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A scattered sequential sampling algorithm for the automatic construction
of stable and passive scalable macromodels of parameterized system
responses with a well-conditioned refinement strategy using path-
simplexes is proposed. The method is tailored towards the local scalable
macromodeling schemes on scattered grids. Pertinent numerical example
validates the proposed approach.

Introduction: Efficient design of electromagnetic (EM) systems often
requires expensive simulations using EM solvers which normally provide
high accuracy at a significant cost in terms of memory storage and
computing time. Alternatively, scalable macromodels can be used, which
approximate the complex behavior of EM systems, characterized by
frequency and additional design parameters, such as geometrical or
substrate features. Scalable macromodeling of EM systems has attracted
a lot of attention during recent years [1, 2]. However, one of the key issues
in these modeling approaches is that they select the number of modeling
samples a priori which might result in under sampling or over sampling at
the cost of computational resources.

In this paper the state-of-the art scalable macromodeling schemes are
automated with the help of a scattered sampling scheme which works on
local refinement of well-conditioned simplexes such that optimum number
of data samples are selected [?]. The refinement on the simplexes can be
done in many ways such as dividing along in-center. However, this might
lead to the creation of ill-conditioned simplexes called slivers. Generation
of slivers can be avoided by refining either locally [3, 4] or globally
[5, 6]. The local refinement scheme [3, 4] starts from the corner points
of an N -cube and then refines it into smaller simplexes in a tree fashion
like the sequential sampling method of [?], whereas the global refinement
schemes [5, 6] work on a primary Delaunay tessellation and then refine it to
improve the condition of simplexes. Hence the local path-simplex method
[3, 4] assures good condition number from the beginning of the sampling
process and is suitable for the application of different passivity-preserving
scalable macromodeling algorithms on scattered grids [1, 2]. In case if
the global refinement schemes [5, 6] were used, the existing mesh has
to undergo global refinement indicating that the local interpolated models
change significantly with a consequent computational burden. Moreover,
the tessellation generated by the method of path-simplexes is proved to be
Delaunay by construction [4], and for the above mentioned reasons it is
used in this paper.

Passivity Preserving Scalable Macromodeling: In this letter, we use one
of the local scalable macromodeling schemes which use the Vector
Fitting (VF) technique [7] to build frequency-dependent rational models
called root macromodels at the selected design space samples and then
parameterize them, see [1, 2]. These methods preserve stability and
passivity over the complete design space, and therefore are suitable
for time-domain simulations. The scalable macromodeling process starts
with a set of multivariate data samples {(s, g⃗)k,H(s, g⃗)k}Ktot

k=1 which
depends on frequency and additional design variables. From these data
samples, a set of root macromodels in pole-residue form are built for a
set of design space samples g⃗k by means of VF yielding a set of root
macromodels R(s, g⃗k). Stability and passivity are enforced using robust
standard techniques [8, 7], resulting in a set of stable and passive root
macromodels. The next step of these scalable macromodeling algorithms
is the parameterization of the set of root macromodels R(s, g⃗k). In [1], a
scalable macromodel is built by interpolating a set of root macromodels at
an input-output level, while in [2], a novel enhanced interpolation of root
macromodels is described, which results in high modeling capability and
robustness in comparison to [1].

Refinement using Well Conditioned Path-Simplexes: A path-simplex in
RN is defined as an N -Simplex having N mutually orthogonal edges
which, in the sense of graph theory, form a path [4]. The property of a path-
simplex which makes it attractive for the proposed sequential sampling is
the fact that it is a non-obtuse simplex. This ensures that, slivers are never
created during the local refinement of a simplex, ensuring convergence of

the algorithm. The proposed sequential sampling algorithm starts from a
single N -box region of the design space which is then normalized to a
N -cube and divided into N ! path-simplexes using the result of [4].

Fig. 1. Coexter’s trisection of the path-simplex in R3 (as in [3]).

In [3], Brandts et al. prove that given a path-simplex in RN , it can
be divided into N path-subsimplexes using Coxeter’s trisection method
generating N − 1 new sample points. Fig. 1 shows such a division for a
path-simplex in R3. The corners of the path-simplex are represented by
the position vectors p0, p1, p2, and p3 with respect to any arbitrary origin,
and the edges p0 − p1, p1 − p2, and p2 − p3 forming a path. Three new
path-simplexes are formed using the points y2 and y3 calculated as

yj = pj(∥p1∥2/∥pj∥2), j = 2, 3, ...N., (1)

where, ∥.∥ is the Euclidean norm [3]. Generation of slivers during the local
refinement can be monitored by calculating the aspect ratio Rasp =N d

D

where d
D

is the ratio of the diameters of the inscribing and circumscribing
N -spheres of the N -Simplex. Root macromodels are created at the corner
points of these simplexes and using the scalable macromodeling method
of [2], passive interpolated models are created for the parameterized
frequency responses.

Proposed Sequential Sampling Algorithm: The sequential sampling
algorithm consists of the following steps:

I) Initialization: Define a N -box design space with N design variables
g⃗= (g(1), . . . , g(N)) and generate Q=N ! path-simplexes.

II) Update the scalable macromodel R(s, g⃗) for the entire design space
with Q path-simplexes using the method of [2].

III) For each path-simplex q= 1, . . . , Q, check the error criteria at its in-
center,

i. IF: (Errq >∆): Divide qthpath-simplex into N path-subsimplexes
[3], update Q=Q+N − 1, q= q + 1 and go to Step II.

ii. ELSE: increment q= q + 1. IF (q≤Q): Not all subspaces are
checked for the error criteria, go to Step III; ELSE: Termination

Numerical Example: The S-Parameter response of a Hairpin bandpass
filter generated with the help of ADS Momentum1 on a substrate with
relative permittivity ϵr = 9.9 and a thickness of 0.0635 mm is modeled
(Fig. 2). Two spacings S1 ∈ [0.25, 0.35] mm and S2 ∈ [0.65, 0.75] mm and
two lengths L1 ∈ [12.0, 12.5] mm and L2 ∈ [2.75, 3.25] mm are chosen as
design variables (see Fig. 2) in addition to frequency ∈ [1.5, 3.5] GHz. The
parametric behavior of the filter is shown in Fig. 3.

Fig. 2. Layout of the microwave hairpin bandpass filter.

For the sequential sampling the Mean Absolute Error (MAE) is used

EMAE(g⃗) =

Pin∑
i=1

Pout∑
j=1

Ns∑
k=1

|Ri,j(sk, g⃗)−Hi,j(sk, g⃗)|
PinPoutNs

, (2)

to assess the accuracy of the model at the in-center of each simplex.
The method compares the actual EM simulation response Hi,j(s, g⃗) to
the scalable macromodel response Ri,j(s, g⃗), with Pin input ports, Pout

1 Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Fig. 3. Parameterization: |S11| and |S21| as a function of L1 and S1 resp.
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Fig. 4. Design space generated for Hairpin Filter

1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [GHz]

M
ag

ni
tu

de
 o

f 
S  2

1  a
t 

ra
nd

om
 v

al
id

at
io

n 
po

in
ts

 

 

EM Simulation
Macromodel

Point 1

Point 2
Point 3

Fig. 5. Magnitude of S21 at three random validation points.

output ports and Ns frequency samples. The proposed sequential sampling
algorithm is used along with the scalable macromodeling method of [9].
The MAE measure of (2) is used to assess the accuracy of the models
generated with a target accuracy of −50 dB. This resulted in the selection
of 68 design space points, with an achieved accuracy of −50.21 dB.

Fig. 4 shows the normalized values of the 68 design space points
selected, using a parallel coordinate plot [10]. In Fig. 4, the black dots
represent the sample points selected for each design variables with the
gray lines representing different samples points in four dimension. The
minimum aspect ratio was found to be equal to 0.0514, meaning no slivers
were created. Fig. 5 compares the magnitude of S-parameter matrix entry
S21 between the actual momentum simulation with the macromodel for
three random validation points in the design space and the responses
overlap showing the accuracy. In order to check the passivity, the H∞
norm ||R(s, (S1, S2, L1, L2)||∞ of the scalable macromodel for a dense
grid of 5× 5× 5× 5 (S1, S2, L1, L2) was calculated and was found to be
within the passivity bound, ||R(s, S1, S2, L1, L2)||∞ ≤ 1.

Conclusion: We have presented a scattered sampling algorithm for
the automatic construction of stable and passive macromodels of
parameterized system responses. The proposed method avoids the
generation of slivers by using path-simplex based refinement. The
proposed technique is validated on a pertinent numerical example.
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