurements from the encoder and camera. 

Furthermore, [179] describes how to use KF to identify a robot's direction. The 

geomagnetic and gyro sensors were utilized, and the position was estimated using both 

the dead reckoning and KF. Hence, the experiment revealed that KF has the lowest p of 

10.5 cm with a maximum directional error of < 6°. Alternatively, the core principle of the 

PF algorithm is that a posteriori probability is represented by a set of independent random 

samples from the proposal distribution known as particles. The posteriori probability is 

then updated by receiving additional observations, and the Bayes rule adjusts the weight 

as particles pass through in a certain way. The benefit of this technique is that it can adapt 

to a nonlinear Gaussian noise model without assuming that the system is linear and 

Gaussian [180]. In [181], a VLP system was implemented using either a single PD or an 

array of PD (i.e., camera), in which the PD was employed to detect the presence of the 

LED as well as its particular identification. Meanwhile, the camera was utilized to 

measure the AoA of the LED signal, and a navigation system based on this measured 

information was considered. The mathematical formula was also introduced for the 

motion model, initialization, and localization process. The results suggested that 

employing PF enhances trackability. 
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2.4.3.3 Other Estimation Techniques 

Two conventional methods relying on linear least squares (LLS) and nonlinear least 

squares (NLLS) were used for VLPs [34]. However, NLLS and LLS achieved the 

minimum 𝜀𝑝 values of 46.42 and 55.89 cm, respectively. An efficient RSS-based VLP 

algorithm was proposed in [182] to estimate the 3D location, combining 2D trilateration 

with the NLLS. The computational time for NLLS is limited to approximately 17 ms, 

which is further reduced to less than 2 ms using a fast search algorithm. A new VLP 

system was proposed in [183], where a polynomial regression-based approach was 

utilized to improve the PA of the proposed system. Polynomial regression appears as a 

method to establish the relation between Pr and d, suitable for multipath environments. 

The results showed that, the minimum 𝜀𝑝 achieved was 0.6 m by employing a NLLS with 

polynomial regression model. 

The influence of non-line of sight (NLoS) paths in a VLC system implemented in a 

referenced empty room has been described in the literature. For instance, in [184], the 

impact of multipath reflections on the indoor VLP system was studied. The results proved 

that, the minimum 𝜀𝑝 achieved were 46.4 and 0.4 cm with and without multipath 

reflections, respectively. Therefore, reflections play an important role in estimating the 

PA, which needs considering. Estimating Pr versus the distance for the case of a multipath 

channel is a complex task, which depends strongly on the presence of corners, walls, and 

furniture within a room [184]. Further optimization models for VLP systems have also 

been employed. For instance, Tabu search as a global optimization algorithm was adopted 

to provide high precision VLPs [185], in which the LEDs transmit its localised ID 

information. The Tabu search method was utilised to estimate the position upon detecting 

the ID information (optical signal) from multiple LEDs. 
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2.5 Summary 

Indoor positioning is a well-known topic that has sparked many studies in the previous 

decades. Initially, the literature review of this thesis began with an overview of various 

indoor positioning technologies, see Section 2.3. From the comprehensive analysis of the 

technologies deployed in IPSs, VLC-based-IPSs have shown an overall advantage based 

on their immunity to EM interference, license-free operation, large bandwidth, and dual-

use for illumination and communication. The VLC-based- IPSs (VLPs) techniques were 

analyzed based on their common characteristics. The VLP positioning technique refers to 

the applied procedure to estimate the position based on the acquired light information. 

VLPs are categorized based on three key characteristics: mathematical, sensor-assisted, 

and positioning optimization methods. The mathematical based VLP attributes are 

comprised of three distinctive features of fingerprinting, range-free, and range-based 

methods. The geometrical properties of circles, spheres or triangles were employed to 

estimate the Rx position in the range-based technique, in which the signal travel path is 

measured either through lateration or angulation. The path information from light 

landmarks be calculated using ToA, TDoA, RSS, and direct detection measurements. A 

significant amount of research were carried out to find the appropriate implementation 

approach for the VLPs to achieve optimal performance. Due to their reliance on many 

characteristics such as the size of an indoor environment, position accuracy, the number 

of LED Txs, Rxs, and sensors, this chapter also introduced a quantifiable comparison in 

terms of cost and complexity of these techniques.  
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Chapter 3  

An Indoor Visible Light Positioning System 

Using Tilted LEDs with High Accuracy 

3.1 Introduction 

Coronavirus disease 2019 (COVID-19) has had a major impact on the society at a global 

level, where social distancing, monitoring, and tracking has become effective in 

controlling and reducing the spread of the virus [186]. Precise localization and tracking 

technologies for use in indoor and outdoor environments will play a crucial role in dealing 

with COVID-19 and other pandemic outbreaks in the future. Nowadays, indoor 

positioning has a prominent contribution in day-to-day activities in organizations such as 

health care centers, airports, shopping malls, manufacturing, underground locations, etc., 

for the safe operating environments. In indoor environments, both RF and optical 

wireless-based technologies could be adopted for localization [187], [188]. Although the 

RF-based global positioning system offers higher penetration rates with reduced accuracy 

(i.e., in the range of a few meters), it does not work well in indoor environments (and not 

at all in certain cases such as tunnels, mines, etc.) due to the very weak signal and no 

direct access to the satellites [10]–[12]. On the other hand, the light-based system known 

as a VLP system, which uses LEDs-based lighting infrastructure, could be used at low 

cost and high accuracy compared with the RF-based system [21], [25]. 

VLP can be implemented using different techniques. Proximity and scene analysis (i.e., 

fingerprinting) are considered the simplest methods with relatively low positioning errors 

εp i.e., typically in a range of 10 to 45 cm, depending on the fingerprint database [16], 

[17], [21]. In the scene analysis technique, the estimation process of the relative position 

can be obtained by comparing the measured value with a pre-measured location of each 

position and then matching it to determine the real position. However, the measurement 

can be affected by the distributions of base stations, i.e., Txs, shadowing and blocking, as 

well as the absolute location (i.e., probabilistic and correlation) dependency on pattern 

recognition techniques [16]. A VLP using two PDs and an IS was proposed in [21], [25], 

[26]. Note, VLC with IS (composed of a large PD array) naturally fits well with multiple 
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inputs multiple-output systems in indoor and outdoor applications. In IS-based VLP, 

image-processing techniques can be used to determine the position but at the cost of 

increased complexity [27]. Note that, in VLP the transmission speeds (i.e., data rates) of 

the PD and IS are not critical at all since the aim is to achieve positioning with high 

accuracy [28].  

Despite the fact that the user’s mobility can influence the performance of the VLP 

system, most research reported in the literature has focused primarily on static scenarios. 

The major issues of shadowing and blocking affecting user’s mobility were reported in 

[189], where the VLC system performance considering the changes in the channel 

conditions in different indoor scenarios (i.e., a furniture equipped office room, an empty 

hall, and a corridor) was investigated. It was shown that, the cumulative distribution 

function (CDF) of the received power distribution differs in the worst case by up to 7% 

in a furnished office (people density > 0.16 people/m2). Alternatively, the highest root 

mean square (RMS) delay spread of 6.5% in comparison with the case with no people 

was observed for an empty hall. The results also revealed that, the corridor with the 

maximum RMS delay of 2% at the people density >0.16 people/m2 is the most robust 

against the people’s movement compared with the other two where the problem of 

shadowing or blockage could be readily avoided. Another concern with the user’s 

mobility is the processing time required that needs considering with respect to the speed 

of movement for the Rx. 

In most of the reported methods, the angular dependency was neglected in RSS-based 

localization with the assumption that, the Rx has a fixed height and is pointing up towards 

the Txs [31]. However, computational and implementation costs are too high, and the 

assumptions made may not be valid in real-time application scenarios with mobile Rxs, 

which needs further investigation. Recent works have focused on the impact of multipath 

induced reflections on the performance of VLP without considering the tilting angles 

[190]–[192], where it was shown that, multipath reflections considerably increase εp; 

whereas in [193], it was shown that, the channel capacity can be significantly improved 

by carefully selecting the Rx’s tilting angle 𝜃Rx. However, the initial research 

demonstrated that in VLP 𝜃Rx usually results in increased εp (i.e., lower accuracy). 

The widely used commercially available LED spotlights in building facilitates the 

concept of using Txs with tilting features. For instance, the impact of the Tx’s (i.e., LED) 
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tilting angle 𝜃Tx on the accuracy of RSS-based VLP was studied in [194], where it was 

shown that εp increased (i.e., in the order of centimeters) with 𝜃Tx. In [195], a 4-LED VLP 

system using an ANN was proposed to improve the positioning accuracy, which is 

impacted by the random and unknown static Tx tilt angle with a maximum variation of 

2°. It was shown that ANN offered improved performance compared with standard 

trilateration, achieving localization errors below 1 cm for the LoS channel. In Addition, 

an RSS-based localization algorithm with multidimensional LED array was proposed in 

[196], where the design of the lamp structure was introduced to exploit the direction of 

the LED in a LoS environment. The authors showed that the proposed system achieved a 

RMS error of 0.04 and 0.06 m in 2- and 3-dimensional localization, respectively for the 

LED with a tilt angle of 15°. While in [197], an angle diversity Tx (ADT) together with 

accelerometers was proposed for uplink three-dimensional localization in a LoS 

environment. ADT was a combination of 19 or 37 LEDs (LEDs array), which were placed 

on the ground, and PDs located on the ceiling. The results showed that, an average 

localization error of less than 0.15 m.  

The impact of NLoS path in a VLC system deployed in a referenced empty room has 

been reported in the literature. In [198], the impact of the power levels from NLoS paths 

on the performance of VLP for different Rx positions and their orientations was reported. 

It provided a theoretical framework for the design of VLP resource allocation methods to 

improve the performance of the non-tilted Tx. Channel modeling and its characterisation 

with the existence of reflections from objects and surfaces were investigated in [199]. 

Considering the delay spread and the channel gain in a typical room, it was shown that it 

is not required to consider all objects within rooms [199], [200]. Moreover, the use of 

flexible organic LED-based VLC in indoor environments (i.e., offices, corridors, semi-

open corridors in shopping malls, etc.) was investigated in [201], where it was shown that 

the channel gain in an empty room is higher by 4.8 and 5.2 dB compared with the fully 

furnished room and a semi-open corridor, respectively [201]. 

Unlike previous works, in this chapter  theLED tilting is investigated for the first time 

and show that it can be beneficial in VLPs in improving the PA. The impact of reflections 

on the accuracy is showed by means of the received power from both LoS and NLoS 

transmission paths, the positioning algorithm utilized, and the accuracy of the VLP 

system for a single PD-based static Rx (i.e., putting the Rx at fixed locations) where the 

user movement has not been considered. In this approach, the Txs are oriented towards 
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the pointing center F with the (xF, yF, zF) coordinates without violating the acceptable 

uniformity range of the light distribution in the illuminated region. Note, F is selected at 

the center of the receiving plane in this work, and alignment is achieved with respect to 

the Tx normal 𝒕̂𝑘. Fitting using the received power PR points at various Rx locations for 

two different circumstances is used to analyse the regression. Note, the Rx locations are 

within a squared shape region centered at F with a side length Dr. The polynomial 

regressions (PRs) are fitted with the PR points for the full and half rooms of areas of 6 × 

6 and 3 × 3 m2, which is termed as scenarios S1 and S2, respectively-. The study is carried 

out using the LLS algorithm for position estimation, which is a low complexity solution. 

Hence, we offer a significant accuracy improvement by up to ~66% compared with a link 

without Tx’s tilt. We show εp of 1.7 and 1.3 cm for S1 and S2, respectively, and for zF of 

0 m (i.e., the height of F from the floor level). Furthermore, we investigate zF with respect 

to εp and we show that, the lowest εp of 1.3 and 0.8 cm were for S1 and S2, respectively. 

The remainder of this chapter is structured as follows. Section 0 presents the VLC 

system model used in the positioning algorithm. The positioning algorithm is briefly 

explained in Section 3.3. The results and discussion are included in Section 3.4. Finally, 

Section 0 provides the conclusion of the chapter. 

3.2 Proposed VLP System Model 

In RSS-based localization systems, positioning accuracy depends mainly on PR. For 

NLoS links, reflection from near and far walls should be considered, which contributes 

to the degradation of PA. For example, Figure 3-1 illustrates a system with two Txs 

aligned with respect to F (i.e., shown as the tilted Tx normal 𝒕̂𝑘), which is used to 

investigate the impact of reflections from walls on the accuracy of VLP). Here, the aim 

is to maximize PR from LoS paths to improve the accuracy at F, which is initially set at 

the center of the receiving plane (i.e., 𝑥𝐹 , 𝑦𝐹 , and 𝑧𝐹  are all set to zero). The tilting 

orientation is estimated based on the position of F, which is given by: 

𝒕̂𝑘 =
𝑇𝑘⃗⃗⃗⃗ 

‖𝑇𝑘⃗⃗⃗⃗ ‖
 , (3.1) 

where 𝑇𝑘⃗⃗⃗⃗  is a vector that represents the difference between the coordinates of the kth Tx 

and point F (𝑥𝐹 , 𝑦𝐹 , 𝑧𝐹), and ‖∙‖ is the Euclidean norm. The tilted irradiance angle 𝜔𝑘,𝑤
tilt  

is given by: 
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cos(𝜔𝑘,𝑤
tilt ) =

𝑑𝑘,𝑤. 𝒕̂𝑘

‖𝑑𝑘,𝑤‖. ‖𝒕̂𝑘‖
, (3.2) 

where 𝑑𝑘,𝑤 is the distance between the kth Tx and the reflective area, and · represents the 

product dot operation. 

 

(a) 

 

(b) 

Figure 3-1. An example of a reflected light ray in case of LED tilt: (a) near-wall 

reflections case, and (b) far wall reflections case. 

The NLoS power contributions from the near-wall reflections represented by the Tx’s 

cosine terms expressed in (3.2) can be reduced by tilting the Txs towards F (i.e., 𝒕̂𝑘 is 

directed towards F) that implies 𝜔𝑘,𝑤
tilt > 𝜔𝑘,𝑤, where 𝜔𝑘,𝑤 is the irradiance angle with no 



Chapter 3: An Indoor Visible Light Positioning System Using Tilted LEDs with High 

Accuracy 

66 

 

tilted Tx, see Figure 3-1(a). Even though the Tx’s cosine terms of NLoS signals will 

increase for the far-wall reflections, which is implied by 𝜔𝑘,𝑤
tilt < 𝜔𝑘,𝑤, the link experience 

a higher path loss due to the longer transmission range, see Figure 3-1(b). Having these 

observations in mind, we can infer that tilting the Txs can be beneficial in VLP by 

leveraging the effect of reflections from both near- and far-walls. Under this perspective, 

it reasonable to explore tilting based on F at the center of the receiving plane and 

investigate how this can improve PA. These observations remain valid for the entire area 

of the walls when concerning the first reflection. Higher-order reflections also have an 

impact on positioning accuracy. However, due to the fact that these higher-order 

reflections have reduced power levels when compared with the LoS and 1st order case in 

regions near the center of the room, the previous discussion is still valid, and LoS power 

can be maximized by tilting towards the center. 

Figure 3-2 shows the geometrical set-up diagram of the proposed indoor VLP system, 

which is composed of 4 Txs (i.e., LEDs) and an Rx (i.e., a PD) positioned on the ceiling 

and the floor level, respectively. Each kth Tx has a known set of coordinates (xk, yk, zk), 

which is associated with the world coordinate system (WCS), with 𝒕̂𝑘 of 

 [sinθTx,𝑘 cos𝛼𝑘, sinθTx,𝑘 sin𝛼𝑘 , −cosθTx,𝑘] where θTx,𝑘, 𝛼𝑘 are the tilting and azimuth 

angles, respectively and k is 1, …, 4. Note that, in this work, as a reference, an empty 

room is considered to study the impact of Tx’s tilting on the positioning accuracy. The 

proposed system can be utilized for positioning purposes where the positioning accuracy 

is a major concern. However, if indoor positioning system uses the already existing 

wireless communication network architectures, then high accuracy may no longer be 

critical. Therefore, there exists always a trade-off between the accuracy and other system 

requirements including scalability, complexity, coverage, etc. 
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Figure 3-2. The proposed indoor VLP system with the tilted Tx. 

Each Tx broadcast unique ID information of 2 bits, which is encoded and modulated 

using OOK, which allows separation at the Rx using a correlation method that can be 

received at the Rx in advance of location identification. The Tx identifying bits are given 

after the header signal and prior to the payload data is transferred in a designated packet 

for signal broadcasting. The broadcasting process and the proposed model are depicted in 

Figure 3-3.  

Considering the 1st order reflections, the received total power is given by: 

𝑃𝑅  = ∑𝑃𝑅−LoS +∑𝑃𝑅−NLoS, (3.3) 

where 𝑃𝑅−LoS and 𝑃𝑅−NLoS represent the received power for LoS and NLoS, respectively. 

Typically, the signal-to-noise ratio in standard VLC will be high (> 20 dB [202]), which 

would be considered noise-free in common cases). Moreover, noise sources (mostly 

dominated by the background lights) [202] will have a similar effect on the VLP system 

with and without the tilting Tx. Thus, a noise-free system is considered in this work. The 

conventional trilateration technique based on a range of three minimum observation 

points offers the advantage of simple geometrical solutions [18]. Using the RSS algorithm 

and 4-Tx (i.e., LEDs), the 𝑃𝑅−LoS for the LoS path is given as [203], [204] : 
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∑𝑃𝑅−LoS  = ∑𝐶o𝑃𝑡
cos𝑚(𝜔𝑘

tilt) cos(𝜑)

‖𝑑𝑘‖2
𝑇𝑠(𝜑)𝑔(𝜑),

𝐾

𝑘=1

 (3.4) 

where 

𝐶o =
𝑚 + 1

2π
ℛ 𝐴𝑟 , (3.5) 

and 

𝑚 = −
ln(2)

ln (cos (Θ1
2
))

 , 
(3.6) 

where K is the total number of Txs and Θ1
2

  denotes the light source irradiance half-power 

angle, which varies depending on the emitter and reflecting surfaces. There are several 

models for reflection surfaces accessible in the literature, such as Blinn's or Lafortune's 

models, which are often used in 3D image rendering and are utilised for high-level 

specular reflection components and are based on bidirectional reflectance distribution 

function theories. Typically, the ideal diffuse reflector (Lambertian model) or Phong's 

reflection scheme are used [205].  𝜔𝑘
tilt and φ are the tilted irradiance angle from the kth 

Tx to the Rx and the receiving incident angle, respectively. 𝑑𝑘 is the distance between kth 

Tx and Rx. 𝐴𝑟 represents the PD’s active area, which is set with a large semi-angle 

characteristic of 10-4 m2, and ℛ is the responsivity, which is set to unity for the sake of 

simplicity. 𝑇𝑠(𝜑) and 𝑔(𝜑) are the gains of the optical filter and the concentrator at the 

Rx, respectively. Note, the gains of the optical filter and the concentrator at the Rx impose 

a constant factor on the received signal, as such, they do not condition the achieved 

results. Hence, 𝑇𝑠 (𝜑) and 𝑔(𝜑) are set to unity, φ < 90° and d ≫ √𝐴𝑟. A standard high 

power LED Chip of 1 W is set for the proposed system. 

 



Chapter 3: An Indoor Visible Light Positioning System Using Tilted LEDs with High 

Accuracy 

69 

 

 

Figure 3-3. Block diagram of the proposed VLP system. 

For the NLoS path and considering only the first-order reflection, the received total 

power can be expressed as [202]: 

∑𝑃𝑅−NLoS =     

∑∑𝜌𝐶o𝑃𝑡𝐴ref
cos𝑚(𝜔𝑘,𝑤

tilt ) cos(𝜑𝑘,𝑤)

π(‖𝑑𝑘,𝑤‖‖𝑑𝑤,𝑟‖)
2  𝑇𝑠(𝜑𝑤,𝑟) 𝑔(𝜑𝑤,𝑟) cos(𝜔𝑤,𝑟) cos(𝜑𝑤,𝑟),

wall

   

𝐾

𝑘=1

 

(3.7) 

where 𝑑𝑘,𝑤, 𝜔𝑘,𝑤
tilt , and 𝜑𝑘,𝑤 are the distances, irradiance angle, and the receiving incident 

angle between the kth Tx and the reflective area, respectively. 𝑑𝑤,𝑟, 𝜔𝑤,𝑟, and 𝜑𝑤,𝑟 are the 

distances, irradiance angle, and the receiving incident angle between the reflective area 

and the Rx, respectively, see Figure 3-1(a). ρ is the reflection coefficient, which depends 

on the material of the reflective surface and 𝐴ref is the reflection area. 𝑃𝑅−NLoS for the 

signals from the NLoS paths is determined based on the Matlab code 3.2 from [202]. 

Moreover, the uniform distribution of the 𝑃𝑅 inside the illuminated zone is essential in 

indoor environments [105]. To achieve uniform light distribution on the receiving plane, 

the same amount of optical power must be received at each place in the receiving plane. 

However, owing to NLoS power configuration and the effects of reflections from walls, 

it is difficult to maintain uniform distribution at all points in the illuminated zone.  
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EN 12464-1 European Commission standardised the uniformity of lighting in indoor 

environments by defining the minimum acceptable limit of uniformity of light 

distribution [206]. The uniformity of light distribution in the room (U) is represented as 

the ratio of the minimum to maximum power intensity at the receiving plane, which is 

given by: 

𝑈 =
min(𝑃𝑅)

max(𝑃𝑅)
 . (3.8) 

Here a grid size of 1 cm resolution is considered with 3600 Rx positions on the receiving 

plane, which is associated with WCS of (xr, yr, zr). We have also specified the dedicated 

region, which is a square shape centered at the point F and located at the receiving plane. 

The receiving positions are considered inside this region only. All the other key system 

parameters are given in Table 3.1.  
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Table 3.1 The key system parameters. 

Parameter Symbol Value 

Room size (l, b, h) 6 × 6 × 3 m3 

The coordinates of 

Tx-1 

Tx-2 

Tx-3 

Tx-4 

 

(x1, y1, z1) 

(x2, y2, z2) 

(x3, y3, z3) 

(x4, y4, z4) 

 

(-1.7 m, -1.7 m, 3 m) 

(1.7 m, -1.7 m, 3 m) 

(-1.7 m, 1.7 m, 3 m) 

(1.7 m, 1.7 m, 3 m) 

Transmit power per Tx 𝑃𝑡 1 W 

Rx’s field of view FoV 75° 

Half power angle HPA 60° 

PD area  𝐴𝑟 10-4 m2 

Responsivity ℛ 1 A/W 

Reflection coefficient 𝜌 0.7 

3.3 Positioning Algorithm 

3.3.1 Distance Estimation Using Polynomial Regression 

The block diagram of the proposed VLP system is shown in Figure 3-3, in which 𝑃𝑅  is 

processed to estimate the Rx position. Distance estimation is the central feature of the 

RSS positioning approach, and for LoS paths it is normally deducted from (4), which is 

estimated as: 

‖𝑑𝑘‖
2 = ‖𝑟𝑘‖

2 + ℎ2, (3.9) 

where h is the vertical distance between the Tx and the Rx. The estimated distance 

between the Rx and the kth Tx can be estimated from (4), which is given by: 

𝑟𝑘 =
√(
𝑃𝑡Coℎ𝑚+1

𝑃𝑅−LoS,𝑘
)

2
𝑚+3

− ℎ2, (3.10) 

where, 𝑃𝑅−LoS,𝑘 is the LoS received power at the Rx from the kth Tx. In NLoS links, this 

approach results in increased errors due to reflections [207], [208], therefore the distance 

estimation approach using (10) is no longer valid. One possible approach would be to 

generate a polynomial regression fitted model for the power and distance relationship. 

The regression analysis is the process of determining the connection between a dependent 
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variable and one or more independent variables. It is one of the most essential statistical 

techniques, and it is often used to analyse the relationship between two or more linked 

variables. A relationship model is theorised, and parameter estimations are utilised to 

build an estimated regression equation. The relationship between the power and distance 

is defined by: 

𝑑𝑘  = 𝑎0 + 𝑎1𝑃𝑅,𝑘 + 𝑎2(𝑃𝑅,𝑘)
2
+⋯+ 𝑎𝑗(𝑃𝑅,𝑘)

𝑗
, (3.11) 

where aj is the coefficient of the fitted polynomial at jth degree polynomial and 𝑃𝑅,𝑘 is the 

total received power at the Rx from the kth Tx. Note, 𝑑𝑘 is computed using (11), which is 

then substituted into (9) to determine 𝑟𝑘. 

3.3.2 LLS Estimation 

LLS is adopted to analyze the performance of the proposed system by considering the 

estimated distances of the NLoS paths, which is a low complexity solution as compared 

with the NLLS algorithm. Following geometric properties, a minimum of 3-Tx located at 

the center of the circle is required, where the estimated distance is considered as the circle 

radius, see Figure 3-4. The intersection point of the three circles is considered as the 

measured position of the Rx.  

 

Figure 3-4. Positioning based on RSS. 
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For a kth LED luminaire that is  positioned at (xk, yk, zk) and the Rx is located at (xr, yr, 

zr). A closed-form solution using the LLS estimation method is given by: 

𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵, (3.12) 

where 

𝐴 = [

𝑥2 − 𝑥1 𝑦2 − 𝑦1
𝑥3 − 𝑥1 𝑦3 − 𝑦1
𝑥4 − 𝑥1 𝑦4 − 𝑦1

] ,   and  𝑋 =  [
𝑥𝑟
𝑦𝑟
], (3.13) 

𝐵 = 0.5 × [

(𝑟1
2 − 𝑟2

2) + (𝑥2
2 + 𝑦2

2) − (𝑥1
2 + 𝑦1

2)

(𝑟1
2 − 𝑟3

2) + (𝑥3
2 + 𝑦3

2) − (𝑥1
2 + 𝑦1

2)

(𝑟1
2 − 𝑟4

2) + (𝑥4
2 + 𝑦4

2) − (𝑥1
2 + 𝑦1

2)

]. (3.14) 

3.4 Results and Discussion 

3.4.1 Impact of the Tx Tilting on the Radiation Pattern 

The 𝑃𝑅  is estimated based on equation (3.3). Figure 3-5 shows the received power 

distributions for the link (i.e., received signal strength indicator RSSI) with and without 

the tilting Txs. Note, the Txs are directed towards F following the proposed model in 

Section 2. As shown in Figure 3-5(b), there is a significant improvement in the power 

distribution with the tilting Txs (i.e., a much more uniform distribution) around the center 

of the receiving plane. For example, a 𝑃𝑅 with a range of 5×104  to 7×104 µw is obtained 

around the center. However, 𝑃𝑅  is reduced to a range between 6×104  and 6.5 ×104  for 

the same region. Note, that the uniformity measurements are introduced in subsection 

3.4.4.  All the observed tilted Tx normal 𝒕̂𝑘 for 4-Tx are given in Table 3.2. 
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(a) 

 

(b) 

Figure 3-5. The received power distributions for the proposed system for the Txs with: 

(a) no tilting, and (b) tilting.  

Table 3.2 The values of tilted Tx normal for all Txs. 

Tx Number Tilted LED Normal, 𝒕̂𝑘 

Tx-1 [0.4, 0.4, −0.8] 

Tx-2 [−0.4, 0.4, −0.8] 

Tx-3 [0.4, −0.4, −0.8] 

Tx-4 [−0.4, −0.4, −0.8] 
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3.4.2 Polynomial Fitting 

With reference to Figure 3-3, 𝑑𝑘 is estimated based on PR,k and the PR (polynomial 

regression) method as outlined in Section 3.1. The accuracy and precision of fitting are 

measured by the coefficient of determination R2, which is a statistical measure of how 

close the data are to the fitted regression line, and the standard deviation. Note, PR is 

considered for various data points and categorized into two scenarios S1 and S2 based on 

the room dimensions. For scenarios S1 and S2, the PRs are fitted with PR,k points for the 

full and half rooms of areas of 6 × 6 and 3 × 3 m2, respectively. The deviation of PR,k 

points is impacted mainly by the reflections wherein the data near the walls imply a larger 

estimation error as stated previously in the literature [31], [202]. Therefore, 3600 samples 

(a full room with a 1 cm grid size) are considered for the polynomial fitting for S1, while 

for S2 we only have considered 900 samples (an inner half room). A stabilized residual 

sum of squares is achieved with the polynomial order j of 4. The polynomial coefficients 

of the fitted curve and R2 are estimated for both S1 and S2. 

The polynomial fitted curves for VLP without and with the tilting Txs are illustrated in 

Figure 3-6. The green points and blue plots indicate the PR,k points for the full and half 

rooms, respectively. Figure 3-6(a) shows that, the PR,k points span between 0 and 4.2 mW, 

and are uniformly distributed for both S1 and S2. However, Figure 3-6(b) depicts that the 

PR,k points for S1 are more scattered with a smaller span of 0.5 to 3.2 mW, which 

corresponds to the corner of the room. In S2, the PR,k points are more focused towards S2 

due to tilting of the Tx, thus the fitting data points are considered for S2 only. From the 

results obtained, both R2 and the standard deviation are positively affected with tilting of 

the Tx, i.e., higher R2 value of 0.98 and lower standard deviation of 0.98 is achieved for 

the tilted Tx as compared with a lower R2 value of 0.96 and higher standard deviation of 

1.01 in the case of no tilted Tx, see Figure 3-6(b). Table 3.3 shows the estimated 

polynomial coefficients and R2 values for S2 with and without the tilted Txs. 
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(a) 

 

(b) 

Figure 3-6. The distance estimation for Tx-k using the PR method employed in S2 for the 

Txs with: (a) no tilting, and (b) tilting. 

Table 3.3 The coefficients of the polynomial fitted curve for the scenario S2. 

Cases 
Estimated polynomial coefficients (no units) R2 

𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 

With tilted Tx  7.38 ×104 -3.60×105 2.37×104 -6.26×102 8.10 0.98 

Without tilted 

Tx  
8.86×106 9.93×105 3.96×104 7.35×102 7.44 0.96 
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3.4.3 Impact of the Tx Tilting and the Altitude of F on VLP 

In this section, we investigate εp for different values of Dr to realize the impact of tilted 

Txs near the center of the receiving plane, and further analyze the impact of changing the 

height of zF on the positioning accuracy. Figure 3-7 illustrates Inv(90%) as a function of 

Dr for S1 and S2 with the LLS algorithm, which is applied for the case with LoS and 

NLoS paths to estimate the Rx’s position, as described in Section 3. The quantile function 

Inv(𝜒) is used as a performance metric to observe the confidence interval of εp, which is 

given by: 

𝜀𝑝,𝜒 = Inv(𝜒) = CDF−1(𝜒), (3.15) 

where 𝜒 is the percentage of the confidence interval, and CDF represents the cumulative 

distribution function of εp. 

 

Figure 3-7.The measured quantile function at 𝜒 of 90% for various Dr for LLS with and 

without the tilted Txs. 

To ensure a VLP link with high reliability, we have selected a 90% confidence interval 

for εp to include the majority of the measured points. Note that, the Txs’ tilting angle is 

fixed at the point F for all values of Dr. Moreover, the error can be reduced significantly 

depending on S1 or S2. For instance, for S1, εp values of 1.7 and 3.6 cm are obtained for 

both tilting and non-tilting scenarios, respectively for Dr of 40 cm. In addition, we have 

achieved the accuracy improvement of 44, 24, 60, and 64% for Dr of 1, 2, 3, and 4 m, 

respectively with the maximum accuracy improvement of 66% for Dr of 3.6 m. In 

addition, for S2, εp of 1.3 cm is obtained for the observation area with Dr of 40 cm with 
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the tilted Tx. Hence, the Tx’s tilting (LED tilting angle) can improve the positioning 

accuracy in both S1 and S2 with the same detection area of 5 × 5 m2 (up to Dr of 5 m) as 

compared with the case with non-tilting Tx. This could be explained by the fact that, for 

large observation areas (i.e., large Dr), the CDF of the error becomes affected by the walls 

and corners of the room, with no improvement in the accuracy. Hence, the NLoS paths 

become dominant for regions far away from the point F, which degrades the positioning 

accuracy. Therefore, the proposed VLP system with the tilted Txs outperforms the system 

with no tilting Txs for almost the entire room i.e., an area of 5 × 5 m2. 

We further analyze the impact of changing the height of pointing center F (i.e., zF) on 

the positioning accuracy, which is eventually the variation in the Tx’s tilting. Figure 3-8 

depict the Inv(90%) as a function of Dr for a range zF (i.e., −2 to 2 m) with and without 

the tilting Txs for S1 and S2. Note that, a high negative value of zF implies that the Tx is 

pointing vertically downwards towards the Rx. For instance, −∞ for zF corresponds to the 

standard non-tilted case and it does not imply reception under the floor. From the Figure 

3-8, it is observed 1that, (i) εp increases and decreases s with the positive and negative 

values of zF (i.e., zF > 0, < 0), respectively for both S1 and S2; (ii) the minimum εp of 1.3 

cm is at zF of −0.5 m compared with 1.7 cm for zF of 0 m for S1 with Dr of 40 cm, see 

Figure 3-8(a); and (iii) the lowest εp is achieved at −2 < zF < 0 m depending on the value 

of Dr. The proposed VLP system can be further improved for the regions with Dr of up to 

5.5 m by adjusting the negative value of zF. For S2, the minimum εp of 0.8 cm is observed 

at zF of −2 m and Dr of 40 cm compared with 1.3 cm at F (i.e., zF = 0 m), see Figure 3-8 

(b). However, the case with tilting Txs offers the lowest εp for Dr up to 4.36 m. 
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(a) 

 

(b) 

Figure 3-8. The measured quantile function at 𝜒 of 90% for various zF values for: (a) S1, 

and (b) S2. 

3.4.4 Uniformity 

The uniformity measurement is employed based on equation (3.8. Figure 3-9 shows the 

uniformity of light distribution U against Dr without and with the tilting Tx and a range 

of zF. The dashed line represents the EN 12464-1 European standard of lighting in an 

indoor environment [206], which defines the minimum acceptable ranges of uniformity 

of the light distribution. For Dr < 5 m all plots are above the EN 12464-1 line. We have 

shown that the proposed VLP system with the tilting Txs is capable of providing higher 

uniformity for the entire room for zF ≤ −1 m. Besides, the proposed system shows a similar 

response for the standard non-tilted case and zF of −∞. In addition, the uniformity values 

is reduced for Dr > 4 m in the standard non-tilted case and zF of −∞. This could be 

explained by the fact that, for large observation areas (i.e., large Dr), the uniformity 

becomes affected by the multipath reflections near walls and corners of the room. 
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Figure 3-9. The uniformity of light distribution in different Dr w/o and with the tilting 

Txs. 
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3.5 Summary 

In this chapter, a novel approach was proposed to achieve a highly accurate indoor VLP 

system by considering multipath reflections. Initially, the Tx was tilted towards the center 

of the receiving plane to achieve higher accuracy by maximizing the received power level 

due to contributions from the LoS paths at the pointing center F. The positioning error 

was estimated by using the LLS algorithm with polynomial regression. We investigated 

the regression fitted with the received power points for two scenarios of S1 and S2. The 

results showed a significant improvement in the accuracy by up to ~66% compared with 

a typical non-tilting Tx case. In addition, positioning errors of 1.7, and 1.3 cm were 

obtained for the tilted Tx for S1 and S2, respectively at zF of 0 m. The results also showed 

that, the uniformity of the proposed VLP system in line with European Standard EN 

12464-1, therefore meeting the uniformity requirement of the visible illumination regions. 

Furthermore, we improved the accuracy of the proposed VLP system by controlling the 

height of F by achieving the lowest εp of 1.3 and 0.8 cm for S1 and S2, respectively. 

Ultimately, it was concluded that the proposed VLP system with the tilting Tx 

outperforms the non-tilted Tx scenario. Likewise, we could gain lower εp when 

considering S2, whereas εp will increase with Dr as indicated for S1. 



Chapter 4: A Unilateral 3D Indoor Positioning System Employing OCC 

82 

 

Chapter 4  

A Unilateral 3D Indoor Positioning System 

Employing OCC 

4.1 Introduction 

Driven by the vast existence of smart devices and the rapid spread of new embedded 

applications, cameras are now considered the key sensor for enabling the IoT applications 

as part of the current and future smart environments. The complementary metal-oxide 

semiconductor ISs have been the most widely used devices in many applications in the 

last decade, with a revenue quadrupling between 2010 and 2019 to reach over $18 billion 

[36]. The ISs have set nine consecutive record-high sales levels in the last nine years, and 

are poised to reach over $24 billion by 2025. The overall market is set to grow at a 

compound annual growth rate of 10.5 % between 2020 and 2025 [209]. Thus, it is the 

very good reason to explore the potential of ISs for other applications including 

positioning and sensing, to complement vision. In addition, we have seen the widespread 

use of LED-based lighting fixtures at a global level, which is green, sustainable, and with 

fast switching capability, that can be used as optical access points in both indoor and 

outdoor applications [210].  

In recent years, there have been marked growing research activities in VLP systems for 

indoor and outdoor applications within the scientific community. This is because of key 

features including low complexity, robustness to RF induced interference, directive 

propagation, energy efficiency, and limited signal reflections and scattering from the 

environment, hence, providing es high positioning accuracy at low overhead costs [1]. 

With the above features, VLP can be used in numerous applications including location 

tracking, navigation, ITS, shelf-label advertising in supermarkets and shopping malls, 

robot movement control, manufacturing, medical surveillance, street advertising, etc [50], 

[51], [60]. 
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Table 4.1 Key system parameters. 

Ref. No. of 

Tx 

No. of 

Rx 

Test 

condition 

(m) 

Technology Accuracy 

[163] 3 LEDs Single 

IS 

 

 

 

 

 

 

 

 

NA × NA× 

2 

OCC based communication 10 cm 

[164] 4 LEDs NA × NA× 

2.6 

Rolling shutter and multiple 

frequency-shift keying 

2 cm 

[165] Single 

LED 

 

14 × 1.6 × 

2.3 

IMU, and pedestrian dead 

reckoning algorithm 

Real-time decimetre-level, several centimetres 

[169] 0.7 × 0.3 × 

0.2 

Both AoA and the RSS with k 

nearest neighbours in feature space 

algorithm 

1.97 cm 

[170] 1 × 1× 2.4 AoA and RSS with a geomagnetic 

field sensor and an accelerometer 

<10 cm 

[166] NA × NA× 

1.2 

Rolling shutter and piecewise 

fitting. LED Tx detection 

algorithm. 

The average 2D/3D were 3.17/4.45 cm 

[171] 1.8 × 1.8 × 2 IMU 16 cm. Angle accuracies of 1.5°, 1.5°, and 15° were 

obtained for pitch, roll, and azimuth angles, 

respectively 

[173] NA × NA × 

2.8 

Flicker-free line coding with OOK 

modulation scheme was used for 

ID transmission. 

Accuracy is 7.5 cm, user moving speed of up to 18 

km/h, and computational time reduced to 22  ms and 

35.7 ms for 1 LED and 2 LEDs, respectively 

[167] 2.7 × 1.8 × 

1.8 

IMU and a plane intersection-line 

scheme 
Average p of 5.44 cm, 5.58 cm was achieved for a 

height of 1.75 m, and 1.45 m, respectively 

This 

chapter 

2 × 2 × 2.5 AoA and RSS 

OCC based communication 

3D root mean squared error of 7.56 cm. The scheme 

offers immunity against different exposure times 
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In indoor VLP systems, LEDs are used as the transmitters (Txs) and a PD, or an array 

of PDs in the form of a single IS are used as the Rx. Compared to the PD, IS-based VLP 

offers several key features such as (i) much more useful information on the LEDs’ 

locations for use in vision processing-based algorithms; (ii) the ability to separate light 

sources, thus no need for complex multiplexing mechanisms; (iii) parallel transmission 

capabilities; and (iv) significantly higher accuracy compared with low frequency RF and 

ultrasound-based systems. Table 4.1 presents the recent works reported in IS-based VLP. 

For example, in [163], a distance estimation technique was implemented using both 

photography and IS-based communication (i.e., OCC), where an average estimation 

positioning error p of 10 cm using 3-Txs was reported. Likewise, 4-LED and IS were 

used at the Tx - to transmit location information simultaneously using multiple frequency-

shift keying - and the Rx, respectively, with a maximum p of 2 cm at a linkspan of 100 

cm [164]. In [165], a hybrid IS-based VLP and pedestrian dead reckoning for indoor 

application was proposed. The experimental results showed that, the proposed scheme 

could achieve both cell recognition and 3D positioning by capturing an image of a single 

Tx (i.e., LED) with the 2D and 3D average p values of 2.46 and 13.4 cm, respectively.  

In [166], a VLP system with a single LED lamp and the commercial mobile phone-

based Rx was investigated. A LED-based Tx detection algorithm was proposed for 

identifying the edge of the light source based on brightness weakening, Sobel operator, 

and the least-square error (LSE) fitting. The experimental results revealed confirmed p 

of a few cm for different Rx orientations. In [171], a VLP method using a single LED 

luminaire and a commercial off-the-shelf smartphone camera as the Tx and the Rx, 

respectively. Note, the inertial measurement unit (IMU) and the IS were deployed for 

localization purposes, whereas projective geometry was used to calibrate the orientation 

measurements. The experimental results showed that an average p of 11.2 cm. 

Furthermore, IS may be utilised to create the illusion of a three-dimensional image. In 

photos or movies, the sense of depth is created by displaying a different image to each 

eye [30]. This is sometimes referred to as stereoscopic imaging or depth perception. The 

benefit of stereoscopic depth estimation is its capacity to generate dense depth maps of 

the environment using stereo-matching techniques. However, dense stereo depth 

estimation requires high computational capabilities since equivalent points in the stereo 

images must be matched. Furthermore, dense depth estimation utilising stereo images 
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suffers from the image sensors' restricted dynamic range, for example, due to pixel 

saturation in bright spots [211]. 

In most of the works reported in the literature studies, either multiple LEDs have been 

used for positioning or an additional sensor has been employed to obtain the position, see 

Table 4.1. However, in most scenarios, the narrow FoV of the front-facing camera in 

smartphones restricts the number of Txs being captured at the IS, thus making bilateration 

or trilateration impractical. In addition, unilateration allows less complex and low-cost 

implementation of the VLC system. Also, the deployment of more LEDs will certainly 

add some constraints to the implementation of VLP. Therefore, to overcome these issues, 

in [165]–[167], [169]–[171], different technologies were investigated. For example, the 

use of an IMU sensor with OCC was reported in [165], [167], [168]  with p of several 

centimeters. Whereas, in [169] a VLP system using a single LED-based Tx and an IS was 

reported,  where the AoA of the transmitted light was determined using the IS and the 

projection model of the lens. The IS acts simultaneously as a PD for measuring the RSS. 

Both measurements were utilised as the fingerprint to estimate the Rx’s position. The k 

nearest neighbours in the feature space algorithm were deployed to achieve a more 

accurate coordinate estimation of the Rx at the cost of increased complexity. The 

preliminary experimental results showed that, the proposed positioning scheme achieved 

a high precision where the 95th percentile accuracy was 1.97 cm. Likewise, both AoA and 

RSS were used in indoor VLP in [170], which was based on a  particular frame reception 

technique designated as the bokeh effect. The system was set intentionally to generate a 

frame in an out-of-focus condition, thus, avoiding optical power saturation by spreading 

the received power Pr to the adjacent pixels. The experimental results showed  p of < 10 

cm. 

In this chapter, we introduce a novel low complex and highly accurate AoA-RSS-based 

VLP system, which mitigates the error induced by the lens at the Rx by employing a 

single LED and an IS. We demonstrate that, the proposed system outperforms RSS for 

all circumstances and AoA reported previously. The experimental results show that, a 3D 

average p of 4.35, 5.49, and 2.85 cm in the x, y, and z directions, respectively. 

Furthermore, we have investigated the impact of the camera exposure time  on the 

detection of the Tx’s location and show that the proposed scheme offers immunity against 

 in the range of 250 µs to 4 ms. 
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The rest of the chapter is organized as follows: In Section 4.2, we present the proposed 

system model. Section 4.3 outlines the results and discussion. Section 4.4 summarises the 

chapter. 

4.2 System Model 

Figure 4-1 shows the geometrical set-up diagram of the proposed indoor camera-based 

VLP system, which is composed of the Tx module the channel and the Rx unit. At the 

Tx, the LED ID in the OOK format is generated in Maltab® and is used for intensity 

modulation of the light source located on the ceiling via the sampler and LED driver for 

transmission over the free space channel with a transmit power 𝑃𝑡, see Figure 4-1(a). The 

coordinate of LED is [𝑥𝐿 , 𝑦𝐿 , 𝑧𝐿]
𝑇, which is associated with the world coordinate system 

(WCS). At the Rx, a CMOS IS positioned at the floor level at a height L from the Tx, see 

Figure 4-1(b), is used for detection of the intensity-modulated light beams. Here, we have 

used the rolling shutter-based OCC technique. The Rx’s WCS coordinate 𝑅 is at 

[𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟]
𝑇.  Figure 4-1(b) shows the 3D projection of LED in the 2D image plane using 

a lens. Note that, the lens is set such that to make the image defocused to ease the detection 

of the LED illumination pattern. The central coordinates of the LED projection are 

described based on the horizontal and vertical pixels in the image plane, i.e., (𝑢, 𝑣), where 

𝑢 = 1,… , 𝑈; 𝑣 = 1, … , 𝑉. U and 𝑉 are the maximum number of pixels in horizontal and 

vertical directions in the image, respectively.  

The raw frames are captured in a lossless format, known as a digital negative, to 

eliminate the error caused by the different compression techniques used in other formats. 

To detect the Rx’s position, the captured frame 𝐅𝑈 × 𝑉  is processed as outlined in Figure 

4-1 (c), in which, 𝐅𝑈 × 𝑉 is converted into grayscale to eliminate the chromatic aberration 

induced by the camera lens [212].  𝐅𝑈 × 𝑉 is then binarized to maximize the efficiency of 

the proposed algorithm. Next, the system is designed to initially detect the LED footprint 

i.e., region of interest (ROI). Considering that the radiation patterns of typical Tx LEDs 

follow Lambertian profile [213], a circular Hough transform (CHT) method is used to 

detect the LED illumination footprint, see following subsections.  
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(a) 

(b) 

(c) 

Figure 4-1. System model for the proposed positioning method: (a) Tx block diagram, (b) 

projection of a 3D object on a 2D image, and (c) flowchart of detection and extraction of 

information required for positioning. 

The Rx’s position is estimated using AoA and RSS algorithms. The RSS and AoA are 

extracted from the identified ROI at the captured frame. Initially, the RSS is measured by 

accumulating the amount of light energy received inside the ROI. The frame is then 
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multiplied by a proposed ellipse-shaped mask. Finally, the AoA is measured for the 

produced frame. The detailed description is explained in the following subsections.  

4.2.1 ROI Detection Using CHT Algorithm 

The LED illumination footprint on the image plane is extracted using the CHT. The 

extraction process is done via a voting process as described in Algorithm I. The circle 

description is done by applying a full sweep of 𝜃 for 360o to locate the Tx’s fingerprint 

with a radius 𝑟c and the centre coordinates of (𝑥c, 𝑦c). The CHT method was implemented 

offline using Maltab® and by including three main steps of the accumulator array 

computation, centre estimation, and radius estimation. 

Algorithm 4-1 CHT for pupil boundary detection using 2-D accumulator array. 

 Input: The raw dng file of captured frame 𝐅𝑈 × 𝑉 , minimum circle radius 

(𝑟min) and maximum circle radius (𝑟max)  

 Output: Circle radius (𝑟c)  and centre coordinates (𝑥c, 𝑦c)          

1 for (pupil_radius = 𝑟min; 𝑟 ≤ 𝑟max; 𝑟 = 𝑟 + 1) do  

2  A=zeros(rows,cols) ;  // 2-D accumulator of the iris image size  

3  for each “Edge-point (a,b)” in edge map of 𝐅𝑈 × 𝑉 do 

4    for θ =1 ; θ ≤ 360°; θ = θ + 1 do 

5   𝑥 = round (𝑎 + 𝑟 ∗ cos θ) 

6   𝑦 = round (𝑏 + 𝑟 ∗ sin θ) 

7    if (x,y) is in image bounds do 

8   A(x,y) = A(x,y)+1 ;  // Accumulator-voting step 

9                end if 

10       end for 

11    end for  

12  Find maximum value in A:  

13  M=A(x’,y’) ;          //  is maximum value in A  

14  Max_Array(pupil_radius) = M ;  

15  X_Array(pupil_radius) = x’ ;  

16  Y_Array(pupil_radius) = y’ ;  

17   end for  

18  M’=  ax_Array(index)  

                            //Find maximum in Max_Array:  

19  𝑟c = index; 𝑥c = X_Array(index); 𝑦c = Y_Array(index) ;                   

  // End of CHT algorithm 
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4.2.2 RSSI- based IS Measurements 

The image distance 𝑝 is determined based on the RSS measurements. The received 

optical power via the line-of-sight paths is considered as non-frequency selective with the 

path loss being proportional to the inverse of L2. The amount of light energy received at 

each frame depends mainly on the Pt and . The regenerated electrical signal is converted 

into a digital format within the camera. The channel impulse response is given by [212]: 

𝐇𝑈×𝑉
total = 𝐇𝑈×𝑉⊗𝐇CoC, (4.1) 

where ⊗ denotes matrix convolution, 𝐇CoC is the kernel of the circle of confusion 

(CoC), and 𝐇𝑈×𝑉 represents the channel impulse response of the captured frame (𝑈, 𝑉). 

The received power at a single-pixel (𝑢, 𝑣) is given by [214]: 

𝑃𝑟(𝑢, 𝑣) =  ∫ ℎ(𝑢, 𝑣)
𝑡0+𝜏

𝑡0

𝑃𝑡   𝑑𝑡, (4.2) 

where  ℎ(𝑢, 𝑣) is the channel response of a single pixel (𝑢, 𝑣), which is estimated as: 

ℎ(𝑢, 𝑣) = ∫ ∫ 𝑅t 𝐴𝑟 cos(𝜃AoA ).
d𝑥 d𝑦

𝐿2
,

𝑦𝑣

𝑦𝑣−1

𝑥𝑢

𝑥𝑢−1

          𝑢 = 1, … , 𝑈;   𝑣

= 1,… , 𝑉, 

(4.3) 

where the horizontal and vertical boundaries of an area covered by the pixel (𝑢, 𝑣) are 

𝑥𝑢−1, 𝑥𝑢, 𝑦𝑣−1, respectively. 𝑅t and 𝜃AoA denote LED’s Lambertian pattern and the angle 

of arrival on the IS, respectively.  𝐴𝑟 is the entrance pupil of the lens, which is directly 

proportional to the IS aperture size, and 𝐿 is the required distance between the LED and 

the Rx. Consequently, the sum of pixels output value within the LED illumination 

footprint (i.e., ROI), which is denoted as 𝐅𝑈×𝑉
𝑘 , constitutes the required Pr. 

4.2.3 Ellipse-shaped Mask Generation 

The accuracy of the VLP system depends on the RSSI and AoA measurements. The 

ROI centric point estimation is required for AoA estimation, which may be influenced by 

the imperfections caused by the camera lens. These defects are mainly caused by the 

monochromatic lens aberrations (widely known as five Seidel aberrations), which consist 

of spherical aberrations, coma, astigmatism, curvature of field, and distortion [215]. Here, 

we propose a novel technique to mitigate the error induced by the aforementioned lens 

distortions at the Rx by generating an ellipse-shaped mask 𝐌𝑈×𝑉 prior to finding the 

centroids. 𝐌𝑈×𝑉 is formed using a single binarized frame to maximize the efficiency of 
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the algorithm, in which, the intensity value of the pixels within the ROI is set to set to be 

high, i.e., “1”, whereas the residual pixels within the frame are assigned a low value of 

“0”. 

The generated mask is then multiplied with the image to eliminate the out-of-ROI noise, 

which is given as: 

𝐅𝑈×𝑉
m,𝑘 = [𝑓 

m,𝑘(𝑢, 𝑣)]𝑈×𝑉 = 𝐅𝑈×𝑉
𝑘 ⊙𝐌𝑈×𝑉, (4.4) 

where ⊙ is the matrix multiplication operator. Note, the variation of CoC size after a 

distance (depends on the focal position and the lens size) is insignificant [216]. 

In addition, the quality of the received image is evaluated in terms of the peak signal-

to-noise (PSNR), which is given by [217]: 

PSNR = 10log
𝐼max
2

MSE 
,  (4.5) 

where 𝐼max represents the maximum possible pixel value (𝐼max  = 255 for the 8-bit 

grayscale image data value), and MSE is the pixel luminance mean squared error, which 

is defined by [16]: 

MSE =
1

𝑛
 ∑(𝐼Tx(𝑗) − 𝐼Rx(𝑗))

2,

𝑛

1=j

 (4.6) 

where 𝐼Tx are the pixel values for transmitted symbols. Note, here we have obtained 𝐼Tx 

from the captured images at the lowest captured exposure, i.e., the exposure value (EV) 

of 1/4000). 𝐼Rx is the average pixel values for the received symbols, n is the number of 

rows (i.e., the on and off states of the Tx for the OOK signalling format), and j is the 

pixel’s row index number. 

4.2.4 AoA- based IS Measurements 

The relationship between the image distance 𝑝 and the distance between the Tx and the 

lens 𝑥 is described based on the thin lens formula and the focal length f and is defined as: 

1

𝑓
=
1

 𝑥
 +

1

 𝑝
 , (4.7) 

where f is in the order of millimetres, and the Tx is placed on the ceiling with the height 

in  meters, thus 𝑑0 ≫ f and 𝑑𝑖 ≈ f. 
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Figure 4-2. The geometrical model for the proposed system. 

Figure 4-2 shows a projection of a simple light source located at a center point of (𝑎𝑐, 

𝑏𝑐) with respect to image coordinate system. The measurement of the relative AoA is 

highly dependent on measurements of both the FoV and f of the IS. Measurements of two 

referenced points are required to estimate the FoV of the utilised sensor prior to the 

estimation of AoA, which is given by:  

tan(𝜃FoV) =
𝑏FoV
𝑝

=
𝑎FoV
𝑓

=
𝑏FoV
𝑑 + 𝑥

 , (4.8) 

where 𝑏FoV denotes the half FoV of the vertical frame resolution. Note, 𝑝 is (𝑑 + 𝑥), d 

represents the distance between the light source and pupil entrance of the camera and 𝑥 

(the equivalent distance between the lens and the pupil entrance of the camera). 𝑎FoV is 

the distance between the LED projection centre and the centre of IS plane.  

The AoA of the incident light is quantified by the polar angle 𝜃 and the azimuthal angle 

𝜑 in the camera coordinate, which is a coordinate frame attached to the lens and is defined 

as: 

tan(𝜃AoA) =
𝑎𝑐
𝑎FoV

tan(𝜃FoV). (4.9) 
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4.3 Results and Discussion 

The proposed low complex and highly accurate AoA-RSS-based VLP system is 

evaluated using an experimental platform as depicted in Figure 4-3. The set-up involves 

a robotic arm fitted with a camera (i.e., the Rx), and the optical Tx with a current driver 

and arbitrary function generator. First, we investigate the EV impact on the Tx ROI 

detection and Pr. Next, the 3D root mean square error (RMSE) of the proposed system is 

measured by changing the Rx’s positions in all directions. Note that, the Rx’s position is 

changed by moving the computer-controlled robotic arm with an accuracy of 0.1 mm 

[218]. All the key system parameters are shown in Table 4.2. 

Figure 4-3. A photograph of the experimental setup of the proposed AoA-RSS-based VLP system. 

Arbitrary function
generator

LED

Current 
driver 

PC controller Camera 
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 Table 4.2 System parameters. 

Parameter Value 

LED Tx 

 

- Type  

- Bias current 

- Signal bandwidth 

Rebel star white LED CW100) 

180 mA 

220 Hz 

Camera Rx 

 

- Model 

- Exposure value (EV) 

- Frame rate 

- F-stop 

- Flash mode 

- Focal length 

- Height 

- Tilt angle 

- Pixel area 

- Image sensor area 

- Raw image resolution 

Canon Rebel SL1 EOS 100D 

250 µs to 4 ms 

30 

f/22 

No flash 

55 mm 

24 cm 

0 ° 

18.4 µm2 

22.3 × 14.9 mm2 

5280 × 3456 pixels 

Channel Length 0 to ≃2 m 

Robotic arm 

 

- Model 

- Power use 

- Weight 

- Precision 

- Maximum distance: 

.Sides 

.Top 

.Below ground level   

Franka emika robotic arm 

80 W 

18 Kg 

0.1 mm 

≃ 850 mm 

1190 mm 

360 mm 

4.3.1 The Exposure Time Impact on ROI 

The exposure time is investigated initially with respect to the ROI detection, where the 

CHT algorithm is applied as described in Section 4.2. Several transmitted frames are 

captured at the Rx for different EV values within 250 µs to 4 ms and over a fixed channel 

length. 

Figure 4-4 depicts the captured ROI for a range of EV, in which the statistical data for 

the radius, centre row and column were determined and indicated in Figure 4-4. The 

detected ROI at the captured FkU×V  for a range of  EV in the image domain. 

Table 4.3.  Next, the CHT is applied to detect Tx’s RO  prior to the RSS  measurement. 

Using Eqs. (1-3), the RSS measurements are carried out for different EVs, in which, the 

𝑃𝑟 at each pixel within the ROI is aggregated to determine RSS. For instance, the intensity 

profiles for F-stop of f/3.5 and different EVs for the entire image and the ROI detected 

regions are depicted in Figure 4-5 (a) and (b), respectively.  Note, (i) the summation of 

pixel intensities within the ROI indicates 𝐅𝑈×𝑉
𝑘  values; and (ii) the increase in EVs lead 
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to an additional gain in the received signal as well as more noise outside the ROI region, 

see Figure 4-4.  

Figure 4-4. The detected ROI at the captured Fk
U×V  for a range of  EV in the image domain. 

Table 4.3 The data for the detected ROI from Figure 4-4. 

Min (px) Max (px) Mean (px) Std (px) 

Radius of ROI 330.00 345.00 336.53 5.76 

Centre row (x-axis, ac) 2769.05 2795.60 2786.80 7.46 

Centre column (y-axis, bc) 1857.80 1880.30 1867.50 5.92 

(a) (b) 

Figure 4-5. The intensity profiles versus the EV for the captured images and F-stop of f/3.5 for: 

(a) entire image, and (b) the ROI detected region (Fk
U×V ).

Figure 4-6 shows the PSNR as a function of EV for the entire frame and the detected

ROI with the former showing much higher PSNR for the entire range of EV. As 

illustrated, the recorded PSNR exponentially decreases with EV for both cases. E.g., at a 

Min. 3.4 x 109

Max 4.65 x 109

Mean 4.17 x 109

Std. 3.6 x 108

EV

EV 
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EV of 250 µs the PSNR values are ~ 50 and 34 dB for the entire frame and the detected 

ROI, respectively dropping by 11 dB at the EV of 4 ms for both cases. Next, the 

generation of the ellipse-shaped mask 𝐌𝑈×𝑉 is implemented as described in Section 

894.2.3. 

Figure 4-6. The PSNR as a function of EV for the entire frame and the ROI detected region. 

An example of the standard captured source at the Rx (i.e., 𝐅𝑈×𝑉
m,𝑘

) with and without the 

proposed method for the conventional  𝐅𝑈×𝑉
m,𝑘

, generated binarized ellipse-shaped mask 

𝐌𝑈×𝑉, and the output frame ( 𝐅U×V
k ⊙𝐌U×V) are depicted in Figure 4-7. It is noted that, 

the elliptical shape of the conventional 𝐅𝑈×𝑉
m,𝑘

, which occurs due to the monochromatic 

aberrations, is eliminated as compared with the output frame ( 𝐅U×V
k ⊙𝐌U×V), see Figure 

4-7 (a and c). To estimate the impact of the proposed technique on the EV, the normalized

Pr for the conventional method (w/o the 𝐌𝑈×𝑉) is measured and compared with the 

proposed scheme, see Figure 4-8. As illustrated, Pr increases exponentially with respect 

to EV values, reaching the saturation levels at EV values of 1 and > 3 ms for the proposed 

and conventional schemes, respectively.  E.g., at the EV of 250 µs, the proposed scheme 

offers a power improvement by ~15 % compared with the conventional case. Thus, 

demonstrating the practical use of the proposed VLP system under different environments 

where the impact of EVs variations on the estimation of Pr is insignificant. 
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Figure 4-7. The captured frame with and without the proposed method for: (a) conventional  𝐹𝑈×𝑉
𝑚,𝑘

,  

(b) generated ellipse-shaped mask 𝑀𝑈×𝑉,  and (c) the output frame ( 𝐹𝑈×𝑉
𝑘 ⊙ 𝑀𝑈×𝑉 ).

Figure 4-8. The normalized received power versus the EV for the conventional and proposed 

systems. 

4.3.2 The Accuracy of the Proposed VLP system 

Two reference points are considered to estimate the FoV of the IS used in this work with 

the captured images taken at distances of 0.27 cm, and 1 m. Using (4.8), the computed 

FoV of both horizontal and vertical axes are 25.46° and 16.94°, respectively. The AoA is 

then measured at different depths in order to evaluate the accuracy of the proposed 

system. Figure 4-9 shows the comparison between real and estimated coordinates of the 

Rx as it moves along the: (a) x, (b) y, and (c) z axes. The overall 3D average error for the 

Rx travelling along the x-axis (i.e., both the y- and z-axes set to 0 and 88 cm, respectively) 

is 4.35 cm. As illustrated in Figure 4 9 (b), this process is repeated for the Rx travelling 

down the y-axis (i.e., x- and z-axes set to 0 and 88 cm, respectively), with a recorded 

mean error of 5.5 cm from all directions. Ultimately, the depth of the system is measured 

as depicted in Figure 4-9 (c), where the recorded mean errors from all directions are 5.49 

and 2.85 cm, respectively. 

(a) (b) (c) 
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(a) (b) 

(c) 

Figure 4-9. The comparison between the real and estimated 3D position of the Rx when moving 

along: (a) x-axis (y = 0; z = 88 cm), (b) y-axis (x = 0; z = 88cm), and (c) z-axis (x = 0; y = 0).  

4.4 Summary 

In this work, a low complex and highly accurate AoA-RSS-based VLPs system using 

a single LED and an IS was introduced. A novel technique was proposed to mitigate the 

error induced by the lens at the receiving side, hence, leading to reduced positioning 

errors. The results showed that the proposed method offers immunity (i.e., power 

improvement by ~15 %) against different exposure times within the standard range of 

250 µs to 4 ms, as well as outperforming the RSS method in all circumstances and AoA 

reported previously. The experimental results demonstrated that a 3D RMSE of 7.56 cm 

was achieved using the proposed algorithm. Furthermore, the impact of the exposure time 

on the detection of the Tx’s location was investigated. 
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Chapter 5  

Artificial Neural Network Equalizer 

5.1 Introduction 

There are two type of optical receivers commonly used in VLC systems: (𝑖) PDs; and 

(𝑖𝑖) ISs [16], [162], [219]. The former is low cost and has higher bandwidth (or large 

detection areas). The latter, which is composed of a large number of PDs (i.e., pixels) 

aligned orthogonally, offer both multi-input multi-output capabilities and large detection 

areas but with complex data processing. Advances made in handheld smart devices have 

triggered the use of off-the-shelf conventional CMOS ISs for cameras. These devices can 

be used as an inherently Rx module in OCCs, which can capture light signals from a range 

of sources (i.e., LED-based traffic light, signage, headlights, vehicle tail lights, etc.) [16]. 

Moreover, in IS-based VLC systems the signal to noise ratio is independent of the 

transmission distance [46]. Note, as long as the projected image of the transmitting LEDs 

cover a number of pixels, the incident light power level per pixel remains unchanged. 

However, the drawbacks of ISs-based Rx are low transmission bandwidth due to the 

camera frame rate 𝑅𝑓 limitations and higher costs compared with PDs [35]. The maximum 

data rates of conventional commercial cameras are relatively low within a range of a few 

kbps, which are sufficient for non-data communications related applications such as 

device to device communications, sensing, and health care [37]–[44]. 

 In [37], a data rate of 15 bit/s was demonstrated using an UFSOOK and a 30 frames-

per-second camera. The data rate increased to 150 bps using UPSOOK, two LEDs, and 

a 50- frames-per-second (fps) camera [38]. In [39], a data rate of 150 bps was achieved 

using a red-green-blue (RGB) LEDs and a 50-fps in an IS-based VLC link. Alternatively, 

mobile-phone based VLC with a beacon jointed packet transmission scheme with RS was 

deployed with a data rate and 𝑅𝑓 of 10.3 kbps and 60 fps for a link distance of 20 cm 

[40]. 

 A colour-shift keying (CSK) modulation scheme was adopted for RGB LEDs based 

VLC and OCC offering data rates of 240 bps, 5.2 kbps and 8.64 kbps (i.e., 288 bit/frame 
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with a 𝑅𝑓 of 30 fps), respectively [41], [42], [44]. In [43], both data rate and packet size 

enhancement were employed in IS-based communications with 4-PAM to achieve a data 

rate of 3.6 kbps. Whereas in [220], [221], an OCC link with RS-based multilevel phase 

and amplitude modulation with the LED lights having spatial luminance distributions was 

investigated with data rates of 80, 78.5 bps for 256- and 64-QAM, respectively with 𝑅𝑓 

of 30 fps. The use of equalisation techniques is adopted to compensate spatial and time 

dispersions in the OCC system. In [222], a double-equalisation was investigated for a 

single white LED. The 1st equaliser used a frame averaging based signal tracing 

algorithm to extract the signal with nearly constant grayscale, while the 2nd scheme is an 

adaptive least mean square-based FFE, where the data rate achieved was 14.37 kb/s at 𝑅𝑓 

of 60 fps.  

Additionally, different approaches can be adopted to improve the data rates in OCC 

with CMOS-based ISs including (𝑖) high-speed cameras, which are highly costly and 

with limited applications; (𝑖𝑖) multiple transmitters, which may suffer from flickering 

[45]; and (𝑖𝑖𝑖) a special IS with a built-in PIN PD array has been used to increase the data 

rate to 55 Mbps using an optical orthogonal frequency division multiplexing [46]. 

However, the fabrication process of this IS is too complex and not commercially 

available. In contrast, the RS technique offers high-speed data transfer and has been 

widely adopted in OCC [223]–[226]. The concept of a 9.6 kbps VLC link using multiple 

Txs i.e., an array of 8 × 8 LEDs and an IS of a resolution of 320 × 240 with 𝑅𝑓 of 30 

fps was adopted in [227]. However, providing high capacities still imposes a number of 

challenges, which needs addressing [228], [229], including sampling rates, frame 

resolution image distortion factor and detection speed of the transmitted light source. 

The sampling rate corresponds to exposure time 𝑇exp i.e., the time where IS is exposed 

to the light. Increasing 𝑇exp allows more lights to be integrated by the IS and increases 

the noise level, which is the key parameter in determining the bandwidth (i.e., 𝑇exp acts 

as a temporal low pass filter (LPF) where it takes an average over a period of time. If the 

changes in the scene are faster than the bandwidth of the camera induced by the exposure 

time, the scene will be blurred). 

ANNs as universal classifiers are used in VLC systems, the use of ANN is deployed for 

each channel in MIMO VLC [230]. In [231], an ANN-based equaliser was deployed in a 

fully connected mode to reduce the effect of the inter-symbol interference in a NLoS or 
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diffuse VLC link in indoor environment. It is also deployed in OCC systems to 

compensate for the data loss by reducing the gap-time between observed frames [232], 

[233]. Unlike previous studies, in this chapter, for the first time, we propose and 

implement an ANN-based equaliser to mitigate the ISI induced by high sampling duration 

within the observed frame in OCC, and hence increase the transmission data rate. 

The ANN network is trained only once for a range of 𝑇exp and can be stored in a look-

up table. We have developed an experimental test-bed for the proposed system for 

evaluating its performance in terms of the data rate, BERs and eye diagrams. In addition, 

we investigate a number of training methods and show that, the resilient back-propagation 

algorithm offers the best performance with a trained mean square error value of 

9.29 × 10−5. We have also achieved the highest data rate in OCC using a single white 

LED source, the manchester line code (MLC) NRZ encoded signal at the transmitter, an 

image sensor with 𝑅𝑓 of 30 fps and an ANN-based equaliser at the receiver. The 

achievable bandwidth is also increased by approximately 9, 5, and 2 times for 𝑇exp of 2, 

1 and 0.5 ms, respectively compared with the existing reported systems [37].  

The remainder of the chapter is organised as follows: Section 5.2 introduces the CMOS 

IS model for the OCC system. In Section 5.3 the proposed ANN-based post-equaliser is 

outlined, while in Section 5.4 the system model is presented. The numerical results are 

presented and commented in Section 3.5. Finally, section 5.5 draws the final conclusion. 

5.2 CMOS IS Modelling in OCC System 

In CMOS ISs with RS, an array of pixels is used to capture the incident light in a 

progressive manner by exposing each row (column) of pixels as illustrated in Figure 5-1 

(a). In RS-based cameras, the incident light at high frequencies and a relatively low 

exposure time is observed by forming different illuminated bands indicating the “ON” or 

“OFF” status of the incident signal for OOK-NRZ at 𝑇exp, or the intensity level at other 

modulation schemes, while light cannot preserve any signal during the resetting time 𝑇rst 

and the readout time for a given row. The standard IS-based Rx is modelled as a linear 

shift-invariant (LSI) system, which is composed of two stages as depicted in Figure 5-1 

(b). The voltage at a pixel (𝑈, 𝑉), which corresponds to an individual photodiode, is given 

by [232]: 
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 𝑣𝑟(𝑡) =
𝐴

𝐶PD
 ∫

𝑡

𝑡−𝑇exp

ℜ.  𝑥(𝑡)𝑑𝑡, 
(5.1) 

where 𝐴 is the gain (set to unity for simplicity), 𝐶PD and ℜ are the equivalent 

capacitance and responsivity of the PD, respectively and 𝑥(𝑡) is the received optical 

signal at the pixel (𝑈, 𝑉) at time 𝑡. Note, 𝑇exp >= 𝑇sym, where 𝑇sym is the symbol period 

[234]. The number of symbols observed at the Rx depends on the resolution of the IS, 

exposure time, pixel clock, and the size of the region of interest [35]. The system response 

is given by [235]: 

ℎ(𝑡) =  
𝐴

𝐶PD
 (𝑢(𝑡) − 𝑢(𝑡 − 𝑇exp)), (5.2) 

where 𝑢(𝑡) is the unit step function. Integration of the input signal over 𝑇exp results in

a finite impulse response (FIR) LPF effect with a transfer function given as [235]: 

𝐻(𝑓) = ℱ{ℎ(𝑡)} =
𝐴  𝑇exp

𝐶PD

𝑠𝑖𝑛(𝜋𝑓𝑇exp) 

𝜋𝑓𝑇exp
 𝑒−𝑗𝜋𝑓𝑇exp .

(5.3) 

(a)
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(b) 

Figure 5-1.  (a) An example of the frame acquisition based on rolling-shutter CMOS sensor. (b) 

The LSI model of a CMOS image sensor receiver. 

The DC gain is proportional to 𝑇exp, therefore a trade-off between the gain and the 

required bandwidth, where increasing 𝑇exp will reduce the cut-off frequency. Following 

sampling, the discrete signal is given by [232]: 

   𝑣𝑟𝑠(𝑘𝑇cycle) =     𝑣𝑟(𝑡) ∑

𝑘=𝑛−𝑇

𝛿(𝑡 − 𝑘𝑇cycle) + 𝑛(𝑡),   
(5.4) 

where 𝛿(𝑡) is the Dirac delta function, 𝑇cycle is the sampling period and 𝑛(𝑡) is the 

noise (i.e., signal-induced shot noise, ambient light induced shot noise and the thermal 

noise), which is modelled as zero-mean additive AWGN. 

5.3 Artificial Neural Network Equaliser 

In RS-based OCC systems, the bandwidth limitation imposed by the sampling process 

of IS (i.e., LPF) results in ISI at higher data rates, thus leading to a significant degradation 

in system performance. The slow rise-time of the detected symbol is affected by the 

existence of the transition between different illumination levels, see Figure 5-2. 

Generally, a matched filter is adopted to mitigate ISI, however if this is not sufficient 

equalisation can be used to enhance data rates by estimation and mitigating the ISI effect 

[236]. Equalisation can be viewed from (𝑖) the information theory, where ISI is predicted 

by the training filter coefficients based on a training sequence in order to minimise the 

error cost; and (𝑖𝑖) classification, where class decision boundaries are created in order to 

classify symbols based on training. The key difference between the two is that the former 

allows generalisation because of the use of boundaries, where unknown symbol 

transitions can be tolerated. 
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Figure 5-2.An example of the frame acquisition based on the RS CMOS sensor. 

 Linear decision boundaries are not sufficient to provide an optimal decision in practical 

channels, where the threshold boundaries are nonlinear. Therefore, ANN-based equalisers 

with the realisation of nonlinear decision boundaries offer improved performance in 

communication systems [230]. The classification and regression models are categorized 

as a sub-section of supervised machine learning. The main difference between regression 

and the classification is that the output variable of the formal one is numerical (or 

continuous) whereas is categorical (or discrete) for the latter one [237]. Note, the 

boundaries have a high dependency on the number of neurons and the hidden layers, 

which are analogous to the human brain, where the synaptic weight is changed based on 

the training sequence. Different ANN approaches can be deployed for equalisation 

including the single-layer [238] and the Multi-layer perceptron (MLP) [236]. In [231], it 

was shown that, MLP offers superior performance in mitigating ISI in optical wireless 

systems and hence, has been adopted in this work. 

The ANN-based equaliser includes input layer, variable number of hidden layers (𝑀 −

1) and output layer. The neuron (𝑘) in the MLP filter in layer (𝑚) receives 𝑁𝑚−1 tapped

delay inputs [𝑜1
(𝑚−1), 𝑜2

(𝑚−1), … , 𝑜𝑁𝑚−1
(𝑚−1)], known as the observation vector. The 𝑁𝑚−1

tapped delay inputs are considered to study the impact of 𝑁 previous samples on the 

desired sample. The 𝑛th input has a corresponding weight connected to the 𝑘th neuron
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𝑤𝑘𝑛
(𝑚). Note, 𝑁 =

𝑇exp

𝑇sample
, where 𝑇sample is the sampling duration which depends mainly 

on the pixel clock. The neurons represent the functional unit of the ANN, and are 

represented by a transformed version of the summed weighted inputs. The output is added 

to a constant offset value 𝐶(𝑚), which is weighted with the threshold factor 𝑣𝑘
(𝑚) to

estimate the output 𝑜𝑘
(𝑚) of the neuron 𝑘 using a non-linear function 𝑓(. ), given by [236]:

𝑜𝑘
(𝑚) = 𝑓(∑

𝑁𝑚−1

𝑛=1

𝑤𝑘𝑛
(𝑚)𝑜𝑛

(𝑚−1) + 𝐶(𝑚)𝑣𝑘
(𝑚)).

(5.5) 

By considering a 𝑁𝑜 × 1 input vector, and a 𝑁𝑀 × 1 output vector the estimation of the 

next observation vector 𝐨(𝑚) is required, where 𝐨(𝑜) = 𝐱, 𝐨(𝑀) = 𝐲, and given 𝐱 =

[𝑥1    𝑥2     …    𝑥𝑁𝑜
(𝑚)]𝑇, and 𝐲 = [𝑦1    𝑦2     …    𝑦𝑁𝑀]

𝑇. Therefore, we have:

 𝐲 = 𝑓(𝐖(𝐌)𝐨(𝑀−1) + 𝐶(𝑀)𝐯(𝐌)).
(5.6) 

The MLP record its trained information in the weights 𝑤𝑘𝑛
(𝑚) and in the threshold

factors 𝐯𝐧
(𝑚), since 𝐶(𝑚) is given as a constant for all layers (set as 𝐶(𝑚) = 1,𝑚 =

1,2, … ,𝑀). 

Figure 5-3. Block diagram of a single-hidden-layer ANN based equaliser. 

With a suitable number of neurons, a single hidden layer ANN is recognised as a 

universal approximator. Figure 5-3 illustrates the block diagram of a single layer ANN-
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based equaliser. The non-linear hyperbolic tangent sigmoid 𝜑 activation function is 

selected in this work since it provides a wider range for faster learning and grading, given 

by [239]:  

  𝜑  =     
𝑒𝛽𝜉   −  𝑒−𝛽𝜉

𝑒𝛽𝜉 + 𝑒−𝛽𝜉
,   (5.7) 

where 𝛽 is the slope factor (the standard unity value is assigned) and 𝜉 is the weighted 

input. 

ANN can be trained using supervised and unsupervised methods [240], [241]. Resilient 

back-propagation (RBP) is an advanced version of back-propagation, which has been 

adopted to train ANN in this work. RBP, considered as one of the best learning methods 

in ANN [242], takes into account the sign of the error gradient to designate the direction 

of the weight update, and hence overcoming the slow convergence of the standard back-

propagation algorithm and reducing the level of training compared with other algorithms. 

The concept of RBP is similar to the regular backpropagation technique, where ANN 

adjusts the weight in order to minimize the error cost function 𝐸𝑛 as defined by [236]: 

 𝐸𝑘 = ||𝑑𝑘 − 𝑦𝑘||
2, 

(5.8) 

 where 𝑑𝑘 is the ideal symbol value and 𝑦𝑘 is the actual received value. RBP is an 

iterative operation, where the step size is dynamically adapted for each weight depending 

on a gradient descent of 𝐸𝑘. The updated weight is given by [243]:  

 𝑤𝑘𝑛(𝑡 + 1) =   𝑤𝑘𝑛(𝑡) −   𝜂  
𝜕𝐸𝑘
𝜕𝑤𝑘𝑛

(𝑡) + 𝜇  Δ𝑤𝑘𝑛(𝑡 − 1), (5.9) 

where 𝑤𝑘𝑛 is the weight between the junction point of 𝑥𝑘 and 𝑘𝑡ℎ neuron and 𝜂 is the 

learning rate parameter.  

The momentum parameter 𝜇 scales the impact of the pervious step on the present one, 

thus introducing stability to the system and improving the convergence of the error 

function. Each weight has an individual evolving-value Δ𝑤𝑘𝑛(𝑡), and the weight-step, 

which is only determined by its update-value. The sign of the gradient is given by [243]: 
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∆𝑤𝑛𝑘(𝑡) =

{
 
 

 
 +∆𝑛𝑘(𝑡), if 

𝜕𝐸𝑘
𝜕𝑤𝑛𝑘

(𝑘) >  0

−∆𝑛𝑘(𝑡), if 
𝜕𝐸𝑘
𝜕𝑤𝑛𝑘

(𝑘) <  0

0      , otherwise 

 , 
(5.10) 

where Δ𝑘𝑛(𝑡) is the updated value. In order to provide a unity efficiency, the number

of neurons is set to be similar to the number of tapped inputs [236].  
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5.4 Proposed System Model 

The system block diagram of the proposed OCC system is illustrated in Figure 5-4 (a). 

The transmitter is comprised of a Pseudorandom binary sequence (PRBS) 𝑑 with a length 

of 214 − 1 is generated in MATLAB, which is then up-sampled and encoded using the

NRZ-MLC in order to avoid flickering and a unity amplitude rectangular pulse shaping 

filter. The MLC signal, which ensures a uniform distribution of 1 and 0 symbols and 

facilitates both decoding and synchronisation processes of the signal [234], is packetized 

in order to ensure proper detection at the Rx as illustrated in Figure 5-4 (b). Each packet 

consists of 5-bit header [11100], 𝑁bit-bit payload and 5-bit footer [00111], which are used 

for intensity modulation of the LED via the optical driver. 

(a) 

(b) 

Figure 5-4. (a) System block diagram for OCC using LED and rolling shutter CMOS sensor. (b) 

The proposed structure of data frame packet.  

The pattern of header and footer is designed such that (𝑖) it never occurs in the MLC 

pattern for the payload; and (𝑖𝑖) the transition from one packet to another is smooth, 
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which facilitates the training of the network. The transmitted optical signal over a free 

space channel is captured using a CMOS IS Rx. The link distance is set to 60 cm, which 

can be extended by increasing the intensity of light, having a clear available region of 

interest and using the lenses at the transmitter and the receiver. For example, increasing 

the optical transmit power from 1 to 4 mw will increase the transmission range by 100% 

[1]. A diffuser is utilised to distribute the captured light over the IS (i.e., the LED foot 

print was projected into the IS). 

Algorithm 5-1 Signal extraction algorithm. 
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The RS received data is formed by accumulating intensities for all pixels at each row, 

since they are exposed to incident light at the same time. This increases the SNR of the 

signal by a maximum of 𝑉 times, where 𝑉 is the number of pixels in each row. The 

received signal strength forms the amplitude of the signal as explained in section II. The 

observed frames at the IS are first processed in MATLAB, where conversion to the 

grayscale is applied in order to eliminate the hue and saturation information while 

retaining the luminance of the image plane. Due to the non-uniformity of the illumination, 

the DC gain of the optical signal estimated from (3) is then measured to generate a 

calibration matrix. In order to mitigate the impact of noise, the calibration matrix is 

constructed by averaging over 20 frames of plain illumination, i.e., no AC signal. Note, 

none of the pixels of the region of interest in the calibration matrix should be over/under 

exposed, see Figure 5-5 (a & b). The signal extraction algorithm is shown in Algorithm 

5-1.

(a)
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(b) 

Figure 5-5. The received signal at a signal bandwidth of 400 Hz with 𝑇exp of 1 ms: (a) without

DC gain normalization and (b) with normalization. 

The frequency responses of the IS are first introduced for the conventional 𝑇exp values of 0.5,

1 and 2 ms, which are also estimated using (3), where the frequency of the main lobe and the 

followed side-lobes is introduced in the following section. The main lobe indicates bandwidth 

available by means of 3 dB region (i.e., the cut-off frequency), whereas followed harmonics 

describe the rest of the magnitude spectrum. The harmonic frequency 𝑓𝑠ℎ is used to specify the

required bandwidth of the transmitted signal to ensure a minimum attenuation (i.e., at the peak of 

the side-lobes), where ℎ is the harmonic number. Subsequently, a set of different signals are 

generated where 𝑁bit-payload is varied with respect to 𝑓𝑠ℎ in a way that ensures the capturing of

three packets at every frame. 𝑇exp is set to 2 ms and the values of selected 𝑁bit are shown in

Table 5.1. In a typical scenario, the bandwidth of the transmitted signal should be less 

than or equal to the cut-off frequency 𝑓𝑐 as highlighted in Section, whereas 𝑓𝑠ℎ includes 

successive harmonics; The processed data is then applied to the proposed equaliser for 

different 𝑓𝑠ℎ, and the quality of the transmitted signal is investigated in terms of the BER 

and the data rate. 
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Table 5.1 System parameters. 

Parameter  Value 

Image sensor  DCC1645C 

Maximum SNR of IS  44 dB 

Exposure time 𝑇exp  0.5, 1, and 2 ms 

Camera raw image resolution  1280 × 1024 

Pixel clock  10 MHz 

Camera frame rate 𝑅𝑓  30 fps 

Link distance  60 cm 

LED type  SR-01-WC310 

Number of sample 𝑛samp  50 

Number of bit per frame 𝑁bit  108 to 1170 bits 

Activation function  Hyperbolic tangent sigmoid 

Number of neurons in input layer 

 128 (𝑁bit = 108 bits), 

 250 (𝑁bit = 192 bits), and 

 1200 (𝑁bit = 1170 bits) 

Number of neurons in output layer  1 

Number of neurons in hidden layer  200 

Number of hidden layer  1 

Percentage of train to test  0.8 

Maximum epochs  1000 

Learning rate parameter 𝜂  0.01 

Target BER 10−4

Network training function 

 Resilient backpropagation 

 Bayesian Regularization 

 Polak–Ribière Conjugate Descent 

 Scaled Conjugate Descent 

 Conjugate Descent with Momentum 

A moving average filter (i.e., comparing the energy of current per chip with the previous 

one) is employed to reduce the noise while retaining a sharp response by means of 

averaging the input signal 𝑦 in order to produce a discrete signal (i.e., point) given by 

[244]:  

𝑧[𝑠] =
1 

𝐿
∑

𝐿−1

𝑙=0

𝑦[  𝑠 +   𝑙], 
(5.11) 

where 𝐿 is the number of points. 

 The data is then down-sampled prior to thresholding to recover the estimated version 

transmitted signal. Finally, we have adopted different training algorithms in order to 

achieve the optimal results in terms of the BER and the convergence speed. For this, we 
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have used 80% of the data in the first frame for training, which corresponds to 𝑁bit, and 

the number of bits used for training and testing is set based on 𝑁bit per frame. For instance, 

for 𝑁bit of 1170 bits, 80% (i.e., 936 bits) of the data is set to train the network while the 

rest (i.e.,20%, 234 bits) is used for consecutive testing purposes. Training is repeated 

every 10- 𝑁bit since a set of 10 frames is considered for this purpose. The number of 

input neurons is set to be equal to the length of input patterns or vectors plus one, and the 

additional neuron being the bias neuron [245]. The optimal number of neurons is selected 

based on the experimental measurements of the BER and the MSE values. Figure 5-6 

shows the BER and MSE as a function of the number of neurons in the input and hidden 

layer. At the FEC BER limit, the number of neurons at the input and the hidden layers are 

250 and 100, respectively which correspond to the MSE values of < 10−2 and 6 × 10−1, 

respectively. 

 

(a) 
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(b) 

Figure 5-6. BER and MSE as a function of the number of neurons in input layer 𝑘𝑖, and the hidden

layer 𝑘ℎ and 𝑁bit of 192.

5.5 Results and Discussion 

The system parameters used are shown in Table 5.1. Figure 5-7 shows the measured and 

simulated IS frequency response for a range of 𝑇exp. The simulation is done through using 

MATLAB and based on the modelling introduced in section 5.2 and the equation (5.3). The 

measured (and simulated) 3-dB 𝑓𝑐 are 811 (1020), 443 (443) and 250 (250) Hz for 𝑇exp of 0.5, 

1 and 2 ms, respectively. We have used the odd frequencies 𝑓𝑠ℎ  (i.e., 716, 1231, 1736 and 

2240 Hz, see Figure 5-7 for generating MLC data formats). Note, we have used an average of 

636 bps per frame, thus a total of 12 kbps for 30 frames in order to meet the forward error 

correction (FEC) BER limit of 3.8 × 10−3.
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Figure 5-7. Image Sensor frequency response with different exposure time. 

Next, the effective data rate of the system is evaluated following the methodology 

adopted in the previous section. The higher sampling rate is associated with the higher 

data rates used in this work. The BER as a function of the data rate for the system is 

initially measured prior to introduction of the proposed ANN equaliser as depicted in 

Figure 5-8. The proposed system demonstrates BER values below the FEC limit of 

3.8 × 10−3 up to a data rate of 12 kbps for all three values of 𝑇exp and a transmitted signal

bandwidth of 2.275 kHz, which is around 9 times (for 𝑇exp of 2 ms) higher the 𝑓𝑐 of the 

unequalised system 
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Figure 5-8. BER measurements of the system with and without equalisation in respect to effective 

data rates of different exposure times with 𝑅𝑓 of 30. 

The eye diagrams at 𝑇exp of 2 ms without an ANN equaliser is illustrated in Figure 5-9 

(a), where the received signal shows three levels of amplitude in spite of sending an OOK 

signal due to the ISI, which creates an additional level due to the transition delay in the 

status of the captured signal as explained in the previous section (Figure 5-2). However, 

with an ANN equaliser the eye diagram depicted in Figure 5-9 (b) shows significantly 

reduced ISI. Finally, we have evaluated the proposed system behaviour over time to 

determine the convergence time for different training algorithms for the hyperbolic 

tangent sigmoid activation function as illustrated in Figure 5-10. The system performance 

is measured based on the estimated MSE values, which is estimated between the equaliser 

outputs and the desired outputs. The ideal case is considered, where the channel is 

assumed to be noise-free, and hence the error in the equaliser outputs is solely due to the 

channel dispersion. As shown, the resilient backpropagation algorithm displays faster 

convergence compared with others and offers the best performance (the estimated trained 

mean square error value is recorded as 9.29 × 10−5). The superiority of this algorithm is 
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due to magnitudes elimination of the partial derivatives where the sign of the derivative 

is merely utilised to estimate the direction of the weight update. 

(a) 

    (b) 

Figure 5-9. Eye diagram of the received signal at a signal bandwidth of 400 Hz of: (a) without 

deploying the ANN-based receiver, and (b) after applying the proposed receiver. 
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Figure 5-10. ANN system behaviour over time to calculate the faster convergence of different 

training algorithms for hyperbolic tangent sigmoid activation function. 

5.6 Summary 

In this chapter and for the first time, ANN adaptive equaliser was demonstrated at the 

receiver within the OCC system. The study provided the performance indicators for the 

proposed system. The data rates achieved were the highest in the OCC field, recorded as 

12 kbps at the exposure time of 2, 1, and 0.5 ms using a single source and the MLC-NRZ 

encoded signal. The proposed system demonstrated the capability in retrieving the 

transmitted information with a bandwidth beyond the cut-off frequency limitation. Hence, 

it provided the bandwidth improvement of around 9, 5, and 2 times at the exposure times 

of 2, 1, and 0.5 ms, respectively. 
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Chapter 6 

The Utilization of ANN Equalizer and a 

Constant Power-PAM in RS-Based OCC 

System 

6.1 Introduction 

In OCC systems, which are part of the OWC, leverage the use of off-the-shelf 

conventional, CMOS ISs and LEDs as the Rx and the Tx, respectively. The camera-based 

Rxs can capture intensity-modulated light signals from a range of LED light sources (i.e., 

traffic lights, advertising boards, signage, display screens, vehicle head, and taillights, 

streetlights, etc.). The OCC technology together with the visible and infrared light 

transmission could be used in different low data rate Rb applications, such as the Internet 

of Things (IoT) (e.g., as part of the fifth-generation wireless and beyond), motion 

capturing [241], intelligent transportation systems [246], indoor localization, security, 

virtual reality, and advertising [247]. OOC comprises a plurality of pixels (i.e., PDs), 

where the signal strength of each pixel depends on the intensity of incident light [28]. 

Each pixel can detect signals at different wavelengths over the visible range, e.g., RGB, 

hence offering parallel detection capabilities and an adaptive FoV feature. In addition, the 

transmitted information from many light sources, different directions, and locations via 

the LoS [248], [249], non-LoS, and/or a combination of both paths [228] can be captured 

using a single-pixel or a pixel-array IS-based Rx. Thus resulting in a higher signal-to-

noise ratio, improved mobility, and flexibility over a linkspan up to hundreds of meters 

[250].  

On the contrary, the IS requires a higher sampling duration and lower number of 

quantization levels compared with the PDs due to the light integration time (known as the 

exposure time 𝑇exp), and the built-in analog to digital converter circuit [251]. The 

sequential-readout nature of CMOS IS-based Rx allows each pixel-row to capture the 

incident light at a different time, thus resulting in the so-called RS effect [251]. Note that, 

the performance of VLC with IS-based Rx is limited mainly by the camera capabilities, 



Chapter 6: The Utilization of ANN Equalizer and a Constant Power-PAM in RS-Based 

OCC System 

119 

 

i.e., the frame rate Rf, 𝑇exp, and FoV. As a result, in OCC, the transmission bandwidth is 

rather low and limited to a few tens of kHz compared to the PD-based VLC systems. 

Although, low data should not be seen as a problem considering that there are many 

applications where low Rb is not critical at all (i.e., IoT, etc.). However, in OCC, lower 

Rb may result in the flickering effect at the Tx [232], [252]. In IEEE 802.15.7m standard 

[253], different schemes have been proposed for OCC to mitigate flickering and to 

increase Rb [254]. For example, in [46], an optical orthogonal frequency division 

multiplexing VLC with a special IS-based Rx with a built-in PD-array was used to 

achieve a very high Rb of 55 Mbps. However, the fabrication process of the IS was too 

complex and, therefore, not commercially available. In [37], [255], under-sampled 

frequency and phase shift OOK modulation schemes were proposed to mitigate flickering 

in OCC with low Rb. In [43], Manchester coding was proposed to alleviate flickering in 

the RS mode, where it was shown that link performance in terms of Rb deteriorated with 

the transmission range [43], [250].  

Moreover, an OCC link with the under-sampled PAM with subcarriers was 

experimentally demonstrated with the increase Rb to 250 bps [162], [256]. In addition, a 

multilevel-intensity modulation scheme for RS-based OCC with the frame rate Rf of 30 

fps was proposed in [257] with Rb of 10 kbps over a link range of up to 2 m. Furthermore, 

a parallel transmission VLC system with color-shift-keying (i.e., different colors RGB-

LEDs) was reported in [258] with an overall Rb of 5.2 kbps. In [259], the concept of 

parallel transmission was demonstrated over a range of up to 60 m and with Rb of 150 

bps. Whereas a 16 × 16 array 𝜇LED and a high-speed camera with Rf of 960 fps and using 

Rb of 122.88 kb/s was reported in [260].  

In OCC systems, equalization methods can also be deployed to compensate for spatial 

and temporal induced dispersion. In [222], an OOK VLC (a single LED) and camera-

based Rx with a dual equalization scheme to compensate for both spatial and temporal 

dispersion were reported with increased Rb up to 14.37 kb/s. The ANN architecture has 

also been proposed for post-equalization to combat non-linear impairments in OWC 

[236], [240]. The use of an ANN-based equalizer is one of the remarkable solutions 

adapted in PD-based OWCs, wherein the ANN act as the universal classifiers [231]. In 

[236], a 170 Mb/s OOK VLC link using an LED with a modulation bandwidth of 4.5 

MHz and the ANN-based equalizer at the Tx was reported, where the superiority of ANN 

equalizers in mitigating ISI was demonstrated compared with other equalization 
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techniques. Note, in OCC with the ANN-based equalizer, the network needs to be trained 

once for a range of Texp with the data being stored in a look-up table within the camera.  

In [261], the variable transparent amplitude shape code scheme was experimentally 

evaluated for D2D (i.e., smartphones) communications in the form of High-density 

modulation with the ANN assisted demodulator. Rb of 2.66 Mbps over a 20 cm long 

transmission link was achieved. Note, the concept of D2D is one form of the multiple-

input multiple-output system, where every pixel is transmitted and detected. Similarly, to 

allow transmission and reception of information under bad weather conditions, a 

convolution neural network-based OCC was proposed in [262]. The CNN was used for 

classification and recognition of LED patterns and to decode the transmitted data streams 

even under an unclear state, where LED patterns are not visible to the camera due to 

blocking of the transmission path and/or weather conditions. In [233], an OCC link with 

an ANN-based decoder was reported to mitigate the gap-time effect between two adjacent 

frames, where OOK was transmitted using an RGB-LED with Rb of 47 kb/s. In [28] , an 

OCC link using a single LED source and Manchester line code with the non-return to 

zero formats was reported with Rb of 14 kb/s.  

In this work, the aim is to establish a flickering-free OCC system with improved Rb 

using a single LED and an ANNs-based equalizer. The key contributions extended from 

our previous work [263] are:  

• Comprehensive and systematical investigation of the applicability of CP-

PAM for the LED- and camera-based VLC. 

• Development of a practical CP-PAM OCC prototype with a single Luxeon 

Rebel white LED (SR-01-WC310) and an IS (Thorlabs DCC1645C) as the 

Tx and the Rx, respectively. 

• Development of an efficient signal extraction algorithm for the RS-based 

OCC system. 

• Implementation of an ANN-based equalizer at the Rx to enhance the system 

performance. 

• Development of an experimental test-bed for the proposed system and 

evaluating it in terms of the Tx’s frequency, eye diagrams, and the BER with 

and without the ANNs-based equalizer. 
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• Proposing a new measurement metric for assessing the quality of the

communications link in terms of the number of row pixels/symbol.

The remainder of the chapter is organized as follows. Section 6.2 introduces the 

proposed CP PAM scheme, whereas Section 0 outlines the ANN equalizer model for IS-

based OCC. The experimental setup is described in Section 6.4. Results and discussion 

are presented in Section 6.5. Finally, the summary is given in Section 6.6.  

6.2 Constant Power-PAM in RS-Based OCC System 

The OCC system is mainly composed of a light source-based Tx with normalized length 

(diameter) represented in 𝐿, and a camera-based Rx, which is modeled using a single 

convex lens with a focal length 𝑓. The transmission speed in the RS-based OCC system 

is defined by the amount of the information that can be captured by an image at the 

distance 𝑑, which depends on the acquired number of samples (i.e., pixel rows) and is 

given by [264]: 

𝑁𝑟𝑜𝑤 = 2 𝑓 × 𝑡𝑎𝑛 (
FoV

2
) =  2 𝑓 × 

𝐿

2𝑑
 , (6.1) 

where FoV is the angular field of view. 

Note that, the acquired 𝑁row is incorporated with the sampling frequency of the IS, 

known as the rolling rate of IS, 𝐹𝑠 (i.e., the frequency at which the row pixels are sampled 

at the image plane).  

Therefore, the maximum frequency of the transmitted signal is limited 
𝐹𝑠

2
 according to 

Nyquist’s theorem. The 𝐹𝑠 value depends on the pixel clock and Texp (i.e., the time that 

every sample (pixel) of the IS is exposed to the light). Note, Texp acts as a moving-average 

filter [232], [235] with the frequency resolution given by: 

∆𝑓 =  
1 

𝑇exp 
=  

 𝐹𝑠
𝑁row(𝑑)

 , (6.2) 

𝐹𝑠 is defined in terms of the bandwidth of the transmitted signal 𝑓Tx and the number of 

received pixels per symbol, 𝑁pps, which is given by: 

𝐹𝑠 =  𝑁𝑝𝑝𝑠 .  𝑓𝑇𝑥 , (6.3) 
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Note, (i) 𝑁pps varies with the payload Pbit; and (ii) the maximum transmission distance 

is proportional to both ∆𝑓 and the size (diameter) of the light source. Higher Texp results 

in increased signal intensity levels, and, therefore, higher signal-to-noise-ratio (SNR) at 

the cost of reduced Rx bandwidth. With reference to Equations  (1–3), a communications 

link can be established at low Rf but with flickering, which is due to the variation in the 

mean value of light intensity during a time period larger than the optical bandwidth of the 

human eye. This may occur provided there are many consecutive symbols with the same 

logical state.  

The flicker index is a relative measure of the cyclic variation in the output of various 

sources at given frequencies [265], [266]. It considers the waveform of the light output 

and its amplitude, which can be determined by dividing the area above the line of average 

light output by the total area under the light output curve for a single curve, see Figure 

6-1, and is given by: 

Flicker index =  
area 1 

area 1 + area 2
 .  (6.4) 

The flicker index has a range of 0 to 1.0, with 0 representing the steady light output 

level. Area 2 may be close to zero provided the light output varies as periodic spikes, thus 

leading to a flickering index close to 1. Higher values indicate an increased possibility of 

noticeable flickering. 

To mitigate flickering, CP-PAM can be adopted to equalize the mean intensity value of 

all symbols, i.e., 𝐼ave [256]. In CP-PAM, each PAM symbol is temporally divided into 

two equal chips, (i) the 1st chip for the intensity of the PAM symbol 𝐼𝑆; and (ii) the 2nd 

chip for the stabilization level, i.e., 2𝐼ave − 𝐼𝑆, see Figure 6-2. For example, a symbol with 

a level of “2” will be stabili ed in the following chip with another symbol with a level of 

“1” to ensure performance equality, as clarified in Table 6.1. 
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Figure 6-1. Defining flicker index [265], [266]. 

Figure 6-2. An example of a generated packet signal with fTx of 220 Hz. 

It is also noted that considering the Rb efficiency of CP 4-PAM is reduced by half due 

to the stabilization level (also used for error detection), the CP N-PAM offers a higher 

coding efficiency compared with Manchester coding [43].  

Table 6.1 Proposed CP 4-PAM levels. 

Input Data 
Conventional 

PAM Level 

Constant Power 4-PAM 

First Level 

(𝑰𝐒)
Stabilization Level 

(𝟐𝑰𝐚𝐯𝐞 − 𝑰𝐒)
11 3 3 0 

10 2 2 1 

01 1 1 2 

00 0 0 3 
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6.3 ANN Equalizer 

In RS-based OCC systems, the IS sampling process limits the available bandwidth and 

results in ISI at higher data rates, thus impacting the performance of the communications 

link. The ability to detect the slow rise-time symbol may be impacted by the existence of 

the transition between different illumination levels. Equalization is one option that is 

being adopted to mitigate the ISI. Note, the ISI is predicted by the training filter 

coefficients based on a training sequence. Alternatively, the ISI can be viewed as a 

classification problem, where class decision boundaries are created to classify symbols 

based on training [28]. Hence, determining the optimal threshold boundaries in a practical 

channel can be seen as a nonlinear process, and consequently, the ANN-based equalizer 

with the adaptive algorithm can be employed to mitigate ISI and, therefore, increase the 

data rate. Unlike other communication systems, OCC training of the ANN network is 

carried out only once for a specific exposure time with the data being stored with a look-

up table [236], [240]. 

An ANN is an interconnected network of processing elements (neurons). It comprises 

of two distinct stages: (i) The training phase, where the ANN estimates an input-output 

map between the received and training data to determine the weighted input from each 

neuron. The weighted values are updated in each training iteration until either the required 

performance is achieved, or the entire training set is used; and (ii) the operation phase, 

where the ANN is deployed without the knowledge of the dataset under test. The MLP is 

a popular ANN architecture, which has been demonstrated with high effectiveness in 

signal equalization [267]. It offers the ability to map any non-linear input-output 

sequence, provided there are sufficient neurons in the hidden layer(s), and the SNR is 

sufficiently high. 

The MLP structure consists of at least three layers; (i) a single input layer x; (ii) (𝑀 −

1) hidden layers; and (iii) a single output layer y. The input layer (also called the

observation vector) has the same structure as a conventional linear equalizer for 

sequential equalization, i.e., it is a tapped delay line o(m-1) = [𝑜1
(𝑚−1)

, 𝑜2
(𝑚−1)

, . . ., 𝑜𝑁𝑚−1
(𝑚−1)

], 

where N is the number of neurons, and m is the layer number. This is illustrated in Figure 

6-3, where weights 𝑤𝑘𝑛
(𝑚)

 relate the nth input to the kth neuron. Each neuron can be biased 

with a value C(m), which is in turn scaled by a threshold factor 𝑣𝑘
(𝑚)

.
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Figure 6-3. A structure of the kth neuron in the layer m. 

The output 𝑜𝑘
(𝑚)

 of the kth neuron is mapped via a non-linear activation function f(.) as 

given by [236]: 

𝑜𝑘
(𝑚) = 𝑓 (∑

𝑁𝑚−1

𝑛=1

𝑤𝑘𝑛
(𝑚)𝑜𝑛

(𝑚−1) + 𝐶(𝑚)𝑣𝑘
(𝑚)). (66.5) 

The output of each layer is usually connected to each of the neurons in the next layer, 

i.e., a fully connected mode, therefore, using the observation vector 𝐨(𝑚) for the mth layer 

and the 𝑁𝑚 × 𝑁𝑚−1 connection matrix between layers 𝑚 and 𝑚− 1, the output is given 

in the vector form by: 

𝒐(𝑚) = 𝑓(𝑾(𝒎)𝑜(𝑚−1) + 𝐶(𝑚)𝒗(𝑚)), (6.6) 

where 𝑾(𝒎) and 𝒗(𝑚) are given by: 

𝑾(𝒎) =

[
 
 
 
 
 
 
𝒘𝟏

(𝑚)

𝒘𝟐
(𝑚)

.

.

.
𝒘𝑵𝒎

(𝑚)]
 
 
 
 
 
 

, (6.7) 

𝒗(𝑚) = [𝑣1
(𝑚)    𝑣2

(𝑚)     …    𝑣𝑁𝑚
(𝑚)]𝑇 . (6.8) 

Considering the 𝑁0 × 1 input vector, 𝑁𝑀 × 1 output vector, 𝐨(0) = 𝐱 and 𝐨(𝑀) = 𝐲, the 

following observation vector 𝐨(𝑚) is given by: 

𝒙 = [𝑥1    𝑥2     …    𝑥𝑁𝑜
(𝑚)]𝑇 , (6.9) 

𝒚 = [𝑦1    𝑦2     …    𝑦𝑁𝑀]
𝑇 . (6.10) 

Therefore, 
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𝒐(𝟏) = 𝑓[𝑾(𝟏)𝒙 + 𝐶(1)𝒗(𝟏)), (6.11) 

𝒐(𝟐) = 𝑓[𝑾(𝟐)𝒐 + 𝐶(2)𝒗(𝟐)), (6.12) 

… 

𝒚 = 𝑓[𝑾(𝑴)𝒐(𝑀−1) + 𝐶(𝑀)𝒗(𝑴)). (6.13) 

MLP will record its trained information in 𝑤𝑘𝑛
(𝑚) and in the threshold factors 𝐯𝐧

(𝑚),

since 𝐶(𝑚) is given as a constant for all layers (i.e., set as 𝐶(𝑚) = 1,𝑚 = 1, 2, … ,𝑀). RBP

is a supervised BP training method, which updates the weights to converge more rapidly 

than the standard BP training technique [240]. Figure 6-3 depicts a single neuron for the 

case where the layers are interconnected with different weight coefficients. The RBP 

adjusts the MLP weights to reduce the error cost function 𝐸𝑛 as given by [236]: 

𝐸𝑘 = ||𝑑𝑘 − 𝑦𝑘||
2, (6.14) 

where 𝑑𝑘 and 𝑦𝑘 are the ideal and actual received symbols, respectively. It should be 

noted that, for the training sequence, d is known. Each iteration of the RBP algorithm has 

a dynamic step size, which varies based on the magnitude of the gradient descent of 𝐸𝑘. 

6.4 Experimental Setup 

The schematic block diagram of the proposed OCC system is shown in Figure 6-4(a). 

A PRBS with a length of 2 16–1 bits was generated using MATLAB, which was then up-

sampled with 𝑛sampof 50 and modulated using CP-PAM. Based on the output labels 

provided for 4-PAM, see Table 6.1, mapping of the data to the corresponding symbols 

was carried out.  

(a)
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(b) 

Figure 6-4. The CP 4-PAM OCC scheme: (a) system block diagram, and (b) photograph of the 

experimental setup. 

The PRBS s(t) was divided into sub-sequences with effective symbols per packet with 

lengths of Pbit- symbols, which depends on the transmitter bandwidth 𝑓Tx. Each 

subsequence was encoded with a pre- and post-amble to form a Qth Tx packet, where Qth 

represents the packet number and each packet consists of 3-symbol pre-amble [1.5 1.5 

1.5], Pbit-symbol payload, and 3-symbol post-amble [1.5 1.5 1.5]. 

The symbols in the overhead signal (i.e., pre-amble and post-amble) were chosen to 

ensure constant average optical power when compared with the payload. The signal was 

then sequentially uploaded onto an arbitrary wave generator (AWG, AFG3252C, 240 

MHz bandwidth), see Figure 6-4(b). The uploading process was done through the 

generation of Qth Tx packet at different 𝑓Tx, the output of which was used for intensity

modulation of a Luxeon Rebel LED (SR-01-WC310) with a peak wavelength at 630 nm. 

Note, a linewidth of 118 nm was used for transmission of the modulated light over a short 

LoS free-space channel (i.e., 50 cm). 

At the Rx, a diffuser was used to scatter the light over the capturing area of the IS 

(Thorlabs DCC1645C RS) with a standard Texp of 2 ms was adopted in this study. The 

observed frames 𝐏𝑈 × 𝑉 × 3
𝑄

at the output of the camera were processed off-line in 

MATLAB using both Algorithms 1 and 2. In Algorithm 6-1, the data set z𝑖
𝑄 was retrieved

by accumulating the intensities for all pixels in each row. The received signal was then 

normalized to remove the DC by capturing 20 frames with no signal, see Figure 6-5 (a,b). 
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(a) (b) 

Figure 6-5. An example of the received Qth Tx packet signal at a Texp of 2 ms: (a) without DC gain 

normalization, and (b) with normalization. 
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Algorithm 6-1 Signal extraction algorithm. 

 Input: Qth Tx packets signals and (Qth × 10 RS) Captured frames 𝐏𝑈 × 𝑉 × 3
𝑄

 

at different 𝒇𝐓𝐱 where Q = 1, 2, …, 150 and 20 frames of illumination gain 

(DC signal only)  𝐆𝑈 × 𝑉 × 3 

 Output: 𝐳cal 
𝑄

with that is fully synchronized with Tx packet 

1 For each Q = 1 to 150 do  

2  • Read 𝑈 ×  𝑉 ×  3 sized colour plain text frame 𝐏𝑈 × 𝑉 × 3
𝑄

 = 

[[𝑃𝑄(𝑖, 𝑗, 𝑐)] . The RGB components of 𝐏𝑈 × 𝑉 × 3
𝑄

 denoted 

as𝐑𝐏𝑈 × 𝑉 
𝑄

= 𝑅𝑃𝑄(𝑖, 𝑗), 𝐆𝐏𝑈 × 𝑉 
𝑄

=  𝐺𝑃𝑄(𝑖, 𝑗), 𝐁𝐏𝑈 × 𝑉 
𝑄

=

𝐵𝑃𝑄(𝑖, 𝑗), respectively, i = 1, 2, …, U and j = 1, 2, …, V represents 

the pixels indices of captured frame, and c = 1, 2, 3. 

3  • Monochrome to grayscale frame conversion is applied by 

calibrating RGB components 

R𝐏𝑈 × 𝑉 
𝑄 , 𝐆𝐏𝑈 × 𝑉 

𝑄 , and 𝐁𝐏𝑈 × 𝑉 
𝑄

together over c, resulting 𝐏𝑺𝑈 × 𝑉 
𝑄

. 

4  • Accumulate intensities for all pixels at each row z = (z𝑖)𝑖=1 
𝑉   

where z𝑖
𝑄 = ∑ 𝐏𝑺𝑈 × 𝑉 

𝑄𝑉
𝑗=1 . 

5  • Estimate the averaged DC value 𝑧𝐷̅𝐶 by repeating previous steps 

on 𝐆𝑈 × 𝑉 × 3.  

6  • Calibrate z𝑄  with respect to the averaged DC value 𝐳cal 
𝑄 = 𝑧

𝑧̅𝐷𝐶
 

7  • Find the frame with full packet inclusion using Algorithm 2 

8  • Resample 𝐳cal 
𝑄

with respect to the packet length 

9  • Locate the start of each packet in the frame 

10  • Synchronize both Tx and Rx signal using a correlation algorithm 

11  • return 𝐳cal 
𝑄

signal 

12  end 

Next, to ensure that a full packet was captured by the IS, Algorithm 6-2 was applied to 

select the optimum frame (i.e., including both pre- and post-ambles) for each Qth Tx 

packet per 𝑓Tx, in which 10 × 𝐏𝑈 × 𝑉 × 3
𝑄

 are captured at Qth Tx packet to maintain the 

synchronization between both the Tx and the Rx. 

A resampling process was then applied to resize the signal length based on the packet 

size observed in pixels. Next, a correlation algorithm was used to maintain the 

synchronization between the transmitted Qth Tx packet and received 𝐳cal 
𝑄

signals, where a 

filtered version of 𝒛cal 
𝑄

 was simulated based on the encoded Qth packet using a moving 

average filter. Note, the window size of the filter was set to 𝑛samp since it provided an 
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optimal match compared with the observed signal. Next, 𝐳cal in the vector form was 

applied to an MLP equalizer using an array of tapped-delay lines as previously described. 

The MLP used here included single input, hidden, and output layers. All the key system 

parameters are listed in Table 6.2. 

Algorithm 6-2 Find the frame with full packet inclusion (i.e., includes both pre- and post-ambles). 

 Input: 10 × 𝐏𝑈 × 𝑉 × 3
𝑄  Captured frames at Qth Tx packet 

 Output: One frame 𝐏𝑈 × 𝑉 × 3 at each Qth  

1  for 𝑙 = 1 to 10 

2  Define Check, Counter, CeckVal 

3  Check = abs ( 𝐳cal 
𝑄 (2: 𝑒𝑛𝑑) − 𝐳cal 

𝑄 (1: 𝑒𝑛𝑑 − 1)) 

4  Check = Check < 0.01 

5  for cc = 2: length (Check) 

6   if Check(cc) == 1 && Check(cc) == check(cc-1) 

7   Counter = Counter +1  

8   else  

9   CeckValk(l) = Counter 

10   Counter = 0 

11   end 

12  end 

13  return 𝐏𝑈 × 𝑉 × 3  

14  end 
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Table 6.2 System parameters. 

Description Value 

Tx 

LED type 
Luxeon Rebel LED (SR-01-

WC310) 

Tx signal bandwidth  𝑓Tx (Hz) 220–1520 Hz 

Tx bias current 180 mA 

Camera Rx 

Camera model Thorlabs DCC1645C-HQ 

Exposure time Texp 2 ms 

Maximum SNR of IS 44 dB [268]  

Lens type Navitar 12 mm F/1.8 2/3” 10  P 

Pixel clock 10 MHz 

Camera raw image resolution 1280 × 1024 pixels 

Captured symbols per frame 11–76 symbols 

Packet 

Generator 

Data format CP-PAM 

Symbol per packet Pbit 5–70 symbols 

Packet generator sample rate 11.125 kHz 

Number of samples 𝑛samp 10 

Channel Channel length 50 cm 

ANN 

Equalizer 

Activation function Hyperbolic tangent sigmoid 

Number of neurons in input layer 200 

Number of neurons in output layer 1 

Number of neurons in hidden layer 200 

Number of hidden layers 2 

Percentage of the train to test 0.8 

Maximum epochs 1000 

learning rate parameter η 0.01 

Network training function Resilient back-propagation 
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6.5 Results and Discussions 

The experimental work was focused on deploying an MLP-based equalization to 

mitigate the ISI due to the limited modulation bandwidth of the CMOS IS-based Rx. The 

measured and simulated CIS for Texp of 2 ms are highlighted in Figure 6-6, showing that 

the obtained IS bandwidth (i.e., a 3 dB point) was 250 Hz. It is also noted that the 

mismatch between the measured and simulated response was caused by aliasing due to 

the limited sampling frequency of the IS and utilization of image compression techniques 

[269]. The CP 4-PAM encoded signal was then generated at a different bandwidth 𝑓Tx of 

up to 1520 Hz. 

 

Figure 6-6. Measured and estimated bandwidth of the for IS with Texp of 2 ms. 

The captured frames at the Rx are processed with Pbit of up to 70 symbols per packet. 

Figure 6-7 illustrates examples of the captured frames and the processed signals for Pbit 

of 5, 10, 15, 20, 50, and 70, i.e., 𝑓Tx 220, 320, 420, 520, 1120, and 1520 Hz, respectively. 

Note, the width of the received Qth packet and the recorded Fs are 666 pixels and 13.31 

kHz, respectively, based on the demodulated signal, see Figure 6-7. Increasing 𝑓Tx 

decreases the number of received pixels for each CP 4-PAM symbol, thus, reducing the 

quality of data transmission. The number of pixels utilized for each CP 4-PAM symbol is 

indicated in Table 6.3. For the link with the ANN-based equalizer deployed at the Rx 

side, the quality of the received signal was measured using the eye diagrams and the BER 

performance. As illustrated in the eye diagrams, see Figure 6-8, the eye-openings indicate 

the impact of the ISI on the received signal. Note, (i) the threshold levels can be 
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differentiated for Pbit of 5 and 20 symbols, see Figure 6-8(a,b), respectively, but not for 

Pbit of 50 and 70 symbols as in see Figure 6-8(c,d), respectively; (ii) the five levels are 

shown in the eye diagrams, where one of the levels represents the packet overhead 

designed to maintain the same average power for CP 4-PAM; and (iii) the overhead level 

is removed at the Rx side using Algorithm 6-1. 

 

Figure 6-7. Examples of the frame acquisition based on CIS for CP 4-PAM and 𝑓Tx of: (a) 220 

Hz, (b) 320 Hz, (c) 420 Hz, (d) 520 Hz, (e) 1120 Hz, and (f) 1520 Hz. 
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Table 6.3 Results with Rf of 30 fps and CIS width of 1024 px. 

Payload 

Symbol/Packet (Pbit) 

Total Number 

of 

Symbols/Pack

et 

Number of 

Row 

Pixels/Symbol 

(𝑵𝐩𝐩𝐬) 

𝒇𝐓𝐱 (Hz) 

5 11 60.54 220 

10 16 41.62 320 

15 21 31.71 420 

20 26 25.61 520 

30 36 18.50 720 

35 41 16.24 820 

40 46 14.48 920 

50 56 11.89 1120 

70 76 8.76 1520 

 

Figure 6-8. Examples of the captured eye diagrams of the CIS received signal for CP 4-PAM with 

𝑓Tx of: (a) 220 Hz, (b) 320 Hz, (c) 420 Hz, (d) 520 Hz, (e) 1120 Hz, and (f) 1520 Hz. 

An example of transmitted and received signals with and without equalizer for 𝑁pps of 

8.7 pixels per symbol is illustrated in Figure 6-9. The equalized signal at the Rx side 

shows a significant improvement in reducing the impact of the ISI on the received signal 

with minimal signal distortions.  

The eye linearity of the received signals is measured based on the average amplitude 

levels is given by [270]: 



Chapter 6: The Utilization of ANN Equalizer and a Constant Power-PAM in RS-Based 

OCC System 

135 

 

Eye linearity =
min(𝑉up, 𝑉mid, 𝑉low)

max(𝑉up, 𝑉mid, 𝑉low)
 , (6.15) 

where 𝑉up, 𝑉mid, and 𝑉low are the average amplitude levels. 

 

(a) 

 

(b) 

Figure 6-9. An example of the transmitted and received signal with and without equalization for 

CP 4-PAM and 𝑁pps of 18.5 row pixels/symbol: (a) training sets, and (b) testing sets. 

Figure 6-10 shows the eye linearity of the received signals with respect to 𝑁pps for the 

link with and without ANN equalizer and for Texp of 2 ms. Note, we have used 𝑁pps, i.e., 

new terminology for a fair comparison considering the progress made in the development 

of ISs. As shown, for the link with no equalizer, the eye linearity increases with 𝑁pps 

reaching a maximum level of 0.6 at 𝑁pps of ~26, beyond which it drops linearly with 

rapidly 𝑁pps. However, with the ANN equalizer, the eye linearity is improved 
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significantly for both the test and trained cases reaching the optimal linearization of 

almost 1 at𝑁pps of 18 and remaining constant beyond 𝑁pps > 18 (i.e., being independent 

of 𝑁pps). Thus, the ANN equalizer show an improvement of ~66 % in the eye linearity 

for 𝑁pps> 18 pixels/symbol (i.e., 𝑓Tx < 920 Hz) for both training and testing sets. 

 

Figure 6-10. The eye linearity against 𝑁pps for the proposed system with and without equalization 

and for Texp of 2 ms. 

Next, the BER is measured as a function of 𝑁pps for the link with and without ANN 

equalizer, as illustrated in Figure 6-11. In addition, shown is the forward error correction 

(FEC) BER limit line of 3.8 × 10−3. Note, at the FEC limit the 𝑁pps value is reduced from 

30 to 20 for pixels per symbol for the links without and with the ANN equalizer, 

respectively, compared with the test plot. Thus, the effective Rb (i.e., no post- and pre-

ambles) is estimated by: 

𝑅𝑏  = 2
𝑉

𝑁pps
∙ 𝑅𝑓 , (6.16) 

where 𝑉 represents the pixel row.  

The effective 𝑅𝑏 at the FEC limit for the case with and without the ANN equalizer with 

a range of IS resolutions is indicated in Table 6.4. It demonstrates with the ANN equalizer 

Rb of 24.4 and 12.2 kbps for Rf of 60, and 30 fps, respectively, can be achieved compared 

with the case of no equalizer with Rb of 18.6, and 9.3 kbps for Rf of 60, and 30 fps, 

respectively.  
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Figure 6-11. The BER measurements as a function of 𝑁pps for the proposed system with and 

without equalization and for Texp of 2 ms. 

Table 6.4 Effective Rb at different ISs resolutions at the FEC limits. 

ISs Resolutions 

Rb (bps) at 𝑵𝐩𝐩𝐬 = 𝟐𝟔  

(i.e., w/o Equalization) 

Rb (bps) at 𝑵𝐩𝐩𝐬 = 20  

(i.e., with Equalization) 

Rf = 30 fps Rf = 60 fps Rf = 30 fps Rf = 60 fps 

1200 × 1800 3794 7588 5040 10,080 

1500 × 2100 4486 8972 5940 11,880 

1800 × 2400 5178 10,357 6840 13,680 

2100 × 3000 6563 13,126 8640 17,280 

2400 × 3000 6563 13,126 8640 17,280 

3300 × 4200 9332 18,665 12,240 24,480 
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6.6 Summary 

An ANN-based equalization technique was proposed for a CP 4-PAM based OCC 

system. An experimental setup was developed to demonstrate non-flickering 

communications using a single light-emitting diode with a transmission rate of Rb of 24.4 

kbps. The quality of received signals was measured based on the eye-diagram opening, 

eye linearity, and the BER. The ability to mitigate the intersymbol interference was 

demonstrated and hence to transmit a signal with an acceptable BER (below the FEC 

limit) for 𝑁pps of 20, and 30 for unequalized and equalized systems, respectively. An 

improvement of ~66 % in the eye linearity was achieved using a single LED, and a typical 

commercial camera with equalization technique was achieved. The limitation of the 

proposed system was assessed by the system complexity, including the associative 

memories needed for the look-up table training data as well as the IS resolution, gap-time 

and exposure time, and reading time. 
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Chapter 7  

Conclusion and Future Works 

7.1 Conclusions 

The necessity for indoor location-based services has been growing over the past decades 

due to its significance in the development of various IoT applications. VLPs have been 

introduced in recent years, which have shown great potential in achieving high-precision 

indoor positioning due to the use of optical signals. This thesis focused on enabling VLC 

for both localization and communication using a single PD, or an array of PDs in the form 

of a single IS.  Initially, an extensive review of various indoor positioning technologies 

was introduced in Chapter 2. Besides, the key challenges in the existing positioning 

methods to achieve its foremost goal of facilitating the design of a low-cost, accurate and 

less complex IPS were pointed out in this chapter. Likewise, the use of different VLPs 

techniques were then analyzed based on their common characteristics and achievable 

accuracy. 

Most research reported on VLP has focused on the investigation of geometrical 

properties using range-based (i.e., triangulation/trilateration), fingerprinting, or range-

free (i.e., proximity) methods to determine the transmission distance based on 

establishing a one-to-one relationship between the target location and its RSS. Though, 

Chapter 3 showed that in most of the reported literature, the angular dependency was 

neglected in RSS-based localization. with the assumption that, the Rx has a fixed height 

and is pointing up towards the Txs. However, computational and implementation costs 

are too high, and the assumptions made may not be valid in real-time application scenarios 

with mobile Rxs. Therefore, the impact of the LED tilting on the VLPs was explored in 

Chapter 3, in which, the systematic analysis showed that the accuracy of RSS-based VLP 

is primarily limited by the tilting angles of both Tx and Rx as well as the multipath 

reflections. Subsequently, a novel approach was proposed to achieve a highly accurate 

indoor VLP system by considering multipath reflections, in which, the Tx was tilted 

towards the center of the receiving plane to achieve higher accuracy by maximizing the 

received power level due to contributions from the LoS paths at the pointing center F. 
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The positioning error was estimated by using the LLS algorithm with polynomial 

regression and results showed a significant improvement in the accuracy by up to ~66% 

compared with a typical non-tilting Tx case. The results also showed that, the uniformity 

of the proposed VLP system is in line with European Standard EN 12464-1, thus meeting 

the uniformity requirement of the visible illumination regions.  

In Chapter 4, an overview of the merits/application, as well as the experimental reports 

on IS based VLPs were outlined where details of utilized technology, the number of Tx 

and Rx, test conditions and the accuracy achieved so far reported in literature were 

highlighted. Notably, either multiple LEDs have been used for positioning or an 

additional sensor has been employed to obtain the position. However, in most scenarios, 

the narrow FoV of the front-facing camera in smartphones restricts the number of Txs 

being captured at the IS, thus making bilateration or trilateration impractical. In addition, 

unilateration allows less complex and low-cost implementation of the VLC system. Also, 

the deployment of more LEDs will certainly add some constraints to the implementation 

of VLP. Therefore, to overcome these issues a highly accurate AoA-RSS-based VLPs 

system using a single LED and an IS was introduced. A novel technique was proposed to 

mitigate the error induced by the lens at the receiving side, hence, leading to reduced 

positioning errors. The experimental results showed that, the proposed method offers 

immunity (i.e., power improvement by ~15 %) against different exposure times within 

the standard range of 250 µs to 4 ms, as well as outperforming the RSS method in all 

circumstances and AoA reported previously. Likewise, a 3D RMSE of 7.56 cm was 

achieved using the proposed algorithm. Furthermore, we investigated the impact of 

exposure time on the detection of the Tx’s location. 

Next, the use IS can be used as an inherently Rx module in OCCs, which can capture 

light signals from a range of sources. In Chapter 5, an overview of the OCC link 

capabilities reported in the literature was initially explored. The modelled standard IS-

based Rx showed that the DC gain is proportional to 𝑇exp, therefore a trade-off between 

the gain and the required bandwidth, where increasing 𝑇exp will reduce the cut-off 

frequency. As a result, in OCC, the transmission bandwidth is rather low and limited to a 

few tens of kHz compared to the PD-based VLC systems. Therefore, in this chapter and 

for the first time, ANN adaptive equaliser was demonstrated at the receiver within the 

OCC system. The study provided the performance indicators for the proposed system. 
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The data rates achieved were the highest in the OCC field, recorded as 12 kbps at the 

exposure time of 2, 1, and 0.5 ms using a single source and the MLC-NRZ encoded 

signal. The proposed system demonstrated the capability in retrieving the transmitted 

information with a bandwidth beyond the cut-off frequency limitation. Hence, it provided 

the bandwidth improvement of around 9, 5, and 2 times at the exposure times of 2, 1, and 

0.5 ms, respectively. 

Similarly, an ANN-based equalization technique was proposed for a CP 4-PAM based 

OCC system in Chapter 6. An experimental setup was developed to demonstrate non-

flickering communications using a single light-emitting diode with a transmission rate of 

Rb of 24.4 kbps. The quality of received signals was measured based on the eye-diagram 

opening, eye linearity, and the BER. The ability to mitigate the intersymbol interference 

was demonstrated and hence to transmit a signal with an acceptable BER (below the FEC 

limit) for 𝑁pps of 20, and 30 for unequalized and equalized systems, respectively. An 

improvement of ~66 % in the eye linearity was achieved using a single LED, and a typical 

commercial camera with equalization technique was achieved. The limitation of the 

proposed system was assessed by the system complexity, including the associative 

memories needed for the look-up table training data as well as the IS resolution, gap-time 

and exposure time, and reading time. 

In Summary, this thesis focused on the key challenges of VLP systems and provided 

novel contributions and insights in (i) tilting the Tx can be beneficial in VLP systems to 

provide a highly accurate indoor VLP system by considering multipath reflections; (ii) 

increasing VLP robustness for IS-based Rx against different exposure time capturing 

conditions using a novel AoA-RSS-based VLP system and a single LED; (iii) increasing 

the OCC transmission link capabilities using an ANN-based equalizer; and (iv) 

demonstrate non-flickering communications using a CP 4-PAM based OCC system. 
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7.2 Future Works 

The conducted research in this thesis reveals additional prospects and areas that require 

further investigation. For future work, the following recommendations are suggested: 

1. Many positioning methods have been integrated with AR technology to 

provide indoor VLPs in the recent decade. Visual markers have been proposed 

as a solution to indicate the device's exact location and orientation. However, 

these markers must be scanned by users and displayed on everything they 

augment. As a result, its implementation is difficult to scale and cannot be 

modified without highly time-consuming and expensive efforts. Alternatively, 

an integration of a VLP-based OCC system with AR technology can be 

examined to provide a seamless and reliable positioning and communication 

link.  

2. The IS designer should do further research into expanding the IS bandwidth 

since it might be critical in providing a new technology that integrates 

imaging, positioning, and communication simultaneously. 

3. The NLoS communication link may be examined with IS-based VLP system 

applications, where the camera can capture the modulated signals regardless 

of the existence of the LoS link. 

4. The usage of a near-infrared band that is visible to a typical camera but 

invisible to the human eye might be researched further, allowing the OCC 

linkages to be used in a variety of IoT applications at low cost and with 

minimal complexity. 

5. An investigation into the use of IS-based VLP utilising an OCC system for 

underwater settings is another area that may contribute to the progress and 

enabling technologies of underwater wireless communication systems. This 

includes aspects such as system architecture, synchronisation, frame selection, 

image processing techniques required to decode the information, and 

optimization techniques. 
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