144,665 research outputs found

    Path-tracing Monte Carlo Library for 3D Radiative Transfer in Highly Resolved Cloudy Atmospheres

    Full text link
    Interactions between clouds and radiation are at the root of many difficulties in numerically predicting future weather and climate and in retrieving the state of the atmosphere from remote sensing observations. The large range of issues related to these interactions, and in particular to three-dimensional interactions, motivated the development of accurate radiative tools able to compute all types of radiative metrics, from monochromatic, local and directional observables, to integrated energetic quantities. In the continuity of this community effort, we propose here an open-source library for general use in Monte Carlo algorithms. This library is devoted to the acceleration of path-tracing in complex data, typically high-resolution large-domain grounds and clouds. The main algorithmic advances embedded in the library are those related to the construction and traversal of hierarchical grids accelerating the tracing of paths through heterogeneous fields in null-collision (maximum cross-section) algorithms. We show that with these hierarchical grids, the computing time is only weakly sensitivive to the refinement of the volumetric data. The library is tested with a rendering algorithm that produces synthetic images of cloud radiances. Two other examples are given as illustrations, that are respectively used to analyse the transmission of solar radiation under a cloud together with its sensitivity to an optical parameter, and to assess a parametrization of 3D radiative effects of clouds.Comment: Submitted to JAMES, revised and submitted again (this is v2

    EuclidNet: Deep Visual Reasoning for Constructible Problems in Geometry

    Full text link
    In this paper, we present a deep learning-based framework for solving geometric construction problems through visual reasoning, which is useful for automated geometry theorem proving. Constructible problems in geometry often ask for the sequence of straightedge-and-compass constructions to construct a given goal given some initial setup. Our EuclidNet framework leverages the neural network architecture Mask R-CNN to extract the visual features from the initial setup and goal configuration with extra points of intersection, and then generate possible construction steps as intermediary data models that are used as feedback in the training process for further refinement of the construction step sequence. This process is repeated recursively until either a solution is found, in which case we backtrack the path for a step-by-step construction guide, or the problem is identified as unsolvable. Our EuclidNet framework is validated on complex Japanese Sangaku geometry problems, demonstrating its capacity to leverage backtracking for deep visual reasoning of challenging problems.Comment: Accepted by 2nd MATH-AI Workshop at NeurIPS'2

    Scalable macromodelling of microwave system responses using sequential sampling with path-simplexes

    Get PDF
    A scattered sequential sampling algorithm for the automatic construction of stable and passive scalable macromodels of parameterised system responses with a well-conditioned refinement strategy using path-simplexes is proposed. The method is tailored towards the local scalable macromodelling schemes on scattered grids. A pertinent numerical example validates the proposed approach

    The DUNE-ALUGrid Module

    Get PDF
    In this paper we present the new DUNE-ALUGrid module. This module contains a major overhaul of the sources from the ALUgrid library and the binding to the DUNE software framework. The main changes include user defined load balancing, parallel grid construction, and an redesign of the 2d grid which can now also be used for parallel computations. In addition many improvements have been introduced into the code to increase the parallel efficiency and to decrease the memory footprint. The original ALUGrid library is widely used within the DUNE community due to its good parallel performance for problems requiring local adaptivity and dynamic load balancing. Therefore, this new model will benefit a number of DUNE users. In addition we have added features to increase the range of problems for which the grid manager can be used, for example, introducing a 3d tetrahedral grid using a parallel newest vertex bisection algorithm for conforming grid refinement. In this paper we will discuss the new features, extensions to the DUNE interface, and explain for various examples how the code is used in parallel environments.Comment: 25 pages, 11 figure
    • …
    corecore