23 research outputs found

    High-Level Synthesis for Embedded Systems

    Get PDF

    Technical Workshop: Advanced Helicopter Cockpit Design

    Get PDF
    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration

    High-level synthesis for FPGAs: From prototyping to deployment

    Get PDF
    Abstract-Escalating System-on-Chip design complexity is pushing the design community to raise the level of abstraction beyond RTL. Despite the unsuccessful adoptions of early generations of commercial high-level synthesis (HLS) systems, we believe that the tipping point for transitioning to HLS methodology is happening now, especially for FPGA designs. The latest generation of HLS tools has made significant progress in providing wide language coverage and robust compilation technology, platform-based modeling, advancement in core HLS algorithms, and a domain-specific approach. In this paper we use AutoESL's AutoPilot HLS tool coupled with domain-specific system-level implementation platforms developed by Xilinx as an example to demonstrate the effectiveness of state-of-art C-to-FPGA synthesis solutions targeting multiple application domains. Complex industrial designs targeting Xilinx FPGAs are also presented as case studies, including comparison of HLS solutions versus optimized manual designs. Index Terms-Domain-specific design, field-programmable gate array (FPGA), high-level synthesis (HLS), quality of results (QoR)

    Virtualized Reconfigurable Resources and Their Secured Provision in an Untrusted Cloud Environment

    Get PDF
    The cloud computing business grows year after year. To keep up with increasing demand and to offer more services, data center providers are always searching for novel architectures. One of them are FPGAs, reconfigurable hardware with high compute power and energy efficiency. But some clients cannot make use of the remote processing capabilities. Not every involved party is trustworthy and the complex management software has potential security flaws. Hence, clients’ sensitive data or algorithms cannot be sufficiently protected. In this thesis state-of-the-art hardware, cloud and security concepts are analyzed and com- bined. On one side are reconfigurable virtual FPGAs. They are a flexible resource and fulfill the cloud characteristics at the price of security. But on the other side is a strong requirement for said security. To provide it, an immutable controller is embedded enabling a direct, confidential and secure transfer of clients’ configurations. This establishes a trustworthy compute space inside an untrusted cloud environment. Clients can securely transfer their sensitive data and algorithms without involving vulnerable software or a data center provider. This concept is implemented as a prototype. Based on it, necessary changes to current FPGAs are analyzed. To fully enable reconfigurable yet secure hardware in the cloud, a new hybrid architecture is required.Das GeschĂ€ft mit dem Cloud Computing wĂ€chst Jahr fĂŒr Jahr. Um mit der steigenden Nachfrage mitzuhalten und neue Angebote zu bieten, sind Betreiber von Rechenzentren immer auf der Suche nach neuen Architekturen. Eine davon sind FPGAs, rekonfigurierbare Hardware mit hoher Rechenleistung und Energieeffizienz. Aber manche Kunden können die ausgelagerten RechenkapazitĂ€ten nicht nutzen. Nicht alle Beteiligten sind vertrauenswĂŒrdig und die komplexe Verwaltungssoftware ist anfĂ€llig fĂŒr SicherheitslĂŒcken. Daher können die sensiblen Daten dieser Kunden nicht ausreichend geschĂŒtzt werden. In dieser Arbeit werden modernste Hardware, Cloud und Sicherheitskonzept analysiert und kombiniert. Auf der einen Seite sind virtuelle FPGAs. Sie sind eine flexible Ressource und haben Cloud Charakteristiken zum Preis der Sicherheit. Aber auf der anderen Seite steht ein hohes SicherheitsbedĂŒrfnis. Um dieses zu bieten ist ein unverĂ€nderlicher Controller eingebettet und ermöglicht eine direkte, vertrauliche und sichere Übertragung der Konfigurationen der Kunden. Das etabliert eine vertrauenswĂŒrdige Rechenumgebung in einer nicht vertrauenswĂŒrdigen Cloud Umgebung. Kunden können sicher ihre sensiblen Daten und Algorithmen ĂŒbertragen ohne verwundbare Software zu nutzen oder den Betreiber des Rechenzentrums einzubeziehen. Dieses Konzept ist als Prototyp implementiert. Darauf basierend werden nötige Änderungen von modernen FPGAs analysiert. Um in vollem Umfang eine rekonfigurierbare aber dennoch sichere Hardware in der Cloud zu ermöglichen, wird eine neue hybride Architektur benötigt

    Towards Practical Privacy-Preserving Protocols

    Get PDF
    Protecting users' privacy in digital systems becomes more complex and challenging over time, as the amount of stored and exchanged data grows steadily and systems become increasingly involved and connected. Two techniques that try to approach this issue are Secure Multi-Party Computation (MPC) and Private Information Retrieval (PIR), which aim to enable practical computation while simultaneously keeping sensitive data private. In this thesis we present results showing how real-world applications can be executed in a privacy-preserving way. This is not only desired by users of such applications, but since 2018 also based on a strong legal foundation with the General Data Protection Regulation (GDPR) in the European Union, that forces companies to protect the privacy of user data by design. This thesis' contributions are split into three parts and can be summarized as follows: MPC Tools Generic MPC requires in-depth background knowledge about a complex research field. To approach this, we provide tools that are efficient and usable at the same time, and serve as a foundation for follow-up work as they allow cryptographers, researchers and developers to implement, test and deploy MPC applications. We provide an implementation framework that abstracts from the underlying protocols, optimized building blocks generated from hardware synthesis tools, and allow the direct processing of Hardware Definition Languages (HDLs). Finally, we present an automated compiler for efficient hybrid protocols from ANSI C. MPC Applications MPC was for a long time deemed too expensive to be used in practice. We show several use cases of real-world applications that can operate in a privacy-preserving, yet practical way when engineered properly and built on top of suitable MPC protocols. Use cases presented in this thesis are from the domain of route computation using BGP on the Internet or at Internet Exchange Points (IXPs). In both cases our protocols protect sensitive business information that is used to determine routing decisions. Another use case focuses on genomics, which is particularly critical as the human genome is connected to everyone during their entire lifespan and cannot be altered. Our system enables federated genomic databases, where several institutions can privately outsource their genome data and where research institutes can query this data in a privacy-preserving manner. PIR and Applications Privately retrieving data from a database is a crucial requirement for user privacy and metadata protection, and is enabled amongst others by a technique called Private Information Retrieval (PIR). We present improvements and a generalization of a well-known multi-server PIR scheme of Chor et al., and an implementation and evaluation thereof. We also design and implement an efficient anonymous messaging system built on top of PIR. Furthermore we provide a scalable solution for private contact discovery that utilizes ideas from efficient two-server PIR built from Distributed Point Functions (DPFs) in combination with Private Set Intersection (PSI)

    High-level synthesis using structural input

    Get PDF

    Microarchitectural Low-Power Design Techniques for Embedded Microprocessors

    Get PDF
    With the omnipresence of embedded processing in all forms of electronics today, there is a strong trend towards wireless, battery-powered, portable embedded systems which have to operate under stringent energy constraints. Consequently, low power consumption and high energy efficiency have emerged as the two key criteria for embedded microprocessor design. In this thesis we present a range of microarchitectural low-power design techniques which enable the increase of performance for embedded microprocessors and/or the reduction of energy consumption, e.g., through voltage scaling. In the context of cryptographic applications, we explore the effectiveness of instruction set extensions (ISEs) for a range of different cryptographic hash functions (SHA-3 candidates) on a 16-bit microcontroller architecture (PIC24). Specifically, we demonstrate the effectiveness of light-weight ISEs based on lookup table integration and microcoded instructions using finite state machines for operand and address generation. On-node processing in autonomous wireless sensor node devices requires deeply embedded cores with extremely low power consumption. To address this need, we present TamaRISC, a custom-designed ISA with a corresponding ultra-low-power microarchitecture implementation. The TamaRISC architecture is employed in conjunction with an ISE and standard cell memories to design a sub-threshold capable processor system targeted at compressed sensing applications. We furthermore employ TamaRISC in a hybrid SIMD/MIMD multi-core architecture targeted at moderate to high processing requirements (> 1 MOPS). A range of different microarchitectural techniques for efficient memory organization are presented. Specifically, we introduce a configurable data memory mapping technique for private and shared access, as well as instruction broadcast together with synchronized code execution based on checkpointing. We then study an inherent suboptimality due to the worst-case design principle in synchronous circuits, and introduce the concept of dynamic timing margins. We show that dynamic timing margins exist in microprocessor circuits, and that these margins are to a large extent state-dependent and that they are correlated to the sequences of instruction types which are executed within the processor pipeline. To perform this analysis we propose a circuit/processor characterization flow and tool called dynamic timing analysis. Moreover, this flow is employed in order to devise a high-level instruction set simulation environment for impact-evaluation of timing errors on application performance. The presented approach improves the state of the art significantly in terms of simulation accuracy through the use of statistical fault injection. The dynamic timing margins in microprocessors are then systematically exploited for throughput improvements or energy reductions via our proposed instruction-based dynamic clock adjustment (DCA) technique. To this end, we introduce a 6-stage 32-bit microprocessor with cycle-by-cycle DCA. Besides a comprehensive design flow and simulation environment for evaluation of the DCA approach, we additionally present a silicon prototype of a DCA-enabled OpenRISC microarchitecture fabricated in 28 nm FD-SOI CMOS. The test chip includes a suitable clock generation unit which allows for cycle-by-cycle DCA over a wide range with fine granularity at frequencies exceeding 1 GHz. Measurement results of speedups and power reductions are provided

    Data Driven Approach To Vehicle Emissions Reduction

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2016. Major: Mechanical Engineering. Advisor: William Northrop. 1 computer file (PDF); x, 101 pages.Anthropogenic climate change and air pollution resulting from vehicle emissions are major issues facing society. Recent research and government regulations have focused on reducing these emissions through efficiency improvements, advanced aftertreatment technology and ever-tighter regulations. However, despite these advances vehicles still exhibit high emissions during actual use as compared to laboratory or certification testing. Using modern data collection techniques, I identified that electrification and hybridization of transit buses can reduce vehicle power consumption by up to 72% under “real-world” driving conditions, thus decreasing vehicle CO2 emissions. To illustrate the process behind vehicle data collection and offer a use-case for future vehicle connectivity, I discuss the development of a novel mass-based automatic passenger counter to provide a more accurate, lower-cost passenger counting method which can be retrofitted on existing transit buses. Initial results indicate this new passenger counting technology has an accuracy of 97%, however miscounts occur during times when the bus is kneeling, leaving an opportunity for future research. Using measurements from standard exhaust sensors I revealed that NOx emissions of 2013 model year (MY) transit buses were 3-9 times the federal test procedure (FTP) certification limit under “real-world” driving conditions while complying with all regulated standards. To help identify the systematic and physical causes for these high NOx emissions I developed a novel spatial emissions mapping technique called Lagrangian Hotspot Analysis, which used connected vehicle technology to identify spatial influences on vehicle emissions. Results indicate that a hotspot located in the vicinity of a bus stop and intersection had an emissions rate of roughly 3.3 times that of the route average, with these high emissions being attributed to the long idle periods and slow speeds. Instances of cold start and uphill accelerations were also found to increase NOx emissions. Finally, I compared a 2013MY and 2015MY conventional diesel bus to evaluate technology improvements between the generations with the key finding that NOx emissions from the 2015MY bus are reduced by 80% compared to the 2013MY. Further, the NOx emissions were lower than the FTP cycle limit under real-world driving. After the 2013MY bus was updated with the emissions aftertreatment technology of the 2015MY bus, I observed the same NOx reduction in the 2013MY bus. I attribute this reduction to increases in urea consumption through optimization of urea dosing strategy. Such findings imply that certification NOx levels are possible under real-world driving and that upgrading existing buses with modern aftertreatment systems can provide substantial NOx reductions
    corecore