
Split and Migrate: Resource-Driven Placement
and Discovery of Microservices at the Edge
Genc Tato
Univ Rennes, Inria, CNRS, IRISA, France

Marin Bertier
Univ Rennes, Inria, CNRS, IRISA, France
INSA Rennes, France

Etienne Rivière
UCLouvain, Belgium

Cédric Tedeschi
Univ Rennes, Inria, CNRS, IRISA, France

Abstract
Microservices architectures combine the use of fine-grained and independently-scalable services with
lightweight communication protocols, such as REST calls over HTTP. Microservices bring flexibility
to the development and deployment of application back-ends in the cloud.

Applications such as collaborative editing tools require frequent interactions between the front-
end running on users’ machines and a back-end formed of multiple microservices. User-perceived
latencies depend on their connection to microservices, but also on the interaction patterns between
these services and their databases. Placing services at the edge of the network, closer to the users,
is necessary to reduce user-perceived latencies. It is however difficult to decide on the placement
of complete stateful microservices at one specific core or edge location without trading between a
latency reduction for some users and a latency increase for the others.

We present how to dynamically deploy microservices on a combination of core and edge resources
to systematically reduce user-perceived latencies. Our approach enables the split of stateful mi-
croservices, and the placement of the resulting splits on appropriate core and edge sites. Koala, a
decentralized and resource-driven service discovery middleware, enables REST calls to reach and use
the appropriate split, with only minimal changes to a legacy microservices application. Locality
awareness using network coordinates further enables to automatically migrate services split and
follow the location of the users. We confirm the effectiveness of our approach with a full prototype
and an application to ShareLatex, a microservices-based collaborative editing application.

2012 ACM Subject Classification Information systems → Distributed storage; Information systems
→ Service discovery and interfaces; Computer systems organization → Cloud computing

Keywords and phrases Distributed applications, Microservices, State management, Edge computing

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.9

Acknowledgements We thank the anonymous reviewers for their comments. This work was partially
funded by the Belgian FNRS project DAPOCA (33694591) and partly supported by the Inria Project
Lab program Discovery (http://beyondtheclouds.github.io/).

1 Introduction

Modern interactive applications combine a front-end running on client devices (e.g. in their
web browser) with a back-end in the cloud. Collaborative editing applications, in which
multiple users concurrently make changes to the same document, such as Google Docs,
Microsoft Office 365, and ShareLatex, are good examples of such interactive applications.
Quality of experience for users of such applications depends on low latencies between an
action of one client and its visibility by other clients.

© Genc Tato, Marin Bertier, Etienne Rivière, and Cédric Tedeschi;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/287883884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.OPODIS.2019.9
http://beyondtheclouds.github.io/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Split and Migrate

A solution to enable fast request-response latencies between the front-end and the back-
end of a collaborative application is to deploy part of the back-end at the edge, i.e. on
computing resources that are closer and accessible with low latencies from the front-end.

It is often challenging to adapt an application to make use of edge resources. Software
monoliths typically require massive re-engineering to support a deployment on multiple sites,
as they base the collaboration between their constituents on shared memory or common
databases. Service-Oriented Architectures (SOAs) on the other hand present desirable
features for this adaptation, by splitting the features of the application into independent
services and decoupling service location and naming.

Microservices are a popular approach to SOAs [9, 35] adopted by many large-scale
companies [15, 17]. Features of the back-end are handled by fine-grained services commu-
nicating through lightweight protocols, such as publish/subscribe or event stores [8]. The
most common form of interaction between microservices is the use of point-to-point calls to
Representational State Transfer (REST) APIs provided over HTTP.

We are interested in this work in the adaptation of microservices applications towards a
joint deployment on core resources, e.g. in some cloud datacenter, and edge resources, e.g.
at micro-clouds located in the same metropolitan-area network as the clients. Our objective
is to reduce latencies between user actions and their visibility by other users.

We target collaborative editing applications based on microservices. We demonstrated in
our previous work [25] that ShareLatex, an open source and microservices-based application
for collaboratively editing LATEX documents, could benefit from reduced user-perceived
latencies thanks to a static core/edge deployment of its microservices. This previous work
considers however the placement of entire services onto different sites, which may lead to
trading latency reduction for some users for latency increases for the others. It also does not
consider the adaptation of this placement based on the actual location of the application
users.

Contributions

We consider in this paper the dynamic placement and migration of microservices in core/edge
deployments. We leverage the use in modern microservices applications of resource-centric
REST APIs and NoSQL databases partitioned by a single primary key. This allows us to
split microservices, and create independent instances responsible for a partition of the original
service’s data. These splits, deployed at different edge locations, can then handle requests
for specific partitions of the service data, accessed by close-by users. We demonstrate our
ideas with ShareLatex (§2).

Our first contribution is the support for splitting and multi-site placement of microservices.
We detail how the state of a microservice can be partitioned, and how the resulting splits
can be dynamically deployed on different core and edge sites (§3).

Our second contribution is the middleware support for the decentralized and dynamic
discovery of microservice splits. We build on Koala [26], a lightweight Distributed Hash
Table (DHT) for decentralized cloud infrastructures. We enable the transparent redirection
of calls based on resource identifiers present in HTTP Uniform Resource Identifiers (URIs),
also supporting the relocation of microservices splits. This allows adapting compatible legacy
microservices applications for hybrid core/edge deployments with minimal effort (§4).

Our third contribution is a locality-driven policy conducting the creation and migration
of microservices splits between the core and the edge, and between edge sites themselves,
allowing to seamlessly adapt to the location of the users. This policy estimates latencies
using network coordinates [13], enabling the automatic selection of the most appropriate site

G. Tato, M. Bertier, E. Rivière, and C. Tedeschi 9:3

Service Description Service Description

1. docstore
CRUD ops on
tex

8. track-changes History of changes

2.
CRUD ops on
binary

9. real-time Websocket server

3. clsi Compile project 10.
between users

4. contacts Manage contacts 11. document-updater
Maintain consistent
document state

5. spelling Spell checking 12. web
User interface
and service hub

6. chat Chat service Redis (db)
DB (Pub/Sub) for
dynamic data

7. tags Folders, tags MongoDB (db)
DB for internal
static data

docstore clsi filestore

notifications

contacts

spelling

tags

chat

web

real-time

redis

track
changes

document
updater

filestore
files

files

Notificationsnotifications

Figure 1 ShareLatex architecture (left) and list of constituents (right).

for the services splits used by a group of collaborative users, with the goal of achieving better
response times (§5).

We demonstrate our ideas on the ShareLatex application, using a representative core-edge
network topology and measuring the impact of latencies at the level of the application front-
end. Our results indicate that Koala and redirection layers induce only minimal overheads,
while the dynamic placement of microservices splits enables users in different regions to
access the same application with greatly reduced latencies (§6).

Finally, we present related work (§7) and conclude (§8).

2 ShareLatex and its core/edge deployment

ShareLatex is a collaborative application allowing users (e.g. students, researchers or writers
of technical documentation) to concurrently edit a LATEX project. It features a web-based
editor with spellchecking and auto-completion, facilities for compiling and producing papers,
and tools for the collaboration between writers, such as an address book and a chat service.

Responsiveness is a key element of the perceived quality of service in ShareLatex. For
instance, a team of researchers could collaborate on the writing of algorithm pseudocode.
Changes made by one researcher must be visible with no undue delay by the others, and
changes must propagate as fast as possible to the reference document stored in the back-end
to avoid concurrency hazards.

The ShareLatex back-end uses 12 microservices and a database, Redis, shared by four of
them (Figure 1).1 The web provides the front-end to the client browser and acts as an API
gateway to other services. User actions (cursor changes, new text, etc.) are propagated by
web to the real-time service using WebSockets. The real-time service then sends them to
document-updater which is responsible for maintaining a consistent order of modifications.
This dynamic state of the project is stored in Redis, and periodic snapshots are pushed
to the docstore (text files) and filestore (binary files). Figure 1 details the ShareLatex
architecture and its services.

Core servers are typically hosted in a centralized data center, while edge servers are
distributed and closer to the users. In our previous work [25], we demonstrated that
ShareLatex can benefit from a static placement of its services on a combination of core and edge

1 Note that using a shared database does not fully comply with the microservices architectural pattern,
where all state should be encapsulated in services. Yet, such compromises with the norm are found
in many microservices-based applications. We prefer taking them into account rather than heavily
modifying the legacy application code.

OPODIS 2019

9:4 Split and Migrate

docstore

clsi

filestorenotifications

contacts

spelling

tags

chat

web

real-time

track
changes

document
updater

MongoDB

Core

Latency-sensitive
Critical

Frequent

redis

(splittable)

(stateless)

(stateless) (no-sync-replicable)

(splittable)

(splittable)

(splittable) (splittable)

(splittable)

(splittable) (splittable)

Edge

(sync-replicable)

Figure 2 Static ShareLatex deployment as suggested in [25].

servers, closer to clients collaborating on a document. We build on our previous contribution,
which requires only minimalistic modifications to the configuration and deployment scripts
of ShareLatex, and no changes to the application code. The most significant modification
performed in our previous work is the disassembly of the web service implementation from
its database. This was necessary as web acts as an API gateway and must be deployed at
the edge, but it also features a global database of information about users, which is queried
infrequently. These queries can be done remotely to a database in the core, with minimal
performance penalty.

The static core and edge placement of services of Figure 2 follows the recommendations
argued in our previous work [25]: web, real-time, document-updater and Redis should be
deployed on an edge site. Due to the coupling of track-changes with Redis, this service
must be deployed alongside to avoid remote calls, even if it does not influence perceived
latencies as much. The clsi, spelling and chat services can also be deployed at the edge,
with a moderate but positive impact on perceived latencies. This placement resulted in lower
latencies for operations impacting the most the user experience, at the cost of increasing
latencies for operations that require interactions between services at the edge and services
remaining in the core.

3 Splitting microservices

While some microservices may be stateless, most of them need to internally store and query
data. A stateful microservice is typically implemented as a business-logic tier combined
with a database. The choice of the appropriate database is specific to each microservice,
leading to what is sometimes called a polyglot architecture. Figure 1 represents the presence
of a database inside each service using a small black database symbol. In the unmodified
ShareLatex, only real-time is a stateless service. All other services are stateful, including
document-updater and track-changes which use the common Redis database. With the
decoupling of web from its database (as depicted in Figure 2), this service is also stateless
and uses remote calls to a MongoDB service.

A key property of SOA and therefore of microservices is the ability to independently scale
in and out the business-logic tier and the database [17]. For the former, new instances may
be created and deleted on the fly, e.g. using deployment middleware such as Kubernetes [7]
and a scaling policy [28]. Elastic scaling is difficult to realize with relational databases, and
microservices state may grow to large sizes requiring the ability to scale out storage to a
large number of servers. NoSQL options with such horizontal scaling abilities are therefore a
favored choice in many microservices applications.

G. Tato, M. Bertier, E. Rivière, and C. Tedeschi 9:5

NoSQL databases such as key/value stores or document stores, partition the data using a
unique primary key. We observe that very often, accesses to the database by the business-logic
tier for a query only read and write a limited and identifiable subset of keys. The identification
of this subset typically depends on the characteristics of the query, and in particular on
its object. It results that the state of the service, i.e. the content of the database, may be
partitioned in such a way that keys that are accessed together for any future service requests
belong to the same partition. This enables in turn the possibility to create multiple instances
of the service, each equipped with one of the partitions. We call these services hosting
independent partitions of the database service splits. A service that supports splitting is a
splittable service.

Not all services are splittable. Some may require operations (e.g., Map/Reduce queries,
scans, etc.) that operate on the entire content of the database. In some cases, it is not
possible to identify a mapping between requests characteristics and partitions, e.g. when calls
may use object keys generated at runtime or read from the database itself. These services
are therefore only replicable: It is only possible to make complete copies of the service and its
state. When these copies must be kept in sync for the well-functioning of the application, the
service is sync-replicable. When operating on divergent copies does not impact, or impacts
only marginally, the well-functioning of the application, provided that users systematically
use the same copy, the service is no-sync-replicable.

The analysis of ShareLatex code results in the following categorization of services, also
reflected in Figure 2.2 The notifications service is sync-replicable, while clsi, handling
the compilation, is no-sync-replicable: compilations across projects do not require consistent
updates. The web service was initially sync-replicable, but the decoupling of its database
makes it stateless. All other stateful services –a majority of them– are splittable. This means
that their state (content of the services databases, but also the content of the shared Redis
database) can be partitioned, and that partitions can be deterministically identified for any
query. The object of the query, that allows identifying the partition of service state, and
therefore the appropriate service split, is the specific writing project that the user is editing.
In other words, the state of ShareLatex splittable services at the bottom of Figure 2 can be
partitioned based on the project identifier, resulting in splits able to handle requests for a
specific subset of projects. Such splits can then be deployed at the edge, and serve requests
from close-by users accessing one of these projects.

The implementation of splitting requires support from the database embedded in splittable
microservices, to be able to bulk load and store data partitions between an existing service
and a newly created split. This support depends on the database API but does not pose
implementation difficulties. For ShareLatex, we built minimalistic APIs enabling this for the
Redis and MongoDB databases.

Our goal is to support the dynamic creation of service splits and their deployment
over a combination of core and edge resources. This requires both appropriate middleware
support mechanisms enabling the discovery and redirection of calls between microservices in
a transparent manner, and appropriate adaptation policies to decide at runtime when and
where to create splits, and when and where to migrate an existing split if its current location
is not optimal. We cover these two aspects in the two following sections.

2 This identification of services classes and partitions was performed manually, but did not represent
a particularly difficult task in the case of ShareLatex. Automated or semi-automated service class
identification and partitioning are beyond the scope of this paper, but we intend to explore these
directions in our future work.

OPODIS 2019

9:6 Split and Migrate

4 Discovering and redirecting to microservice splits

We now present the mechanisms that support the dynamic deployment of service splits on
multiple sites. Our focus in this section is on the proper functioning of the system during
and after service splitting and migration operations. We present the policies triggering these
operations in the next section.

Our support middleware serves two purposes: Firstly, it enables the discovery of services
and splits, and the live modification of their placement (§4.1). Secondly, it enables the
redirection of point-to-point calls between source and destination services, ensuring that the
core service or its appropriate split is reached (§4.2).

4.1 Discovery of microservice splits with Koala
Each service is initially associated with one instance in the core (the core service), responsible
for its full state. Split and migrate operations dynamically update the list of splits for each
service. Service discovery, therefore, requires the maintenance of an index of existing services,
together with their current lists of splits. Every such split is associated with a list of object
identifiers, for which this split is the only one able to process queries. This index must remain
strongly consistent: At any point in time, there must be a single core service or split that can
answer a query for a given object, and it must be impossible for two clients of the service
under the same object to use different splits concurrently.

Service registries based on replicated databases updated using consensus (e.g., using
etcd [11] or ZooKeeper [18]) are adapted for datacenter deployments with low network
latencies. In our target context of distributed sites, centralizing the index would result in
unacceptable overheads. We favor instead a decentralized design, supporting the caching
and lazy revocation of split-to-site associations. This service is distributed, with an instance
running at the core and at each of the edge sites.

Service discovery requests contain the name of the service, and for splittable services, the
identifier of the query object. For ShareLatex splittable services, this object is the project
identifier, that allows identifying the appropriate service state partition. Service discovery
requests can be addressed to any of the sites.

The service index is implemented as a Distributed Hash Table (DHT), in which each
node stores a subset of the index, partitioned using consistent hashing. Index elements are
accessed using a primary key. Each node is responsible for a range of these keys. An overlay
enables requests to deterministically reach the responsible node using greedy routing (each
node in the path selects amongst the nodes it knows the closest to the destination). Typical
DHT designs actively maintain all overlay links through the exchange of explicit overlay
construction messages. In this work, we rely on Koala [27], a DHT that creates overlay links
in a lazy manner, by piggybacking overlay construction messages over existing application
traffic. This design choice enables to create more overlay links for routes in the overlay that
are more frequently used for index reading requests, and minimize maintenance costs for
seldom-used links. This is beneficial for workloads that are highly local, which is expected
from service requests in one single application and to a relatively limited number of services
(e.g. up to a few hundred).

Indexing

We keep two global indexes in Koala, an index of Objects, and an index of Splits. Figure 3
shows an example of the local subset of these indexes maintained by one Koala node. A Koala
node is responsible for maintaining the authoritative and strongly consistent entry for a

G. Tato, M. Bertier, E. Rivière, and C. Tedeschi 9:7

Location Responsibility

YES
6-8

YES5-2 -
[Service 1 - Split 1]

[Service 1 - Split 1, Service 2 - Split 1]

Split group

Object 1
Object 2
Object 3

local
local

Object ID LocationService
name

Split ID

Split 1Service 1
Split 1Service 2
Split 1Service 3
Split 2Service 3

YES

5-2
9-7

6-8
YES
YES

IP Port

x.x.25.1
x.x.25.2

3001
3002

local
local

Responsibility

Figure 3 Indexes stored at some Koala DHT node: Objects table (left) and Splits table (right).
Primary keys are in boldface.

number of index items, falling in its key responsibility range. It also maintains local resources,
objects and splits, that are hosted on the corresponding edge site. A Koala node may have
local resources for which it is not responsible or be responsible for resources that are not
local. This design enables the creation of resources on a different node than the one that the
DHT assigns for the corresponding entry index, while maintaining a single node in charge
of this index entry and allowing atomic modifications. Lookups follow multiple hops in the
overlay, until the responsible node is found, leading to one last hop to the node where the
entry is local (if different). Nodes hosting locally a resource access it without involving the
responsible node.

Discovery

A local split can only be reached by proxying through the local Koala instance.3 The
discovery of the appropriate site for an incoming service request proceeds in two phases.
First, the Objects table in the DHT is queried to establish whether there exists a split of at
least one service under that object. This information is stored in the split group for that
object. If there is no entry for the object, or if there is no entry for the specific service in the
split group, the request must go to the core. Second, the Koala node responsible for the split
is located using the Splits table, using both the service name and split number as the key.
This requires reaching the Koala node that is responsible for that key and then reaching the
Koala node where that split is local.

For instance, on the node whose local subset of the index is represented by Figure 3, a
request to Service 2 for Object 1 will be immediately sent to Service 2’s Split 1 hosted locally.
A request for Object 3 will be redirected in one hop to Koala node of identifier 5-2, to read
its split group. A request for Object 4, not present in the local state, requires a multi-hop
routing in the Koala overlay to request its service group.

Caching

Looking up service discovery entries in the DHT for every service call is too expensive. We
implement caching: results of index lookup are kept at the local Koala node and reused.
Stale cache entries are discarded in a lazy fashion. We leverage the fact that all requests
must go through the local Koala node, e.g. on the edge site where the split actually runs.
After the migration to a new site, queries based on stale cached information will arrive at the
Koala node at the previous local location of the split. This node simply informs the origin,
which invalidates related cache entries and falls back to a regular lookup.

3 Allowing uncontrolled connections from outside of the edge site might not be possible due to network
constraints, or not desirable for security reasons. The local Koala node acts, therefore, as an API
gateway for all local service splits.

OPODIS 2019

9:8 Split and Migrate

chat-5

Koala Koala internal
mechanisms

1

2

3
Koala

http://sharelatex.uni.edu/project/123/messages

web-1

(local to web-1)

(nginx)

reverse
proxy

(local to web-5)

http://koala:8008/api/get/service/chat/object/123/project/123/messages

http://chat-5/project/123/messages

nginx.conf (simplified)

location /project/(.*)/messages${
proxy_pass: "http://koala:8008/api/get/
service/chat/object/$1/project/$1/messages"
}

Edge 1 Edge 2

Figure 4 Example of REST call redirections in ShareLatex.

Migration

The migration of an existing split, or the creation of a new split, follows four phases. Firstly,
an instance of the service is bootstrapped if none already exists at the destination edge site,
or it is selected among existing instances, but it does not hold state or service requests.
Secondly, a new entry in the Splits table is created to announce the existence of the new
split. It does not contain a location yet. The split group for all corresponding objects is
updated to indicate the temporary unavailability of the split. Service requests will block at
the lookup request stage, and back off for a random time duration. Thirdly, the new instance
receives the partition of the data from the source service or split. Finally, the Koala entry for
the split is updated to reflect the location of the new local site for that split, and the split
groups for all corresponding objects are updated. This allows request services to resume,
using the new split location.

4.2 Transparent redirection of REST service calls

Modifying legacy microservices applications to directly make use of Koala APIs to discover
and call services and splits would require an important effort. Instead, we leverage the
fact that the objects of queries are accessible in the URIs of REST service calls. Indeed,
REST being a resource-centric approach to designing interfaces, calls are made, typically
over HTTP, to an explicit resource given in the request URI. We implement the transparent
redirection of calls by extracting the object from this URI. Then, the local Koala node
queries for the existence of a split for that object and the requested service. The request URI
is transformed using rewriting rules to reach either the original core service, or the Koala
node on the edge site where the split runs.

The implementation of the redirection is as follows. It is illustrated for a call in ShareLatex
in Figure 4. We use the high-performance web server nginx as a reverse proxy for calls from,
and to, local services. In ShareLatex, this includes the web service that serves as an API
gateway for the user frontend. The reverse proxy translates the original request from the
unmodified ShareLatex, to a request to the local Koala node. The discovery process detailed
before establishes that there exists a split for that service that must serve the request. In the
example of Figure 4, the web service on the Edge 1 site calls the chat service. The object
“123”, the project identifier, is extracted from the call URI. Koala then determines that the
service split is on the Edge 2 site. The request is redirected to chat service in that site,
where the call is handled by Koala.

G. Tato, M. Bertier, E. Rivière, and C. Tedeschi 9:9

5 Splits creation and migration policy

The creation of service splits and their migration between sites obey an adaptation policy.
This policy must determine what service to split, when these split decisions are made and
where to (re)deploy the splits. Its goal is to ensure that user-perceived latencies in the
application are minimized.

What service to split?

The first aspect of the policy is application-dependent and results from the analysis of the
interactions between its microservices. A set of splittable services, and not necessarily all
of them, must be tagged for a preferential deployment at the edge. This aspect of the
ShareLatex policy builds upon our previous results [25] (§2). Microservices that lie in the
bottom part of Figure 2 are tagged for edge deployment. All other services always remain in
the core.

When should splits happen?

There are two situations where a split may be formed: When a new object is created, and
when latencies to the core are too high. The first option is sufficient for the ShareLatex
policy: The creation of a new project leads to the immediate creation of all corresponding
splits.

Where should splits go?

This aspect of the policy is twofold: Firstly, we must ensure that splits are created on a site
(core or edge) close to the first user of the corresponding object. Secondly, we must adapt
this placement when the chosen site is no longer the most adequate for the current set of
users of that object.

This requires the ability to evaluate network latencies. Active probing of latencies (e.g.
using ICMP packets) is impractical and unscalable. We combine two mechanisms to enable
probe-less estimations. Firstly, we enforce that users always connect to the geographically
closest site.4 The location of a client is that of its connection site. Secondly, latencies between
sites are estimated using Network Coordinates (NCs). We use Vivaldi [13] to compute NCs.
Each site is represented by a d-dimensional point. These points positions evolve following a
process similar to a spring-mass relaxation, based on observed latencies for actual message
exchanges, and Euclidean distances eventually approximate latencies.

The ShareLatex policy enforces that the initial version of an object, and the corresponding
splits, be hosted by the connection site of the first user. Each site collects for its local splits,
a history of the NCs of the sites forwarding client calls. Periodically (every 5 minutes, or
100 requests, whichever comes first, in our implementation), the policy determines whether
migration of the splits for each hosted object is necessary. Several users access a project,
from different sites and with different frequencies. The ideal location of the splits for that
project can be represented as a point in the NCs space. We define this point as the Center
of Mass (CoM) for that object. It is the geometric average of the connection sites’ NCs,
weighted by the number of accesses from their clients. If there exists a site whose NC is
closer to the CoM, the policy triggers a migration of all splits for that object to this new site.

4 The list of core and edges sites IP is publicly known. Clients use an IP-to-location service (e.g.
www.iplocation.net) and choose the geographically closest site.

OPODIS 2019

www.iplocation.net

9:10 Split and Migrate

core
(L1)

edge1
(L3)

(L2)

(L3)

(L3)

1

3

5
p

1

2

p
2 3

4

p
4 5 66

116 ms

40 ms

140 ms

16 ms

140 ms

40 ms

40 ms

L1L2L3 L2 L3
(omitted)

24 ms

24 ms

60 ms
reg1 edge3

edge2

Figure 5 Topology and first experiment setup.

6 Evaluation

We evaluate the split and migrate principles with a full prototype, combining Koala, nginx
reverse proxies, Docker CE for bootstrapping containers on the core and edge sites, and
ShareLatex as the application.

Our evaluation aims at answering the following research questions: (i) Is the approach
able to reduce perceived latencies for users of the application? (ii) Can the policy successfully
migrate splits between edge sites when users’ locations change? (iii) Is the overhead of using
Koala and proxying acceptable?

We consider the three-layer (L1-L3) hierarchical topology shown in Figure 5. Its char-
acteristics are derived from information obtained from an Internet Service Provider in the
EU [23]. Layer L1 consists of the core site, L2 of regional sites (reg1) and L3 of edge sites
(edge1 , edge2 and edge3). We deploy each site on a node of the Grid’5000 [5] testbed. Each
node features 2 Intel Xeon E5-2630 v3 CPUs and 128GB of RAM. We emulate latencies
between sites using the tc (traffic control) tool. Note that reg1 is treated as an edge site,
and that we ignore latencies between users and sites, and model their mobility by enforcing
that they connect to a specific (closest) site. We use Network Coordinates (NCs) in d = 2
dimensions for ease of presentation, although a higher dimensionality (e.g. d = 5) would
yield better estimations. Latencies are measured at the level of the instrumented ShareLatex
frontend. We emulate the activity of users using the Locust [1] load testing tool, which allows
describing programmatically the behavior of users as a list of actions and their respective
occurrence frequencies.

6.1 Adaptation and split migrations for moving users
Our first experiment evaluates the ability of our approach to adapt the location of the splits
for single a ShareLatex project, and the impact this has on latencies. We consider a project
p shared by two equally active users, one stationary and one who changes her location
continuously. Each user performs one operation every second, adding a new character to the
text. The user-perceived latency is measured from the moment the text is updated by one
user to the moment the update appears in the screen of the other user.

Figure 5 presents the experiment setup. Figure 6 presents the evolution of the average
perceived latency for the two users, and Figure 7 presents the evolution of the CoM of the
project. Circled numbers in all figures show the sequence of operations.

We follow three phases. In each phase, users are assigned to connection sites, and we
observe the triggering and impact of the adaptation and resulting split migration decisions.
Initially, both users are closer to edge1 and therefore connect to that site. The latency for
updating the text (50 ms) is roughly the RTT between edge1 and core, plus the processing

G. Tato, M. Bertier, E. Rivière, and C. Tedeschi 9:11

0 250 500 750 1000 1250 1500 1750 2000
Time (s)

0

20

40

60

80

100

La
te

n
cy

 (
m

s)
Update text

1

2

3

4

5

6

Figure 6 Evolution of text update latencies
when migrating splits to follow a project CoM.

125

100

75

50

25

0

-25

-50

-40 -35 -30 -25 -20 -15 -10 -5 0 10 15 20 255

edge1

core

1 2 3 4

65

center of mass

reg1 edge2

edge3

site location

Figure 7 Evolution of Network Coordinates
and CoMs when migrating splits.

Table 1 Distribution of projects, users and ideal site placements.

Project p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
Users u1, u5, u6 u2 u1, u3 u1, u4 u5, u6 u6 u4, u7 u5, u8, u9 u5, u8, u9 u8, u10
User locations e1, e2, e2 e1 e1, e1 e1, e1 e2, e2 e2 e1, e2 e2, e3, e3 e2, e3, e3 e3, e3
Ideal site(s) e2, r1, e1 e1 e1 e1 e2 e2 r1, e1, e2 e3, core, e2 e3, core, e2 e3

time, of 40 ms and 10 ms respectively (À in Figure 6). Given that all requests for project p
originate from the Koala instance on edge1 , that location is also the CoM (À in Figure 7),
and therefore the policy decides to split and migrate all tagged services to this site (Á). The
latency drops to slightly over the processing time. In a second phase, we move one of the
users to edge2 while the service splits for the project are still in edge1 (Â). This results in
an increase in latencies. When it next triggers, the adaptation policy decides to migrate
the service splits to reg1 which is closer to the new CoM for the project (Ã). In the third
phase, we move the user of edge2 and connect it to edge3 (Ä). The service splits are still
in reg1 , which results in high latencies. Again, the adaptation policy triggers and orders
the migration of splits to the closest site to the CoM (Å). The core happens to be the best
compromise to serve the two users connected to edge1 and edge3 . This experiment shows
that the policy is effective in splitting and migrating a single project according to its user
locations, for a positive impact on perceived latencies.

6.2 Evolution of splits distributions

This second experiment shows how the split and migrate principles allow shifting the load
from the core servers to edge servers while following the location of the most active users
in a collection of ShareLatex projects. All services are initially only in core. We consider
10 users and 10 projects. Each project is edited by 1, 2 or 3 users. The two first lines of
Table 1 show the mapping between users and projects. The third line indicates the (static)
user locations for each project.

We model the activity of users to represent work sessions. During one hour and a half,
every user randomly picks one of their assigned projects and edits if for a random duration
of 2 to 10 minutes. The project CoM evolves to follow the location(s) of the currently active
user(s). The fourth line of Table 1 indicates the possible ideal location(s) for the project
splits, calculated offline.

OPODIS 2019

9:12 Split and Migrate

0 1000 2000 3000 4000 5000 6000
Time (s)

core

edge1

edge2

edge3

Lo
ca

ti
o
n
s

p1
p2

p5

p3
p4 p9

p7
p6

p8

p10

p1

p2
p3
p4

p5

p8 p10

p6 p9

p7

p2
p3
p4

p1

p5

p6

p7

p9

p8 p10

p1

p2
p3
p4

p6

p1

p2
p3
p4

p6

p5 p5

p1

p2
p3
p4

p6

p5

p1

p2
p3
p4

p6
p5

p8 p10
p9

p8 p10
p9

p10p9

p8

p7 p7

p7

p10p8

p9

p7

reg1

Figure 8 Evolution of splits placements.

We monitor the location of the service splits for the different projects, taking snapshots
every 1,000 seconds. We run this experiment until the projects with a single ideal site
placement reach this destination. Figure 8 presents these snapshots and the location of the
service slices for the 10 projects. Projects whose ideal site is unique, such as p2 -p5 and
p10, have the corresponding service slices migrated to these sites correctly and immediately.
Projects with multiple ideal sites see their slices periodically migrate between these sites,
following the currently active user(s). For instance, splits for p7 move between reg1 and
edge2 , while splits for p8 and p9 move between edge3 and core. The final site is highlighted
in boldface in Table 1. This experiment shows that the split and migrate mechanisms and
the adaptation policy for ShareLatex allow dynamically moving microservices close to the
users, based on the used resources (projects in ShareLatex).

6.3 Overheads of Koala and redirections
In this final experiment we evaluate the costs and overheads of the mechanisms enabling
transparent call redirections. To isolate the overhead we compare a centralized setting where
everything is deployed in the core, corresponding to the original ShareLatex model, with a
one-edge-site setting where requests are redirected from this edge site to the core by Koala.
Figure 9 presents this setup. We use a 50 ms latency between edge and core sites.

In both settings, the service split that responds to the user request is in core. In the
centralized setting the request is first sent to the web core service and then forwarded to the
right service directly, while in the second setting the request goes first through the local web
split. This proxies the request to the Koala instance on edge1 , which in turn forwards it to
the Koala instance in core who then calls the service.

We distinguish three kinds of requests, two HTTP REST calls and one WebSocket request.
For the REST calls, we consider a call to tags, for which splitting is disallowed (À), and a
call to chat, which is splittable using the project identifier as the object (Á). The WebSocket
request updates the text (writing) Â. It is also a project-specific request and must reach the
corresponding split of the document-updater service.

We expect a slightly higher overhead for redirections to split services compared to non-split
ones. For non-split services, a single interaction with Koala is required (follow À). For split
services, two interactions are necessary: one to locate the object and one to redirect to the
correct split (follow Á and Â).

The operation latencies times of the three requests with and without the redirection are
shown in Figure 10. We consider two cases for the redirection: without and with caching.

G. Tato, M. Bertier, E. Rivière, and C. Tedeschi 9:13

core

p

chat
tags

Core
Edge

50 ms

chat
tags

Core
Edge50 ms

Koala

Koala

web

web

web

p

edge1

core

real
time

real
time

123
1

2 3
1

2
3

1

2
3 2

3
2

3

1
2

3

1
2

3

...

...

...

...

vs.

Figure 9 Setup for the experiment evaluating the overheads of Koala and redirections.

Centralized Koala
no cache

Koala
cache

0

50

100

150

200

La
te

n
cy

 (
m

s)

Tags
(HTTP, not object-specific)

Centralized Koala
no cache

Koala
cache

0

20

40

60

80

100

120

140

Chat
(HTTP, object - specific)

Centralized Koala
0

10

20

30

40

50

60

Update text
(WebSocket, object-specific)

Figure 10 Evaluation of the overheads of Koala and redirections.

When the cache is disabled, lookups on the Koala DHT can require multiple hops between
sites and incur a significant and unpredictable penalty. With caching, this penalty is only
paid for the first access or after a migration invalidates the cached information. WebSocket
requests occur on an established connection, therefore caching does not apply.

Figure 10 presents the distribution of latencies for the three operations and for 500
requests each. We observe a similar performance between the centralized setting and the
setup using caching. The median overhead of proxying through the local edge site is ≈ 3 ms
for the non-split service and ≈ 4 ms for the split one. For WebSockets operations this
difference is smaller, ≈ 1 ms, which can be explained by the fact that this protocol is more
lightweight than HTTP. Disabling caching leads to significant overheads as every operation
leads to lookups in the DHT, bouncing between the core and edge Koala instances. This
experiment shows that the latency impact of proxying through the edge is likely to be
negligible compared to the gain of using locally-deployed services splits.

7 Related work

Previous research advocates to revisit the SOA paradigm for supporting service-based
applications deployed in edge cloud platforms [19]: In light of the increase of the number of
services at the edge able to answer a specific query, service registration must take into account
spatial coverage, and service discovery must take locality into account. Our contributions
are a step in that direction.

OPODIS 2019

9:14 Split and Migrate

The placement of applications on fog platforms has been an active research topic in the
recent years. One target domain is IoT applications where data collected from connected
objects must be processed on nearby resources [24, 34]. Stream processing is another
application that benefits from deployments on a combination of core and edge resources. It
explicits its communication patterns (i.e., the directed acyclic graph linking stream processing
operators), which can be leveraged for optimal placement on edge resources [12]. The Balanced
RePartitioning (BRP) [4] algorithm targets generic distributed cloud applications and devises
online algorithms which find a good trade-off between communication and migration costs.

Our work is linked with the concept of mobile edge clouds, where users move and
connect to nearby resources dynamically [30]. When the mobility of users is modeled using
Markov stochastic decision processes, analytical frameworks allow devising close-to-optimal
algorithms for automating service placement [31]. Other approaches advocate the use of
genetic algorithms to gradually refine an allocation of services to the edge [33].

We note that all of the aforementioned work considers the placement (and in some cases
the migration) of full instances of services. We are not aware of solutions proposing to split
stateful microservices and support resource-based discovery. State splitting is used, in a
different context, for the elastic scaling of publish/subscribe middleware [6].

Research on collaborative edition has focused on enabling correctness and performance,
including in the presence of network issues. The Jupiter protocol [21, 32] and the RGA
protocol [22] implement a replicated list object abstraction and define how to propagate
updates to achieve convergence [3]. Our work is complementary: The responsiveness of
replicated list object algorithms (i.e. the time between an update and its visibility at the
other clients) is sensitive to the latency between client nodes and a coordination server.

Service discovery middleware solutions for data centers typically rely on strongly consistent,
fully replicated stores maintaining the complete index of services instances and of their
locations. SmartStack [2], used for example by the Synapse [29] microservices platform,
is based on Apache ZooKeeper [18]. Similarly to Koala, Synapse instances provide local
proxies to services, but each maintains a full copy of the index while Koala relies on a
DHT and caching for scalability. Kubernetes [10] leverages etcd [11] for service discovery.
Recent work [14] suggests to add support for network coordinates [13] to route requests
based on network locality. Yet, service selection decision remains a centralized process unlike
with Koala where it can happen at the edge. Eureka [20] is also centralized but introduces
the notion of read clusters that can serve requests closer to the clients. Unlike lazy cache
management in Koala, read clusters must be explicitly synchronized when the service index
changes. Write clusters can also be replicated, but are only eventually consistent, which
makes them ill-suited for implementing consistent service migration. Finally, Consul [16]
supports deployment to multiple data centers, and use network coordinates for location-aware
selection. Consul only uses consensus-based synchronization within each individual data
center. Updates propagate lazily between data centers using gossip, preventing consistent
service relocation across data centers.

8 Conclusion

We presented how microservices could be dynamically deployed on a combination of core
and edge resources. Our approach leverages the possibility to split microservices for which
partitions of the data can be used to answer subsets of service requests independently. The
Koala middleware enables to transparently redirect requests to the appropriate split based
on object information available in REST calls URIs. Migration policies enable a dynamic
placement of microservices splits on edge sites, and as our evaluation with the ShareLatex
application shows, allow following the users and reduce perceived latencies.

G. Tato, M. Bertier, E. Rivière, and C. Tedeschi 9:15

This work opens interesting perspectives that we intend to consider in our future work.
First, we wish to explore the automation of the identification of splittable microservices, and
the use of static and dynamic analysis techniques to infer the relation between objects and
state partitions. Second, we intend to extend support middleware to support redirections
with other forms of communication, such as publish/subscribe or event sourcing [8]. Finally,
we would like to build tools to automatize the identification of placement policies based on
dynamic observations of communications between microservices.

References
1 Locust: An open source load testing tool. https://www.locust.io.
2 Airbnb. SmartStack Service Discovery in the Cloud. https://bit.ly/2SAvRHn.
3 Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, and

Marek Zawirski. Specification and complexity of collaborative text editing. In ACM Symposium
on Principles of Distributed Computing, PODC. ACM, 2016.

4 Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid. Online balanced repartitioning.
In International Symposium on Distributed Computing, DISC. Springer, 2016.

5 Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez, Emmanuel
Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas Niclausse, Lucas
Nussbaum, Olivier Richard, Christian Pérez, Flavien Quesnel, Cyril Rohr, and Luc Sarzyniec.
Adding Virtualization Capabilities to the Grid’5000 Testbed. In Cloud Computing and Services
Science, volume 367 of Communications in Computer and Information Science. Springer, 2013.

6 Raphaël Barazzutti, Thomas Heinze, André Martin, Emanuel Onica, Pascal Felber, Christof
Fetzer, Zbigniew Jerzak, Marcelo Pasin, and Etienne Rivière. Elastic scaling of a high-
throughput content-based publish/subscribe engine. In 34th International Conference on
Distributed Computing Systems, ICDCS. IEEE, 2014.

7 David Bernstein. Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud
Computing, 1(3):81–84, 2014.

8 Dominic Betts, Julian Dominguez, Grigori Melnik, Fernando Simonazzi, and Mani Subrama-
nian. Exploring CQRS and Event Sourcing: A journey into high scalability, availability, and
maintainability with Windows Azure. Microsoft patterns & practices, 2013.

9 Fabienne Boyer, Xavier Etchevers, Noël De Palma, and Xinxiu Tao. Architecture-Based
Automated Updates of Distributed Microservices. In International Conference on Service-
Oriented Computing, ICSOC. Springer, 2018.

10 Cloud Native Computing Foundation. Kubernetes. https://kubernetes.io/.
11 CoreOS. Etcd reliable key-value store. https://coreos.com/etcd/.
12 Alexandre da Silva Veith, Marcos Dias de Assuncao, and Laurent Lefevre. Latency-Aware

Placement of Data Stream Analytics on Edge Computing. In International Conference on
Service-Oriented Computing, ICSOC. Springer, 2018.

13 Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decentralized network
coordinate system. In ACM SIGCOMM Computer Communication Review, volume 34, 2004.

14 Ali Fahs and Guillaume Pierre. Proximity-Aware Traffic Routing in Distributed Fog Computing
Platforms. In IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing,
CCGrid, 2019.

15 Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana
Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems.
In 24th International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS. ACM, 2019.

16 HashiCorp. Consul. https://www.consul.io/.

OPODIS 2019

https://www.locust.io
https://bit.ly/2SAvRHn
https://kubernetes.io/
https://coreos.com/etcd/
https://www.consul.io/

9:16 Split and Migrate

17 Wilhelm Hasselbring and Guido Steinacker. Microservice architectures for scalability, agility
and reliability in e-commerce. In Workshops of the Intl. Conf. on Software Architecture, ICSA
Workshops. IEEE, 2017.

18 Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper: Wait-free
Coordination for Internet-scale Systems. In USENIX Annual Technical Conference, ATC,
2010.

19 Valérie Issarny, Georgios Bouloukakis, Nikolaos Georgantas, and Benjamin Billet. Revisiting
service-oriented architecture for the IoT: a middleware perspective. In International Conference
on Service-Oriented Computing, ICSOC. Springer, 2016.

20 Netflix. Eureka 2.0. https://bit.ly/2Mcexda.
21 David A Nichols, Pavel Curtis, Michael Dixon, John Lamping, et al. High-latency, low-

bandwidth windowing in the Jupiter collaboration system. In ACM Symposium on User
Interface Software and Technology, 1995.

22 Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated abstract data
types: Building blocks for collaborative applications. Journal of Parallel and Distributed
Computing, 71(3):354–368, 2011.

23 Sanhaji A. (Orange Labs Networks, France). Private communication, 2019.
24 Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp Leitner.

Optimized IoT service placement in the fog. Service Oriented Computing and Applications,
11(4), 2017.

25 Genc Tato, Marin Bertier, Etienne Rivière, and Cédric Tedeschi. ShareLatex on the Edge:
Evaluation of the Hybrid Core/Edge Deployment of a Microservices-based Application. In 3rd
Workshop on Middleware for Edge Clouds & Cloudlets, MECC. ACM, 2018.

26 Genc Tato, Marin Bertier, and Cédric Tedeschi. Designing Overlay Networks for Decentralized
Clouds. In Int. Conf. on Cloud Computing Technology and Science, CloudCom. IEEE, 2017.

27 Genc Tato, Marin Bertier, and Cédric Tedeschi. Koala: Towards Lazy and Locality-Aware
Overlays for Decentralized Clouds. In 2nd IEEE International Conference on Fog and Edge
Computing, ICFEC, 2018.

28 Giovanni Toffetti, Sandro Brunner, Martin Blöchlinger, Florian Dudouet, and Andrew Ed-
monds. An architecture for self-managing microservices. In AIMC Workshop. ACM, 2015.

29 Nicolas Viennot, Mathias Lécuyer, Jonathan Bell, Roxana Geambasu, and Jason Nieh. Synapse:
A Microservices Architecture for Heterogeneous-database Web Applications. In 10th European
Conference on Computer Systems, ACM EuroSys, 2015.

30 Shiqiang Wang, Rahul Urgaonkar, Ting He, Kevin Chan, Murtaza Zafer, and Kin K Leung.
Dynamic service placement for mobile micro-clouds with predicted future costs. IEEE
Transactions on Parallel and Distributed Systems, 28(4), 2016.

31 Shiqiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin Chan, and Kin K Leung.
Dynamic service migration in mobile edge-clouds. In IFIP Networking Conference, 2015.

32 Hengfeng Wei, Yu Huang, and Jian Lu. Specification and Implementation of Replicated List:
The Jupiter Protocol Revisited. In 22nd International Conference on Principles of Distributed
Systems, OPODIS, Leibniz International Proceedings in Informatics (LIPIcs), 2018.

33 Hongyue Wu, Shuiguang Deng, Wei Li, Min Fu, Jianwei Yin, and Albert Y Zomaya. Service
selection for composition in mobile edge computing systems. In International Conference on
Web Services, ICWS. IEEE, 2018.

34 Ye Xia, Xavier Etchevers, Loic Letondeur, Adrien Lebre, Thierry Coupaye, and Frédéric
Desprez. Combining heuristics to optimize and scale the placement of iot applications in the
fog. In IEEE/ACM 11th Int. Conf. on Utility and Cloud Computing, UCC, 2018.

35 Uwe Zdun, Elena Navarro, and Frank Leymann. Ensuring and assessing architecture confor-
mance to microservice decomposition patterns. In International Conference on Service-Oriented
Computing, ICSOC. Springer, 2017.

https://bit.ly/2Mcexda

	Introduction
	ShareLatex and its core/edge deployment
	Splitting microservices
	Discovering and redirecting to microservice splits
	Discovery of microservice splits with Koala
	Transparent redirection of REST service calls

	Splits creation and migration policy
	Evaluation
	Adaptation and split migrations for moving users
	Evolution of splits distributions
	Overheads of Koala and redirections

	Related work
	Conclusion

