2,675 research outputs found

    Split and Migrate: Resource-Driven Placement and Discovery of Microservices at the Edge

    Get PDF
    Microservices architectures combine the use of fine-grained and independently-scalable services with lightweight communication protocols, such as REST calls over HTTP. Microservices bring flexibility to the development and deployment of application back-ends in the cloud. Applications such as collaborative editing tools require frequent interactions between the front-end running on users\u27 machines and a back-end formed of multiple microservices. User-perceived latencies depend on their connection to microservices, but also on the interaction patterns between these services and their databases. Placing services at the edge of the network, closer to the users, is necessary to reduce user-perceived latencies. It is however difficult to decide on the placement of complete stateful microservices at one specific core or edge location without trading between a latency reduction for some users and a latency increase for the others. We present how to dynamically deploy microservices on a combination of core and edge resources to systematically reduce user-perceived latencies. Our approach enables the split of stateful microservices, and the placement of the resulting splits on appropriate core and edge sites. Koala, a decentralized and resource-driven service discovery middleware, enables REST calls to reach and use the appropriate split, with only minimal changes to a legacy microservices application. Locality awareness using network coordinates further enables to automatically migrate services split and follow the location of the users. We confirm the effectiveness of our approach with a full prototype and an application to ShareLatex, a microservices-based collaborative editing application

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    CATS: linearizability and partition tolerance in scalable and self-organizing key-value stores

    Get PDF
    Distributed key-value stores provide scalable, fault-tolerant, and self-organizing storage services, but fall short of guaranteeing linearizable consistency in partially synchronous, lossy, partitionable, and dynamic networks, when data is distributed and replicated automatically by the principle of consistent hashing. This paper introduces consistent quorums as a solution for achieving atomic consistency. We present the design and implementation of CATS, a distributed key-value store which uses consistent quorums to guarantee linearizability and partition tolerance in such adverse and dynamic network conditions. CATS is scalable, elastic, and self-organizing; key properties for modern cloud storage middleware. Our system shows that consistency can be achieved with practical performance and modest throughput overhead (5%) for read-intensive workloads

    Dynamic data placement and discovery in wide-area networks

    Get PDF
    The workloads of online services and applications such as social networks, sensor data platforms and web search engines have become increasingly global and dynamic, setting new challenges to providing users with low latency access to data. To achieve this, these services typically leverage a multi-site wide-area networked infrastructure. Data access latency in such an infrastructure depends on the network paths between users and data, which is determined by the data placement and discovery strategies. Current strategies are static, which offer low latencies upon deployment but worse performance under a dynamic workload. We propose dynamic data placement and discovery strategies for wide-area networked infrastructures, which adapt to the data access workload. We achieve this with data activity correlation (DAC), an application-agnostic approach for determining the correlations between data items based on access pattern similarities. By dynamically clustering data according to DAC, network traffic in clusters is kept local. We utilise DAC as a key component in reducing access latencies for two application scenarios, emphasising different aspects of the problem: The first scenario assumes the fixed placement of data at sites, and thus focusses on data discovery. This is the case for a global sensor discovery platform, which aims to provide low latency discovery of sensor metadata. We present a self-organising hierarchical infrastructure consisting of multiple DAC clusters, maintained with an online and distributed split-and-merge algorithm. This reduces the number of sites visited, and thus latency, during discovery for a variety of workloads. The second scenario focusses on data placement. This is the case for global online services that leverage a multi-data centre deployment to provide users with low latency access to data. We present a geo-dynamic partitioning middleware, which maintains DAC clusters with an online elastic partition algorithm. It supports the geo-aware placement of partitions across data centres according to the workload. This provides globally distributed users with low latency access to data for static and dynamic workloads.Open Acces
    • …
    corecore