
i
i

“middleware12” — 2012/5/27 — 23:00 — page 1 — #1 i
i

i
i

i
i

CATS: Linearizability and Partition Tolerance in
Scalable and Self-Organizing Key-Value Stores

Cosmin Arad, Tallat M. Shafaat, and Seif Haridi
{cosmin,tallat,seif}@sics.se

May 20, 2012

SICS Technical Report T2012:04
ISSN 1100-3154

Abstract. Distributed key-value stores provide scalable, fault-tolerant, and self-
organizing storage services, but fall short of guaranteeing linearizable consistency
in partially synchronous, lossy, partitionable, and dynamic networks, when data
is distributed and replicated automatically by the principle of consistent hash-
ing. This paper introduces consistent quorums as a solution for achieving atomic
consistency. We present the design and implementation of CATS, a distributed
key-value store which uses consistent quorums to guarantee linearizability and
partition tolerance in such adverse and dynamic network conditions. CATS is
scalable, elastic, and self-organizing; key properties for modern cloud storage
middleware. Our system shows that consistency can be achieved with practical
performance and modest throughput overhead (5%) for read-intensive workloads.

Keywords: atomic consistency, partition tolerance, scalability, self-organization,
elasticity, fault tolerance, dynamic reconfiguration, distributed key-value stores.

1 Introduction

Modern web-scale applications generate and access massive amounts of semi-structured
data at very high rates. To cope with such demands, the underlying storage infrastruc-
ture supporting these applications and services, must be extremely scalable. The need
for scalability, high availability, and high performance motivated service operators to
design custom storage systems [1–6] that replicate data and distribute it over a large
number of machines in a data center distributed system.

Due to the semi-structured nature of the data, such systems often have a simple
API for accessing data in terms of a few basic operations: put(key, value), delete(key),
and value = get(key), and hence they are referred to as key-value stores. The number
of replicas accessed by put and get operations determines the level of data consistency
provided by the system [7]. To achieve strong data consistency, whereby clients have
the illusion of a single storage server, put and get operations need to access overlapping
quorums of replicas [8]. Typically, the more servers an operation needs to wait for, the
higher its latency [9]. Early designs of key-value stores [1, 2] catered for applications
that did not require strong data consistency, and driven by the need for low latency and
availability, they chose to provide only eventual consistency for put and get operations.

Eventual consistency means that for a given key, data values may diverge at different
replicas, e.g., as a result of operations accessing less than a quorum of replicas or due to
network partitions [10,11]. Eventually, when the application detects conflicting replicas,
it needs to reconcile the conflict. This can be done automatically for data types with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications...

https://core.ac.uk/display/11435284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i
i

“middleware12” — 2012/5/27 — 23:00 — page 2 — #2 i
i

i
i

i
i

monotonic update operations [12]. In general however, conflict detection and resolution
increases application complexity, both syntactically, by cluttering its logic with extra
code paths, and semantically, by requiring programmers to devise reconciliation logic
for all potential conflicts.

There is a significant class of applications that cannot rely on an eventually consis-
tent data store. In particular, financial and electronic health record applications, services
managing critical meta-data for large cloud infrastructures [13, 14], or more generally,
systems in which the results of data-access operations have external side-effects, all
need a data store with strong consistency guarantees in order to operate correctly and
securely. The strongest level of consistency for put and get operations, is called atomic
consistency or linearizability [15] and informally, it guarantees that for every key, a get
returns the value of the last completed put or the value of a concurrent put, and once a
get returns a value, no subsequent get can return an older, stale value.

When scalable systems grow to really large number of servers their management
effort increases significantly. Thus, self-organization and self-healing are commendable
properties of modern scalable data stores [16]. Many existing key-value stores [1–4]
rely on consistent hashing [17] for automatic data management when servers join and
leave the system, or fail. Moreover, with consistent hashing all servers are symmetric.
No master server means no scalability bottleneck and no single point of failure.

Scaling to a very large number of servers also increases the likelihood of network
partitions and inaccurate failure suspicions [18] caused by network congestion or by
the failure or misconfiguration of network equipment. For the class of critical appli-
cations mentioned above, it is imperative that consistency is maintained during these
adverse network conditions, even at the expense of service availability [10, 11].

The complexities of eventual consistency and the need for atomic consistency mo-
tivated us to explore how linearizability can be achieved in scalable key-value stores
based on consistent hashing [1–4]. The problem is that simply applying quorum-based
put /get operations [19] within replication groups dictated by consistent hashing [20],
fails to satisfy linearizability in partially synchronous, lossy, and partitionable networks
with dynamic node membership. We show the pitfalls of a naïve approach and describe
the challenge of achieving linearizability in Section 3. Section 4 introduces consistent
quorums as a solution. In Section 5 we present our system’s architecture and in Section 6
its performance evaluation. Section 7 surveys related work and Section 8 concludes.

Contributions. In this paper we make the following contributions:

• We introduce consistent quorums as an approach to guarantee linearizability in a
decentralized, self-organizing, dynamic system spontaneously reconfigured by con-
sistent hashing, and prone to inaccurate failure suspicions and network partitions.
• We showcase consistent quorums in the design and implementation of CATS, a

distributed key-value store where every data item is an atomic register with lin-
earizable put /get operations and a dynamically reconfigurable replication group.
• We evaluate the cost of consistent quorums and the cost of achieving atomic data

consistency in CATS. We give evidence that consistent quorums admit (a) system
designs which are scalable, elastic, self-organizing, fault-tolerant, consistent, and
partition-tolerant, as well as (b) system implementations with practical performance
and modest throughput overhead (5%) for read-intensive workloads.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 3 — #3 i
i

i
i

i
i

2 Background
In this paper we leverage the research work on (a) consistent hashing, which has been
used for building scalable yet weakly-consistent distributed key-value stores [1–4], and
(b) quorum-based replication systems which are linearizable but not scalable [19].
Consistent Hashing. Consistent hashing [17] is a technique for balanced partitioning
of data among nodes, such that adding and removing nodes requires minimum reparti-
tioning of data. Consistent hashing employs an identifier space perceived as a ring. Both
data items and nodes are mapped to identifiers in this space. Many distributed hash ta-
bles (DHTs), such as Chord [20] and Pastry [21], were built using consistent hashing.

Each node in the system maintains a succ pointer to its successor on the consistent
hashing ring. The successor of a node n is the first node met going in the clockwise
direction on the identifier ring, starting at n. Similarly, each node keeps a pred pointer
to its predecessor. The predecessor of n is the first node met going anti-clockwise on the
ring, starting at n. A node n is responsible for storing all key-value pairs for which the
key identifier belongs to (p.pred, p]. For fault tolerance on the routing level, each node n
maintains a successor-list, consisting of n’s c immediate successors. For fault tolerance
on the data level, all key-value pairs stored on n are replicated on the first r−1 nodes in
n’s successor-list, where r is the replication degree. A periodic stabilization algorithm
was proposed in Chord [20] to maintain the ring pointers under node dynamism.
Linearizability. For a replicated storage service, linearizability provides the illusion of
a single storage server: each operation applied at concurrent replicas appears to takes
effect instantaneously at some point between its invocation and its response [15]; as
such, linearizability is sometimes called atomic consistency. In the context of a key-
value store, linearizability guarantees that for every key, a get always returns the value
updated by the most recent put, never a stale value, thus giving the appearance of a
global consistent memory. Linearizability is composable [15]. In a key-value store, this
means that if operations on each individual key-value pair are linearizable, then all
operations on the whole key-value store are linearizable.
Quorum-Based Replication Systems. For a static set of nodes replicating a data item,
Attiya et al. [19] showed how a shared memory register abstraction can be implemented
in a fully asynchronous message-passing system while satisfying linearizability. In their
protocol, also known as ABD, each operation is applied on a majority quorum of nodes,
such that the quorums for all operations always intersect in at least one node.

3 Problem Statement
A general technique used for replication with consistent hashing is successor-list repli-
cation [20], whereby every key-value data item is replicated at a number of servers that
succeed the responsible node on the consistent hashing ring. An example is shown in
Figure 1 on the left. Here, the replication degree is three and a quorum is a majority, i.e.,
any set of two nodes from the replication group. A naïve attempt of achieving lineariz-
able consistency is to use a shared memory register approach, e.g. ABD [19], within
every replication group. This will not work as false failure suspicions, along with con-
sistent hashing, may lead to non-intersecting quorums. The right diagram in Figure 1
depicts such a case, where node 15 falsely suspects node 10. According to node 10,



i
i

“middleware12” — 2012/5/27 — 23:00 — page 4 — #4 i
i

i
i

i
i

10 5 15 20 25 

replication group for key range (5, 10] 

10 5 15 20 25 

Fig. 1. Replication groups for keys in range (5, 10] using consistent hashing with successor-list
replication. Replication degree is three and a quorum is any set of two in the replication group.

the replication group for the keys in the range (5, 10] is {10, 15, 20}, while from node
15’s perspective, the replication group for the same keys is {15, 20, 25}. Now, two dif-
ferent operations on key 8 may reach non-intersecting quorums leading to a violation
of linearizability. For example, a put operation may complete after updating the value
associated with key 8 at replicas 10 and 20. A subsequent get operation may reach
replicas 15 and 25 and return a stale value despite contacting a majority of replicas.

In a key-value store with replication groups spontaneously reconfigured by consis-
tent hashing, applying put and get operations on majority quorums is not sufficient for
achieving linearizable consistency. We propose consistent quorums as a solution.

4 Consistent Quorums

Quorum-based protocols are typically modeled on the following pattern. An operation
coordinator sends request messages to a set of participants and waits for responses or ac-
knowledgments. Upon receiving a request message, each participant acts on the request
and responds to the coordinator with an acknowledgment. The coordinator completes
the operation as soon as it receives a quorum [8] of acknowledgments. Typically, es-
sential safety properties of the protocol are satisfied by ensuring that the quorums for
different operations intersect in at least one participant.

Quorum-intersection is easily achieved in a static system with a fixed set of nodes.
In a dynamic system however, different nodes may have inconsistent views of the group
membership. It is possible thus, that the number of nodes which consider themselves
responsible for a key range, i.e., the number of nodes in a replication group, is larger
than the replication degree. As a result, successive put and get operations may complete
by contacting non-overlapping quorums, as we’ve shown in the previous section.

The idea is then to maintain a membership view of the replication group at each node
which considers itself to be a replica for a particular key range according to the principle
of consistent hashing. Each node in a replication group has a view 〈v, i〉, where v is the
set of nodes in the replication group and i is the version number of the view.

Definition 1. For a given replication group G, a consistent quorum is a regular quo-
rum of nodes in G which are in the same view at the time when the quorum is assembled.

When a node replies to a request it stamps its reply with its current view. The main
idea is that a quorum-based operation will succeed only if it finds a quorum of nodes
with the same view, i.e., a consistent quorum.

As node membership changes over time, we need a mechanism to reconfigure the
membership views consistently at all replication group members. For that we devised a
group reconfiguration protocol based on Paxos consensus [22], extended with an extra
view installation phase and augmented with consistent quorums. We present our group
reconfiguration protocol in the following section.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 5 — #5 i
i

i
i

i
i

4.1 Paxos-Based Reconfiguration Using Consistent Quorums

Replication groups must be dynamically reconfigured [23] to account for new node
arrivals and to restore the replication degree after group member failures. Algorithms 1-
3 illustrate our Paxos-based reconfiguration protocol using consistent quorums. Earlier
we defined a consistent quorum as an extension of a regular quorum. Without loss of
generality, hereafter we focus on majority-based (consistent) quorums.

A reconfiguration is proposed and overseen by a coordinator node which could be a
new joining node, or an existing node that suspects one of the group members to have
failed. Reconfiguration (v ⇒ v′) takes the group from the current view 〈v, i〉 to the
next view 〈v′, i + 1〉. Group size stays constant and each reconfiguration changes the
membership of a replication group by a single node. One new node joins the group to
replace a node which leaves the group. The reconfiguration protocol amounts to the
coordinator getting the members of the current view to agree on the next view, and then
installing the decided next view at ever node in the current and the next views, i.e.,
v ∪ v′. We say that a node is in view v, once it has installed view v and before it installs
the next view, v′. Nodes install views sequentially, in the order of the view versions.

The key issue catered for by our reconfiguration protocol is maintaining the quorum-
intersection property for consistent quorums during reconfigurations. To make sure no
two consistent quorums may exist simultaneously for a replication group, e.g., for the
current and next views of a reconfiguration, the decided next view is first installed on a
majority of the old members, and thereafter it is installed on the new group member.

Under high churn, different nodes may concurrently propose conflicting next views.
Using consensus ensures that the next view is agreed upon by the members of the cur-

Algorithm 1 Reconfiguration coordinator
Init: p1Acks[i]← ∅, p2Acks[i]← ∅, p3Acks[i]← ∅

prop[i]← 0, rec[i]← ⊥ . ∀ consensus instance i

1: on 〈Propose: (v ⇒ v′)〉 do
2: rec[i]← (v ⇒ v′) . proposed reconfiguration
3: i← v
4: send 〈P1A: i, prop[i]〉 to all members of v

5: on 〈P1B: i, ACK, ts, rec, v〉 do
6: p1Acks[i]← p1Acks[i] ∪ {(ts, rec, v)}
7: if v = consistentQuorum(p1Acks[i]) then
8: r← highestProposedReconfig(p1Acks[i])
9: if r 6= ⊥ then rec[i]← r

10: send 〈P2A: i, prop[i], rec[i]〉 to all nodes in v

11: on 〈P1B: i, NACK, v〉 ∨ 〈P2B: i, NACK, v〉 do
12: prop[i]++ . retry with higher proposal number
13: send 〈P1A: i, prop[i]〉 to all members of i

14: on 〈P2B: i, ACK, v〉 do
15: p2Acks[i]← p2Acks[i] ∪ {v}
16: if v = consistentQuorum(p2Acks[i]) then
17: send 〈P3A: i, rec[i]〉 to all members of v

18: on 〈P3B: i, v〉 do
19: p3Acks[i]← p3Acks[i] ∪ {v}
20: if v = consistentQuorum(p3Acks[i]) then
21: send 〈P4A: v′, rec[i]〉 to new group member

Algorithm 2 Current group member
1: on 〈P1A: i, p〉 do . acceptor
2: if p ≥ rts[i] ∧ p ≥ wts[i] then
3: rts[i]← p . promised
4: reply 〈P1B: i, ACK, wts[i], rec[i], view〉
5: else reply 〈P1B: i, NACK, view〉

6: on 〈P2A: i, p, (v ⇒ v′)〉 do . acceptor
7: if p > rts[i] ∧ p > wts[i] then
8: wts[i]← p
9: rec[i]← (v ⇒ v′) . accepted

10: reply 〈P2B: i, ACK, view〉
11: else reply 〈P2B: i, NACK, view〉

12: on 〈P3A: i, (v ⇒ v′)〉 do . learner
13: installView(v′)
14: reply 〈P3B: i, view〉
15: send 〈Data: v′, data〉 to new member (v′ \ v)

Algorithm 3 New group member
1: on 〈P4A: v′, rec〉 do
2: installView(v′) . makes v′ busy

3: on 〈Data: v′, data〉 do . from old members
4: dataSet[v′]← dataSet [v′] ∪ {data}
5: reply 〈DataAck: v′〉
6: if G = consistentQuorum(dataSet) then
7: storeHighestItems(dataSet) . makes v′ ready



i
i

“middleware12” — 2012/5/27 — 23:00 — page 6 — #6 i
i

i
i

i
i

rent view, and the group reconfiguration proceeds safely. When a reconfiguration pro-
poser p notices that the decided next view v′ is different from the one it had proposed
(v′′), p assesses whether its proposed reconfiguration is still needed. This may be the
case, for example, when v′ still contains a node which p suspects to have failed. In such
a scenario, p generates a new reconfiguration to reflect the new view, and then proposes
it in the new protocol instance determined by v′.

In the algorithm specifications we omit the details pertaining to ignoring orphan
messages or breaking ties between proposal numbers based on the proposer id. The
consistentQuorum function tests whether a consistent quorum exists among the received
view-stamped acknowledgments and if so, it returns the view of the consistent quorum.

Phases 1 and 2 of the protocol are just the two phases of Paxos augmented with
consistent quorums. Phase 3 is the view installation phase. Once the next view v′ is
decided, the coordinator asks (P3A) the members of the current view v to install v′.
Once v′ is installed at a majority of nodes in v, only a minority of nodes are still in view
v, and so it is safe to install v′ at the new member, without allowing two simultaneous
majorities (one for v and one for v′). When a member of v installs v′ it also sends
the data to the new member of v′. Conceptually, once the new member receives the
data from a majority of nodes in the old view, it stores the data items with the highest
timestamp from a majority. In practice however, we optimize the data transfer such that
only keys and timestamps are pushed from all nodes in v to the new node, which then
pulls the latest data items in parallel. Copying the latest items in a majority is important
for satisfying linearizability for the put/get operations that occur during reconfiguration.

It is possible that multiple subsequent reconfigurations progress with a majority of
nodes while the nodes in a minority do not receive any P3A messages. Later, the minor-
ity nodes may receive P3A messages in the wrong order. When a node n is instructed to
apply a reconfiguration (v ⇒ v′) whereby n is a member of both v and v′, but n is not
yet in view v, n stores the reconfiguration in an install queue and applies it in the future,
immediately after installing view v. View installation acknowledgment (P3B) and data
transfer for v′ only occur after v′ is installed. It is also possible that after installing a
view v′, a new group member n subsequently installs newer views v′′, v′′′, etc., before
receiving all data for v′. In such cases, n stores the newer views in a data chain and
upon receiving the data for v′ it transfers it to the new members of v′′, v′′′, etc.

We say that a reconfiguration terminates when a majority of nodes in v′ have in-
stalled v′. To satisfy termination in the face of message loss and network partitioning
(even when a majority of v fails after phase 3), the members of v will periodically keep
trying to get an acknowledgment (DataAck) that the new node received all the data.

4.2 Linearizable Put and Get Operations Using Consistent Quorums

We adapted the ABD [19] algorithm, which implements an atomic register in a static
asynchronous system, to work with consistent quorums in a dynamic replication group.
Algorithms 4-6 illustrate our adaptation which provides linearizable put and get opera-
tions even during group reconfigurations. Any node in the system that receives a put or
get operation request from a client, will act as an operation coordinator. The operation
coordinator first locates the replication group for the requested key, and then engages in
a two-phase quorum-based interaction with the group members.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 7 — #7 i
i

i
i

i
i

Algorithm 4 Operation coordinator (part 1)
Init: rAcks[k]← ∅, wAcks[k]← ∅, G[k]← ∅

reading[k]← false . ∀ key k

1: on 〈GetRequest: k〉 do . from client
2: reading[k]← true
3: send 〈ReadA: k〉 to all replicas of k

4: on 〈PutRequest: k, val〉 do . from client
5: val[k]← val
6: send 〈ReadA: k〉 to all replicas of k

7: on 〈ReadB: k, ts, val, view〉 do
8: rAcks[k]← rAcks[k] ∪ {(ts, val, view)}
9: if G[k]← consistentQuorum(rAcks[k]) then

10: (t, v)← highestTimestampValue(rAcks[k])
11: if reading[k] then
12: val[k]← v
13: send 〈WriteA: k, t, val[k], G[k]〉 to G[k]
14: else
15: send 〈WriteA: k, t+1, val[k], G[k]〉 to G[k]

Algorithm 5 Replication group member
1: on 〈ReadA: k〉 ∧ ready(k) do . from coord.
2: reply 〈ReadB: k, version[k], value[k], view〉

3: on 〈WriteA: k, ts, val,G〉 do . from coord.
4: if ts > version[k] ∧G = view then
5: value[k]← val . update local copy
6: version[k]← ts

7: reply 〈WriteB: k, view〉

Algorithm 6 Operation coordinator (part 2)
1: on 〈WriteB: k, view〉 do
2: wAcks[k]← wAcks[k] ∪ {view}
3: if G[k] = consistentQuorum(wAcks[k]) then
4: if reading[k] then
5: send 〈GetResponse: k, val[k]〉 to client
6: else
7: send 〈PutResponse: k〉 to client
8: resetLocalState(k) . rAcks, wAcks, G, reading

For a get operation, the coordinator reads the value with the latest timestamp from a
consistent quorum. In the absence of concurrent put operations for the same key, the get
operation completes in a single round since all value timestamps received in a consistent
quorum are equal. (This optimization is omitted from Algorithm 4.) If the coordinator
sees different value timestamps in a consistent quorum, a concurrent put is in progress,
and since the coordinator cannot be sure that the latest value is already committed at
a consistent quorum, it commits it himself (WriteA) before completing the get. This
preserves linearizability by preventing a subsequent get from returning the old value.

For a put operation, the coordinator first reads the latest value timestamp from a
consistent quorum, and then it commits the new value with a higher timestamp at a
consistent quorum of the same view. We omit from the algorithms details pertaining
to breaking ties between value timestamps based on coordinator id, or ignoring orphan
messages. We also omit details about operation timeout and retrial, e.g., when a coordi-
nator does not manage to assemble a consistent quorum within a given timeout or when
the operation is retried because a view change occurred between the two phases. Coor-
dinator retrial ensures operation termination. Clients retry upon coordinator failure.

When a server has just joined the replication group, i.e., it installed the view but is
still waiting for the data, we say that view is busy (Algorithm 3 lines 2 and 7). Before the
view becomes ready the server will not reply to ReadA messages (Algorithm 5 line 1).
Transferring the latest values from a consistent quorum preserves linearizability.

4.3 Network Partitions and Inaccurate Failure Suspicions

A network partition is a situation where the nodes of a distributed system are split
into disconnected components which cannot communicate with each other. This is a
special case of message loss whereby a set of links systematically drop messages for a
while, until the network partition heals. A closely related situation is that of inaccurate
failure suspicions where due to similar network failures or congestion, some nodes may
suspect other nodes to have crashed after not receiving responses from them for long



i
i

“middleware12” — 2012/5/27 — 23:00 — page 8 — #8 i
i

i
i

i
i

enough. We say that a distributed protocol is partition tolerant if it continues to satisfy
its correctness properties despite these adverse network conditions.

Paxos [22] and ABD [19] are intrinsically partition tolerant; since they depend on
majority quorums, operations in any partition that contains a majority quorum will suc-
ceed. To maintain their partition tolerance when applying Paxos and ABD within a
consistent hashing ring, we use consistent quorums to preserve their safety properties.
To preserve their liveness properties, we employ a ring unification algorithm [24] that
repairs the consistent hashing ring topology after a transient network partition, hence
reconciling node responsibilities dictated by consistent hashing with existing replica-
tion group views, and thus reducing the number of group reconfigurations. This makes
our overall solution partition tolerant, satisfying both safety and liveness properties.

4.4 Safety

Lemma 1. After a successful (terminated) reconfiguration (v ⇒ v′), at most a minority
of nodes in v may still have v installed.
Proof. If reconfiguration (v ⇒ v′) terminated, it must have completed phase 3, thus a
majority of nodes in v must have installed v′ (or yet a newer view). Therefore, at most
a minority of nodes in v may still have v installed.

Lemma 2. For a particular key replication group, there cannot exist two disjoint ma-
jorities (w.r.t. view size V ) with consistent views, at any given time.
Proof. Case 1 (same view): no view is ever installed on more than V nodes. Therefore,
there can never exist two or more disjoint majorities with the same consistent view.
Case 2 (consecutive views v ⇒ v′): by the algorithm (phase 3), a majority for v′ cannot
exist before v′ is installed at a majority of v. Once a majority of nodes in v have installed
v′, they now constitute a majority in v′ and by Lemma 1 at most a minority of v still has
v installed, thus two disjoint majorities for views v and v′ cannot exist simultaneously.
Case 3 (non-consecutive views v ; v′′): views are always installed in sequence. For the
group to reach view v′′ from v, a majority of v must have first applied a reconfiguration
(v ⇒ v′). At that time, by Case 2, a consistent majority for v ceased to exist.

Lemma 3. For a particular key replication group, no sequence of network partitions
and mergers may lead to disjoint consistent quorums.
Proof. By the algorithm, a majority of nodes in view v must be available and connected
for a reconfiguration (v ⇒ v′) to succeed. Thus, reconfigurations can only occur in
partitions containing a majority of nodes, while nodes in any minority partitions are
stuck in view v. Case 1: network partition splits group in multiple minority partitions
so no reconfiguration can occur; when the partitions merge, by Case 1 of Lemma 2 we
cannot have disjoint consistent quorums. Case 2: a sequence of network partitions and
reconfigurations (in a majority partition M ) results in multiple minority partitions that
later merge (independently from M ). Because every reconfiguration generates a new
view, the views available in different minority partitions are all distinct and thus, they
cannot form a consistent quorum (disjoint from a consistent quorum in M ).

From Lemmas 2 and 3, we have Theorem 1 which is sufficient for linearizability.

Theorem 1. For any key replication group, no two disjoint consistent quorums may
exist simultaneously. Therefore, any two consistent quorums always intersect.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 9 — #9 i
i

i
i

i
i

4.5 Liveness

Lemma 4. Provided a consistent quorum of the current view v is accessible, a group
reconfiguration (v ⇒ v′) will eventually terminate.

Argument. Given that the reconfiguration coordinator does not crash, and a majority of
v is accessible, with periodic retrials to counter for message loss, the coordinator will
eventually succeed in installing v′ on a majority of v′. If the coordinator crashes, another
node will become coordinator, and guided by consistent hashing, it will propose new
reconfigurations to reconcile the group membership with the ring membership.

Corollary 1. Provided that all network partitions cease, every ongoing group recon-
figuration will eventually terminate.

Argument. After all network partitions merge, even groups that had been split into mul-
tiple minority partitions are now merged, thus satisfying the premise of Lemma 4.

Lemma 5. Provided a consistent quorum is accessible, put and get operations will
eventually terminate.

Argument. Given that an operation’s coordinator does not crash before the operation
completes, it will periodically retry to assemble a consistent quorum for the operation’s
key, until one becomes available and connected. When a client detects that the coordi-
nator crashed, the client retries its operation with a different coordinator.

From Lemmas 4 and 5, and Corollary 1, we have Theorem 2 regarding termination.

Theorem 2. For any key replication group, provided a consistent quorum is available
and connected, any put and get operations issued in the same partition, and any re-
configurations will eventually terminate. Moreover, if the network is fully connected, all
operations and reconfigurations will eventually terminate.

4.6 Simulation-Based Correctness Tests

We implemented these algorithms in the CATS system using the Kompics message-
passing component framework [25]. Kompics allowed us to execute the system in deter-
ministic simulation mode. We devised a wide range of experiment scenarios comprising
concurrent reconfigurations and failures, and used an exponential message latency dis-
tribution with a mean of 89ms. We verified stochastically that our algorithms satisfied
their safety invariants and liveness properties, in all scenarios for 1 million RNG seeds.

5 System Architecture

To validate and evaluate the idea of consistent quorums, we have designed and built
the CATS system, a scalable and self-organizing key-value store which leverages con-
sistent quorums to provide linearizable consistency and partition tolerance. CATS was
implemented (in Java) using the Kompics message-passing component framework [25],
which allows the system to readily leverage multi-core hardware by executing concur-
rent components in parallel on different cores. We now describe the high-level system
architecture of CATS. Figure 2 illustrates the main protocol components of a single



i
i

“middleware12” — 2012/5/27 — 23:00 — page 10 — #10 i
i

i
i

i
i

Ping Failure Detector Local Persistent Store Cyclon Random Overlay 

Consistent Hashing Ring Replication Group Member Epidemic Dissemination 

Reconfiguration Coordinator Network Data Transfer Full-View O(1) Hop Router 

Load Balancer Garbage Collector Operations Coordinator 

Fig. 2. Overview of the protocol components architecture at a single CATS server.

CATS server. In addition to this, a client library, linked with application clients, is in
charge of locating servers and relaying put and get operations from the application.

One fundamental building block for CATS is the Consistent Hashing Ring module.
It subsumes a periodic stabilization (PS) protocol [20] for maintaining the ring point-
ers under node dynamism, as dictated by consistent hashing. Since PS does not cater
for network partitions and mergers, it is possible that during a transient network par-
tition, PS reorganizes the ring into two disjoint rings. We use a ring unification (RU)
protocol [24] to repair pointers and converge to a single ring after a network partition.
Thus, CATS’s Consistent Hashing Ring overlay is partition tolerant. Both PS and RU are
best-effort protocols: they do not guarantee lookup consistency [26] and may lead to
non-overlapping quorums (Section 3). The Consistent Hashing Ring module relies on a
Ping Failure Detector component to monitor its ring neighbors. The failure detector is
unreliable [18] and it can inaccurately suspect monitored nodes to have crashed.

Another crucial component of CATS is the Cyclon Random Overlay. This module
encapsulates the Cyclon gossip-based membership protocol [27]. Cyclon implements a
peer sampling service which provides every server with a continuous stream of random
nodes in the system. We use this stream to build a full membership view of the system
in the Full-View O(1) Hop Router component. This enables an Operation Coordinator
to very efficiently look up (in O(1) hops [28]) the responsible replicas for a given key-
value pair. The view at each node is not required to immediately reflect changes in node
membership and so, the view can be stale for short periods, for large system sizes. A
membership change detected in a local neighborhood is propagated to the rest of the
system by the Epidemic Dissemination module. This module also relies on the random
peer sampling service to quickly and robustly broadcast churn events to all servers [29].

The Replication Group Member module handles consistent group membership views
and view reconfigurations (acting as an acceptor and learner in Algorithms 2 and 3).
View reconfigurations are proposed (Algorithm 1) by the Reconfiguration Coordinator
component, which monitors the state of the Consistent Hashing Ring and tries to rec-
oncile the replication group membership with the ring membership. To avoid multiple
nodes proposing the same reconfiguration operation, we employ a selfish mechanism,
whereby only the node responsible for a key-range replication group (according to con-
sistent hashing) proposes a reconfiguration in this group. Apart from averting multiple
nodes from proposing the same reconfiguration, this mechanism has an added benefit.
In consistent hashing, there is always at least one node responsible for each key range,
and this node will keep attempting to repair the replication group for that key range.
Periodic retrials will make sure that replication group reconfigurations will eventually
terminate for all key ranges, despite message loss and transient network partitions.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 11 — #11 i
i

i
i

i
i

The Network Data Transfer component implements optimizations for fetching data
to the new node joining a replication group after a view reconfiguration. The new node
transfers data in parallel from existing replicas, by splitting the requested data among
all replicas. This results in better bandwidth utilization, fast data transfer due to parallel
downloads, and it avoids loading a single replica. If a replica fails during data transfer,
the requesting node reassigns the requests sent to the failed node, to the remaining alive
replicas. Before transferring values, each replica first transfers keys and their times-
tamps to the new node. Based on the timestamps, the new node retrieves the latest value
from the node with the highest time stamp for each key. This avoids unnecessary trans-
fers of values from existing replicas to the new replica, thus lowering bandwidth usage.

The Replication Group Member module also handles operation requests coming from
an Operation Coordinator (Algorithms 4 and 6), hence acting as a replica storage server
in Algorithm 5. In serving operation requests, it relies on a local key-value storage inter-
face provided by the Local Persistent Store module. Currently, we have three different
implementations for the Local Persistent Store module. The first is based on the Java Edi-
tion of BerkeleyDB (SleepyCat) [30], the second leverages LevelDB [31], and the third
uses an in-memory sorted map. In this paper we evaluated the in-memory implemen-
tation. The persistent stores are used to implement individual-node and system-wide
recovery protocols. Crash-recovery, while using persistent storage, is very similar to
the node being partitioned away for a while. In both cases, when a node recovers or
the partition heals, the node has the same configuration and data as it had before the
failure/partition. Hence, our algorithms already support crash-recovery since they are
partition tolerant. System-wide coordinated shutdown and recovery protocols are very
important in cloud environments. They constitute the subject of work in progress and
we omit their details here as they are outside the scope of this paper.

Systems built on consistent hashing can achieve load balancing by employing the
concept of virtual nodes as in Dynamo [1], Riak [3], or Voldemort [4]. Each physical
node joins the system as multiple virtual nodes using different identifiers. The number
of virtual nodes hosted by a physical node, and the placement of each virtual node
largely addresses any load-imbalance. In CATS, the Load Balancer module handles
load balancing. It relies on the Epidemic Dissemination protocol to aggregate statistics
about the load at different nodes in the system. These statistics are then used to make
load balancing decisions, such as moving virtual nodes on the identifier space, and
creating or removing virtual nodes. Load balancing enables us to support range queries
in the Operation Coordinator, by allowing the keys to be stored in the system without
hashing, and removing the load imbalances arising from this. Load balancing and range
queries in CATS are the subject of work in progress.

The Garbage Collector module implements a periodic mechanism of garbage col-
lection, to avoid unnecessary copies of data lingering around in the system as a result
of transient network partitions. For example, if a replica n of group G gets partitioned
away, G may still have a consistent quorum in a majority partition. Hence, G can be re-
configured, and thus evolve into subsequent new groups. After the partition ceases, the
data values stored at node n are stale, and so, they can be considered garbage. Garbage
collection runs periodically and it makes sure to remove only data for views that were
already reconfigured and for which node n is no longer a member of.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 12 — #12 i
i

i
i

i
i

6 Experimental Evaluation

In this section, we evaluate the performance, in terms of throughput and operation laten-
cies, as well as the scalability and elasticity of our implementation of the CATS system.
Furthermore, we evaluate the performance overhead of achieving consistency, and we
perform a comparison with Cassandra 1.1.0, a system with an architecture similar to
CATS. We ran our experiments on the Rackspace cloud infrastructure, using 16 GB
RAM server instances. We used the YCSB [32] benchmark as a load generator for our
experiments. We evaluated two workloads with uniform distribution of keys; a read-
intensive workload comprising of 95% reads and 5% updates, and an update-intensive
workload comprising of 50% reads and 50% updates. We chose to perform updates in-
stead of inserts in the workload to keep the data set constant throughout the experiment.
Such a choice does not have side-effects since the protocol for an update operation is
the same as the one for an insert operation. Unless otherwise specified, we used data
values of size 1 KB. We placed the servers at equal distance on the consistent hashing
ring to avoid being side-tracked by load-balancing issues.

6.1 Performance

In the first set of experiments, we measured the performance of CATS in terms of the
average latency per operation and the throughput of the system. We increased the load,
i.e. the dataset size and the operations request rate, proportionally to the number of
servers, by increasing the number of keys initially inserted into CATS, and the number
of YCSB clients, respectively. For instance, we load 300 thousand keys and use 1 client
for generating requests for 3 servers, 600 thousand keys and 2 clients for 6 servers, and
so on. For each system size, we varied the request load by varying the number of threads
in the YCSB clients. For low number of client threads, the request rate is low and thus
the servers may be under-utilized, while a high number of client threads can overload
the servers. We started with 4 threads, and doubled the thread count each time for the
next experiment until 128 threads.

0 10 20 30 40
0

5

10

15

20

25

30

35

Latency [ms]

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

]

 

 

24 servers

12 servers

6 servers

3 servers

Reads (95%)
Updates (5%)

0 10 20 30 40 50
0

5

10

15

20

25

Latency [ms]

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

]

 

 

24 servers

12 servers

6 servers

3 servers

Reads (50%)
Updates (50%)

Fig. 3. Performance for a read-intensive (left) and an update-intensive (right) workload.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 13 — #13 i
i

i
i

i
i

Figure 3 shows the results, averaged over three runs, for various number of servers.
For each server count, as the request load increases, the throughput also increases till a
certain value after which the only latency increases without an increase in throughput.
Such a state depicts that the system is saturated and cannot offer more throughput. In
other words, when the system is underloaded (few client threads), the latencies are low
yet server resources are not fully utilized. As the request rate is increased by increasing
the number of client threads, the latency and throughput also increase until a certain
throughput is offered. For instance, for 3 servers and a read-intensive workload, the
system saturates at approximately 4000 operations/sec with an average latency of 8
milliseconds (and 32 YCSB client threads). Further increasing the request rate does not
increase the throughput, while the latency keeps increasing. This depicts an overloaded
system, where the current number of servers cannot serve all incoming requests, leading
to queueing effects. This behavior is same for both workloads.

6.2 Scalability

In our next experiments, we evaluated the scalability of CATS. We increased the dataset
size and requests rate proportionally to the number of servers, as we did in the perfor-
mance experiments. Figure 4 shows the throughput of the system as we vary the number
of servers for both workloads. The figure shows that CATS scales linearly with a slope
of one. With small number of servers, it is more likely that requests already arrive at
one of the replicas for the requested key. Thus, the number of messages sent over the
network is smaller. This explains the slightly higher throughput for 3 and 6 servers.
The reason for linear scaling is that CATS is completely decentralized and all nodes
are symmetric. Owing to linear scalability, the number of servers needed to achieve
a certain throughput or to handle a certain rate of requests, can be calculated easily
when deploying CATS in a cloud environment, provided the load is balanced across the
servers. Such a decision can be made actively by either an administrator, or a feedback
control loop that monitors the rate of client requests.

3 6 12 24 48 96
3

6

12

24

48

96

Number of servers (log)

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

] (
lo

g)

 

 

32 Client threads
16 Client threads
8 Client threads

3 6 12 24 48 96
2

4

8

16

32

64

Number of servers (log)

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

] (
lo

g)

 

 

32 Client threads
16 Client threads
8 Client threads

Fig. 4. Scalability for a read-intensive (95%, left) and an update-intensive (50%, right) workload.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 14 — #14 i
i

i
i

i
i

6.3 Elasticity

A highly desirable property for systems running in cloud environments is elasticity, the
ability to add or remove servers while the system is running. When a system is over-
loaded, i.e. latency per operation is so high that it violates an service-level agreement
(SLA), the performance can be improved by adding new servers. Similarly, when the
load is very low, one can reduce running costs by decreasing the number of servers
without violating any SLA. A system with good elasticity should perform better as
servers are added, with a short disruption while the system reconfigures to include the
new servers. The length of the disruption depends on the amount of data that needs to
be transfered for the reconfiguration. A well-behaved system should have low latencies
during this disruption window so that the end clients are not affected. In this experi-
ment, we evaluated the elasticity of CATS. We started the system with 3 servers, loaded
2.4 million 1 KB values, and injected a high operation request rate via the YCSB client.
While the workload was running and keeping the request rate constant, we added a new
server every 10 minutes until the server count doubled to 6 servers. Afterwards, we
started to remove servers every 10 minutes until we were back to 3 servers. We mea-
sured the average of operation latencies in 1 minute intervals throughout the experiment.
The results of our experiment are presented in Figure 5. These results show that CATS
incorporates changes in the number of servers with short windows (1–2 minutes) of dis-
ruption when the reconfiguration occurs, while the average latencies remain bounded
by 2× x where x is the latency before the reconfiguration was triggered. Furthermore,
since CATS is scalable, the latency approximately halves when the number of servers
doubles to 6 between 30–50 minutes compared to 3 servers between 0–10 minutes. As
nodes are removed after 50 minutes, the latency starts increasing as expected.

0 10 20 30 40 50 60 70 80

2

3

4

5

6

7

8

9

Time [min]

R
ea

d 
la

te
nc

y 
[m

s]

3 servers

4 servers

5 servers

6 servers
5 servers

4 servers

3 servers

Fig. 5. Elasticity for a read-only workload.

6.4 Overhead of Atomic Consistency and Consistent Quorums

Next, we evaluated the overhead of atomic consistency compared to eventual consis-
tency. For a fair comparison, we implemented eventual consistency in CATS, enabled
through a configuration parameter. Here, read and write operations are always per-
formed in one phase, and read-impose (read-repair in Cassandra terms) is never used.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 15 — #15 i
i

i
i

i
i

When a node n performs a read operation, it sends read requests to all replicas. Each
replica replies with a timestamp and value. After n receives replies from a majority of
replicas, it returns the value with the highest timestamp as a result of the read operation.
Similarly, when a node m performs a write operation, it sends write requests to all repli-
cas, using the current wall clock time as a timestamp. Upon receiving such a request, a
replica stores the value and timestamp only if the received timestamp is higher than the
replica’s local timestamp. The replica then sends an acknowledgment to the writer m.
Node m considers the write operation complete upon receiving acknowledgments from
a majority of the replicas.

We also measured the overhead of consistent quorums. For these measurements,
we modified CATS such that nodes did not send the replication group view in the read
and write messages. Removing the replication group from messages reduces the size of
messages, and hence requires less bandwidth.

For these experiments, we varied the size of the stored values, and we measured the
throughput of a system with 3 servers. Our results, averaged over five runs, are shown
in Figure 6. The results show that as the value size increases, the throughput drops. This
implies that the network becomes a bottleneck for larger value sizes. The same trend
is observable in both workloads. Furthermore, as the value size increases, the cost of
using consistent quorums becomes negligible. For instance, the loss in throughput for
both workloads when using consistent quorums is less than 5% for 256 bytes values,
4% for 1KB values, and 1% for 4KB values.

Figure 6 also shows the cost of achieving atomic consistency by comparing the
throughput of regular CATS with the throughput of our eventual consistency imple-
mentation. The results show that the overhead of atomic consistency is negligible for a
read-intensive workload but as high as 25% for an update-intensive workload. The rea-
son for this difference in behavior between the two workloads is that for a read-intensive
workload, the second phase for reads (read-impose/read-repair) is rarely needed, since
the number of concurrent writes to the same key are very low due to the large num-
ber of keys in the workload. For an update-intensive workload, due to many concurrent

16 64 256 1024 4096
2.5

3

3.5

4

Value size [bytes] (log)

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

]

 

 

Eventual consistency
CATS without CQs
Atomic consistency

16 64 256 1024 4096
1.5

2

2.5

3

3.5

4

Value size [bytes] (log)

T
hr

ou
gh

pu
t [

10
00

 o
ps

/s
ec

]

 

 

Eventual consistency
CATS without CQs
Atomic consistency

Fig. 6. Overhead of Atomic consistency and Consistent quorums for a read-intensive (95%, left)
and an update-intensive (50%, right) workload.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 16 — #16 i
i

i
i

i
i

writes, the read operations often require to impose the read value. Hence, in compari-
son to an update-intensive workload, the overhead of achieving linearizability is very
low (less than 5% loss in throughput for all value sizes) for a read-intensive workload.
We believe that this is an important result. Applications that are read-intensive can opt
for atomic consistency without a significant loss in performance, while avoiding the
complexities of using eventual consistency.

6.5 Comparison with Cassandra

The architecture of Cassandra [2] and Dynamo [1] are closest to CATS as both use con-
sistent hashing with successor-list replication. Since Cassandra is available openly, here
we compare the performance of CATS with that of Cassandra. We are comparing our
research system with a system that leverages half a decade of implementation optimiza-
tions and fine tuning. Our aim is to give readers an idea about the relative performance
difference, which, taken together with our evaluation of the cost of consistency, may
give an insight into the cost of atomic consistency if implemented in Cassandra. We
leave the actual implementation of consistent quorums in Cassandra to future work.

We used Cassandra 1.1.0 for our experiments, and used the QUORUM consistency
level for a fair comparison with CATS. We chose the initial data size such that the
working set would fit in main memory. Furthermore, since CATS only stores data in
main memory while Cassandra uses disk, we set commitlog_sync: periodic
in Cassandra for a fair comparison to minimize the effects to disk activity on opera-
tion latencies. Figure 7 shows a comparison of average latencies, averaged over five
runs, for the same workloads for Cassandra and Eventual consistency implemented in
CATS. The trend of higher latencies for large value sizes remains the same for both
systems and workloads as the network starts to become a bottleneck. For CATS, read
and write latencies are the same since both involve the same message complexity (one
phase) and the same message sizes. On the other hand, Cassandra writes are faster than
reads, which is a known fact since writes require no reads or seeks, while reads may

16 64 256 1024 4096
2

4

6

8

10

12

Value size [bytes] (log)

La
te

nc
y 

[m
s]

 

 

Reads (Eventual consistency)
Updates (Eventual consistency)
Reads (Cassandra)
Updates (Cassandra)

16 64 256 1024 4096
2

4

6

8

10

12

14

Value size [bytes] (log)

La
te

nc
y 

[m
s]

 

 

Reads (Eventual consistency)
Updates (Eventual consistency)
Reads (Cassandra)
Updates (Cassandra)

Fig. 7. Comparison of latencies for Cassandra and CATS with Eventual Consistency for a read-
intensive (95%, left) and an update-intensive (50%, right) workload.



i
i

“middleware12” — 2012/5/27 — 23:00 — page 17 — #17 i
i

i
i

i
i

need to read multiple SSTables1. The results show that the operation latencies in CATS
are approximately three times higher than in Cassandra (except reads in an update-
intensive workload, where the effects of commit log disk accesses affect Cassandra’s
performance).

Given our comparison between Cassandra and Eventual consistency in CATS, and
the low loss in throughput for achieving atomic consistency compared to eventual con-
sistency (Section 6.4), we believe that an implementation of consistent quorums in Cas-
sandra can provide linearizable consistency without considerable loss in performance
(e.g. less than 5% loss for a read-intensive workload).

7 Related Work

Eventually-Consistent Key-Value Stores. Distributed key-value stores, such as Cas-
sandra [2] and Dynamo [1], employ principles from DHTs to build scalable and self-
managing data stores. In contrast to CATS, these systems chose availability over atomic
consistency, hence only providing eventual consistency. While eventual consistency is
sufficient for some applications, the complexities of merging divergent replicas can be
non-trivial. Furthermore, we show through evaluation that the overhead of atomic con-
sistency is very low for read-intensive workloads.

Reconfigurable Replication Systems. To handle dynamic environments, atomic reg-
isters were extended by protocols such as RDS [33] and DynaStore [34] to be recon-
figurable. Similarly, SMART [35] enabled reconfiguration in replicated state machines.
While these systems can handle dynamism and provide atomic consistency, they are not
scalable as they cannot partition the data across a large number of machines.

Consistent Meta-Data Stores. Data-center systems providing distributed coordination
and consistent meta-data storage services, such as Chubby [13] and ZooKeeper [14,
36], provide linearizability and support crash-recovery, but are neither scalable, nor
reconfigurable. We believe that the idea of consistent quorums applied to consistent
hashing rings can be used to scale such meta-data stores to larger capacities.

Master-based key-value stores, such as Bigtable [5], HBase [6], and MongoDB [37],
rely on a central server for coordination and data partitioning. Similarly, Spinnaker [38]
uses Zookeeper [14] for the coordation and data partition. Since these systems are cen-
tralized, their scalability is limited. In contrast, CATS is decentralized and all nodes are
symmetric, allowing for unlimited scalability.

Scalable and Consistent Key-Value Stores. Similar to CATS, Scatter [39] is a scal-
able and consistent distributed key-value store. Scatter employs an extra subsystem and
policies to decide when to reconfigure (split and merge) replication groups. While this
makes Scatter flexible, it also requires a distributed transaction across three adjacent
replication groups for the split and merge reconfiguration operations to succeed. In
contrast, CATS has a simpler and more efficient, both in number of messages and mes-
sage delays, reconfiguration protocol that does not need a distributed transaction. In
CATS, each reconfiguration operation only operates on the replication group that is be-
ing reconfigured. Therefore, the period of unavailability to serve operations is much

1 http://wiki.apache.org/cassandra/ArchitectureOverview

http://wiki.apache.org/cassandra/ArchitectureOverview


i
i

“middleware12” — 2012/5/27 — 23:00 — page 18 — #18 i
i

i
i

i
i

shorter (almost non-existent) in CATS, compared to Scatter. Furthermore, we focus on
consistent-hashing at the node level, which makes our approach directly implementable
in existing key-value stores like Cassandra [2]. Lastly, the unavailability of Scatter’s
implementation precludes a detailed comparison, e.g. in terms of data unavailability
during reconfiguration, and elasticity.
Related Work on Consistency. An orthogonal approach to atomic consistency is to
explore the tradeoffs between consistency and performance. For instance, PNUTS [40]
introduces time-line consistency, whereas COPS [41] provides causal consistency at
scale. These systems provide consistency guarantees weaker than linearizability, yet
stronger guarantees than eventual consistency. While such systems perform well, the
semantics of the consistency models they offer restricts the class of applications that
can use these systems.
Fault-tolerant Replicated Data Management. Abbadi et al. [42] proposed a fault-
tolerant protocol for replicated data management. Their solution is similar to CATS
with respect to quorum-based operations and consensus-based replication group recon-
figurations. In contrast to their solution, CATS uses the consistent hashing ring, which
enables CATS to be self-managing and self-organizing under churn. Consistent hash-
ing partitions the keys in a balanced manner, and the notion of responsibility in terms
of which nodes are responsible for storing which key ranges is well-defined. Thus, the
reconfigurations required when nodes join and fail is dictated by consistent hashing.
Furthermore, owing to the routing mechanisms employed by CATS, any node can find
any data item in a few hops even for very large network sizes.
Discussion: Alternatives to Operations on Majority Quorums. For some appli-
cations majority quorums may be too strict. To accommodate specific read-intensive
or update-intensive workloads, they might want flexible quorum sizes for put and get
operations, like read-any-update-all or read-all-update-any, despite the fault-tolerance
caveats entailed. Interestingly, our ABD-based two-phase algorithm, depends on major-
ity quorums for linearizability, however, given more flexible yet overlapping quorums,
the algorithm still satisfies sequential consistency [43], which is still a very useful level
of consistency. On a related node, the idea of primary-backup replication could be ap-
plied onto the consistent replication groups of CATS, to enable efficient primary reads.

8 Conclusions

In this paper we have shown that it is non-trivial to achieve linearizable consistency in
dynamic, scalable, and self-organizing key-value stores which distribute and replicate
data according to the principle of consistent hashing. We introduced consistent quorums
as a solution to this problem for partially synchronous network environments prone to
message loss, network partitioning, and inaccurate failure suspicions. As examples, we
presented adaptations of Paxos and ABD augmented with consistent quorums.

We described the design, implementation, and evaluation of CATS, a distributed
key-value store that leverages consistent quorums to provide linearizable consistency
and partition tolerance. CATS is self-managing, elastic, and it exhibits unlimited linear
scalability, all of which are key properties for modern cloud computing storage mid-
dleware. Our evaluation shows that it is feasible to provide linearizable consistency for



i
i

“middleware12” — 2012/5/27 — 23:00 — page 19 — #19 i
i

i
i

i
i

those applications that do indeed need it, e.g., with less than 5% throughput overhead
for read-intensive workloads. Our research system implementation can deliver practical
levels of performance, comparable with that of similar but heavily-optimized indus-
trial systems like Cassandra. This suggests that if implemented in Cassandra, consistent
quorums can deliver atomic consistency with acceptable performance overhead.
Future Work. Consistent quorums provide a consistent view of replication groups.
Such consistent views can be leveraged to implement distributed multi-item transac-
tions. CATS can be extended to support column-oriented APIs, indexing, and search.
Interactive Demonstration. The CATS key-value store is open source. An interactive
demonstration of CATS is available at http://cats.sics.se/demo/.
Acknowledgments. This work was supported in part by grant 2009-4299 from the
Swedish Research Council, by Ericsson AB, and by the SICS CNS Center. We thank
Muhammad Ehsan ul Haque and Hamidreza Afzali for their work on persistency and re-
covery, range queries, and load balancing. We would also like to thank Amr El Abaddi,
Jim Dowling, and Niklas Ekström for interesting discussions and feedback.

References

1. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-
subramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value
store. In: SOSP ’07

2. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44 (April 2010) 35–40

3. Basho Riak: http://wiki.basho.com/Riak.html/ (2012)
4. Feinberg, A.: Project Voldemort: Reliable distributed storage. In: ICDE ’11
5. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,

Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst. 26(2) (June 2008) 4:1–4:26

6. Apache HBase: http://hbase.apache.org/ (2012)
7. Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M., Stoica, I.: Probabilistically

bounded staleness for practical partial quorums. PVLDB 5(8) (2012) 776–787
8. Gifford, D.K.: Weighted voting for replicated data. In: SOSP ’79
9. Abadi, D.J.: Consistency tradeoffs in modern distributed database system design: Cap is

only part of the story. Computer 45 (2012) 37–42
10. Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC ’00
11. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News 33(2) (June 2002) 51–59
12. Alvaro, P., Conway, N., Hellerstein, J., Marczak, W.R.: Consistency Analysis in Bloom: a

CALM and Collected Approach. In: CIDR’11
13. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In: OSDI

’06, USENIX Association
14. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: wait-free coordination for internet-

scale systems. In: USENIX ATC’10, USENIX Association
15. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12(3) (July 1990) 463–492
16. Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos, S., Hachem, N., Helland, P.: The

end of an architectural era: (it’s time for a complete rewrite). In: VLDB ’07, VLDB Endow-
ment (2007) 1150–1160

http://cats.sics.se/demo/
http://wiki.basho.com/Riak.html/
http://hbase.apache.org/


i
i

“middleware12” — 2012/5/27 — 23:00 — page 20 — #20 i
i

i
i

i
i

17. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent
hashing and random trees: distributed caching protocols for relieving hot spots on the world
wide web. In: STOC ’97, New York, NY, USA, ACM (1997) 654–663

18. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J.
ACM 43(2) (March 1996) 225–267

19. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems.
J. ACM 42(1) (January 1995) 124–142

20. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for internet applications. In: SIGCOMM ’01

21. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In: Middleware ’01

22. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2) (May 1998)
23. Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. SIGACT News 41(1)

(March 2010) 63–73
24. Shafaat, T.M., Ghodsi, A., Haridi, S.: Dealing with network partitions in structured overlay

networks. Peer-to-Peer Networking and Applications 2 (2009) 334–347
25. Arad, C., Dowling, J., Haridi, S.: Developing, simulating, and deploying peer-to-peer sys-

tems using the Kompics component model. In: COMSWARE ’09
26. Shafaat, T.M., Moser, M., Schütt, T., Reinefeld, A., Ghodsi, A., Haridi, S.: Key-based con-

sistency and availability in structured overlay networks. In: InfoScale ’08
27. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership management for

unstructured p2p overlays. J. Network Syst. Manage. 13(2) (2005) 197–217
28. Gupta, A., Liskov, B., Rodrigues, R.: Efficient routing for peer-to-peer overlays. In: NSDI’04
29. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart,

D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: PODC ’87
30. BerkeleyDB: www.oracle.com/technology/products/berkeley-db/ (2012)
31. Ghemawat, S., Dean, J.: LevelDB. http://code.google.com/p/leveldb/ (2012)
32. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud

serving systems with YCSB. In: SoCC ’10
33. Chockler, G., Gilbert, S., Gramoli, V., Musial, P.M., Shvartsman, A.A.: Reconfigurable dis-

tributed storage for dynamic networks. J. Parallel Distrib. Comput. 69 (January 2009)
34. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without consen-

sus. J. ACM 58 (April 2011) 7:1–7:32
35. Lorch, J.R., Adya, A., Bolosky, W.J., Chaiken, R., Douceur, J.R., Howell, J.: The smart way

to migrate replicated stateful services. In: EuroSys ’06
36. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: High-performance broadcast for primary-

backup systems. In: DSN ’11, IEEE Computer Society
37. MongoDB: http://www.mongodb.org/ (2012)
38. Rao, J., Shekita, E.J., Tata, S.: Using Paxos to build a scalable, consistent, and highly avail-

able datastore. Proc. VLDB Endow. 4 (January 2011) 243–254
39. Glendenning, L., Beschastnikh, I., Krishnamurthy, A., Anderson, T.: Scalable consistency in

Scatter. In: SOSP ’11
40. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen,

H.A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data serving platform.
Proc. VLDB Endow. 1(2) (August 2008) 1277–1288

41. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for eventual: scal-
able causal consistency for wide-area storage with COPS. In: SOSP ’11

42. El Abbadi, A., Skeen, D., Cristian, F.: An efficient, fault-tolerant protocol for replicated data
management. In: PODS ’85

43. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput. 28(9) (September 1979) 690–691

www.oracle.com/technology/products/berkeley-db/
http://code.google.com/p/leveldb/
http://www.mongodb.org/

	 CATS: Linearizability and Partition Tolerance in Scalable and Self-Organizing Key-Value Stores

