
High-Level Synthesis Using Structural Input

lain William Finlay

Thesis submitted for the degree of
Doctor of Philosophy

University of Edinburgh
March 1992.

Abstract

The task of a high-level behavioural synthesis system is to create a structure to

implement a given abstract specification of behaviour. The behaviour is specified at the

algorithmic level, typically in the form of a high-level programming language. The

synthesized structure is described at the register-transfer level. In such systems the

synthesis task is guided only by the behaviour and some physical design constraints

such as speed and area. This approach frequently leads to difficulties in synthesizing a

suitable architecture.

The synthesis system reported in this thesis tackles this problem by enabling the

designer to specify structural input alongside the behaviour. The structural input is

described at the register-transfer level and need not define a complete structure. The

synthesis tool makes use of this input structure by incorporating it into the design where

appropriate or as instructed.

This structurally directed approach is shown to give the designer greater control

over structural aspects of the design in addition to enabling greater exploration of

possible structural solutions.

I

Declaration of Originality

This thesis, with the exception of Section 5.2.1, was researched and composed

by the author in the Department of Electrical Engineering at the University of

Edinburgh between October 1988 and February 1992.

Acknowledgements

I would like to acknowledge the help of my supervisor, Prof. Peter Denyer, and

the financial support provided by the Science and Engineering Research Council and

British Aerospace. Over the past few years I have received help and advice from my

contemporaries: Douglas 'Gooby' Grant, Paul Neil, Jonathan Puddicombe and David

Mallon.

lain William Finlay.

11

Contents

Abstract 	 .

Declaration of Originality ... II

Acknowledgements ... II

Contents ... HI

Chapter 1
Introduction. ... 1

DesignAutomation . .. 1

High-Level Behavioural Synthesis . .. 3

Structural Direction . .. 5

ThesisOverview . .. 7

Chapter 2
Behavioural Synthesis Review S

Historical Overview 8

'One Shot' 	Systems . 	.. 12

IterativeSystems . 	.. 14

Architecture Specific Systems 16

Representations . 	 .. 17

TreeRepresentations . 	.. 19

Semi-data Flow Graphs 20

Separate True Data and Control Flow Representations 21

Combined Representations . 	.. 22

Interaction with Allocation . 	 .. 23

Scheduling Algorithms 25

Data Path Allocation Techniques . 	.. 30

Optimal Register Allocation, 	.. 31

Graph Theoretical Techniques taking into account Interconnect 32

Branch and Bound Technique . 	.. 34

In

Iterative Techniques 	 . 	 34

	

Rule-based Schemes 	 35

Chapter 3

	

Models for Behavioural Synthesis..... 	 36

Introduction . 	 .. 36

Behavioural Model . 	.. 37

Behavioural Elements 39

Data Flow Terminology 41

StructuralModel . 	.. 43

Structural 	Components 44

Specifying 	Structures 46

ControlModel . 	.. 47

TimingModel . 	.. 47

BindingModel 49

Representing Control 50

System 	Overview 51

TheMapper 52

TheScheduler 53

The Data Path Ailocator. 	... 53

Chapter 4
Mapping Behaviour to Structure 54

Introduction . 	 .. 54

Mapping a Data Flow Graph to a Structure 55

The Matchmaking Algorithm 	... 56

The Dependency Algorithm 58

Mapping Partitions of a Data Flow Graph to Structures 60

IdentifyingPartitions 60

Partition Selection . 	.. 64

The Integrated Approach 65

Iv

Worked Example 	 .68

Concluding Remarks 	 .71

Computational Complexity . .. 71

Memory Considerations 72

Chapter 5
Scheduling and Binding . .. 73

Introduction . 	 .. 73

Scheduling 75

The Force-Directed Deferral Mechanism . 	.. 75

Binding 78

Scheduling and Binding with Interconnected Structure 81

Combining with List Scheduling. 83

Integrated Scheduling and Binding . .. 83

Deferral and Binding for Partitioned Operations 85

Deferral and Binding for Non-partitioned Operations 87

Results . 	 .. 91

ConcludingRemarks . .. 96

Chapter 6
DataPath Allocation 97

Introduction . 	 .. 97

Memory . 	 .. 99

SingleLocation Storage 99

Multiple Location Storage 100

Interconnection . 	.. 101

Communications Synthesis 101

Influence of Scheduling and Binding 102

Synthesis Algorithms 103

Clique Partitioning Method . 	 .. 103

SynthesisingBuses 115

VA

Results 	 .115

The FACET Example 	 . 117

The Differential Equation Example fig

The Wave Digital Filter Example . .. 120

Concluding Remarks . .. 125

Chapter 7
WorkedExamples 126

Introduction . 	 .. 126

Reuse of Structure . 	.. 126

Iterative Synthesis . 	.. 130

Adapting Structure 132

Influencing the Architecture . 	.. 134

Chapter 8
Conclusion and Future Directions .. 138

Conclusion 138

Future Developments with Structural Input 139

Future Directions in High-Level Synthesis 140

References..142

AppendixA ...147

Clique Partitioning 147

Minimum Cost Flow . .. 151

AppendixB ... 156

FacetExample . 	.. 156

Behaviour

.156

Resource-time Graph 156

Differential Equation 157

Behaviour 157

Structures 157

VI

Resource-time graphs 	 .161

Wave Digital Filter . .. 162

Behaviour. ... 162

Resource-time graphs 163

CMI

Chapter 1
Introduction.

1.1 Design Automation.

The advent of VLSI technology has made it possible to construct integrated

circuits consisting of hundreds of thousands of transistors. In achieving this scale of

integration advances have been required in design methodology as well as in

fabrication process technology. The complexity of circuits has demanded a structured,

hierarchical approach to design to enable the efficient use of a team of designers. As

complexity has increased there has been a trend towards automating tasks at higher

levels in the design hierarchy [1].

A hierarchical approach is used because it makes it possible to partition the

design process into smaller, more manageable subtasks. This permits a more efficient

use of designers as each can be apportioned a clearly defined subtask. Moreover, it

provides the necessary framework for representing the design at different levels of

abstraction. As an example, consider a circuit which adds two numbers. At the most

abstract level this could be represented by a module with two inputs and one output,

which is defined to perform an addition operation. At a lower level, this circuit could

be represented as an interconnection of logic gates; lower still it could be represented

by an interconnection of transistors. In moving to levels of higher abstraction, the

representation becomes less detailed and so more manageable.

The VLSI design process has three domains of design representation:

behavioural, structural and physical. The behavioural domain is used to house the

description of the function of the circuit. The structural domain is a transitional

representation between the behaviour and the physical circuit; it encompasses

descriptions of circuit schematics. The physical domain is encountered in the

description of the layout of the circuit in silicon. A behaviour can have many correct

1

structural implementations, just as a structure can have many possible physical

implementations [2].

Within each domain a circuit can be represented at various levels of

abstraction [3]. A number of commonly defined levels used in VLSI design are

presented in Figure 1.1

Level Behavioural Structural Physical

Register- Algorithmic Interconnection of IC Floorplan,

transfer processors, ports Macro cells
and memory

Logic Logic Gates, Standard Cell

Equations Flip-flops Layout

Circuit Network Transistors,

Equations Connections Transistor Layout

Figure 1.1 Levels of domain abstraction in VLSI design.

The ideal design of a circuit starts with a behavioural description at a high level

of abstraction. From this point synthesis proceeds through the structural domain,

descending to lower levels of abstraction until it arrives at the layout description of the

circuit's transistors in the physical domain. The constraints of the synthesis process are

usually expressed as circuit requirements in the physical domain such as the circuit's

minimum speed of operation and maximum silicon area.

The first design tasks to be automated centered around the transition from the

structural to the physical domain at low levels of abstraction. These were tasks

involving circuit layout such as floor-planning and routing. Automation offers a number

of advantages. Most notably both the design time and the risk of errors can be reduced.

Accordingly, the greatest benefits from automation are gained when it is applied to large

scale tasks. This is why layout received the initial attention. As designs increase still

further in terms of complexity and size, there is a greater demand for automating

synthesis at higher levels of abstraction. Consequently, automation is beginning to

PA

spread to the behavioural domain.

-At present there are a number of commercial systems which automate synthesis

from a register-transfer level description of structure. These systems are commonly

termed 'silicon compilers' [2]. In addition, a small number of systems perform logic

synthesis. These take a behavioural description at the logic-level and create a

corresponding structural implementation. Very few systems exist which accept

behavioural descriptions at a higher level. This is where much of the current research

effort is concentrated: • the high-level behavioural synthesis task.

1.2 High-Level Behavioural Synthesis.

The task of a high-level synthesis system is to provide a means of generating a

low level circuit description from a high level specification. Although often considered

synonymous, behavioural synthesis denotes a process which is distinct from high-level

synthesis. Behavioural synthesis starts from a description of behaviour defined at any

level of abstraction with the aim of producing a structural description. Therefore, high-

level synthesis need not start from the behavioural domain and that behavioural

synthesis need not start at a high-level of abstraction [3] [4] [5].

The synthesis task tackled in this thesis can be termed high-level behavioural

synthesis. This requires that the input description be a high level specification of

behaviour. This specification is usually algorithmic in nature and is typically expressed

using a high-level programming language. A high level description of structure is

synthesized from the behavioural specification. In a high-level synthesis system, the

structural description would then be 'compiled' to a physical layout representation of

interconnected transistors, the task of silicon compilation.

The synthesis task is performed at the register-transfer level.. The behavioural

description is composed of a set of primitive operations available in hardware at that

level. An example in Figure 1.2 defines the behaviour of a wave digital filter at the

register-transfer level [6]. The primitive operations are addition and multiplication.

3

data input

tion operation

ransfer (signal)

constant

multiplication -

Figure 1.2 Wave digital filter behaviour in a datafiowformat.

A structure synthesized to implement this behaviour is shown in Figure 1.3.

input port

regisu

addc

iltiplexer

egister

multiplier

Figure 1.3 Register-transfer schematic of a wave digitalfilter data path.

This is a schematic view of the data path with control structure omitted. In

addition to implementing the behaviour, the circuit is invariably required to meet

physical constraints. The most common constraints involve a limit on the silicon area

available in conjunction with a minimum speed of operation. As these constraints are

made in the physical domain, it is important that a synthesis system supports a suitable

back propagation of these requirements to influence higher level design decisions in the

structural and behavioural domains. This is a problem widely recognised in high-level

synthesis research.

1.3 Structural Direction.

The high-level behavioural synthesis task involves the creation of a register-

transfer structure to implement a specified high-level behaviour. Constraints in terms of

speed and size will typically be placed on the physical implementation. These

constraints will consequently be the sole factors influencing the design architecture. A

circuit's architecture is commonly accepted as being the major factor in determining

performance. Architecture is a high-level structural attribute defining the style of

component interconnection.

The difficulty encountered in most synthesis systems is in producing an

architecture to suit a particular problem when given only a specification of behaviour

and some physical requirements. When the designer knows of a suitable architecture,

there should be some mechanism for suggesting it to the synthesis tool. In most

systems, control over the synthesized register-transfer structure is severely limited. At

best only the number of allocated components can be influenced. In only one other

system is there a facility for controlling the pattern of interconnection [7].

The work presented in this thesis, which takes the form of a prototype high-level

behavioural synthesis tool, offers a structurally directed approach to the afore-

mentioned problem. The designer is encouraged to specify partial or complete

5

structures alongside the behavioural input in an attempt to direct the synthesis process

towards a suitable architecture. The synthesis tool makes use of these structures by

incorporating them into the design where appropriate or as instructed. The structural

input is specified at the register-transfer level, comprising of an interconnection of

processing, memory and communications components. As illustrated in Figure 1.4, a

partial structure is one where interconnection is left incomplete. It is, therefore,

acceptable to leave some or all component ports unconnected.

The use of structural input brings a number of benefits. These stem from the

ability to control the synthesized structure. If the designer is dissatisfied with the

product of fully automated synthesis, he or she is in the position to alter the architectural

style or to modify unacceptable parts of the design by repeating synthesis with

structural input. Modifications can be made to the synthesized design and need not be

complete or correct before repeating synthesis with the altered design. In this way an

effective iterative approach to synthesis is possible. In addition, structures may be

reused in future designs. This is particularly useful in the case of 'general purpose'

structures which require only modification of control to implement a different

behaviour. The synthesis system would then be acting as a 'compiler' for such general

purpose data paths.

Register file

Processor 01' *7
Figure 1.4 Data path schematic of a partial structure used as input.

11

1.4 Thesis Overview.

In summary, this thesis describes a high-level behavioural synthesis system

which accepts a specification of structural input alongside a specification of behaviour.

The structural input acts as architectural direction in the synthesis process. This is

achieved through the use of specified structures within the synthesized data path. The

intention of this approach is primarily to give the designer greater control over the

exploration of structural implementations of the behaviour.

To make use of structural input, the synthesis system must be capable of

working out how a behaviour can be implemented by a structure in addition to

appreciating the performance of different structures in relation to a particular behaviour.

This task is termed mapping. In this thesis, synthesis has been broken down into three

tasks, each performed by a separate tool. These tasks are mapping, scheduling and data

path allocation. They are discussed separately in chapters 4 to 6. Chapter 3 outlines the

basic framework designed to represent behaviour and structure and to support the

synthesis process.

7

Chapter 2
Behavioural Synthesis Review.

2.1 Historical Overview.

Research into high-level, or behaviouTal, synthesis started as long ago as the

1960s. The ALERT system developed at IBM's T.J. Watson Research Center produced

a logic level implementation from a register-transfer level, behavioural description

[10]. Nevertheless, until the 1980s, work in design automation tended to focus on the

lower levels of the design hierarchy such 'as layout. High-level synthesis research was

restricted mainly to universities.

At Carnegie-Mellon University, the EXPL system was developed in the early

1970s. This system was the first to enable exploration of the design space by performing

serial-parallel trade-offs in hardware. The structural implementation of designs was

made using a set of pre-defined register-transfer modules in order to simplify the

synthesis task. The EXPL system was superseded by the CMU-DA (Carnegie-Mellon

University Design Automation) System in the late 1970s [11]. This new system

addressed a range of behavioural synthesis tasks: behavioural specification and internal

representation, scheduling and allocation. In addition, it experimented with a wide

range of algorithmic techniques for implementing these tasks, ranging from heuristic

methods to expert systems.

In Europe, research started in 1976 at the University of Kiel which led to the

MIMOLA system [12]. MIMOLA was capable of synthesising a microprocessor from

an input specification of behaviour. Synthesis was performed iteratively under the

guidance of a designer until constraints were met. At the University of Karlsruhe

development of the CADDY/DSL system [13] started in 1979.

The 1980s have seen a dramatic increase in research into high-level synthesis.

Advances in VLSI technology demanded greater design automation and rapid

E:1

developments in both computer hardware and software provided greater opportunity.

Automation of the lower levels in the design hierarchy, such as layout, routing and logic

synthesis, were being accepted in industry. Many research groups sprang up, expanding

research to encompass a wider range of architectural styles and applications. At the

University of Edinburgh, the FIRST system was developed for bit-serial application

[14]. This was followed in 1987 by the SAGE system [15] [16]. This was developed at

the Silicon Architectures Research Initiative, a collaborative venture between the

University and six companies. It addressed a wider range of bit-parallel applications

using the VHDL language to represent both the behavioural specification and structural

design. Similarly at IMEC, synthesis work started with a bit-serial system, Cathedral I.

Cathedral II moved into the bit-parallel field but was directed at synthesising designs

for a small range of DSP applications for which it had a target architecture [17]. Work

at Eindhoven University has led to the development of the EASY system [18].

In North America there has been widespread interest in high-level synthesis. In

Canada the Universities of Carelton and Waterloo have developed the HAL [20] and

SPAR) [25] systems respectively with the backing of Bell-Northern Research (BNR).

In the United States some of the more prominent research projects are also in

universities: the University of Southern California (ADAM) [27], Carnegie-Mellon

University (SAM) [34], University of California at Irvine (VSS) [35], University of

California at Berkely (HYPER) [36] and the University of Illinois (IBA) [7].

High-level synthesis has been gaining a foothold in industry. The Pyramid and

Phideo systems are being developed at Philips Research Labs [37] and the CALLAS

system [38] at Siemens. In the United States the YSC [39] and V-compiler [40] are

underdevelopment at IBM's T.J. Watson Research Center, Bridge [41] and SAM [42]

at AT&T Bell Labs and the Parsifal system at General Electric [43]. Work is also being

carried out in Japan at NEC [44] and Nfl [45].

I,]

2.2 Synthesis Methodologies.

Within every approach to high-level synthesis can be identified four basic tasks

which must be addressed. These tasks are as follows:

• Representation.

A typical synthesis system will accept a specification of behaviour and produce

a specification of structure. These specifications are usually made using the

constructs of high-level languages and hardware description languages

respectively. Some languages such as VHDL incorporate both behavioural and

structural constructs [46]. Within the system, behaviour and structure are

usually represented in a graphical format to highlight the relationships or

connectivity between elements.

Structural Requirements.

In addition to implementing the desired behaviour, the structure is usually

required to meet physical and performance constraints. Typical performance

constraints are speed of operation and data throughput. Physical constraints are

most likely to be in terms of the silicon area which can be occupied by the

design or its power consumption.

The remaining three tasks form what is commonly referred to as data path synthesis.

• Scheduling.

Scheduling dictates the relative timing of behavioural operations. Relative

timing is expressed in terms of control steps which represent synchronous states

based on clock cycles.

• Allocation.

Allocation governs the use and interconnection of structural components.

Different types of component, defined at the register-transfer level, are allocated

during different stages in the synthesis process. Processors are usually allocated

10

first and interconnecting components, such as multiplexers, wires and buses, are

allocated last.

• Binding.

Binding provides the link between behaviour and structure. It is effectively the

mapping of behavioural elements to structural components. It is used to

determine which processor will implement a particular operation and which

memory will store a particular data value.

The synthesis aim is to create a structure which will implement a desired

behaviour while satisfying structural requirements. Creating a structure to realise a

given behaviour does not present the main problem: it is guiding the synthesis process

so that it produces a structure which satisfies realistic requirements which is difficult.

Speed
+ Synthesized designs

Area

Figure 2.5 Design space bounded by speed and area.

Consider a design where only speed and area requirements are specified. As

shown in Figure 2.5, a simple two-dimensional design space can be constructed using

speed and area axes. For many examples, as in Figure 2.5, there is a noticeable trade-

off between speed and area. A high-speed design will exploit parallelism in the

behaviour, demanding more processing units and, hence, use more silicon area. On the

other hand, a smaller area, low-cost design would opt for a more serial approach to

operation execution which required fewer processing units but operated at lower speed.

This is a highly idealised view of design space exploration. Only for a design whose

behaviour contains sufficient parallelism will there exist an obvious trade-off between

speed and area which is dominated by the processor allocation. Other factors such as

11

memory, communications and control can have a dominating effect in certain

applications. In image processing, memory is frequently the dominating factor, whereas

in microprocessor design control is of greater importance. McFarland [47] has

demonstrated the effect of communications, involving the use of multiplexers and

buses, on both the speed and area of a number of designs. In the majority of cases,

efficient design space exploration requires consideration of the combination of

processing, memory and communication as all these factors are required to formulate

an architecture suited to a particular application.

Synthesis systems can be categorised according to the way in which they

attempt to satisfy structural requirements. To do this effectively the system must impart

a suitable architectural style to the design. Figure 2.6 outlines three categories of

synthesis system.

High-Level Synthesis Systems

One Shot Systems Iterative Systems Architectuse Specific Systems

HAL
CATHEDRAL U

SAM I S PAID
CHARM Feedback 	 Structural Input SUGAR

BUD_DAA
CHJPPE 	 IBA PHIDEO

YSc
MIIMOLA PARSIFAL

FLA MEL
ADAM

CADDY
EASY

Figure 2.6 Different synthesis methodologies.

2.2.1 'One Shot' Systems.

With 'one shot' systems, designs are discarded if they fall to meet structural

requirements. There is no facility to analyse a failed design with a view to modifying it

or to directing subsequent synthesis attempts. In other words, the designer has only 'one

shot' at synthesising a design to meet a given set of requirements. In some systems it

may be possible for the designer to influence certain component allocations or to

12

manipulate the structural requirements in an attempt to synthesize an adequate design.

However, the correlation between these parameters and the final solution is not direct

enough to enable an effective search of the design space to be made in the majority of

cases.

'One shot' systems tend to employ more complex, global algorithms than those

using other approaches. There are several reasons for this. Firstly, the algorithms must

locate a satisfactory solution first time without relying on designer guidance. Secondly,

there is no time constraint imposed on run time because the designer is not expected to

interact with the synthesis process or to use it in an iterative fashion. Finally, the

algorithms are expected to cope with a whole range of applications and so cannot be

simplified by tailoring them to a specific application using heuristics and designer

knowledge.

HAL can be classed as a 'one shot' system [20]. The HAL system is dominated

by a highly effective scheduling algorithm, calledforce-directed scheduling [21], which

has been extended to take into account storage and interconnection factors. Memory

and interconnection are synthesized after scheduling using a weight-directed clique

partitioning method which concentrates on reducing memory costs while taking into

account the cost of interconnection. These costs are estimated in terms of the numbers

Of registers and multiplexer inputs respectively. Both force-directed scheduling and

weight-directed clique partitioning are computationally complex algorithms. Although

an attempt has been made to give greater weight to memory and interconnection factors,

the allocation of processors and scheduling of operations still dominate the architectural

style. This is borne out by the random interconnection topology of synthesized data

paths.

The original force-directed scheduling algorithm performed processor

allocation. The designer could only influence the final design through the specification

13

of speed and area constraints. To enable better design space exploration,force-directed

list scheduling (FDLS) was developed. FDLS produces a schedule under resource

constraints thus giving the designer control over the number of processors or buses used

[23]. The effectiveness of the force-directed scheduling approach is highlighted by the

number of researchers who have made use of this method [18] [48].

2.2.2 Iterative Systems.

Systems which fall into the iterative category make use of synthesised designs

which fail to meet structural requirements. The failed design is analysed in an attempt

to discover why it failed. Information from the analysis is then used in one of two ways:

either to direct subsequent synthesis attempts or to modify the existing design. The

iteration loop need not be completed entirely in software but if analysis is left to the

designer then he or she must be allowed sufficient control over the synthesis process so

as to be able to direct it.

2.2.2.1 Directing Subsequent Synthesis Attempts.

CHIPPE [49] describes itself as a system for constraint driven behavioural

synthesis. It performs iterative synthesis entirely in software. An expert system is used

to control the resource allocation and strategies used in the synthesis tasks of scheduling

and data path allocation. The expert system is guided in these tasks by an evaluator

which assesses the quality of the present, complete or partial, design with respect to the

design goals.

CHIPPE effects an iterative or closed-loop design methodology by repeating

the synthesis process with constrained resources and refined trade-off knowledge

gleaned from previous iterations. As the iterations proceed, estimations become more

detailed and greater optimization is permitted with the design tools. This means that the

first few iterations can be performed quickly, wasting little time on optimizing designs

which will be discarded.

14

The implementation of CFIIPPE is focused on CMOS gate array design which

simplifies many of the technological and architectural trade-offs, especially in the

analysis of bus delays.

The ADAM system [26] adopts a similar approach but addresses the problem

of full-custom design. The iterative design loop must, however, be completed by the

designer. The ADAM system is effectively a one shot system with area-prediction tools

aimed at assisting the designer in making high-level design decisions. Within an

iteration, the synthesis process is modelled as a search tree whose nodes represent

design decisions. At any node in this tree, if the area-prediction tools show that no

acceptable design can be reached then backtracking to other nodes in the tree is

supported. Thus, there is the opportunity for considerable design space exploration

within each iteration.

2.2.2.2 Modification of Existing Designs.

When a structure is synthesized to implement a specified behaviour, bindings

will be created between behavioural elements, structural components and a timing

model. This binding information dictates how the structure implements the behaviour

and is essentially a specification of the control task. If the structure fails to meet the

necessary requirements, but is to be modified in another attempt to satisfy them, then

there are at least two possible iterative methods which could be employed. The first

method is based on transformations. Structural transformations which maintain the

validity of the bindings can be applied to the structure under the guidance of a structural

analysis tool or the designer. The second method permits the structure to be modified

without considering the bindings. Synthesis tools would then reconstruct the bindings

making additional modifications, if necessary, to implement the behaviour. The second

method is more advanced as the tools must have knowledge of how a structure

implements behaviour rather than just a set of transform rules.

15

The IBA system [7] developed at the University of Illinois addresses both

approaches. The system is composed of three tools, FASOLT, RLEXT and LE, which

interact within the framework of the IMBSL language. It is aimed at designing

microprocessor-like instruction-set processors. In the majority of such applications

there will not be more than one operator of a particular type and so, as a simplification,

scheduling is left entirely to the designer.

The transformational approach to iterative synthesis centres around IASOLT

and LE. The layout estimator (LE) drives the choice of optimizing transformations

which are housed in FASOLT. There are nine possible transformations, which operate

at the level of scheduling and allocation. Typical transformations involve component

replacement and interconnection component merging and bypass.

The approach which permits structural modification by the designer involves

RLEXT (Register Level Exploration Tool). In IMBSL it is possible to specify a partial

structure as a guide to synthesis. RLEXT constructs bindings between behaviour and

structure and corrects inconsistencies in the specified structure. In IBA's application

area, where the structure may contain only a single processing unit, the problem of

constructing a binding between operations and processors is obviously trivial. There is

no mention in the current literature of a method for constructing a binding to a structure

containing multiple processors.

The system presented in this thesis follows the second approach. It accepts

partial or complete structural specifications as input and computes feasible bindings

between behaviour and structure which the designer is permitted to modify.

2.2.3 Architecture Siiecific Systems.

Cathedral II is aimed at synthesising synchronous, multiprocessor ICs for DSP

applications [17]. There is a target architecture which is tailored to the behaviour. At the

highest level the architecture is composed of concurrently operating processors. Each

18

processor is tuned to a subtask of the behaviour and consists of a dedicated data path

and controller. The data path is assembled from execution units which are

interconnected by a restricted number of buses. Each execution unit has memory in the

form of register files which are placed on its input side.

Cathedral II operates a 'meet-in-the-middle' methodology between silicon and

system design parts. The design of execution units, which includes layout, is performed

by the silicon design part and is saved so that it can be used in other designs.

SPAID [25] is also aimed at DSP applications. Its target architecture is aimed

at creating a linear communications topology. Registers are stored in files, each of

which is connected to a separate bus. Consequently data will only pass through a single

register file and bus between processors. This reduces interconnection delays and

simplifies the layout task. The synthesis process allows interconnection to be

constrained in the allocation phase prior to scheduling. A two-phase bus cycle is

imposed on data transfers, separating reads from writes. The control and external

communication architectures are also pre-defined.

The SUGAR system is dedicated to the synthesis of microprocessors [52]. The

synthesis tools contain embedded knowledge about microprocessor subsystems such as

the instruction decode unit and condition code branch logic. They also have knowledge

of busing structures found in commercial microprocessors. It should be noted that

control issues such as the decoding of instructions and assignment of machine code as

well as the choice of busing structure are given precedence over scheduling and register

assignment.

2.3 Representations.

In the majority of systems, behaviour is the input and structure is the output. It

is only in the IBA system [7] and in the system presented in this thesis that a structural

specification will be accepted as input.

17

Behaviour is typically specified in an algorithmic form as a textual description

in a high-level language. Most systems have developed their own languages, often

based on a subset of an existing procedural language such as ADA, PASCAL or C.

More recent approaches make use of hardware description languages, such as VHDL,

which can be used to describe both behaviour and structure.

DeMan advocates the use of applicative languages, such as SILAGE and ELLA,

over standard procedural ones [53]. A major difference between procedural and

applicative is that procedural languages will permit the multiple assignment of

variables as shown in Figure 2.7 whereas applicative languages will only allow single

assignments. By allowing a variable to appear on both sides of an assignment a serial

implementation is suggested. An applicative language is a more direct representation of

true data flow. However, multiple assignment can be easily detected and removed

during compilation removing the need for a new language. Furthermore, it can be left

to the designer to decide whether he or she uses multiple assignment of variables within

a procedural language.

Applicative Representation

[o]o;
for (1=1; i<4; 1+1-)

S [i-] s [i—i] +x [1];
sum=s [4]; 	 a 17 	s[1] 	s[2J 	s[3] 	s[4]

Procedural Representation

SUM=O;

for (i=1;i<4;i++)
sum=sum+x[i]

x[i]

TtFU
Figure 2.7 Comparison of applicative and procedural representations.

SILAGE offers a number of constructs tailored to data flow representations for

DSP applications. These include a built in data stream concept; a delay concept on

18

streams of bit-true type and decimation and interpolation constructs.

Algorithmic descriptions of behaviour are compiled into an intermediate

format. Compilation can be used to perform common software complier tasks such as:

• dead code and common sub-expression elimination;

• constant propagation;

• in-line expansion of procedures;

• loop unrolling.

A number of systems take this opportunity to carry out some hardware-specific

transformations.

Internal formats tend to be graphical, consisting of interconnected vertices

(nodes) and arcs (edges). Stok has identified three criteria for classifying data and

control models of behaviour [18]:

• using a tree or directed graph representation of data flow;

• using a semi-data flow graph or true data flow graph representation;

• representing control flow separate from data flow.

A true data flow graph G(V,E) has vertices (V) which represent only operations

and edges (E) which model the data flow between these operations. A semi-data flow

graph (3(V,W,E), which is usually represented as a bipartite graph, contains two distinct

sets of vertices for operations (V) and for variables (W). The edges (E) are used to show

the mapping of variables to and from operations.

2.3.1 Tree Representations.

The Cathedral [17] and Mimola [12] systems both represent behaviour using

parse trees, a representation taken from software compiler technology. An example of

a parse tree representation is shown in Figure 18.

19

C

I

X y

get (x);
Y:0 .22+0. 89*x;

I:=0;
while 1<4 do

Y:=0.5*(Y+X/Y) ;

I:=1+1;
endwhile;
put (Y)

Figure 2.8 Parse tree representation.

2.3.2 Semi-data Flow Graphs.

DDS is the representation model for the ADAM system [54]. It contains four

separate models: data flow, timing and control flow, logical structure and physical

structure. The semi-data flow graph is bipartite and acyclic. The behaviour is

represented hierarchically. At the top level a single node represents the entire behaviour.

This is then recursively subdivided until all nodes represent primitive functions.

Control is represented using a directed acyclic graph, in which vertices represent events

and arcs denote causal relationships between them.

The system at the University of Karlsruhe (CADDY) uses three graphs which

share the same vertex representation of operations. The first graph expresses

precedence relations between operations. The second indicates the mapping between

operations and variables and the third describes timing constraints between operations.

From these graphs a true data flow graph is constructed, introducing temporary

variables to cope with multiple assignments as shown in Figure 2.9.

20

x 0.89

022

0.5

get (x);
Y:=0.22+0.89*X;

I :=O;
while 1<4 do

Y:=0.5*(Y+X/Y);

I:
endwhile;
put (Y);

Figure 2.9 Semi-data flow representation.

2.3.3 Separate True Data and Control Flow Representations.

The VHDL Synthesis System (VSS), being developed at the University of

California at Irvine, uses separate graphs to represent data and control [35]. Maximal

sequences of operations which contain no control flow are defined as basic blocks.

These blocks, which represent pure data flow, are then represented by vertices in the

control flow graph as shown in Figure 2.10.

get (x);
Y:=0.22+0.89*X;

I:=0;
while 1<4 do

'f0•5* (Y+X/Y)
I:=1+1;

endwhile;

put (Y);

Figure 2.10 True data flow representation.

The ASM system of the University of Illinois uses a similar approach [18].

Camposano [39] uses a slightly different representation for VHDL behavioural models.

Operation vertices are present in both the data and control flow graphs.

2.3.4 Combined Representations.

SAW [52] and older CMU-DA systems use a combined data and control flow

representation called the Value -Trace (VT). VT is a directed acyclic graph. As in other

representations, operations are denoted by vertices; values, or signals, are denoted by

edges. Conditional branching is introduced by separate 'select vertices'. Subroutines

are mapped as labelled blocks onto subgraphs which are identified by special 'call

vertices' which pass parameters. The EASY system [18] uses a data flow graph

representation based on the 'demand' graph shown in Figure 2.11. Conditional

statements and looping constructs are modelled using the same set of branch and merge

vertices.

get (x)
Y;=0.22+0.89*X;
I :O;
while 1<4 do

Y:0.5 (Y+X/Y)
I :1+l;

endwhile;
put (Y);

Figure 2.11 EASY demand graph representation.

22

2.4 Scheduling Techniques

2.4.1 Interaction with Allocation.

Scheduling and allocation are interdependent synthesis tasks. Before an

operation can be scheduled, it must be known if a suitable processor is available.

Therefore, some allocation must have been made. However, to decide upon a suitable

allocation, scheduling information is required so that a trade-off between resource cost

and schedule length can be made within specified constraints. Although this is

commonly stated as a vicious circle, it is not an intractable problem. The permutations

of processor allocation are small for real examples. It is, therefore, even possible to try

all realistic possibilities. Consider the wave digital filter example' [6]. The data flow

graph is large, containing 34 operations, yet the fastest schedule requires an allocation

of two multipliers and three adders while the slowest needs one multiplier and one

adder. Consequently the total number of realistic allocations is only six. The upper

bound on allocation for the fastest schedule can be obtained by analysing the maximum

processor requirements for an ASAP 2 schedule.

2.4.1.1 Independent Scheduling and Allocation.

The CMU-DA [11], FLAMEL [70] and DAA [55] systems perform processor

allocation before scheduling. The allocation can be set by either the program or the

designer. The CHIPPE [49] and MIMOLA [12] systems adopt a similar strategy with

the added ability to iteratively re-allocate and re-schedule until a satisfactory result is

obtained. MIMOLA uses the designer to control the iterations whereas CHIPPE

employs an expert system which governs the data path allocator.

2.4.1.2 Interdependent Scheduling and Allocation.

An alternative approach is to combine processor allocation with scheduling and

perform them simultaneously. The force-directed scheduling technique of the FIAL

Fuither details of this example can be found in Appendix B.3 on page 162.
As Soon As Possible schedule - definition can be found in section 3.2.2 on page 41.

23

system tries to balance the load of operations on processors in an attempt to meet timing

constraints with the minimum allocation [21]. HAL also employs aforce-directed list

scheduling technique which takes a fixed resource allocation. This is a more effective

scheduleT as it is not burdened by the allocation problem. It is used in conjunction with

the force-directed scheduler to enable a more effective search of the design space.

The MAHA (ADAM) scheduler [26] uses a list scheduling approach driven by

the notion of operationfreedom rather than force. The system first invokes the Clocking

Scheme Synthesis Package (CSSP) [33] which identifies the critical path and divides it

into steps, one per clock cycle. MAHA then allocates functional units for the critical

path on a first come first served basis. The notion of freedom is used to direct the

scheduling of nodes outside the critical path. The operation with least freedom is chosen

for scheduling and allocated a functional unit if necessary.

2.4.1.3 Step-wise Refinement.

The BUD-DAA system [55] uses a step-wise refinement approach to scheduling

and allocation. Operations from the behaviour are grouped into clusters according to

their potential for sharing processors or interconnect, or for exploiting parallelism.

Processors are then assigned to each cluster before scheduling is performed. A number

of different clusters are investigated and the selection producing the result most

appropriate to the resource-time criteria is selected. BUD uses list scheduling with a

similar a priori function to that used in SLICER (CHIPPE) [50] and MAHA [26].

In the YSC system [39] scheduling is separated into two stages. Initially each

operation is bound to a separate processor and the same control step. Control steps are

added to accommodate loop boundaries and memory usage conflicts. In the second

stage the hardware is optimized by attempting to share resources as much as possible.

Extra control steps are added, if necessary, to reduce the amount of hardware used and

the optimization stage is repeated.

24

2.4.2 Scheduling Algorithms.

Scheduling algorithms can classed in one of three basic categories:

transformational, global or constructive.

2.4.2.1 Transformational.

A transformational scheduling algorithm starts with a default schedule. This is

usually either maximally parallel or maximally serial. Transforms are then applied in

an attempt to obtain a schedule which meets specified requirements. The basic

transforms move operations or blocks of operations to either exploit parallelism and

reduce the schedule length or exploit serialism and reduce the resource overhead.

The EXPL system uses a exhaustive search approach starting with a maximally

serial configuration. YSC uses heuristics to guide the transformations, starting instead

With a maximally parallel configuration. Transformations used in the YSC system can

be shown to produce the fastest possible schedule, in terms of control steps, for a given

specification [3].

2.4.2.2 Global Scheduling.

So-called global scheduling algorithms apply an existing optimization

technique to the scheduling task. Three such techniques are integer linear programming

(ILP), simulated annealing and neural networks.

(a) Integer Linear Programming.

There have been a number of different approaches to scheduling which use ILP.

Papachristou's formulation [56] of the scheduling problem attempts to minimise the

cost of processing units. A binary decision variable xy is defined to represent an

operation i being assigned to control step j. Another set of variables Mtj show the

number of permitted processors (modules) of type t. Constraints are added to ensure

that:

25

• no control step contains more than Mt1 operations of type, t1;

• operations are scheduled within their execution windows;

• all predecessors of an operation are scheduled before the operation itself.

This formulation performs scheduling under timing constraints. An alternative

formulation put forward by Huang [57] allows scheduling to be done under hardware

constraints.

The main draw-back of the ILP approach is the time taken to compute results,

even fdr medium-sized data flow graphs. Most methods are aimed at reducing the

problem complexity. Huang's method [57] considers only a few control steps at a time

in order to reduce the problem size. This, of course, means that it is no longer being

applied as a global optimization technique.

Gebotys [58] has put forward an alternative formulation which, it is claimed,

can be solved efficiently by drawing on similarities between the node-packing problem

and the way in which the scheduling problem is expressed.

Neural Networks.

Hemani [59] has put forward a self-organising algorithm based on a neural

network model which can schedule a data flow graph under a timing constraint.

Operations compete for control steps within their execution intervals. The neural model

takes into account the effect of scheduling an operation on its neighbours. The size of

the neighbourhood is gradually reduced until only the movement of an individual

operation is considered. The effect is a uniform distribution of operations across the

schedule space. Again, this sort of approach is computationally intensive and, hence,

time consuming. However, it is suited to running on massively parallel machines.

Simulated Annealing.

Two approaches using simulated annealing have been identified [60] [61]. In

both, the scheduling problem is viewed as one of two-dimensional placement of

M.

operations, where the dimensions are those of resource and time. The aim of the

algorithm is to minimise the resource-time area according to a costing function which

advises on a suitable rectangular shape as a boundary to the operation placement. The

simulated annealing algorithm selects operations at random and perturbs them in

resource-time space according to a current value of temperature set by the algorithm.

An operation is entitled to move to a position of lower global cost. However, if the

temperature is high enough, it is also possible that a move to a position of higher global

cost will be accepted. The temperature is controlled by the algorithm to be initially high

then cooling off in an exponential manner. This algorithm is often hailed as optimal. It

does offer a mechanism for bypassing local cost minima by enabling operations to

move to higher cost states initially but there is no guarantee that this will result is an

optimal solution. The performance of the algorithm is dependent upon the number of

peturbations or iterations and the temperature cooling function. Finding a good solution

can, therefore, be time consuming for large examples.

2.4.2.1 Constructive Scheduling.

The majority of scheduling algorithms fall into the constructive category. These

algorithms are characterised by the fact that operations are scheduled individually, in

turn. Within this category, two different schemes can be identified: list scheduling and

distribution based scheduling. List schedulers operate on a control step by control step

basis starting with the first step. Distribution based schedulers, on the other hand, select

operations for scheduling based on criteria relating to the current state of the schedule.

(a) List scheduling.

Within the algorithm, a list of operations is constructed for each control step.

This is a list of all operations whose data constraints have been satisfied; in other words

those operations whose inputs are available at the time of the current control step.

In an ASAP scheduler all operations in this list are scheduled in the current step.

NJ

This is effectively scheduling without hardware constraints as sufficient hardware is

allocated to accommodate all operations in each step. The CMU-DA system adopted

this simple approach to scheduling which produces the fastest possible schedule

although often at the expense of excessive hardware cost [11].

In other approaches to list scheduling the allocation of resources is constrained

before scheduling begins. Consequently, the situation may arise where there is

insufficient hardware available to accommodate all operations in the list. In this case the

scheduling of some of the operations must be postponed, or deferred, until a later

control step. Deferred operations will automatically then appear in the list constructed

for the next control step. List scheduling approaches differ in the way in which

operations are selected for deferral.

The ELF system [62] uses an urgency weight to determine deferral. The urgency

of an operation is defined as the length of the shortest path from the operation to a

timing constraint. The operations with the greatest urgency are scheduled first leaving

operations of lower urgency to be deferred. The CSTEP (SAW) scheduler uses a similar

method [52].

SLICER (CHIPPE) calculates a mobility criterion for deferral from initial

ASAP and .ALAP schedules [50]. The difference between ALAP and ASAP schedule

times for an operation is defined as its mobility. Operations with a greater mobility are

more likely to be deferred. Operations with the same mobility are sorted according to

the number of successors; the operation with the most successors will be scheduled first.

The MAHA (ADAM) system uses a freedom calculation which is identical to that of

mobility [26]. Operations on the critical path will automatically have no mobility or

freedom. Therefore, both the MAHA and SLICER approaches can be called critical

path scheduling as operations on the critical path will always be given priority. In the

ATOMICS scheduler of CATHEDRAL II operations on the critical path are also

28

scheduled first [17].

The force-directed list scheduling approach of the HAL system uses a force

calculation to determine deferral [21]. Force measures an operation's attraction to the

current control step based on the predicted distribution of operations on resources over

time. It is the operation with the lowest force which is deferred. The deferral process is

a repeated calculation of forces for operations, followed by the deferral of the operation

with the lowest force until all remaining operations can be scheduled in the current step.

All of the list-schedulers outlined so far attempt to calculate the minimum

schedule under a resource constraint. A scheduler which minimises resources under a

time constraint is described in [57]. In this approach operations are deferred in an

attempt to keep the resource overhead as low as possible provided that the time

constraint will not be violated.

(b) Distribution-based Scheduling.

The main exponent of the distribution-based approach is Paulin'sforce-directed

scheduler which is used in the HAL system [21]. The ASAP and ALAP schedules are

calculated, as in SLICER, to determine the 'time frames' for each operation. It is

assumed that an operation will have an equal probability of being scheduled anywhere

in its time frame. This enables distribution graphs to be constructed for each operation

type. These graphs show the probable number of operations of a given type which will

occur in each control step. A force is then calculated which attempts to balance the load

of operations across the control steps. This calculation takes into account the effect of

scheduling on an operation's predecessors and successors. The operation selected for

scheduling is the one which yields the lowest force. This operation is then scheduled

and the process repeated.

The CASCH scheduler in the CADDY system [13] is also distribution-based in

that it attempis to average the number of operations of each type across the schedule.

29

2.5 Data Path Allocation Techniques.

The data path allocation task typically encompasses the allocation of memory

and communications components and the binding of behavioural elements to structural

components. In a number of systems the binding of operations to processing

components is done during the scheduling phase. Data path allocation is performed

after scheduling and there is seldom interaction between the two phases.

Data path allocation is usually broken down into three tasks which are mutually

dependent:

• binding of operations to processors;

• register allocation: allocation of memory and binding of signals to memory;

• allocation of interconnect to enable transfer of data between memory and
processors.

In most systems the data path allocation centres around register allocation. A

number of optimal algorithms exist which will solve this problem. The cost of the

interconnect allocation is, however, dependent on the register allocation. As McFarland

has illustrated, interconnect is an important cost factor in designs [47]. Consequently,

there has been considerable effort made to integrate the memory and interconnect

allocation tasks.

The greatest problem encountered in data path allocation is assessing the quality

of designs. Interconnection cannot be measured directly as a number of components or

units. Its impact does not become clear until after layout and routing, by which stage

data path allocation decisions will have been obscured by those taken in layout and

routing. The majority of systems make do with three simple metrics in assessing data

path quality: the number of register, the number of buses and the number of multiplexer

inputs. The number of multiplexer inputs is taken to include the number of bus inputs.

It is equivalent to the number of two-input multiplexers or Ui-state drivers required.

30

2.5.1 Optimal Register Allocation.

Initial work in the area of data path allocation focused around the register

allocation problem and ignored interconnection issues. As signals can share the same

register if they do not exist at the same time, the register allocation problem is viewed

as one of grouping signals with disjoint life-times with the aim minimising the number

of groups.

The most effective method is the Left-Edge Algorithm used in REAL [301, part

of the ADAM system. The algorithm, taken from channel routing, models signal

lifetimes as wires which have to be assigned to a minimum number of tracks,

representing registers, without overlap. This is achieved simply by placing signal

lifetimes in the left most register which avoids lifetime overlap.

Clique covering is an optimal, although NP-complete, technique used in a large

number of data path allocation schemes [63]. An undirected graph G(V,E) is partitioned

into cliques. A clique is a subgraph where all vertices connect to all other vertices in the

subgraph via a single arc. An example is given in Figure 2.12. Clique partitioning

algorithms tend to be constructed to find only maximal cliques, those which are not

subsets of any others. In clique covering, the aim is usually to identify the smallest set

of cliques which include the most vertices of the graph.

When applied to register allocation, the vertices (V) in the undirected graph,

G(V,E), denote signals and the edges, (E), indicate disjoint lifetimes between adjoining

signals. G(V,E) is termed a compatibility graph. The aim of the algorithm is therefore

to find the minimum clique covering of the graph as each clique represents a register

allocation. This approach was used initially by Tseng [64].

31

Clique Graph:

a 	 b 	 C

> d e

Maximal Cliques:
a 	 b 	b 	 C 	C

MN
r 	e

Figure 2.12 Clique partitioning.

Edge colouring is another graph theoretical technique used in register

allocation. Again, the problem is posed as an undirected graph where the vertices

denote signals. The edges, however, represent lifetime clashes. Stok uses an edge

colouring formulation to tackle the problem of cyclic register allocation [19]. This

looks at an optimal assignment of signals to registers in the presence of loops in the data

flow graph. The problem is transformed into a multicommodity network flow problem

for which well-known solutions exist.

2.5.2 Graph Theoretical Techniques taking into account Interconnect.

Clique covering and colouring techniques have been extended to take into

account the effects of register allocation on the interconnect allocation.

The HAL data path allocation scheme uses a weight-directed clique partitioning

method [24]. A standard compatibility graph is constructed. Each arc is then labelled

with a weight corresponding to the interconnection cost of combining the two signals

into a single register. Four different interconnection patterns are recognised, however,

the weight associated with them is an estimate of the interconnection area that would

be saved and so it is design dependent rather than simply heuristic. Clique partitioning

is performed on the part of the graph which exceeds a given threshold. The vertices of

the located cliques are merged and the weights recalculated. The threshold is

progressively lowered and partitioning repeated until no more cliques can be found. As

clique partitioning is a NP-complete problem, keeping the graph size small by using a

32

threshold enables exhaustive clique searching, even for large problems. Multiplexer

merging is performed using a similar technique. Here, the threshold weight is the

number of common inputs between multiplexers.

EASY performs data path allocation in three stages [18]. The binding of

operations to processors is performed first using a maximal weight clique cover. The

cliques with the highest sum of edge weights are selected. Again, a compatibility graph

is constructed. The edge weightings are termed advantages. Advantage is defined as the

net cost of binding operations to the same processor taking into account the

multiplexing cost. The edge weights are updated as the cliques are merged. Register

allocation, the second stage, uses a modified left-edge algorithm. The advantage

weighting is used again to try to force signals with similar sources and destinations into

the same register. This reduces the amount of interconnect required while still yielding

the minimum number of registers. The final stage is called register grouping. This is an

attempt to reduce the number of buses by grouping registers into register files. The

maximal weight clique cover algorithm is again used in this optimization step. The

compatibility graph represents registers as vertices and has arcs between registers

which are never accessed simultaneously. The edge weighting reflects the number of

common sources and destinations of adjoining registers.

The CADDY system uses a weighted graph colouring technique [13]. Two

graphs are constructed: a restriction graph and a preference graph. The former is the

complement of the compatibility graph. The latter depicts preferred combinations of

signals because of shared sources and destinations. The restriction graph is coloured

using a general vertex colouring heuristic to establish a minimum number of colours

and, hence, the minimum number of registers. Colouring is then repeated, taking into

account preferences. If the number of colours required in the second process is close to

the minimum then the colouring is accepted and the registers allocated. If it is not

accepted then edges with the smallest weight are removed from the preference graph

33

and the colouring process is repeated. Binding of operations and the construction of

buses is performed using a similar colouring approach with both restriction and

preference graphs.

2.5.3 Branch and Bound Technique.

SPLICER [50] performs the tasks of register allocation and operation binding

while allocating interconnect. Control step by control step, starting with registers

containing initial values, the algorithm provides interconnection to processors and then

from processors to registers. At each step an attempt is made to use existing hardware.

The algorithm is based on a branch and bound search which allows backtracking.

2.5.4 Iterative Techniques.

CHARM [42] claims to have an algorithm which performs register allocation

and binding by dynamically exploiting the trade-off between the binding of operations

to processors, the binding of signals to registers, the number of processors and the

number of registers. The algorithm is based on the iterative merging of compatible

•operations and their respective data path allocations. Operations are compatible if they

can share the same processor and are performed at different times. On each iteration all

possible merges of operations and groups of operations are considered. The merge

which yields the largest cost gain is selected. Iteration stops when no merge produces a

•cost saving. The costing function is a combination of four factors: the area costs of

processors, registers and multiplexers and the estimated area cost of connecting wires.

It is during costing that registers and interconnect are allocated.

In MABAL (ADAM) [28] the main algorithm tries to minimise the total cost by

trading off between component cost and interconnect cost for each binding decision.

The algorithm allows a limited amount of backtracking. It deals with operations and

signals in the order in which they were scheduled. Incremental allocation decisions are.

taken on the basis of costs calculated for possible allocations with respect to the current

34

partial design. In this way an operation can be allocated a new processor if the

interconnection cost of re-using an existing one is too high.

2.5.5 Rule-based Schemes.

DAA, which is a rule-based expert system, makes allocation decisions on

partitions of a design provided by BUD [55]. BUD clusters data flow operations and

signals into partitions according to factors including common functionality, degree of

interconnection and potential parallelism. Each partition is allocated its own

processors, memory and interconnect. Local optimization procedures are then applied

to remove or combine components. Finally, optimizations are applied globally to

remove unneeded components and allocate bus structures.

In CATHEDRAL II [17], the rule-based 'Jack the Mapper' performs the data

path allocation tasks. CATHEDRAL II generates data paths based on a fixed

architectural template and this is reflected in the sort of rules used in 'Jack the Mapper'.

These rules contain knowledge such as how to construct addressing schemes for array

memory, bus structures and loop counters for iterations.

35

Chapter 3
Models for Behavioural Synthesis.

3.1 Introduction.

The synthesis system reported here operates on input specifications of

behaviour and structure to produce design specifications of structures with associated

control information. The control information is necessary to enable the synthesized

structure to implement the specified behaviour. The synthesis of structure from

behaviour can be performed at different structural levels such as register-transfer, logic

gate and device. High-level behavioural synthesis systems typically relate the

behaviour to the structure at the register-transfer level as shown in Figure 3.1. In the

system presented in this thesis all structures are defined and constructed at the register-

transfer level.

Behavio Structure

Figure 3.1 A representation of behaviour and structure at the register-transfer level.

The behaviour is related to the structure by a mapping from its behavioural

elements to structural components. In order to avoid unnecessary composition or

decomposition of behavioural elements, they are defined at a level corresponding to that

of the structural components. In other words, a structure consisting of adders,

multipliers and registers would relate to a behaviour consisting of additions,

multiplications and binary data words.

Behaviour, structure and control form three separate domains of the synthesis

system which communicate externally. Each is represented within a separately defined

model. The following three sections discuss each model in turn, defining the subset of

the domain which is represented and how it is specified. The final section outlines the

use of these models within the synthesis system and how the designer can interact with

them to direct the synthesis process.

3.2 Behavioural Model.

Behaviour is represented within the system by a single data flow graph of the

form shown in Figure 3.2. The data flow consists of operations and signals. Within the

graph operations are denoted by vertices and signals by directed arcs. Input signals and

constants are supplied by signal-source vertices and output signals are removed by

signal-sink vertices. The directed arcs within the graph indicate the direction of data

flow, the transfer of data with time. Consequently, data flow graphs are acyclic: it is

impossible for a loop to exist as this would imply that data could be consumed before

it was created.

signal source (vertex)

4-)

operation (vertex) 	
signal (arc)

signal sink (vertex)

Figure 3.2 Representing behaviour in a data flow graph.

This simple behavioural representation cannot express conditional branching

within the data flow. This is when the direction of data flow at some point in the graph

depends upon an actual data value. The ability to represent conditional branching is

necessary if the behaviour is to express high level programming constructs such as

'while loops' and 'if statements'. The synthesis system presented in this thesis does not

tackle conditional branching within the data flow graph.

37

However, it is envisaged that the approach to synthesis reported here can be

harnessed within a larger system to tackle behaviours containing conditional branching.

Using a representation from compiler technology called 'basic blocks', a behaviour

containing such constructs can be modelled [65]. Each 'basic block' is a simple data

flow graph representation of behaviour. These blocks form vertices in a control flow

graph. The directed arcs in the graph represent conditions based on data flow values and

point to the next data flow graph blocks which will be realised if the condition is

satisfied. In this way, housing data flow graphs within a control flow graph, data

dependent data flow can be represented. A simple example is illustrated in Figure 3.3.

If statement 	 While loop

b 	C

Basic blocks

aao / \ a>O

Conditions

Yd M N T=o /

a> 0

Yf 	H?
a: b+c; 	 a:b+c;
if a> 0 then 	 - 	 while a>0 loop

d:=a-e; 	 d:=d*d;
else 	 a:=a-1;

d:=a+e; 	 end loop;
end if; 	 f: d-g;
f =d*g;

Figure 3.3 Representing conditional constructs with basic blocks.

38

The synthesis system reported in this thesis can tackle individual basic blocks

from the control graph. Assuming no pipelining, the execution of all basic blocks is

mutually exclusive: only one block can be active at a given time. Even if pipelining is

used basic blocks originating from the same conditional branch will remain mutually

exclusive. A reduction in the structural overhead can therefore be made if structures can

be synthesized to implement more than one basic block. A synthesis system using

structural input can be used to address this problem. A structure synthesized to

implement one block can be specified as the structural input in the synthesis of an other

basic block in order to make additional use of the structures's components.

3.2.1 Behavioural Elements.

The data flow graph behaviour is constructed entirely from operations and

signals. Because the structure is defined at the register-transfer level, which consists of

a transfer of data between processors and memory, the operations are specified at a level

corresponding to the functionality of the processors and the signals at a level

corresponding to the data storage format of the memory.

3.2.1.1 Operations.

All operations are dyadic. They are restricted to two inputs and one output.

Operations with more inputs must be represented by a combination of two-input

operations. The order of inputs is important. For non-commutative operations such as

subtraction and division, the order of inputs must be maintained to preserve functional

correctness. Each operation is defined as belonging to a type. There is no limitation

placed on operation types but if the operation is to be performed then its type must be

supported by a processor in the structure. Typical operation types are addition,

subtraction and multiplication.

39

3.2.1.2 Signals.

Each directed arc in the data flow graph is a unique signal. There are four classes

of signal: input, output, local and constant. The classification denotes a signal's usage

within the data flow graph as depicted in Figure 3.4. Signals are assigned names to

identify the data which they convey. Signals originating from the same operation

convey the same data and so possess the same data name. Similarly, constant signals

carrying the same data value will have the same data name.

Figure 3.4 Signal classifications within a data flow graph.

3.2.1.3 Textual Representation.

The behaviour is specified in a textual format from which the data flow graph is

constructed. An example is shown in Figure 3.5. The signals and operations are

specified separately within the behaviour's text file. The syntax for signals is of the

form:

signal 	<data name> 	<signal class> 	end

For operations, which are specified after the signals, the syntax is as follows:

operation <operation name> <operation type>
<left data name> <right data name> <output data name> end

40

MIlL 2 (;)

MU

MUL_4

MIJL_6

Textual Representation
	 Data Flow Graph

network DIFF EQ

signal U 	input
signal X 	input
signal Ul output
signal dx constant
signal c3 constant
signal c5 constant
signal sI local
signal s2 local
signal s3 local
signal s4 local
signal 55 local
signal s6 local

operation mull nul
operation mul2 nul
operation mul3 nul
operation mul4 mul
operation sub-5 sub
operation muiG nul
operation sub 7 sub

end DIFFEQ

end
end
end
end
end
end
end
end
end
end
end
end

U 	dx sl end
os X 	s2 end
sl s2 s3 end
c3 Y 	54 end
U 	s3 s5 end
dx s4 s6 end
sS s6 Ul end

Figure 3.5 Construction of a data flow graph from the textual representation.

3.2.2 Data Flow Terminology.

A number of terms are used to describe relations between operations in a data

flow graph. The directed arcs in the graph represent data dependencies between

operations. An operation which is the source of an are must be performed before the

destination operation because data must be created before it can be consumed. The arcs

can, therefore, be seen to impose an ordering on the execution of operations. The order

imposed by data arcs is more clearly expressed when time is represented by discrete

steps; operations must occur entirely within individual steps and signals must traverse

at least one step boundary indicating that they are flowing forward in time. A simple

schedule based solely on data dependencies results from this representation.

Two extreme forms of such a schedule, both requiring the same number of

steps, can be constructed for any data flow graph. These are called the As- Soon-As-

41

Possible (ASAP) schedule and the As-Late-As-Possible (ALAP) schedule. In the ASAP

schedule operations are placed in the earliest possible step subject to data flow

constraints and in the ALA!' schedule operations are placed in the latest possible step

without exceeding the total number of steps required in the ASAP schedule. The ASAP

and ALAP schedules of a small data flow graph are shown in Figure 3.6.

ASAP schedule
	

ALAP schedule

St

St(

Stc

Figure 3.6 ASAP and ALAP schedules.

Consider the ASAP schedule in Figure 3.6. The operations in each step can be

thought of as separate generations. Operations in the first generation give rise to those

in the second generation and so on. More specifically, operation X is termed a

predecessor of operations V and Z. Conversely, V and Z are successors of X.

42

3.3 Structural Model.

Structure is specified at the register-transfer level. It is defined in terms of the

interconnection of four basic components types. These are processors, memory,

communications and input-output ports. The interconnection of these components is

constrained to the syntactic form shown below in Figure 3.7.

Figure 3.7 Interconnection constraints of structural components.

Conditional constructs cannot be represented in the behavioural model.

Therefore, control components are omitted from the structural model as there will be

no interaction between the data path and controller. The control sequence can have no

dependence on actual data values and, consequently, the structure is purely a data path

representation.

The structure is represented in a graphical format. All component types are

denoted by vertices and directed arcs represent connections between components

identifying the permitted direction of data transfer. Figure 3.8 illustrates how a register-

transfer schematic is represented as a structure graph.

Reg ister-transfer schematic 	 Structure Graph

ROM

-

BUS

OUT

Figure 3.8 Structure graph representation of a register-transfer structure.

43

3.3.1 Structural Components.

In this system, the components are generic and comply with the timing model

discussed in Section 3.4. The specifications have been kept as simple as possible in an

effort to simplify the synthesis algorithms.

3.3.1.1 Processing Components.

Processors are combinatorial devices capable of performing operations of

specified types. They have two input ports, labelled left and right, and a single output

port. It is important that operands are passed to the correct ports for non-commutative

operations.

• Textual Representation.

The syntax for specifying a processor is as follows:

processor <name>
type <processor type>
functions <operation type list>
adapt <true/false>
ports left 	<port name> 	from 	<net name list>

right 	<port name> 	from 	<net name list>
out 	<port name> 	to 	<net name list>

allocation <operation name list>

The processor type identifier is used to access performance characteristics such

as execution and re-use times. The functions are types of operations which can be

implemented by the processor. Within a list, entries are separated by commas. The list

is terminated by a semi-colon. If adapt is set false then no changes will be made to the

processor's port connections. Each processor port is assigned a unique identifier to

distinguish connections to the component. These ports can only be connected to

communications components as indicated in Figure 3.7. The allocation list of

operations enables the designer to specify a binding prior to scheduling and data path

allocation. Any allocation specified before scheduling does not automatically preclude

the binding of other operations to the processor and it will not violate the validity of the

schedule.

44

3.3.1.2 Memory Components.

Four different types of memory component are supported. These are registers,

register files, RAM and ROM. Each is assumed to function in the same way. Memory

components have separate and single input and output ports. In the case of ROMs the

input port is ignored. Data is written to and read from memory in separate phases of a

single control step. It is possible for an individual location to be read from and then

written to within the same control step.

• Textual Representation.

memory <name>
type <memory type>
adapt <true/false>
capacity <integer>
ports

in 	<port name> 	from 	<net name list>
out 	<port name> 	to 	<net name list>

allocation <data name list>

The number of storage locations in the component is entered as its capacity.

Data to be stored in the component can be entered as an allocation.

3.3.1.3 Communication Components.

These components are collectively termed nets. Wires, multiplexers and buses

are recognised communications components. Wires have single sources and

destinations; multiplexers have multiple sources and single destinations; and buses

have multiple sources and multiple destinations.

• Textual Representation.

net <name>
type <net type>
adapt <true/false>
from <port name list>
to <port name list>

3.3.1.4 Input and Output Ports.

Input and output ports are the points of external connection and, hence, external

communication for structures. They connect to either procesors or memory via nets.

45

• Textual Representation.

jo_port <name>
type <io_port type>
adapt <true/false>
from <net name list>
to <net name list>
allocation <data name list>

3.3.2 Specifying Structures.

The structure graph is constructed from the textual specification of individual

components. An example is shown in Figure 3.9. Components of the schematic are

labelled with theft names from the specification.
processor ADD
type 	ADD
adapt 	FALSE
functions ADD;
ports 	right aD 	fromMUx;

left ml 	fromWIREa;
out 	a2 	to BUS;

allocation;

processor MDL
type MDL
adapt FALSE
functions MUL;
ports right mc from WIRE l;

left 	ml from WIRE 2;
out 	m2 to 	BUS;

allocation;

memory 	PEG
type 	PEG
adapt FALSE
capacity 1
ports 	in 	rD 	from BUS;

out 	rl 	to WIRE l,MUX;
allocation;

memory 	ROW
type 	PEG
adapt FALSE
capacity 1
ports in cc from;

out 	ol 	to WIRE 2;
allocation;

Structure Graph

io_port 	IN
type 	INPUT

net WIRE 1 adapt 	FALSE

type WIRE from;

adapt FALSE to 	WIRE-3;

from rl; allocation;

to ml;
ioport 	1N2

net WIRE —2 type 	INPUT

type WIRE adapt 	FALSE

adapt FALSE from;

from ol; to 	MUX;

to no; allocation;

net BUS
net WIRE lo port 	OUT

type BUS
type WIRE type 	OUTPUT

adapt FALSE
adapt FALSE adapt 	FALSE

from a2, 	m2;
from IN-1; from 	BUS;

to rO, 	OUT;
to al; to;

allocation;

Figure 3.9 Construction of a structure graph from a textual representation.

46

3.4 Control Model.

The control model relates behaviour, structure and time. It contains all the

information needed to construct an instruction sequence for a controller. The control

model is constructed around a basic timing model which defines the operation of the

structure.

3.4.1 Timing Model.

The fundamental action of the structure is the execution of an operation. This

action can be performed in two parts: the read phase and the write phase. During the

read and write phases signals are retrieved from memory or input ports and transferred

to the inputs of processors, operated on and then transferred from the outputs of

processors and deposited at output ports or in memory. The purpose of the timing model

is to enable these events to be sequenced correctly by the controller. The problem can

be simplified by viewing the structure as a sequential machine consisting of a

combinatorial network and memory connected as shown in Figure 3.10.

I Combjnatorja1k
Inputs 	Network 	Outputs

Memory

Latches

Figure 3.10 Sequential machine representation.

As the combinatorial network represents the structure's processors, the basic

operation of the machine is essentially the execution of a behavioural operation as

described earlier. Each machine state, when the combinatorial network has stable inputs

and outputs, represents the execution of an operation. The timing of the feedback of

47

data through memory must ensure that machine states do not overlap. Timing problems

will occur if an output can be fedback,as an input within the same state with the possible

effect of corrupting the output data. To ensure that this cannot occur the memory

operates in a master-slave fashion, constructed from two independently controlled

latches as shown in Figure 3.10. This divides the operation of the machine into two

separate time slots or phases.

• Write phase: outputs from the network are stored in the master latch. The
slave latch maintains stable data at the input of the combinatorial network
during this time.

• Read phase: data is transferred from the master latch to the slave latch,
changing the input data to the combinatorial network.

The clock used to sequence the machine must have two non-overlapping

phases, 4i and 42. An overlap between 4 1 (high) and 42(high) will cause simultaneous

transparent mode in both master and slave latches causing unwanted asynchronous

feedback where outputs are returned as inputs within the same state. As shown in Figure

3.11 the read phase occurs between 2(high) and 41(high) and the write phase between

01 (high) and 42(high). The maximum speed of circuit operation is set as the minimum

combined duration of read and write times: Both these times must allow for maximum

propagation times through structural components.

 slave

read

4) 	master
write 1

Figure 3.11 Timing of read and write phases.

The propagation delay through different processors may vary considerably. A

multiplier is likely to take much longer to execute an operation than an adder. However,

this does not mean that the write cycle time must be set to accommodate the slowest

processor. It is acceptable to delay the sampling of a processor's output until a later

48

write cycle. For this reason the execution time of processor's is specified as a whole

number of control steps. Pipelined processors can also be modelled. In Figure 3.12 the

processor has been divided into stages by registers comprising of master and slave

latches. Consequently each stage is independent and operates in a separate state. The

latches within the processor are controlled by the same clock as the external memory

and so the sequential machine shown in Figure 3.12 is simply an expanded form of the

one in Figure 3.10.

Interconnect processor 4i
II

Figure 3.12 Representing a pipelined processor

Pipelined processors are characterised by two numbers: execution time and re-

use time. These are illustrated in Figure 3.13. The re-use time is the minimum number

of control steps which must separate successive inputs.

Pipelined Multiplier 	Resources

RE USE TIME

Time 	 HLJ 	I EXECUTION TIME

(control steps)

Figure 3.13 Execution and re-use times for a pipelined processor

3.4.2 Binding Model.

The binding model expresses the mapping between behavioural elements and

structural components. Figure 3.14 illustrates how behaviour is mapped to structure.

Behaviour is composed of operations and signals.

49

Figure 3.14 Binding behavioural elements to structural components.

By definition, operations can only be performed by processors. If a processor is

to perform a particular operation then that operation is said to be bound to the processor

and so a mapping is created from the operation to the processor. Signals transfer data

between operations and so, as operations are bound to processors, signals must be

bound to paths between processors. These data paths are made up of memory,

communication and input-output components. Signals are, therefore, bound to these

components types.

3.4.3 Representing Control.

Control is represented by a mapping of behavioural elements to both control

steps and structural components, also termed resources. The mapping is expressed as a

two-dimensional array indexed by resources and control steps, called a resource-time

graph.
Resources

ADDR#1 MULT#1 REG#1 BUS#1

signal
operation F'h Control step signal

3 * Read

V Write Time 	I 	 r

Figure 3.15 Resource-time graph representation.

50

J,//SCHEDULItRJ!

1j
+

IN

Ij
PARTITION
MAPPINGS

Behavioural elements are entered at appropriate locations within the array to

signify a mapping to a particular control step and resource. In the resource-time graph,

as shown in Figure 3.15, the control steps are divided intoTead and write phases for data

path resources. Signals are then mapped into the appropriate phase.

3.5 System Overview.

The adopted approach to synthesis using structural input can be divided into

three tasks, mapping, scheduling and data path allocation. The structure of the CAD

synthesis system reflects this partitioning: the tasks are performed by separate software

modules named mapper, scheduler and data path allocator as shown in Figure 3.16.

BEHAVIOUR

- 	 STRUCTURAL INPUT

,,,//f
MAPPER11

Li/__
CONTROL

II __

CONTROL 	STRUCTURAL OUTPUT

Figure 3.16 The Synthesis System.

K']

The following three chapters are concerned with the algorithms used to perform

these synthesis tasks whereas this section concerns itself with the interfaces between

these modules and, consequently, the ways in which the designer can use them to direct

the synthesis process.

3.5.1 The Mapper.

The mapper accesses both the behavioural and structural models. It identifies

potential mappings between partitions of behaviour and the structure and associates

operations from within partitions with processors from the structure. The mapper then

selects a compatible set of partitions which will then dictate the mapping to the initial

structure. The output from the mapper can be passed to the scheduler via the data model

or a text file. All identified partitions are included in the text file allowing the designer

to alter the partition selection. Figure 3.17 is an example of such a text file. It consists

of lists of operations for each partition. Next to each operation are the processors with

which they are associated in the mapping.

<design name>

<number>
<true/false>
<operation name> processor <processor name list>

<operation name> processor <processor name list>
input <signal list> end
output <signal list> end
local <signal list> end
constant <signal list> end

mapping

partition
selected
operation

operation
signals

partition 	<number>
selected
	

<true/false>
operation 	<operation name> processor <processor name list>

operation 	<operation name> processor <processor name list>
signals 	input 	<signal list> 	end

finish

Figure 3.17 Textual representation ofpartitions.

It'

3.5.2 The Scheduler.

The scheduler performs the tasks of scheduling and binding. It constructs the

control model for all operations and for signals connected with the partitions. The

information from the selected partitions enables the scheduler to schedule behavioural

elements onto interconnected processors. A resource-time graph representation of the

control model is output from this module to a text file. The schedule and binding can,

therefore, be altered by the designer before data path allocation.

3.5.3 The Data Path Allocator.

This synthesis module operates with an older version of the data model and,

consequently, communication with the other modules is done using text files. The data

path allocator uses the same behavioural specification as the other two but the structure

is specified in a slightly different way. The data path allocator creates additional data

path components to accommodate signals outwith the behavioural partitions and

updates the control model accordingly.

53

Chapter 4
Mapping Behaviour to Structure.

4.1 Introduction.

Other systems synthesise a complete structure entirely from a specification of

behaviour. A set of goals related to the required performance or size of the structure are

specified with the aim of directing the synthesis process towards the creation of a

suitable architecture. The system reported in this thesis also synthesises structure to

implement a specified behaviour, but does so from an initial specification of structure.

That is, if the behavioural synthesis task is represented as a function on behaviour to

yield structure: F (B) -, S then the function of the system presented here can be

expressed as: F (B, 5) —>5; (5' CS) .The initial structural specification need not be

complete but it must, nevertheless, contain all the processing elements to be permitted

in the final design. Separate groups of interconnected processors within the structural

specification are referred to as structures. These structures then direct synthesis towards

architectures favoured by the designer, augmented only by an optional timing

constraint.

The key to implementing this approach is relating the behaviour to the specified

structures. The fundamental aim of behavioural synthesis is to constrain the behaviour

in time and structural resource: to dictate where and when behavioural operations occur

and how data are transferred between them. This involves operations being mapped to

processors and scheduled to occur within a given control step. The data are then

mapped to interconnect and memory to enable their transfer between processing

elements at the scheduled time. In the context of synthesis from existing structure, the

important issue is the mapping of operations to processors: if the processors are

interconnected then the mapping must ensure that the existing interconnection can

accommodate the necessary transfer of data between mapped operations. In section 4.2

a method is described for mapping a behaviour onto a structure. However, the problem

54

cannot be restricted to mapping a single behaviour to a single structure. As the

structural specification may contain a number of distinct structures, desirable solutions

may be found by apportioning partitions of the behaviour to each structure. This

problem is dealt with in section 4.3.

Thus the initial problem can be restated as being that of partitioning the

behaviour such that the resulting partitions can be implemented on structures within the

structural specification. It should be noted that if no interconnection of processors is

present in the structural specification then this synthesis phase is reduced to the simple

matchmaking process between operations and processors which occurs in conventional

systems.

4.2 Mapping a Data Flow Graph to a Structure.

The term matchmaking is used to describe the process of determining which

processors are capable of implementing the individual operations of the behaviour. This

process is straight-forward when the processors are not interconnected. Each processor

is defined as being capable of performing a set of operation types and so any operation

of a type belonging to that set can be matched to it. Matchmaking produces a set of

candidate processors for each operation: it will be one of these candidates which is

subsequently bound to the operation [66].

At this point attention is focused on mapping a single behaviour to a single

structure. The algorithmic approach put forward here does not consider the possibility

of parts of the behaviour being realised by the structure. If the structure is incapable of

supporting the entire behaviour then the process halts; if it succeeds then candidate

processors are mapped to each operation in the behaviour. The method examined in the

following section incorporates the approach put forward here in dealing with the

problem of implementing partitions of the behaviour on different structures.

Mapping is achieved using two algorithms: the first is an extension of the

55

matchmaking process employed in existing synthesis systems and is called the

matchmaking algorithm; the second deals with the fact that the set of candidate

processors for a given operation is dependent upon both the data dependencies of the

operation and the structural connections of the processors and is referred to as the

dependency algorithm.

4.2.1 The Matchmaking Algorithm.

In addition to matching the type of processor to the type of operation, as in

'adder' to 'addition', the matchmaking algorithm deals with some structural issues in

order to simplify the dependency algorithm. The signal types associated with each

operation are checked against the structural connections of prospective processors to

weed out obvious mismatches.

BEHAVIOUR

rn

	

input \ 	/ constant

	

ADD_I 	 3

constant

z_1

Itpot

STRUCTURE

IN1

[ROM

ADDER-1 \ +

profiles shown in italics

	

IN 2 	ROM

	

input I loal 	constant

M LT_1

tpid

our I

Figure 4.1 Profiles of behavioural signals and structural processor ports.

Referring to Figure 4.1 as an example, only signal x, which is of class input, can

be presented at the left input port of the ADDER I. This is termed signal profile

matching. In order that a processor can be matched with an operation, the following

conditions must be satisfied: the operation type must be supported by the prcicessor and

both input and output signals of the operation must have profiles which are compatible

with those of the corresponding ports of the processor. In the figure, ADDER -1 can be

matched to ADD-1 and MULTI matched to MULl.

56

There are four categories of profile: input, output, constant and local. The port

profiles of a processor are dependent upon the structures to which the port is connected.

A processor input port connected to memory and an external input port, such as the left

port of MULT_1, would possess both input and local profiles. The profile of a signal is

determined by its class within the behaviour. The signal class refers to the transfer of

the signal relative to the behaviour: if the signal is an input to the behaviour, such as x,

then it has the signal class input and so gains an input profile.

Matchmaking is applied to the operations in order of the data dependencies.

When a set of candidate processors has been drawn up for an operation, it is necessary

to 'store' the signal produced by the operation in all the memory units which can be

reached from the output ports of the candidate processors. Future operations dependent

upon this and other signals must be assigned a set of candidate processors which are all

capable of retrieving signals from one of the memory units in which they were stored.

In Figure 4.1, matchmaking would be performed for ADD-1 first. The match with

ADDER -1 will be successful and so the output signal x+5 is stored in PEG. Therefore,

when matchmaking is performed for MUL_1 and MULT-I , the local profile match of the

left inputs will force PEG to be checked for signal x+5. A signal and a processor port

are matched if they have a common profile and if that profile happens to be local then

the signal must be present in one of the memory units connected to the processor port.

After matchmaking has been completed each operation will have an associated

set of candidate processors. Any operation which has an empty candidate set is removed

from the behaviour. The input and output signals of such an operation then acquire

output and input profiles respectively. Matchmaking is then repeated for operations

connected with these signals in order to update their candidate sets. The process of

removing and updating is repeated until no operations in the behaviour have empty

candidate sets or there are no operations remaining in the behaviour. In the case of the

latter, the structure is completely unsuited to the behaviour and not even partitions of

ON

the behaviour can be mapped to it. This removal of operations from the behaviour

reduces the computation required in the partitioning algorithm discussed in section 4.3.

4.2.2 The Dependency Algorithm.

The matchmaking process described above yields a behaviour with a reduced

set of operations, each associated with a preliminary set of candidate processors. The

purpose of the algorithm described here is to ensure that for any mapping of operation

to candidate processor there exists a valid mapping of the entire behaviour to the

structure. Once an operation has been bound to a single processor, the sets of candidate

processors for dependent operations may well be reduced. This, however, will be taken

care of within the scheduling phase.

In order to simplify the dependency algorithm, relevant structural information

is presented in a functionality graph. This is a representation of the interconnection

within the structure. Processors are represented by vertices and each directed arc

denotes a data path through memory from the output of a processor to the input of a

processor. The information conveyed by an arc indicates which memory unit and

processor input port are used. The structure in Figure 4.1 has the functionality graph

shown in Figure 4.2.

REG, RIGHT

REG,LEfl 	
*

ADDER_I 	 MULT_I

Figure 4.2 The Functionality Graph

The matching of local profiles indicates suitable transfer paths in the structure

to support behavioural data transfers. As illustrated in Figure 4.3, it does not, however,

ensure that such paths are compatible. The sequence of operations A, B and C can only

be implemented by the structure if transfers from A —3 B and B —3 C can be found

where B is mapped to the same processor. The only data path which will support this

CANDIDATE PROCESSORS 	FUNCTIONALITY GRAPH
AFTER MATCH MAKING.

PIX
[Q)(1i

[Q]

'HT

BEHAVIOUR

sequence is P —4 Q —3 Q. Therefore, S and R should be removed from the candidate

sets of A and B.

Figure 4.3 The 'Dependency Problem'.

Two functions, pred and succ, short for 'predecessors' and 'successors', are

useful in describing the algorithm. These functions operate on directed graphs such as

the data flow and functionality graphs. In Figure 4.3, A is the predecessor of the left

input signal of B and the successors of P are Q and R. Hence:

pred(Ieft_signal(B)) = A 	 succ(P) = (Q,R)

Extending the example in Figure 4.3 to the general case, it can be stated that the

candidate processors of an operation must be accessible within the structure from the

candidate processors of operations immediately preceding and succeeding. To ensure

this accessibility the candidate processors of operations are updated on two passes. The

first pass deals with preceding operations and the second with succeeding operations.

On the first pass, the operations, ordered from the second generation of the data flow

graph to the last, are processed using equation 4.1. 'Cand_proc(op)' denotes the

candidate processors of the operation 'op'.

candproc(op):z candpmc(op) fl [succ(candjroc(pred(Ieft signal(op)))) fl
succ(cand_proc(pred(rightsignal(op))))] 	 Equation Si

On the second pass, the operations, ordered from the penultimate to the first, are

59

processed using equation 4.2.

cancl_proc(op) cand_proc(op) Ci [pred(cand_proc(succ(Iet't_signal(op)))) Ci
pred(cand_proc(succ(right_signal(op))))] 	 Equation 5.2

Operations in the first generation need not be processed on the first pass as they

have no preceding operations. Similarly, operations in the last generation have no

succeeding operations and so are excluded from the second pass.

4.3 Mapping Partitions of a Data Flow Graph to Structures.

Section 4.2 focused on identifying a mapping between a data flow graph

representation of behaviour and a single structure. This mapping is conveyed by an

association of candidate processors to operations. The limitation in this approach is that

the structure must implement the entire behaviour.

The aim of this section is to present a method to partition the behaviour so that

its constituent parts can be implemented by different structures. The behaviour is

represented by a data flow graph and so partitions will take the form of connected

subgraphs. This means that there is a connection via data arcs and operations between

every pair of operations within the partition. The mapping algorithms presented in

section 4.2 will function with partitions provided that the classification of signals is

made relative to the partition. Thus the input and output signals of the partition, some

of which may be local to the behaviour as a whole, must be considered as inputs and

outputs.

The approach adopted here is to seek out partitions which satisfy the

requirements of the matchmaking algorithm and then to apply the dependency

algorithm to them. A selection from the surviving partitions is then made in an attempt

to find the partitions of behaviour best suited to exploiting the available structures.

4.3.1 Identifying Partitions.

A partition is a collection of operations connected by data dependencies. These

LAI

dependencies can be used to order the operations into generations'. From operations in

the first generation, termed seeds because they give rise to the partition's data flow, it is

possible to reach every operation in the partition via signals and other operations within

it. This arises from the fact that it is a connected graph. This fact is central to the

identification process. The remaining problems lie, firstly, in uncovering these seed

operations and, secondly, identifying the boundary of the partition. Both are addressed

by the matchmaking algorithm which assesses whether the structural requirements of

the operation's signals can be met. Operations which lie on the boundary of the partition

must map to processors on the boundary of the structure. An output signal from the

partition must have access to an external port and, hence, the operation which produces

it must have candidate processors which have their outputs connected to such external

ports. Recall that a partition possesses its own classification of signals; these will

influence the profiles in matchmaking which, in turn, defines the boundary of the

partition and, hence, the classification of signals. Nevertheless, the only change in

signal classification which occurs is from local to input or, local to output or output

local. Therefore, in the search for partitions, additional input and output profiles are

assigned to local signals. Thus, matchmaking which involves common input or output

profiles indicates a possible partition boundary across the signal in question. Seed

operations are identified on a boundary by the fact that neither input signal matches with

only a local profile from the structure.

4.3.1.1 Selecting Seeds.

The first step in the partition identification process is identifying seed

operations. Matchmaking is performed on the operations of the behaviour to remove

operations incompatible with the structure, to list the seeds and to list the data arcs

which can be supported as inputs to or outputs from the partition. The seed operations

will form the basis of all feasible partitions within the behaviour. The first generation

1. Refer to section 3.2.2 on page 41.

61

of the data flow in a partition must be composed of some combination of these seeds.

With a total of n seeds, this combination could number between 1 and n different seeds.

The number of possible choices of r objects from n is given by: Hence,

the total number of combinations of seeds is a summation of the form given below:
n

L r!(n—r)!
= 21 	 Equation 5.3

r= 1

A method for computing all combinations of n objects can be found by

representing each object as the digit of an n digit binary number. In letting the digit '1'

correspond to the inclusion of an object and '0' the exclusion, it is possible to derive all

2n -I combinations by incrementing the n digit number from 1 to 2n -1 with evaluation

of a combination at each step.

4.3.1.2 Searching for Partitions.

A partition is identified by tracing the data flow from a combination of seeds

until data arcs are encountered which can be supported structurally as inputs to or

outputs from the partition. These data arcs are identified during the matchmaking

process as a result of the matching of operations to processors connected to external

ports.

The search for a partition starts as a subgraph containing the selected

combination of seed operations. The external arcs of this subgraph, with the exception

of the input arcs to the seeds, are processed in turn. Arcs directed out of the partition are

dealt with first. If they cannot be supported as outputs by the structure then the

operations which they feed are added to the subgraph. In the case of arcs directed into

the subgraph, if they cannot be supported as inputs the operations which produce them

are incorporated into the subgraph. In this way the subgraph expands until one of two

possibilities occurs: the subgraph attempts to exceed the boundary of the behaviour,

indicating that no partition exists for that particular combination of seeds, or that all

external arcs of the subgraph can be supported by the structure. The latter indicates a

62

possible partition. However, the subgraph must be found to be connected before it is

passed to the dependency algorithm. Furthermore, it may be possible to expand the

subgraph to reveal other partitions based on the same set of seeds.

A number of the external arcs of the subgraph may not be restricted to serving

as inputs and outputs. It may be possible that they can be accommodated within the

subgraph by including additional operations. Such external arcs can be identified by the

fact that in the matchmaking process they formed local profile matches as well as input

or output profile matches. In order to find all possible extensions of the subgraph, all

combinations of these arcs must be investigated separately. This is the same process that

was applied to the selection of seed combinations and so there will be 2'1

combinations of n arcs.

MUL

7
MUL_5

RTITION

SEED OPERATIONSC

INPUTS 	OUTPUTS

U 	 Ul
si 	 s6
S2
dx
55

Figure 4.4 Identifying partitions.

A small example of a partition search is presented in Figure 4.4. The seed

operations are MUL_4 and MUL_7. Possible partition input and output signals, produced

by the matchmaking algorithm, are listed in the figure. The search starts by

investigating s4 and s7. Both data arcs must be accommodated within the subgraph as

neither appear in the output list. The inclusion of operation SUB _9 is prompted by s7.

Although UI can be supported as an output, s6 becomes an unresolved input arc. The

M.

addition of SUB-6 is forced by s4 and this takes care of s6 as it is now supported

internally. As U is a valid input arc the search is complete. The subgraph highlighted is

connected and so it can be passed to the dependency algorithm. Note that without the

inclusion of both SUB-6 and SUB-9 the subgraph would not be connected.

4.3.2 Partition Selection.

The selection of partitions is constrained by the fact that no two selected

partitions may contain the same operation. The partitions which have been identified

could be associated with any of the structures present in the initial specification. These

structural associations will influence the execution time but, without actually

scheduling, it is only possible to predict the minimum execution time using various

structures. The selection task attempts to select partitions which, while encompassing

as many of the behaviour's operations as possible, map to structures with sufficient

processing power to meet the timing constraint.

4.3.2.1 Timing Estimates.

The user imposed timing constraint, Tusr, is the maximum number of control

steps to be used in scheduling the data flow graph. If the number of operations in the

data flow graph, Nops , is divided by Tusr then the result is the average concurrency of

operations in each control step. Accordingly, if the timing constraint is to be met, the

average operation concurrency of each partition must be greater than or equal to this

number.

1 partitions 	Tusr 	
Equation 5.4

The operation concurrency figure of a partition, P 011, can be calculated by

dividing the number of operations in the partition by the minimum number of control

steps required by the processors to perform all the operations, assuming the processors

operate in parallel and neglecting the data dependencies between operations.

rAil

The problem of selecting partitions to maximise the coverage of operations

within the behaviour can be tackled using an existing graph theoretical algorithm:

clique partitioning'. Clique partitioning identifies all cliques within a graph. A clique is

defined as a group of vertices where each vertex is connected by an arc to every other

vertex in the group. To make use of clique partitioning for partition selection, a graph

is constructed in which vertices represent the partitions and arcs indicate mutually

exclusive sets of operations for the partitions represented by the adjoining vertices.

Hence each clique will form a possible selection as it will contain a maximal set of

partitions which have no operations in common. After computing the concurrency

factors for each clique a selection weighting can be calculated as shown below:

I 	(N 	'\1 	I (N '\
weight = 	

[\ of's 	 usr 	~aXons 	clique

where Ncijque is number of operations in clique 	Equation 55

The clique with the lowest weighting is chosen as the partition selection.

4.4 The Integrated Approach.

A basic outline of the method of mapping behaviour to structure is traced in

figure 4.5. All separate structures within the structural specification are identified first.

The mapping of partitions of behaviour to each of these structures is then attempted in

turn. The behaviour takes the form of a data flow graph and the structure is represented

by a functionality graph. Matchmaking is used initially to remove operations which

cannot be supported by the types of processor in the structure. In addition, it lists the

seed operations for partitions and the signals which can form the inputs to and outputs

from partitions.

A search for subgraphs containing a combination of seeds is then performed. If

a subgraph is identified then a search is made for larger subgraphs based on the same

1. A clique partitioning algorithm, coded in Ada, is provided in Appendix A.1 on page 147.

65

combination of seed operations. This search is based on combinations of input and

output signals from the original subgraph which can be supported within a partition.

Any identified subgraphs must be found to be connected before being processed further.

Matchmaking is applied to each connected subgraph, where signals are classed relative

to the subgraph. The dependency algorithm then checks that the interconnection of the

structure can support the dependencies of operations and updates the candidate

processors of each operation accordingly. If a valid partition is identified then it is

stored together with the mapping to candidate processors, awaiting partition selection.

Partition selection occurs after mapping has been attempted with every

structure. A set of partitions is selected in an attempt to maximise the number of

operations included while favouring partition-structure mappings likely to meet the

timing constraint.

M.

Figure 4.5 The outline of mapping behaviour to structure.

67

4.4.1 Worked Example.

The following example is used to illustrate the approach outlined in Figure 4.5.

The behaviour and structure are presented schematically in Figure 4.6. The behaviour

represents part of the solution to a differential equation and is a common benchmark in

the synthesis field. It is described fully in Appendix B.2 on page 157. As the

subtractions are non-commutative, the order of left and right inputs must be preserved

in the mapping to structure in order to maintain correctness. The inputs to the multiplier

or adder may, however, be reversed as such operations are commutative.

Only one structure exists within the specification. It contains two processors: a

subtractor and a multiplier. The initial matchmaking step removes operations ADD-3,

ADD JO and MUL8. The additions are removed because the structure is unable to

support that type of operation. The output signal of the multiply is used in an addition.

For this to be possible the signal would have to be output from the structure. However,

MULTi does not have access to an external output port and so MUL_8 must also be

removed.

The seeds which are identified are all multiplications: MULJ, MUL2, MUL5

and MUL7. As the right input of the subtractor is connected only to local memory,

subtractions cannot act as seed operations because the right signal must be generated

within the structure and so come from within the partition. For the multiplier to support

a seed the operation must have a constant as an input signal. The order of the operation's

input signals does not matter as multiplication is commutative. With a total of four

seeds, there are fifteen combinations of seed operations which can give rise to partitions

[Equation 5.31.

Only five partitions are identified and these are shown in Figure 4.7. MUL_J and

MUL2 cannot both be performed by the structure because Si and 52 would be fed to

the same multiplier input preventing MUL4. The selection, comprising of a single

partition, is highlighted. The remaining operations will be performed by the

unconnected adder and multiplier.

BEHAVIOUR DATA FLOW GRAPH

ADD-3
	

MUL_8

ADD-10

REDUCED DATA FLOW GRAPH

STRUCTURAL SPECIFICATION

STRUCTURE

V
\DRI 	MULT2 \/ AD

Figure 4.6 Behaviour and structure for the worked example.

M.

Ut 	
t 	

cxf
MUL_1

ZN 	

I

/6s7 	

MULS 	

* ,

2 MULS 21

LkJ\ 	
9MUL_7 	EIkl\

J?MUL_4 	

MUL_7

SU

SUB _9 SUB _9

PARTITION
	 PARTITION-2

(SELECTED)

ER 	dx

MUL1G:€

I
UL-4

PARTITION-3

:9 	
7MULS

U 	 ''MUL_4 	 MUL_7

/s4 	 /,7

SUB_6 SUB-9

PARTITION-4 	 PARTITION-5

- Seed operations

Figure 4.7 Identified partitions.

tIll

4.5 Concluding Remarks.

Ways of mapping behaviour to existing structures have not been addressed

directly in contemporary research. The algorithms described in this chapter

demonstrate an effective way of mapping behaviour to structure so that scheduling and

data path allocation can proceed while constrained by existing structures. When the

structural input contains no interconnected processors, mapping is unnecessary and so

synthesis proceeds in a similar fashion to existing systems.

4.5.1 Computational Complexity.

The overriding problem encountered in mapping behaviour to structure is

computational complexity. The complexity is a function of the size of behaviour and

degree of non-specialisation of the structure. It is this combination which yields

excessive numbers of partitions. Specialisation is composed of several factors: the type

of processors in the structure, the inter-processor communications and the 1/0

connections. Processor types can be excluded as a specialisation factor here because

matchmaking eliminates all operations in the behaviour which cannot be supported by

processors within a structure. A non-specialisation index can be computed for a

structure from the remaining factors.

• Inter-processor communications.

In a structure which is completely non-specialised, there will exist a

communication path between every processor output and every processor input. The

contribution made to the index is the percentage that the actual connections of processor

outputs to inputs form of the total required for complete non-specialisation.

• I/O connections.

The contribution is the percentage of 1/0 connections which exist to processors

relative to the number required for there to be a connection from every processor input

to an input port and output to output port.

71

The index is calculated as an average of the two percentages. Mapping any

behaviour to a structure which has an non-specialisation index of 100% requires only

the matchmaking algorithm as structural interconnection will not constrain the binding

of operations to processors. Structures with high non-specialisation indices can have a

restriction placed on the combinations of seeds investigated in order to reduce

computation. Non-specialised structures are typically used in situations where there are

no critical performance constraints and so mappings of large partitions will be

favoured. Therefore, by investigating only the larger combinations of seeds the

probability of identifying the larger partitions will remain high while the computation

is reduced.

4.5.2 Memory Considerations.

A mapping between behavioural and structural specifications has been realised

where the relationship is between operations and processors. Memory has not been used

as a constraining factor in this mapping process. The reason for this lies with the fact

that no timing information exists before scheduling and so it is not possible to determine

whether memory size has been exceeded or there are clashes in access. Clashes in

memory access are identified in scheduling and during data path allocation it is

determined whether memory size has been exceeded. In both cases memory can act as

a constraining factor although it acts later in the synthesis process and so has less

influence on the architecture.

72

Time

1

2

3

4

Resource

ADD#1 ADD#2 SUB#1

1 2

4 3

5

6

Chapter 5
Scheduling and Binding.

5.1 Introduction.

This synthesis task is concerned with scheduling data flow operations into

control steps and binding them onto processors; it constrains the behaviour in time and

in place. The outcome of the whole process can be represented on a resource-time

graph. As its name suggests, the resource-time graph is a two-dimensional array

indexed by control steps (time) on one axis and structural resources on the other.

Operations occupy slots corresponding to their scheduled control step and processor

binding. An example is shown in Figure 5.1.

Figure 5.1 Resource-time graph represe ntation for operations and processors.

Scheduling is a process which is constrained by both behavioural and structural

factors: these are data dependencies within the data flow graph and the number and type

of available resources. In Figure 5.1 data dependencies dictate a minimum schedule of

three steps but the resource set forces a schedule of four steps. An extra adder would be

required to complete the schedule in three steps.

The aim of scheduling is to minimise the number of control steps needed to

carry out the behaviour under the given allocation of resources. The full processor

73

Time

1

2

IF 3

ADD#1 MUL#i REG#1 BUS#1 0UT#1 IN#1 IN#2 R0M#1

1

2
S1 C

Si 1132 S2 D

S3

F RUN

allocation is defined in the structural input.

The approach to synthesis using structural input introduced in Chapter 4

presents some additional problems to the scheduling task. Scheduling must

accommodate the tentative mapping B' -3 S which is expressed as a binding constraint

between certain operations in the behaviour, operations € B', and processors in the

structural input, processors € S. To preserve the correctness of the mapping B' —* 5',

other structural components of S must be considered to ensure that no usage clashes

occur. Refer to the example presented in Figure 5.2.

A 	B

St AS 3

Resource 	10

IN 	1N2

OUT

Figure 5.2 Scheduling with interconnection.

As a result of the interconnection of the processors, the bus and register cause a

bottleneck forcing the schedule to take an extra step. Such problems are tackled by

introducing memory components, JO ports and buses as resources in the resource time

graph. These data path components are assigned signals during the binding phase while

processors are assigned operations. As the resource-time graph will only permit a single

74

operation or signal in any slot usage clashes are prevented.

5.2 Scheduling.

The scheduling approach adopted here is based on the force-directed list

scheduling (FDLS) method devised by Paulin et al. [21]. It is based on the well

established list scheduling method which is the simplest and most obvious way to

schedule operations from a data flow graph onto a fixed processor resource set. List

scheduling is a constructive method; it deals with control steps in chronological order.

For each control step a list of candidate operations is constructed. These are

unscheduled operations whose input signals have been made available in previous

control steps. If there are more candidate operations of any type than available

processors which can perform them then deferral must occur. This is when one or more

of the operations is removed from the list without being scheduled. The candidate list

drawn up for the next control step will therefore contain these deferred operations.

Deferral causes the scheduling of operations to be delayed until suitable resources

become available.

Choosing which operations to defer is particularly important: it can affect both

the overall schedule length and the balance of operation concurrency.

5.2.1 The Force-Directed Deferral Mechanism.

The force-directed deferral mechanism is invoked whenever the number of

candidate operations of a given type exceeds the number of suitable processors

available. Forces are calculated for these operations with the aim of deferring the

operation with the lowest force until all the remaining operations can be accommodated

by the available processors. Force can be thought of as a measure of the attraction of an

operation to the current control step or as a measure of how much it will resist deferral.

5.2.1.1 Time Frames.

ASAP and ALAP schedules are constructed. As described in Chapter 3, these

75

schedules take no account of resource constraints but they do observe the effects of

scheduling and deferral. If an operation is scheduled into a control step then the ASAP

and ALAP schedules will also place the operation in that step. Similarly, if an operation

is deferred from a step then the ASAP schedule will also exclude it from that step. From

these schedules the time frame of each operation is calculated. The time frame is the

stretch of control steps bounded by the ASAP and ALAP schedule times. Operations

on the critical path will have a time frame of a single step indicating that there is no

freedom for scheduling unless the overall timing constraint is relaxed. If a critical path

operation is deferred then the ASAP and ALAP schedules are extended.

5.2.1.2 Distribution Graphs.

Distribution graphs are used to indicate the concurrency of operation types in

control steps. A separate distribution graph is constructed for each operation type. For

each control step of a graph, the probability of each operation of the type occurring is

summed and entered as the distribution value. The probability of an operation occurring

in a particular control step is defined in Equation 5.1.

1 	1
P(op,i) = 	alap — asap+l asap

~ i~ alap

L Equation 5.1

It is assumed that the operation has an equal probability of occurring between

its ASAP and ALAP schedule steps. The distribution value of a particular step in a

graph is expressed by Equation 5.2.

DG(i) = 	P(op,i) 	 Equation 5.2
op Ape

When multi-function processors, such as ALUs, are present in the structural

allocation, the distribution graphs of the operation types supported by the multi-

function processors are merged forming a multi-class distribution graph.

0.1

5.2.1.3 Force Calculation.

The force on an operation associated with the reduction of its initial time frame,

bounded by steps t and b, to a new time frame bounded by steps nt and nb is expressed

in Equation 5.3.

nb 	DG) 	- 	'r DG(i) 1

	

Force = L Lflb_flt+1J - LL(b_t+J 	
Equation5.3

i — nt 	 1=1

Each summation term is an average of the distribution graph over the time

frame. The force is, therefore, the difference in the average distribution resulting from

the change in the operation's time frame.

Paulin improved the effectiveness of the force-directed algorithm by

incorporating a look-ahead measure in the force calculation. The distribution values in

the new time frame term of Equation 5.3 are modified to take on a value between the

current one and the value which would be obtained after the change in the operation's

time frame. The force calculation with look-ahead modification is given in Equation

5.4.

nil 	
DGi Force = L L nb—nt+ 1

i = nt

il 	DG(i)
+ 3

1=1

" nh—nt+1
x(i) = [I_Li 	1)1 Equation 5.4

Scheduling an operation reduces its time frame to a single step. This may, in

turn, have an effect on the time frames of successor operations. If time frames of other

operations are affected then the 'successor forces' generated from these operations are

added to the initial force presenting a more global reaction to the potential scheduling.

The effect of successor forces is illustrated in Figure 5.3. One of the additions must be

deferred because there is only one adder. Both operations have the same direct force.

However, it is obviously better to defer A as neither multiplication can be attempted

before B is performed. This is taken into account by successor forces: B receives a

contribution from both multiplications whereas A receives only one force contribution.

77

Resource

I_3hhJvuu1

U
-C -c

Time

1

2

3

Consequently, B has the higher force and so A is deferred.

Figure 5.3 Successor forces on operation deferral.

5.3 Binding.

Binding is the process by which behavioural elements are mapped to structural

components: operations are bound to processors and signals are bound to data path

components such as memory, buses and I/O ports. It is closely linked to allocation,

which is the provision of structural components for binding. Synthesis using structural

input removes much of the need for allocation within the synthesis system. Only a

proportion of data path components will ever be allocated in a design. The task of

processor allocation does not interact with scheduling; all permitted processors are

incorporated into the structural specification. Much of the task of allocation is therefore

thrust upon the designer giving him greater control over the search of the solution

space.

Within scheduling it is necessary to determine if there exists a feasible binding

between a set of operations to be scheduled concurrently and a set of available

processors. This task is dealt with entirely within the scheduling algorithm. It is

achieved by type matching: if the type of operation is supported by an available

processor then a feasible binding exists. The aspect of binding which will receive

attention in this section is how to bind operations to processors when a choice remains

psi

after type matching. Consider the example in Figure 5.4.

Operations

Binding 	,f:•I:ii-.:::::c-_---III::Il4. 	it
Processors 	

11ç•ts7

Figure 5.4 Binding operations to processors.

Type matching forces the binding of the multiplication to the multiplier but

there still remains a choice for the additions. Defining the set of operations of the same

type which are scheduled to occur in the same control step as °T and the set of available

processors capable of implementing that type as PT, the aspect of binding which is

being addressed can be expressed as the binding of °T' where ~! 2

Why is such a seemingly insignificant task deserving of attention? This aspect

of binding has no influence over the schedule. Consequently, its importance must be

assessed by observing the quality of data path designs resulting from different bindings.

Figure 5.5 shows the spread of solutions obtained from random bindings for the Wave

Digital Filter Example 1 using an allocation of two adders and one multiplier.

15

14

13

10 	 1) 	 20 	 2)

Multiplexers

+ Data path solution classified according to numbers of registers and multiplexers

Figure 5.5 Data path solutions for random bindings of the Wave Digital Filter example.

1. Details of this example are given in Appendix B.3 on page 162.

rij

The aim of the binding algorithm is to select bindings which will simplify the

data path allocation task. Three selection criteria have been identified to calculate the

binding affinity of operation to a processor:

• Common signals.

In binding an operation to a processor, an obligation is placed on the data path

allocation algorithm to ensure the transfer of the input signals of that operation

to the processor. This criterion attempts to bind operations with common input

signals onto the same processor to reduce the number of different structural

destinations for signals. A weighting factor is calculated for each processor to

which an operation can be bound. It is the percentage of input signals from

operations bound to the processor which are common to the unbound operation.

• Common connections.

The second criterion is an attempt to minimise the number of connections

between processors. If operations bound to a processor, P, require connections

to a set of processors, P succ , to accommodate their data flow successors, then

binding should attempt to minimise the size of P suce by binding operations to

whose data flow successors can be bound to processors of succ Unfortunately,

the successors of some of the operations, including the one to be bound, will not

have been bound and so the attempt must be aimed at minimising operation

types rather than the actual processors. A weighting factor is calculated as the

percentage of bound operations which share a common successor operation

type with the successors of the operation to be bound.

• Mirroring behavioural patterns.

A number of data flow graphs can be divided into easily recognisable partitions.

These partitions are groups of operations which have few external signals. It is

advantageous to mirror this partitioning in the structure. By binding operations

of partitions to separate groups of processing elements, global interconnection

Elm

can be kept to a minimum. To achieve this result a crude but simple addition is

made to the common signals weight. The input signals of the operation to be

bound are also compared against the output signals of bound operations. This

introduces an attraction of closely related operations to the same processors. An

example is provided in section 5.6.

The percentages calculated for these criteria are averaged to compute the

affinity of an operation for a processor.

5.4 Scheduling and Binding with Interconnected Structure.

In synthesis using structural input, a mapping, B' - 5', is established between

a subset of the behaviour, B', and the initial structural input, S. The algorithms

presented in Chapter 4 create a tentative mapping between the operations of B' and the

processors of 5'. This tentative mapping is the association of operations with sets of

candidate processors. By constraining the possibilities for binding in this way, the

scheduling process is affected. Furthermore, once an operation has been bound to a

single processor, the candidate processor sets of all the operation's data flow successors

will be affected'.

In forming a proper mapping between B' and 5', not only must the operations

of B' be bound to the processors of 5' but the signals of B' must be mapped to the data

path components of 5'. Hence, a flow of data between operations is mapped to a data

path between processors. Data paths are usually synthesised in the data path allocation

phase (Chapter 6) after scheduling and binding. However, the mapping must make use

of existing paths and as these will affect both scheduling and binding decisions, signals

must be bound to data path components at the same time as operations are bound to

processors. This is illustrated in Figure 5.6.

1. Refer to section 4.2.2 on page 58.

11

BEHAVIOUR 	 STRUCTURE

------ - 	

I 	 I 	READ
1 cow.ns 	cow.s PHASE

CONTROL 	 bindings 	 I
sm 	°

/ 	
WRITE

	

COMMS I 	PHASE

MEMORY

Figure 5.6 Binding operations and signals to structural components.

In this application, scheduling and binding are interdependent and the tasks are

performed simultaneously. All the following conditions must be satisfied before an

operation can be scheduled:-

All the input signals of the operation must be available from memories or input
ports.

A processor from the operation's candidate set must be available.

There must be data paths available from the input signals to the processor.

There must be an available path to a memory component which has access to at
least one of the candidate processors of each of the operation's immediate
successors.

The memory component must have a free location in which to store the
operation's output signal.

The availability of any structural resource is determined from the resource-time

graph. For data path components, such as registers and buses, each control step within

the graph is divided into read and write phases. If a signal is being read from memory

then it is assigned to the read part of the step. Conversely, if it is being written to

memory it occupies the write part.

82

The structural constraint of scheduling now extends from the processor

allocation to encompass the data path. Memory and communications can cause data

flow bottlenecks and so the usage of these components must be monitored in the

resource-time graph alongside the processors'. The scheduling and binding phase

completes the mapping B' -+ S provided that memories are sufficiently large and that

the data path network of 5' complies with the specification presented in Chapter 3.

Structures which require data transfer between memories cannot be supported.

5.4.1 Combining with List Scheduling.

Because scheduling and binding must be performed simultaneously, it is

necessary to incorporate binding into the algorithm. The core of the list scheduling

approach is in the assignment of candidate operations to the current control step and the

deferral of others if there is an insufficiency of suitable, available processors. Little

modification is required to adapt this method to cope with interconnected structure. The

matching of candidate operations to available processors is extended to include the

matching of their signals to available data path components. Operations and signals

which are not deferred are then bound before the scheduling algorithm progresses to the

next step.

5.5 Integrated Scheduling and Binding.

Scheduling is constrained by data dependencies within the data flow graph and

by the type and number of allocated resources. In synthesis using structural input,

partitions of the behaviour may have been mapped to structures before the scheduling

phase. Operations within these partitions, termed partitioned operations, can only be

bound to one of a restricted set of candidate processors identified in the matching phase.

The remaining non-partitioned operations must be bound to processors in the

specification which are unconnected. These relationships are outlined in Figure 5.7.

83

Figure 5.7 Restrictions on binding operations to processors.

All operations belong to one data flow graph which means that data

dependencies will exist between partitioned and non-partitioned operations.

Consequently, the scheduling of these two categories of operation is mutually

dependent. A list scheduling approach is used to encompass all data dependencies

within the data flow graph. An outline of the algorithm is listed in Figure 5.8.

time constraint 	ASAP time;
step 	1;
while step <= time_constraint loop;

available_signals (dfg,step);
O:= candidate_operations_of (dfg, s);
po:= partitioned_operations_of (0);
no: non_partitioned operations of(0)
schedule and bind_partitioned (po, step)
schedule_and_bind_non_partitioned (no, step)

	

step 	step +1;
end loop;

Figure 5.8 List scheduling for partitioned and non-partitioned operations.

Operations are scheduled into each control step in turn, starting with the first

step. The outline in Figure 5.8 shows the main core of the scheduling algorithm. The

loop allows each step to be dealt with in turn and within each loop the current candidate

list of operations satisfying data constraints is put together. Available signals, as the

name suggests, are those which are available for use by an operation in the current

control step. Signals classed as input or constant will always be present in this list.

Other signals are made available by operations which satisfy Equation 5.5.

stepsc nedul e (op) + stepsexecution (op)
!~ stepcurrent 	Equation 5.5

FM

Candidate operations are those for which both input signals are available. This

part of the algorithm, therefore, takes care of the data dependency constraints within the

data flow graph. What remains to be addressed are the structural constraints which may

force operations to be deferred and further constrain binding.

Partitioned and non-partitioned operations will be bound to mutually exclusive

sets of processors. As a result there will be a separate deferral process for each category

of operation because only operations from the same category can compete for the same

processor. In the case of partitioned operations and for reasons discussed in Section 5.3,

binding of an operation and its associated signals is performed at the time of its

scheduling. For simplicity, the binding of non-partitioned operations to processors is

also carried out during scheduling. Consequently, partitioned operations in the current

candidate list undergo deferral and binding separate from non-partitioned operations.

5.5.1 Deferral and Binding for Partitioned Operations.

Figure 5.9 outlines the way in which partitioned operations undergo deferral and

binding. An operation which is not deferred will be scheduled and bound in the current

control step along with its input and output signals. The operations are listed according

to the force attracting them to the current step. The operation yielding the greatest force

of attraction to the current step is placed first in the list. Operations and their associated

signals are bound to resources on a first-come-first-served basis and so an operation

with a stronger force has greater choice of resources.

An operation is deferred when there is no suitable combination of available

resources to accommodate it and its input and output signals. Resources include data

path components such as registers and buses as well as processors. When an operation

is deferred to a step later than its ALAP schedule time, the time constraint is relaxed by

a step to enable a valid force calculation to be made in the following step. The binding

of an operation and its associated signals is performed in the following manner.

85

ASAP(DFG);
ALAP (DFG, time_constraint);
UPDATE DISTRIBUTION GRAPH;
CALCULATE _FORCES (p);
ORDER BY FORCE (po);
while SIZE(po) > 0 loop 	 --for each partitioned candidate operation

o:FIRSTOF(po)
ORDER—BY—BINDING WEIGHT (P, o);
deferral: true;
P:= AVAILABLE_PROCESSORS (o, RT (STEP));
while SIZE(P)>O loop 	--for each available candidate processor

p :FIRST OF (F);
ROUTE (o,p,fail); 	--bind operation and signals if possible
if not fail then

deferral:=false;
exit;

end if;
DELETE—FIRST (P)

end loop;
if deferral and ALAP OF (o) <= STEP then --critical path deferral

tine—constraint :timeconstraint+l;
end if;
DELETE _FIRST (po)

end loop;

Figure 5.9 Deferral and binding for partitioned operations.

The candidate processors of the operation which are available in the current

step are identified. They are listed in order of the binding weight which looks for

common signals with previously bound operations. Taking each of these processors in

turn, starting with the most heavily weighted, an attempt is made to bind the operation's

signals to data path components surrounding the processor. This is termed the routing

procedure. The procedure is applied until a successful binding is found or all the

processors have been tried. When the latter occurs the operation is deferred.

An outline of the routing algorithm is given in Figure 5.10. It considers both

ways that a commutative operation can be bound to a processor and if a solution is

found then bind_paths performs the bindings by updating the resource-time graph. The

procedure locate_path in starts with the memory components which store the input

signals and looks for a communication component in the structure which connects from

the memory to the specified processor input port. The locate_p ath out procedure looks

for paths for the output signal to memory components which have access to processors

which are in the candidate sets of operations which consume the output signal.

if standard binding (op,proc) then
locate path in (right_port,right signal, right_path)
locate_path_in (left_port, left_signal, left_path);
locate path out (out_port, out_signal, out_paths);

elsif not successful and reverse binding(op,proc) then --commutative case
locate_path_in (right_port, left_signal, right_path)
locate_path_in (left_port, right_signal, left_path);
locate_path_out (out_port, out_signal, out_paths);

end if;
if successful then

hind_paths (op, proc, right_path, left_path,out_path);
end if;

Figure 5.10 Routing: binding signals to data path components.

5.5.2 Deferral and Binding for Non-partitioned Operations.

The deferral and binding processes applied to non-partitioned operations, those

not already mapped to structure, are outlined in Figure 5.11. It is based on the Force-

Directed List Scheduling (FDLS) approach of Paulin et al.[21]. The only significant

difference is the inclusion of binding.

no 	non-partitioned operations;
procs 	available_unconnected_processors
while deferral necessary(nc,procs) loop

if critical_path_deferral then
time-constraint 	time constraint+l;

end if;
ASAP (DFG)
ALAP (DFG, time_constraint);
UPDATE DISTRIBUTION GRAPH;
CALCULATE_FORCES (no);
DEFER LOWEST FROM(no); 	--discard operation with lowest force

end loop;
BIND (no,procs);

Figure 5.11 Deferral and binding for non-partitioned operations.

5.5.2.1 Deferral.

Deferral is necessary when the number of operations of a particular type

exceeds the number of available processors capable of performing that type of

operation. Deferral can be divided into three separate cases for consideration. To aid the

identification of these cases the following definitions are introduced:

• O the set of operations of type T.

!i1

• PT: the set of available processors capable of implementing type T.

• OCpT: the set of operations of type T which are on a critical path of the data flow
graph.

Using this representation, deferral is necessary when Equation 5.6 holds for-any

operation type T.

JOTJ >
	

Equation 5.6

The critical path is a set of operations which form a continuous chain, via

directed arcs, and for which the sum of execution times of individual operations is equal

to the total schedule time. There may be more than one critical path in a data flow graph.

Referring to Figure 5.12, path A contains more operations than path B. It would

therefore appear that path A is the critical path.

Figure 5.12 The critical path of a data flow graph.

However, if multiplications take twice as many steps to compute as additions

then path B becomes the critical path. Operations on the critical path are easily

identified by the fact that their ASAP schedule step is the same as their ALAP schedule

step. Deferral of such an operation would therefore force an increase in the overall

schedule time.

The first of the three deferral cases to consider is the simplest to deal with.

Equation 5.7 identifies this case. It arises when there are no available processors to

perform operations of a given type. The action taken is to defer all operations belonging

to °T

	

J O TJ > "H 	IPTI = 0 	 Equation 5.7

The remaining cases, where Pd >0, are tackled within the force-directed

deferral. mechanism.

The second case is defined by Equation 5.8.

	

°CPH > "ri 	Op_C 0r 	 Equation 5.8

This is when the number of critical path operations of a particular type exceeds

the number of available processors. The reason for identifying this situation is that the

solution will inevitably result in the deferral of a critical path operation forcing an

increase in the overall schedule time. In order to accommodate such a deferral the time

constraint for the schedule is relaxed by one step and the ALAP schedule and

distribution graphs are updated before the force calculations are made for the candidate

operations. As a result, a more accurate estimate of the consequences of deferring an

operation is obtained from the force calculation. The operation yielding the lowest force

is deferred.

The third and final case encompasses the remaining possibilities and so is not

identified explicitly. Forces are calculated for all candidate operations and, again, the

one yielding the lowest force is deferred.

One of the advantages of the force-directed algorithm is that there is no need to

identify explicitly the set or sets of operations OT responsible for deferral. If deferral is

necessary then the operation with the lowest force will be a member of a set Op

5.5.2.2 Binding.

After any deferrals have been made, the remaining candidate operations are

bound to the available processors and assigned to the current control step. This

information is stored in the Tesource-time graph. Binding decisions are based on the

affinity calculations described in Section 53. The operation which has the greatest

affinity for an available processor is bound first. This process is repeated until all

operations have been bound. This greedy method is adequate when the number of

candidate operations of any given type is small and when there are no multi-function

processors such as ALUs. When multi-function processors are involved it is

conceivable that the binding process would fail to find a solution involving all the

operations. Consider the example presented in Figure 5.13.

Operations All) 	(I) 	C)
02

Binding

Processors 	
\çs..977

`~7
Figure 5.13 Binding affinities of operations to processors.

The greedy approach described above would bind the subtraction to the ALU

depriving an addition of a processor. This problem can be avoided by employing the

minimum cost flow algorithm. Candidate operations and available processors form the

two sets of vertices of a bipartite graph as illustrated in Figure 5.14.

r10iri
CI 	 H - I

/L0J 1ci
a = 1OXINT(1-affinity)

source

10
1

Key
operations 	

I I 	I1 	processors

Figure 5.14 Representation of binding using a bipartite graph.

go]

Directed arcs from operations to processors represent possible bindings and

each of these arcs is associated with a cost related to the binding affinity, denoted by a.

The network flow algorithm circulates units of flow around the network

satisfying the following conditions:

• flow into vertex = flow out of vertex; flow is denoted byf

• c 1 ~f~ c; c1 and Ch are the upper and lower capacities of an arc.

To ensure that all operations are bound, the arcs from the flow source vertex are

forced to carry a single unit of flow. The arcs returning flow from the processors to the

sink are constrained to carry at most one unit thus preventing the binding of more than

one operation to a processor. The flow algorithm is optimal and is based on the out-of-

kilter method devised by Ford and Fulkerson [67]. It is coded in Ada and is included in

Appendix A.2 on page 151.

Once the algorithm has arrived at a minimum cost flow solution the bindings

can be determined from the arcs between operations and processors which carry a unit

of flow. Such arcs represent a binding between source and destination.

All that now remains is to enter the information in the resource time graph. The

processor will be occupied for the following range of control steps:

stepeurren t —> stepcurrent + [stepsre — use -

The operation will be complete by step current + stepsexecui jon at which time

the output signal of the operation will be available for use.

5.6 Results.

The first example schedules and binds the Differential Equation data flow graph,

Figure 5.15, with the structural specification outlined in Figure 5.16.1 It illustrates the

combined scheduling of partitioned and non-partitioned operations and the binding of

1. Refer to Appendix B.2 on page 157 for further details.

91

signals to data path components. The structural specification contains four processors,

two of which are interconnected to form a structure. Mapping identified a single

partition, highlighted in Figure 5.15, to be mapped to the structure. 1 The results are

presented in the form of resource-time graphs in Figure 5.17.

ADD-3

xl

MUL_8

ADD-10

Figure 5.15 Data flow graph behaviour for a differential equation.

INI 	C2 	 ciU

2

	

_ 	 _ __

I 7--V-7 \ V
SUBT1

	

REGZI 	 REG1 j 	
\ADDE1

OUT

Figure 5.16 Structural specification used in the Differential Equation example.

There are two points worthy of note in these results. Firstly, signal S2 links a

non-partitioned operation to a partitioned one. As all signals must enter a structure

through input ports, S2 is transferred from MULT_2 to MULT_1 via input port IN-2.

Secondly, in order to accommodate their input signals in the data path, the binding of

1. Refer to section 4.4.1 on page 68 for futher details of mapping for this example.

92

operations MUlL_i and MIJL_7 has been reversed. This means that the left input signal of

the operation will enter the right port of the processor and that the right signal will enter

the left port. This is permissible because the operations are commutative.

Resource 	10

MMMMMMMMMMMM
P.
.
%%S.%%

WINw.....t totassot4&st.M.ta st6s a•..) ..t......s.n 6tASS!$...s........ t.t$ôt.tô .

EWEN 0 ______ • .•... .9•.._____
6tt.+..Sfl.t?.,...tAtd wt,. w•w.v _

1. Input signals reversed.

Figure 5.17 Resource-time graphs for D Were ntial Equation example.

The Wave Digital Filter' is perhaps the most scheduled example in behavioural

synthesis. The data flow graph is shown in Figure 5.18. The scheduling and binding

obtained from a processor allocation of two adders and a pipelined multiplier is

presented in the form of a resource-time graph in Figure 5.19. Results obtained from a

number of different allocations are provided in Appendix B.3 on page 162.

The behaviour in Figure 5.18 is divided into two partitions. Each partition can

be seen to have a similar data flow. With an allocation of two adders, if the structure is

to mirror this behavioural partition then the additions from each partition should be

bound to separate adders. In the resource-time graph (Figure 5.19) this binding

arrangement has been achieved as a result of the influence of binding affinities. The data

ne

1

2

3

4

5

6

REAL

WRIT]

1. Refer to Appendix B.3 on page 162 for further details.

93

Pa

Won 2

path solution obtained for this result contains 13 registers and 13 multiplexers and can

be found in Figure 6.17 on page 122. Solutions obtained for other binding can be seen

in Figure 5.5 on page 79.

Figure 5.18 Data flow graph for the 5"' Order Elliptic Wave Digital Filter

94

Resource 	 10

Time
Step Adder #1 Adder #2 Multiplier

1 1 2
2 3
3 4.
4 5
5 6
6 7
7 8
8 10 9

13 11 12
10 15 14
11 16
12 20 17
13 18 25 22
14 23 19 29
15 26 21 27
16 30 33 24
17 32
18 34 28
19 31

partition 1 partition 2

Figure 5.19 Resource-time graph for Wave Digital Filter example.

5.7 Concluding Remarks.

The scheduling and binding algorithm presented in this chapter achieves the two

main objectives posed by the adopted approach to synthesis using structural input. The

first of these is concerned with the mapping of partitions of behaviour to specified

structures. The mapping algorithms of Chapter 4 identify the partitions and construct

tentative mappings to the structures by specifying possible bindings between operations

and processors which will ensure a correct functional implementation of the behaviour.

In scheduling such operations, these imposed binding constraints are observed and the

algorithm ensures, in addition, that free data paths exist to enable the transfer of signals

between processors at the scheduled times. The second task addressed by the algorithm

is to ensure that operations not involved in mappings to structures are scheduled and

interface correctly with other partitions of the behaviour.

The force-directed deferral mechanism is used because it fits conveniently with

the approach needed to tackle the two afore-mentioned tasks and it produces good

results for allocations of unconnected processors. The schedules computed using the

force-directed method have not been bettered by other systems in terms of the number

of control steps required. It is not surprising that many others have also chosen to make

use of it.

A limitation of the synthesis system presented in this thesis is its inability to

support inter-memory data transfer. In order to accommodate such transfers

modifications would have to be made to the timing model and the approach to binding

partitioned operations.

96

Chapter 6
Data Path Allocation.

6.1 Introduction.

The purpose of data path allocation is to provide the structures necessary to

support the transfer of data between processors at scheduled times. This involves the

synthesis of both memory and communications. The timing model discussed in Chapter

3 dictates that data which exists within more than one control step must be stored in

memory. A data transfer which traverses a control step boundary must follow a data

path in the structure of the form shown in Figure 6.1.

Figure 6.1 Permissible data paths.

As illustrated in Figure 6.2, scheduling dictates the timing of the data transfer:

when it is created and consumed and, hence, how long it must be stored in memory.

Binding dictates the structural source and destination of the data.

Step 1

Step 2

Ldmgs

V / data path
+ / allocation

wire

Step 3

*

Figure 6.2 The task of data path allocation.

The aim of data path allocation algorithms is to minimise the area occupied by

memory and communications subject to the constraints imposed by the schedule and

OA

binding of operations. It is straightforward to judge the effect of data path design

decisions on the number of memory and communication components as these are

actually created in the data path allocation phase. However, components constitute only

part of the area cost; the remainder is occupied by wiring. Wiring is not laid down until

the routing phase of silicon compilation which is much later in the synthesis process and

so it is difficult to assess the effects of data path allocation design decisions.

An alternative approach is to reduce the complexity of the problem presented to

the placement and routing algorithms so that they can operate more effectively. This is

achieved by influencing the architectural style. An attempt is made to group registers

into files or RAM in order to reduce the total number of components and, hence,

interconnections. The interconnection topology is also kept simple by restricting the

transfer of data to the structural paths outlined in Figure 6.1. This results in a data path

which has at most two levels of multiplexing: one is used in the transfer of data to

processors and the other in the transfer of data to memory. An additional advantage of

this restiction is a reduced time delay for data transfer which means a smaller control

step time.

In synthesis using structural input, data path allocation is only required for

signals that have not been mapped to structural components. Considering the

behavioural synthesis task as a transformation F' (B, S') —* S; (S' c S) ,the initial step

is the formation of the mapping B' -, S'; (B' c B) which is described in chapter 4. The

remainder of the behaviour, —iB' n B, consists of operations bound during the

scheduling phase and signals which remain unbound. It is for these signals that memory

and communications must be synthesised. The algorithms employed must be capable

of interacting with the existing data path. For this reason the algorithms are constructive

in approach. That is, they operate on a signal by signal basis at some point allowing the

algorithm to build upon the prior binding of other signals to existing data path

components.

6.2 Memory.

All memory units are deemed to conform to the separate read and write phases

of operation presented in Chapter 3. There are two issues concerning the storage of data

in memory: firstly, determining whether two signals can share the same location and,

secondly, whether they can be stored in different locations of the same memory.

6.2.1 Single Location Storage.

Two signals may share the same location if theft lifetimes do not overlap; a

signal must be read for the last time before another signal can be written to its location.

In addition, referring to the data flow graph representation, two signals represented by

separate arcs which come from the same operation will carry the same data but may

have different destinations and read times. These signals can, of course, share the same

location and so. the data need only be written once. There are several well established

algorithms which can be used to group signals into a minimum number of memory

locations. Clique partitioning and graph colouring techniques are common but the

simplest is the 'Left-Edge Algorithm' [30]. This latter technique is used here. The

operation of the algorithm is best described using a two-dimensional array which forms

the basis of the data structure as illustrated in Figure 6.3.

This array represents memory: the columns are separate locations and the rows

form a time axis measured in control steps. A signal occupies a single column from its

write time to its last read time: this is its duration or lifetime. Each signal is represented

in this way on the array. Minimisation of locations is performed by forcing each signal

as close to the left edge of the array as possible without overlapping lifetimes or

allowing lifetimes to overlap columns. The number of occupied columns indicates the

minimum number of locations required and the signal binding to each location is given

by the contents of its column.

Memory Minimisation Example.

Memory Locations

Control
Steps

U lifetime

After forcing lifetimes
to the Left-Edge

Figure 6.3 The Left-Edge Algorithm.

When loops occur in the data flow, signal lifetimes may overlap the loop

boundary. In Figure 6.3, signal U is produced in the first iteration and consumed in the

second. In the circular or folded representation shown in the figure the lifetime of U is

separated into two parts denoted by U1 and U2 . To ensure continuity, the portion labelled

U2 must always appear in the same column as U1 otherwise an attempt will occur to read

data from a location to which it has not been written.

6.2.2 Multiple Location Storage.

Structures, such as register files and RAM, contain a number of storage locations

of which only one may be addressed at a given time. The allocation of signals to

locations within the memory is made using the Left-edge Algorithm [30]. However, the

fact that only one signal can be accessed at a given time leads to an additional

constraint: no two signals within the memory can share the same read or write time.

100

Two methods of assigning signals to multiple location memories are described in

section 6.4. The benefits of multiple location memory structures arise from reduced

interconnection and control overheads. By grouping n registers into a single register file

the number of control lines can be reduced by a factor of 1 Flog
ni 2 . In

addition, the total number of interconnected components will be reduced thus earn g the

task of the placement and routing algorithms.

6.3 Interconnection.

Three types of interconnecting structure are synthesised: wires, multiplexers

and buses. The definitions of each are detailed below:

• a wire connects a single source to one or more destinations;

• a multiplexer enables multiple sources to connect to a single destination with the

restriction that only one source may be active at any time;
• a bus enables multiple sources to connect to multiple destinations but only one

source may be active at any time.

Multiplexers and buses are costed in terms of their equivalent multiplexer

inputs. This term refers to the number of inputs of the device. Hence a bus with two

inputs is deemed equivalent in area cost to a multiplexer with two inputs irrespective of

the number of bus outputs. The total number of multiplexer inputs (mux. inputs) in a

data path design has become a factor for comparison alongside the number of registers

in evaluating the merits of a data path design.

6.3.1 Communications Synthesis.

Wires are created initially to convey data between processors, memory and I/O

ports in order to satisfy the communications requirements stipulated by the binding of

operations to processors and signals to memory. Multiplexers and buses are created as

a consequence of interconnection minimisation: the merging of wires. Wires which

have common connections can be merged to reduce interconnect area provided that

none of the signals carried by the wires have clashing read or write times. Whether a

101

bus or multiplexer is created is dependent upon the number of outputs resulting from

the merge. Possible merges are illustrated in Figure 6.4.

A 	B 	 A 	B1 	MUX.
WIRE 	I

+. C 	C

D BUS

___ BI__ID 	
A B I
I 	CE

Figure 6.4 Merging Interconnections.

6.3.2 Influence of Scheduling and Binding.

From the scheduled and bound data flow graph it is possible to determine the

minimum number of distinct processor-to-memory or memory-to-processor paths

required in the design. The communications network conveying data from processors

to memory is termed the write network. Similarly, the read network conveys data from

memory to processors. Both these communication networks operate in the read phase

of the timing model and so no component can be used in both the read and write

networks. The minimum number of separate interconnection components in the read

network is equivalent to the maximum number of data reads which occur in any control

step of the schedule. This naturally also applies to the write network. It can, therefore,

be concluded that an attempt to balance the number of operations occurring in each

control step may benefit the task of interconnection minimisation by spreading out the

data reads and writes. A natural consequence of the fact that the same rules apply to

merging interconnect as to combining memory locations is that minimisation

techniques will be mutually beneficial. The minimum number of memories will be the

same as the minimum number of separate interconnection components in the read

network.

102

6.4 Synthesis Algorithms [68].

The tasks of allocating signals to multiple location memories and merging

interconnect are governed by the same rule: there must be no read or write clashes

between any signals using the components. The remaining task of minimising the

number of memory locations used is achieved by grouping signals whose lifetimes do

not clash. Signals with disjoint lifetimes form a subset of those with disjoint read and

write times. Hence, an algorithm which groups signals with disjoint read and write

times does not exclude the grouping of signals with disjoint lifetimes. Consequently, a

synthesis process whose primary objective is the grouping of signals into memories

with the aim of reducing the numbers of both interconnection and memory components

will help reduce the overall memory size. This is the philosophy behind both algorithms

for data path allocation presented in this section.

6.4.1 Clique Partitioning Method.

A connectivity model is the means by which existing structural information is

introduced to this synthesis algorithm. The model is initialized to express the

connectivity of the structural input. Using data transfer information gleaned from the

operation scheduling and binding phases, the model is updated to show the necessary

data transfer paths between processors and ports. The connectivity is modelled as a

directed graph with processors and ports as vertices, and arcs, termed wires,

representing permissible signal flow, or data transfer, between them. Each directed arc

in the connectivity graph has associated with it a transfer slot for the read and write

times of each control step. A slot can only be filled by a signal which is to be transferred

between the source and destination of the arc during the control step. This is illustrated

in Figure 6.5. Each signal transfer in the data flow graph is associated with a suitable

wire in the connectivity graph. The wire must connect from the processor or port

producing the signal to one consuming it. In addition, there must be free slots at the

times the signal is transferred and the lifetime of the signal must not overlap with any

103

others in the wire. It is, therefore, possible for a signal to be present in more than one

wire. If a suitable wire does not exist then one is created. Wires can be considered as

connecting processors and ports through single registers.

	

I Processor 	I 	I

C-step Signal

1I 	-
[WI SigA

2[R1 SigA

3[R] 	-
[W] SigH

Figure 6.5 A simple connectivity graph.

6.4.1.1 The Algorithm.

The aim of the algorithm is to minimise the number of memory locations,

multiplexers and connections by merging wires in the connectivity graph. Any two

wires can be merged provided that no signals carried by them have to be transferred at

the same time. The algorithm finds all maximal merges of wires in the connectivity

graph using clique partitioning. A maximal merge is one which is not a subset of any

other merge. From this list of merges produced, the best is selected based on estimates

from memory and multiplexer cost functions. When a merge has been selected its

component wires are removed from the remaining merges which are then sorted to

remove those which have become non-maximal. The selection process is then repeated

until no wires remain. This is illustrated in Figure 6.6.

104

List all maximal
merges of wires.

REQ COST I

(Mlix COST)

us-
ing cost fns.

Lists 	of
merged
Wires

Remove wires of selected
merge from unselected
merges

Remove all merges which
are subsets of others

NO —iCii s— YES

Figure 6.6 Flow diagram of synthesis algorithm.

6.4.1.2 Clique Partitioning. 1

The clique partitioning algorithm is used to find the largest, distinct, groups of

wires which can be merged together. In order to do this a compatibility graph is

constructed in which vertices represent wires and arcs represent possible merges

between two wires. As exhaustive clique partitioning is an NP-complete problem it is

important to ensure that the complexity of the compatibility graph does not exceed that

which can be partitioned in realistic computing time. The complexity of the graph

increases with the number of vertices and cliques it contains. The algorithm used, which

is a variation of the Bron-Kerbosch Algorithm, has been tested on Moon-Moser graphs,

which contain the most cliques per vertex and so are the worst case for clique

partitioning. The performance for these graphs compared with that for graphs

encountered in real examples is shown in Figure 6.7.

1. A clique partitioning algorithm, coded in Ada, is provided in Appendix A.! on page 147.

105

Graph Vertices Density' Cliques Time(s)

Moon-Moser 18 0.88 729 0.6

21 0.90 2187 1.9

24 0.91 6561 5.9

27 0.92 19683 17.8

33 0.94 177147 168.6

39 0.95 1594323 1591.4

Filiptic Filter

21 c-steps 18 0.56 37 06

19 c-steps 21 0.66 39 0.9

tic-steps 16 0.58 26 0.3

1. Density = 2srosl(verticest(verlices-1))

Figure 6.7 Clique partitioning performance.

6.4.1.3 Memory Cost Function

The cost function computes the number of memory locations required for a

gi .aiii.as '#i nS andprovides a
ii.aSb,,,c,,a er S . 	 ,LThnTatPAa UI LflSLL ga±n, ..

Algorithm [4] is used to calculate the number of memory locations. The cost gain is

based on the reduction in required memory locations resulting from the merge and the

utilisation of the resultant locations. Memory utilisation is defined as the percentage of

the total time that locations are storing data. This is shown in Equation 6.1 for a

memory with n locations storing data over time t.

usage = (n x 1) - L lifetimes 	 Equation 6.1

signals
The memory cost is then calculated as follows:-

cost = - Alocations - (1 - usage) 	 Equation 6.2

6.4.1.4 Multiplexer Synthesis and Cost Function

In the connectivity model described earlier there are two situations which

require the synthesis of multiplexers: firstly, more than one output port connected to a

wire and, secondly, more than one wire connected to a single input port. The former is

easily resolved: given a merge consisting of x wires coming from y different sources

then a y input mux is required and the number of mux inputs is increased by y. The latter

106

is more complicated. In the case of processors executing non-commutative operations,

such as subtraction, the input signals are constrained to arrive at pre-defined ports to

preserve functionality. In the case of commutative operations, such as addition,

however, it is possible for an input signal to arrive at any port provided that two signals

used in the same operation do not arrive at the same port. If a number of wires are to be

connected to the input ports of a processor, this problem of multiplexer synthesis can

be expressed as how port assignment should be made so as to minimise the number of

wires which must be connected to both ports. An algorithm which produces the best

port assignment of wires for each processor is presented in Figure 6.8.

-- RESOLVE PORT ASSIGNMENTS

-- COMMUTATIVE CASE
1:5 set of input wires;

C[l..n]: 'n' combinations of input wires;

lowest: 2*SIZE(I);

for left in 1 .. (n - 1) loop;

tor right in left .. n loop
spread := C[left]UC[right];

remainder : = I fl spread;
if SIZE(remainder) < lowest then

lowest 	SIZE(remainder);

leftjort : wires_of(C[left]);

rightyort := wires_of(C(right]);

end if;
end loop;

end loop;

Figure 6.8 An algorithm to resolve port assignments.

The multiplexer cost function is an estimate of the reduction in multiplexer

inputs which will be made by merging a given set of wires. A simple strategy is to base

the cost function on the number of common sources and destinations of the wires in the

proposed merge. This is augmented by the change in the number of multiplexer inputs

resulting from the merge as shown Equation 6.3.

cost = Amux - [2 x wires - (sources + destinations) I 	Equation 6.3

The change in the number of multiplexer inputs is an important selection criterion

towards the end of synthesis when the cost of multiplexing processor inputs emerges.

107

6.4.2 Assignment Method.

This algorithm groups signals into sets: a set contains only signals with disjoint

read and write times. Each set represents the assignment of signals to a memory

component. The minimum number of sets will, therefore, be at least the maximum

number of data transfers in any control step. In any scheduled data flow graph reads will

outnumber writes. This arises from the fact that processors have more inputs than

outputs.

The first step in the algorithm is to tabulate the signal reads according to the

control step in which they occur. Each row in the table contains signals from a single

control step. The signals occupy separate columns. Figure 6.9 illustrates this. 1

Differential Equation Example.

	

N Resources ___________ 	 Resource-Time Graph

MULTI MULT2SUBT1 ADDR1
Control 	, 	- 	- 	- 	- 	,cinai riad

3

Subscripts denote separate
signal reads.

4

c5 	X1 Steps 	
1

U1 	dx1 dx2 	X2

s2 si xl 	-q

si 	s2

2
0 	YL

84 s5

dx4 	s5 U2 	dx7 U3 	s4

s7

88 s6

s6 	s7 Yz 	sS

ul Yl

C

operation

signal write

Control
Steps

Signals

ci dx 1 dx2 x 1 x2 11 1

s2 si ci Yi

s5 s4 dx3 dx4 u2 u3

s8 s7 s6 Y2

Signal Read Table

Figure 6.9 Tabulated signal reads for the Differential Equation Example.

1. Details of the Differential Equation Example are given in Appendix B.2 on page 157.

Im

After construction, the rows of the table are sorted according to the number of

different data values present within them. The row with the most data values is placed

first. Rows with the same number are sorted according to the number of signals which

exist during their respective control steps. This sorting is effectively an ordering of

control steps according to the level of communication activity within them. As signals

which belong to the same row share the same read time, they cannot share the same

memory set unless they convey the same data. Consequently, the number of different

data values in the first row, the most active control step, indicates the minimum

permissible number of sets necessary to accommodate the signals. This number of sets

is then created to house the first row of signals. The algorithm now proceeds on a row

by row basis starting with the next most active row. The largest rows, in terms of data

transfers, are the most awkward to assign to memory sets because of the greater

potential for clashing. For this reason such rows are dealt with first, thus maximising

the freedom of assignment for the signals within these rows. Each signal in the row is

assigned to a memory set in an attempt to minimise a cost composed of memory and

communication factors. Three rules govern the assignment to ensure that no read or

write clashes can occur.

All signals from the row must be assigned to memory sets.

• No two signals from the same row can be assigned to the same set unless they

convey the same data.

• The signal being assigned cannot have the same write time as any other signal

within the set unless they convey the same data.

6.4.2.1 Commutative Operations.

The binding of operations to unconnected processors does not stipulate how the

operation's input signals are to be mapped to the processor's input ports. This is implicit

in the case of non-commutative operations such as subtraction where the order of

109

operands must be observed to preserve the correct functionality. That is, the left signal

must be mapped to the left input port and the right signal to the right port. However, for

commutative operations, such as multiplication or addition, the ordering does not affect

the functionality and so there is a degree of freedom available in deciding the port of

destination for the signal. This freedom is beneficial in communications synthesis.

6.4.2.2 Signal Constants.

Constants are assigned to memory sets but they are not included in registers,

register files or RAM. For this reason they do not affect the memory cost function. They

are associated with memory sets solely for interconnection reasons. The constants are

fed into the read network using multiplexers. This multiplexing cost is introduced

through their assignment to a memory set.

6.4.2.3 Cost Estimation.

The calculated costs reflect estimated increases in the number of datapath

components resulting from the addition of a signal to a memory set. They are intended

as a means for differentiating between possible assignments of signals within the same

row and are not intended as a global prediction.

• Interconnection cost.

This is calculated as the effective increase in the number of mux. inputs, for both

the read and write networks, resulting from the addition of a signal to a memory set. In

the write network, the number of mux. inputs can be calculated as the number of

different sources of signals of the memory set if that number is greater than one.

Therefore, the mux. write cost incurred by adding a signal can be calculated as follows:

no change in number of sources
cost = 	1 extra source to memory set: number of sources> 1

2 extra source to memory set: number of sources= 1

Calculations for the read network operate following the same principle.

However, because the memory sets are inputs to the read network, the destinations of

110

no change in destinations
cost = 	1 extra destination in network: number> 1

2 extra destination in network: number = 1

all the memory sets must be considered together. The number of mux. inputs can be

calculated as the number of times each destination is used from different sets provided

that it is used more than once. The mux. read cost is calculated as follows:

• Memory Cost.

The memory cost is the increase in the number of locations, if any, as a result of

the addition of a signal. This calculation is performed using the principle of the Left-

Edge Algorithm [30]. It requires little computation as the data structure, the array of

signal lifetimes, is maintained and updated throughout the assignment process. In

estimating the cost, the lifetime of the signal is compared against the array of lifetimes

of the memory set to determine whether an increase in locations is required. An

additional factor is included in the memory cost: if the signal to be assigned conveys

the same data as a signal within the memory set then the cost is decremented. The

reason for this is that the total lifetime of stored signals has been reduced by an

overlapping of lifetimes. Conversely, if the signal to be assigned will prevent the

assignment of a signal conveying the same data as a signal within the memory set then

the cost is incremented.

Cost calculation is illustrated using the example presented in Figure 6.9. The

first two rows of signals have been assigned forming the memory sets shown in Figure

6.10. The costs calculated for S5 the first signal of the third row, are outlined therein.

The signal S5 is to be transferred from MULTJ to MULT_1. As the operation MUL_7 is

commutative, S5 can be sent to either M1L or M1 R, the labels for the left and right input

ports of MULT_1 respectively.

lii

Cost calculations for the assignment of sS to memory from the output port of MULT 2 (M2').

Sources
Ml

Memory Sets
S2

Destinations FM R

PORTS M1_L M1_R MIL M1_R M1 _L M1_R M1_L M1_R M1_L M1_R

REQ 0 	0 0 	0 0 	0 0 	0 2 	2

MUX_IN 1 	1 1 	1 1 	1 0 	0 1 	1

MUX_OUT 1 	0 1 	0 1 	1 0 	1 1 	1

TOTAL 2 	1 2 	1 2 	2 0 	1 4 	4

Figure 6.10 Cost calculation for signal assignment to memory sets.

6.4.2.4 Assignment Mechanism.

Within each row of signals to be assigned there will exist pairs of signals which

are used in the same operation, if the operation is commutative then the signals have a

choice of processor port. this influences the interconnection costing and so each signal

feeding a commutative operation has two costs associated with each possible

assignment to a memory set: one cost for each port. The costs can be set out in an array

format as shown in Figure 6. 11, a continuation of the example introduced in Figure 6.9.

An extra memory set is included in the costing array to allow the possibility of using an

extra memory instead of excessively increasing the interconnection cost of an existing

one. The cost of a new memory set is specified as 3 for the examples shown in this

section.

112

Signals and Ports

Memory

Sets

S8 57 S6 Y
LEFF RIGHT LEFT RIGiTI LEFr RIGHT LEFT RIGHT

1 2 2 0 2 3 3

2 32 22 0-1

3 22 20

4 1 1 22 33

F5 23 33 23

El Selected assignment of signal, port and memory set

Figure 6.11 Cost array generated for assignment of third row of the example.

The assignment mechanism establishes a mapping between signals and memory

sets and, in the case of commutative operations, processors input ports. The fist step

involves identifying the lowest cost solution for each signal; that is the position of the

lowest cost in each row of the costing array. The signal assignment from each row

proffering the lowest cost is put forward for selection. If two or more possible

assignments in the row share the lowest cost then the difference between this lowest

cost and the lowest alternative solutions for each memory set involved is calculated.

This is a column cost difference. The assignment put forward is then the one which has

the largest memory set cost difference. Once a possible assignment has been selected

for each row the difference between the cost of this assignment and the next lowest in

the row is calculated. This value is a row cost difference. The assignment which

threatens the highest cost difference is selected. If, again, a number of assignments lay

claim to the highest cost difference then the assignment with the lowest cost is chosen.

Alter an assignment has been selected, the signal's row is removed from the cost

table. If the signal is used in a commutative operation then the costs associated with the

113

port which it uses are also removed. Other possible assignments to the memory set

involved are removed unless they involve the same signal data. The process of selecting

an assignment and updating the cost array is repeated until all the signals have been

assigned.

Once each row of signal reads in the transfer table has been dealt with, the

assignment of signals to memory will be complete. The memory set binding can be

translated directly into a data path. The number of storage locations required by each

memory set is calculated using the Left-Edge Algorithm [30] as mentioned in Memory

Cost. If only one location is required then a single register is used. If more than one is

needed then a register file or RAM is used. The components are interconnected

according to the sources and destinations of the signals within the memory.

Multiplexers are created where wires converge on a common destination.

6.4.2.5 Using existing data paths.

The assignment method accommodates existing interconnection. Memory

components from the initial specification of structure are represented as memory sets.

The signal binding to each memory resulting from scheduling is placed in each memory

set. These sets form part of the initial group of sets created to accommodate signals

from the most active control step, the first to be assigned. The following aspects of the

data path from the structural specification can be controlled:

• the size of memory components;

• the connections to memory components;

• the binding of additional signals;

• the number of additional memory components.

114

6.4.3 Synthesising Buses.

In the read or write network, if there are more interconnection components than

the maximum number of simultaneous data transfers then it maybe possible to reduce

the interconnection further by creating buses. Each network is dealt with separately.

Clique partitioning is used to identify possible merges of interconnection components.

A compatibility graph is constructed with vertices representing the components and

arcs indicating possible merges. The merging of two components is possible if the

components are not used at the same time. The resultant cliques are the largest groups

of components which can be merged. The clique which offers the greatest reduction in

mux. inputs is selected and its constituent components are merged to form a bus. These

components are removed from the remaining cliques. This process is repeated until no

cliques remain.

.6.5 	Results.

In only a few scientific papers on high-level synthesis are data path designs

shown in a schematic form and in none is the actual schedule and binding for such

designs stated. This prevents an accurate comparison of the effectiveness of the various

data path allocation techniques as the algorithms will not necessarily be operating on

the same scheduling and binding input data although the number of control steps and

the processor allocation may be the same. The results presented for the clique-based

(CLIQUE) and assignment-based (ASSIGN) techniques described in section 6.4 are

derived from the same input data.

When comparing data paths which perform the same function there are other

points to compare besides the number of registers and mux. inputs. Wiring forms a

significant proportion of data path area and so it is worth considering the number of

wires, and the number of point to point connections which they make. Figure 6.12

115

contains a single wire which makes four point to point connections.

Figure 6.12 Wire with four point to point connections.

Furthermore, wiring is also required in the control part of the data path. The

number of control wires required by data path components can be calculated as

follows:-

• Multiplexers.

The number of control lines required is a function of the number of inputs (ii)

as presented in Equation 6.4.

wires = [I092n] 	+ 1 	 Equation 6.4

• Registers. 	 - - 	-

Registers are assumed to require a single control line to indicate whether a read

or write is to take place.

• Register files and RAM.

A single read/write wire is assumed to be required in conjunction with a number

of address lines. The number of address lines is a function of the number of locations

(n) and can be calculated using Equation 6.4.

• Buses.

These require a separate control line for each Ui-state driver. This is equivalent

to the number of bus inputs.

Three examples are used: an example first introduced by FACET [69], the

Differential Equation Example and the Wave Digital Filter Example. Details of all these

116

examples are to be found in Appendix B.

6.5.1 The FACET Example.

A resource time graph displaying the schedule and allocation used is provided

in Appendix B. 1.2 on page 156. The results in comparison with other systems are given

in the table in Figure 6.13.

SYSTEM STEPS PROCESSORS REGISTERS MIJX INPUTS

FACET [69] 4 [-&+ v+i 8 11

SPLICER[50] 4 UI 	[-&+] [*k.J 7 8

ADPS [56] 4 [ij 	[-&+] [*1+] 7 10

CLIQUE 4 in 	[-&+] [*1+] 7 6

ASSIGN 4 In 	[-&+] [*1+] 7 8

Figure 6.13 Table of results for the FACET example.

Data path schematics are shown in Figure 6.14. The data paths produced by

SPLICER and ASSIGN are identical. SPLICER uses an exhaustive branch and bound

technique and claims that an optimal design in terms of mux. inputs results. However,

CLIQUE produces a data path with only three multiplexers instead of four, two mux.

inputs fewer. Examination of the contents of register, R2, reveals that only signal s 11

needs to be transferred to ALU3 via MUX1. This signal can be stored in register R3 thus

removing the need for MLIX 1. This is the solution arrived at by CLIQUE.

117

Using the Clique Method.

Splicer and Assignment Method.

Figure 6.14 Data paths for the FACET example.

118

6.5.2 The Differential Equation Example.

The resource time graphs used by the CLIQUE and ASSIGN algorithms are

shown in Appendix B.2.3 on page 161. Data path schematics are shown in Figure 6.16.

A summary of the results is given in Figure 6.15.

HAL and ASSIGN produce data paths requiring a similar amount of

multiplexing and the same amount of memory. One third of the multiplexing in the

ASSIGN data path is used in decoding the register file. However, as a result of grouping

four registers into a file significant savings are made in the number of wires (47%),

control wires (31%) and point to point connections (41%). These reductions are made

at the expense of a single mux. input.

SYSTEM STEPS PROCESSORS REGISTERS MLIX INPUTS

HAL[21] 4 2*,+,,> 5 10

SPLICER[50] 4 2,+,.,> 6 11

CLIQUE 4 2,+,.,> 5 11

ASSIGN 4 2*,+> 5 11

HAL[21] 8 *, [+.>] 5 11

ASSIGN 8 , [+->] 5 8 (4)l

1. Register file decoding shown in brackets.

Figure 6.15 Table of results for the Differential Equation Example.

0I,]

ASSIGN

Data Path:-
Registers = 5
Mux. inputs = 8+4
Control wires = 9
Wires = 9
Point-to-point connections =13

HAL

DataPath :-
Registers = 5
Mux. inputs = 11
Control wires = 13
Wires = 17
Point-to-point connections =22

Figure 6.16 Data paths for Differential Equation Example.

6.5.3 The Wave Digital Filter Example.

This is the largest and most popular example used in behavioural synthesis. It

contains only commutative operations which maximises the freedom for processor port

assignment. Only one data path schematic using two adders and a pipelined multiplier

has been uncovered in existing literature: a design synthesised by HAL which operates

in 19 control steps. Data path schematics are shown for comparison in Figure 6.17. The

schedule and binding from which these data paths were synthesized is shown in Figure

5.19.

120

Comparing the solutions synthesised by (a) ASSIGN and (b) CLIQUE in Figure

6.17 it can be seen that the ASSIGN data path has fewer memory components and fewer

multiplexer inputs. In fact it uses the minimum number of memory components (6); this

is the maximum number of simultaneous data transfers which occur in the schedule.

Nevertheless, the numbers of wires, control wires and point to point connections

required by the data paths are similar as illustrated in Figure 6.18. The multiplexing,

concentration is highest in the write network for ASSIGN and the read network for

CLIQUE. This can be attributed to differences is mux. input costing.

The architectural style of ASSIGN and CLIQUE differs significantly from the

bus based approach of HAL. A bus supports communication between a number of

sources and destinations, but it can only transfer a single item of data at any time. This

means that it is not an effective device for communicating between highly utilised

components. Figure 6.19 shows the percentage utilisation of the memory components

of ASSIGN and CLIQUE. In neither of these data paths is it cost effective in terms of

equivalent mux. inputs to create a bus. By splitting the register files into single registers

the number of components is increased and the utilisation lowered.

This is the situation in the HAL data path. Such conditions are more suited to

the synthesis of a bus based solution. Howevpr, in Figure 6.18, it can be seen that

reducing the number of memory components can lead to fewer wires (45% reduction),

fewer control wires (50% reduction) and fewer point to point connections (36%

reduction).Tables in Figure 6.20 compare the results to those of other tools for different

processor sets. Indicated within these tables in brackets is the additional mux. cost

incurred by using register files.

121

(a) ASSIGN

(I') CLIQUE

(c)HAL

Figure 6.17 Data path solutions for Wave Digital Filter Example.

122

El ASSIGN 	 Register file decoding

NUMBERS

REGISTERS MUX. INPUTS CONTROL CONNECTING POINT - POINT
WIRES 	WIRES 	CONNECTIONS

Figure 6.18 Points comparison between ASSIGN, CLIQUE and HAL data paths.

USAGE

(%)

(a) ASSIGN

1 	2 	3 	4 	5 	6

REGISTER FILES

USAGE

(%)

(b) CLIQUE

1 	2 	3 	4 	5 	6 	7

REGISTER FILES

Figure 6.19 Utilisation of memory components in ASSIGN and CLIQUE data paths.

123

SYSTEM STEPS PROCESSORS REGISTERS MUX INPUTS4 TIME (5)3

MABAL[28] 19 2+,1*P 10 32

MC2 [71] 19 2+,1*P 16 16(+14)

HAL [21] 19 2+,l *P 12 26

ASYL [72] 19 2+,l *P 12 26

ESC [19] 19 2+,1 *P 15 251

CLIQUE 19 2+,1*P 14 16(+13)

ASSIGN 19 2+,l *P 13 13(+12) 10.6

SAM [34] 18 2+,2*P 12 272

SAW [52] 18 2i,2*P 12 34

CLIQUE 18 2+,2*P 14 17(+13)

ASSIGN 18 2+,2*P 15 17(+13) 11.8

SPLICER[50] 21 2+, 1* N/A 35

HAL [21] 21 2+,1* 12 30

ESC [19] 21 2+, 1* 16 23 1

ASSIGN 21 2+, 1* 13 13(+12) 10.7

Register file decoding not included.
Uses manual register assignment.
Computation performed on SUN 3160.
Register file decoding indicated in brackets.

Figure 6.20 Table of results/or the Wave Digital Filter Example.

Ipz!

6.6 Concluding Remarks.

The ASSIGN method is favoured over the CLIQUE method because it tends to

produce a more balanced data path with fewer memory components and global

communications. By balanced it is meant that the memory components tend to have

similar numbers of allocated signals and connections. This is a natural consequence of

the stepwise assignment technique and is illustrated by the utilisation figures in Figure

6.19. In addition, the computation time required by the ASSIGN algorithm is lower.

A number of systems, including HAL, ESC and SAM, encourage the transfer of

signals between memories to reduce the number of locations required. This has not been

attempted in either the ASSIGN or CLIQUE methods but manual investigation has

shown that it could be used to reduce the memory overhead to an equivalent of 12

registers without increasing the multiplexing.

The results produced using both methods compare favourably with those of

other systems. They underline the reductions in interconnection which can be made by

using multiple location memories to reduce the number of components and by allowing

interconnection factors as much influence over the design process as memory size.

125

Chapter 7
Worked Examples.

7.1 Introduction.

The aim of including the following worked examples is to highlight the benefits

which can be gained by using structural input.

A number of the following worked examples are based around the single data

flow graph behaviour of the Differential Equation Example used extensively in

previous chapters. It has been used for a number of reasons: it contains no control

constructs; it consists of a number of different operation types including subtraction,

which is non-commutative; and it makes repeated use of constants. In addition, as it is

popular with contemporary systems, such as HAL and SPLICER (CHIPPE), a number

of synthesized data paths exist for comparison. The final worked example makes use of

a schedule for the Wave Digital Filter 2 which was generated as an example in

Chapter 5. The Wave Digital Filter behaviour contains a large number of operations and

so a large number of data transfers. The schedule used contains only three processors.

The resulting high ratio of data transfers to processors gives the opportunity to

synthesize a compact, highly used data path. This situation is desirable for exhibiting

the potential of a data path allocation scheme. Moreover, the fact that this example is a

common benchmark means that data paths synthesized by other systems exist for

comparison.

All the run times stated in this chapter were measured on a Sun 3/60

Workstation.

7.2 Reuse of Structure.

A complete data path specification can be input to the system alongside a

specification of behaviour. The synthesis system can then be instructed to determine if

Refer to Appendix 8.2.
Refer to Appendix B.3.

126

and how the structure can implement the behaviour.

To demonstrate this, a data path synthesized by HAL [22] for the Differential

Equation Example is used as structural input alongside the Differential Equation

behaviour. The task of the synthesis system is, therefore, to produce the necessary

control information, which will be expressed as a resource-time graph. It must be noted

that the HAL data path could not be used if it supported data transfers between memory

components.

M9

7UL 4/
SUB-6 s7

- SUB-9

ul

MUL_5 	
ADD-3

MUL_7

MULS

ADD-1

3,

Figure 7.1 The Differential Equation data flow graph behaviour.

Figure 7.2 HAL data path far Differential Equation.

127

The behavioural and structural inputs are shown schematically in Figure 7.1 and

Figure 7.2 respectively. The textual specifications are provided in Appendix B.2. The

first synthesis tool to be invoked is the Mapper. This produces the tentative operation to

processor bindings outlined in Figure 7.3. The Scheduler is the next to be applied.

Figure 7.4 illustrates the routing task performed in binding operations and signals in the

first control step. It is a diagnostic output from the software. All the behaviour's

operations are contained within partitions and so the scheduler performs all signal

binding in addition to operation scheduling and binding. This means that there is no

need for data path allocation. The resultant resource-time graph is shown in Figure 7.5.

The original HAL solution uses the same number of control steps. The Mapper and

Scheduler, in a combined run, took 8.6s to generate the resource-time graph for this

example.

mapping HAL

partition
operation mul8 processors null true false end
operation add 10 processors add-1 true false end
signals in u y end
out yi end
local s8 yi end
constant dx end

partition
operation null processors mul2 false true end
operation mul2 processors mull true false end
operation mul5 processors mull true false end
operation mul7 processors mul2 true false end
operation mul4 processors mul2 true false end
operation sub-6 processors sub-1 true false end
operation sub processors sub -1 true false end
signals in u x y end
out ui end
local si s2 s5 s7 s4 s6 ui end
constant dx c3 end

partition
operation add3 processors add-1 false true end
signals in x end
out xi end
local xi end
constant dx end

finish

Figure 7.3 Identified partitions.

128

ROUTING [MUL 2 - 2]
SEARCHING FOR PATH FOR [X - 21 	INPUT TO [MUL_i - 21 	RIGHT PORT

[BUS 3 - 121 to access [1N2 - 2] 	01< VALID
SEARCHING FOR PATH FOR [C3 - 	81 CONST TO 	[MULl - 23 	LEFT PORT

[BUS 2 - ii] to access [C3 - 	7] 01< VALID
SEARCHING FOR PATH FOR [52 - 103 FROM [MULl - 21 OUT—OF PORT

[WIRE —4 - 	41 [REG3 - 31 VALID

ROUTING [MUL 1 - 11
SEARCHING FOR PATH FOR [U - 13 INPUT TO [MUL2 - 31 RIGHT PORT
[MUX1 - 9] to access [IN_i - 1] OK VALID

SEARCHING FOR PATH FOR [DX - 71 CONST TO [MUL_2 - 31 LEFT PORT
[BUS_i - 10] to access [DX - 6] OR VALID

SEARCHING FOR PATH FOR [Si - 9] FROM [MUL_2 - 31 OUT—OF PORT
[WIRE —2 - 21 [RIG-1 - 1] VALID

ROUTING [MUL8 - 81
SEARCHING FOR PATH FOR (DX - 71 CONST TO [MUL_i - 21 RIGHT PORT
[MULS - 81 DEFFERED

ROUTING [ADD 3 - 31
SEARCHING FOR PATH FOR (DX - 71 CONST TO [ADD_i - 11 RIGHT PORT

[BUS 1 - 10] (occupied by (DX - 7]) to access [DX - 6] matched OK VALID
SEARCHING FOR PATH FOR [X - 2] INPUT TO [ADD 1 - 1] LEFT PORT

[BUS _3 - 12] (occupied by [X - 2]) to access [1N2 - 2] matched OR VALID
SEARCHING FOR PATH FOR [Xi - 5] FROM [ADD —1 - 11 OUT_OF PORT
[WIRE 7 - 73 [OUT_i - 43 VALID
[WIRE 6 - 6] [REG5 - 53 VALID
[WIRE-5 - 5] [REG4 - 43 VALID

ROUTING [MUL5 - 51
SEARCHING FOR PATH FOR [Y - 31 INPUT TO [MULl - 21 RIGHT PORT
DEFFERED

Figure 7.4 Routing signals for operations in the first control step.

STEP

PROCESSORS
AUDI 	MULl 	MUL2 	SUB].

1 ADD 31 MUL2 NULl 1

2 MUL5 NUL4

3 MUL8 NUL7 3756

4 ADD 10 SUB

1. Reversed inputs.

STEP

COMMS
MWC1 	BUSt 	BUS2 	BUS3

1
U DX 03 X

2 32 31 03 Y

35 DX U DX

38 36 Y

MEMORY (WRITE AND READ)
BEG' 	R202 	BZG3 	BEG4 	BEGS

STEP W 	B I C 	B 	W 	B 	C 	B 	W 	B

Si _____ S2 Xi

S4Si S51 S2

S7 	S4 S6 38S5

37 Ui 36 I 38 Yl

'vp
INPUT AND OUTPUT PORTS

IN1 	1N2 	INS 	OUT1 	i OUT2

1
U X Xi

2

3 _ U

Y Ii Ui

Figure 7.5 Resource-time graph for the behaviour with the HAL data path.

129

7.3 Iterative Synthesis.

The purpose of this example is to demonstrate the control which the designer

can exercise over the synthesis of a structure. Again the Differential Equation

behaviour is used.

Starting with an allocation of two multipliers, an adder and a subtractor

specified as the input structure, the scheduling and data path allocation tools

synthesized the data path shown in Figure 7.6 in 8.3 seconds.

Figure 7.6 First data path generated from Differential Equation behaviour.

STEP

PROCESSORS

ADD1 	MULl. 	MUL2 	SU131

1
MUL2 MULl

2 ADD-3 MULS MUL4 -

3 MUL7 MUL8 SUB-6

ADD 10 SUB-9

Figure 7.7 Resource time graph Jbr first data path.

The resource-time graph for the above data path, in Figure 7.7, shows that the

first addition is delayed to the second control step. It would appear beneficial to move

this operation to the first control step as it has inputs in common with the multiplications

performed there. Repeating synthesis with this new schedule yields the improved data

path shown in Figure 7.8. Synthesis of this new data path took 8.1 seconds.

130

Figure 7.8 Second data path generated after altering the schedule. 	-

By repeating data path allocation with an alteration to the multiplier bindings as

shown in Figure 7.9 it is possible to produce the data path in Figure 7.10. This last stage

took 7.4 seconds to run.

PROCESSORS

STEP ADD! 	MULl 	MtJL2 SUB1

1
ADD3 MTJL2 MULl

2 MUL5 MUL4

3 NW* SUB

ADD 10 SUB-9

Figure 7.9 Binding alteration on resource-time graph.

Figure 7.10 Final data path synthesized after alteration of operation bindings.

131

7.4 Adapting Structure.

It is possible to adapt an existing structure to perform additional behaviours.

This is particularly useful when synthesizing a design to implement a behaviour

comprising of a number of basic blocks. In this situation it would be desirable to

implement mutually exclusive blocks containing common operations on the same

hardware.

	

BLOCK A 	 BLOCK B

dx 	U 	
u 	dx vS 	x 0 	y 	dx 	x

II - * 	* 	u 	di

V 	Y,

U' 	 ul 	 yl

(Differential Equation Data Flow Graph)

Figure 711 Behaviour comprising of two basic blocks.

The behaviour described in Figure 7.11 consists of two such mutually exclusive

basic blocks. The structure shown in Figure 7.12 was synthesized for block A.

Figure 7.12 Structure A implementing the behaviour of block A.

132

Structure A was then combined with an additional, unconnected processor

allocation comprising of a multiplier and an adder. The resulting structural specification

was then used alongside block B to create the structure shown in Figure 7.13.

Figure 7.13 Structure B synthesized to implement blocks A and B.

The Mapper identified a partition of block B which could be implemented by

structure A. This partition is shown in Figure 7.14. Scheduling produced the resource-

time graph shown in Figure 7.15. Mapping and scheduling required a total computation

time of 8.6s. The resource-time information was passed with structure A to the Data

Path Allocator which added in the extra communications to accommodate signal

transfer between structure A and the allocated processors. Data path allocation took

65s.

SELECTED PARTITIONS

OPERATIONS 	[MULl - Li -> [MULl - 41 REV
[MUL5 - 51 -> [MULl - 4] STD
[MUL7 - 71 -> [MULl - 41 STD REV
[MUL4 - 41 -> [MULl - 41 STD REV
[SUB 6 - 61 -> [SUB 1 - 3] STD
[SUB -9 - 9] -> [SUB -1 - 3] STD

INPUTS 	(DX - 7] [U - 11 [Y - 31 [S2 - 101 [S6 - 131
OUTPUTS : [Ui - 4] [56 - 131
CONSTANTS : [DX - 7] [C3 - 81
LOCAL 	[51 - 9] [S5 - 12] [57 - 14] [S4 - 11] [SC - 13] [Ui - 4]

Figure 7.14 Partition of block B which can be implemented by structure A.

133

STEP
PROCESSORS

ADDI 	NULl 	MUL2 	SUDi

1 ADD3 MUL5 MULS

2 ADD 10 MULl 1 MUL2

3 MUL4

4 MUL71

5 SUB

6 SUB

1. Reversed inputs.

STEP
COMMS

MUX1 	MUX2

1 C3

2 DX

3 Si

4 S5

5 U

6 1 	S6

flDflflt :f*

STEP
INPUT AND OUTPUT PORFS
IN1 	1N2 	OUT1

2

3 32

DX

5 U

6 Ui

Figure 7.15 Resource-time graph for block B with structure A.

75 Influencing the Architecture.

Architecture is a term used to describe the style of structure. It is influenced by

the number and type of components and the way in which they are interconnected. As

the Data Path Allocator produces the interconnection of memory and communications

components surrounding the processors, it is this tool which has the most noticeable

impact on the architecture. The schedule and allocation are naturally important in

influencing the architecture; previous examples have shown how the designer can

exercise control over these tasks.

This section demonstrates how different data path architectures can be

synthesized by specifying constraints to the Data Path Allocator. Three data paths are

constructed to implement the same schedule of the Wave Digital Filter example. Details

of this schedule can be found in Appendix 13.3.2.

The first data path, shown in Figure 7.16, was generated without using

constraints. It uses a mixture of register files and multiplexers in the solution.

134

Figure 7.16 Wave Digital Filter data path without constraints.

The second example restricts the position of the register files to the inputs of the

processors. Each register file serves one input of a processor. This is similar to the

architectural constraint imposed in the Cathedral II system [17]. By specifying the

structural input shown in Figure 7.17 the data path shown in Figure 7.18 can be

synthesized.

structure WDF 6

memory FILE-1 RFILE
capacity 5
signals
connection to ADD1 LEFT;

from
ports inputs RU;

outputs Ri;

memory FILE —2 RFILE
capacity 5
signals ; -
connection to ADDi RIGHT;

from
ports inputs R2;

outputs R3;

memory FILE —3 RFILE
capacity 5
signals

connection to ADD2 LEFT;
from

ports inputs R4;
outputs R5;

memory FILE-4 RFILE
capacity 5
signals
connection to ADD2 RIGHT;

from
ports inputs R6;

outputs R7;

memory FILES RFILE
capacity 5
signals
connection to MtJLi LEFT;

from
ports inputs R8;

outputs R9;

memory FILES RUM
capacity 5
signals
connection to MtJLi RIGHT;

from
ports inputs Rio;

outputs Rh;

finish

Figure 7.17 Constraining the position of register files.

135

Figure 7.18 Wave Digital Filter data path with register files at processor inputs.

The final example attempts a style similar to that produced by HAL (Figure

6.17). This means using registers instead of register files. To achieve this the input

shown m Figure 7.19 is used. The use of single registers provides greater potential for

merging multiplexers into buses, this can be seen in the synthesized data path in Figure

7.20.
structure WDF 14

memory FILE-1 ROM
capacity 1
signals CT;
connection to MULl RIGHT;

from CT;
ports inputs RO;

outputs RI;

memory FILE —2 REGISTER
capacity 1 adapt
signals
connection to

from
ports inputs R2;

outputs R3;

memory FILE 3 REGISTER
capacity 1 adapt
signals
connection to

from
ports inputs R4;

outputs R5;

memory FILE 12 REGISTER
capacity 1 adapt
signals
connection to

from

memory FILE 13 REGISTER
capacity 1 adapt
signals
connection to

from
ports inputs Rio;

outputs Ru;

memory FILE 14 REGISTER
capacity 1 adapt
signals
connection to

from
ports inputs RiO;

outputs Rh;

finish

Figure 7.19 Preventing the use of register flies in the structural specification.

136

Figure 7.20 Wave Digital Filter data path without register files.

137

Chapter 8
Conclusion and Future Directions.

8.1 Conclusion.

A high-level behavioural synthesis system which makes use of structural input

has been developed. It has been shown to give the designer greater control over

structural aspects of the design enabling greater exploration of possible structural

solutions. The system presented in this thesis accepts both complete and partial

specifications of structure.

The use of complete structure, in the form of a completely connected data path,

has been illustrated in a number of examples. The system has been shown to make use

of a data path synthesized by the HAL system, in addition to reusing its own designs. It

is this capability which makes iterative synthesis possible. Designs failing to meet

constraints can be fed back as input allowing modifications to be made. The structural

specification need not be capable of implementing the entire behaviour: the system can

use the structure to perform parts of the behaviour and synthesize additional structure

to implement the remainder.

The ability to specify partial structure, an incomplete interconnection of

processing and memory components, enables the designer to direct synthesis towards a

suitable architecture. Examples have been shown where the number, type and

interconnection of components has been constrained. This is particularly useful for

influencing the style of data path interconnection. Simple specifications of partial

structure can be used to generate diverse styles. In one example, memory and

communications was performed entirely by registers and buses. In another, a single

register file was tied to each processor input.

In addition to providing structural input, the designer is given the opportunity to

modify the schedule and binding of behavioural elements. Consequently, he or she can

138

dictate the control step in which an operation is scheduled; the processor to which it is

bound; and the memory location in which it is stored. This gives the designer greater

freedom to explore different structural solutions. The system will indicate errors

resulting from the designer's modifications.

The synthesis system does not depend on structural input to produce good

solutions. In a solution to the Differential Equation example, based on an allocation of

one multiplier and one ALU and compared to other published results, the synthesized

data path required 27% fewer multiplexer inputs, 47% fewer wires and 41% fewer point

to point connections. For the Wave Digital Filter example, with an allocation of two

adders and a pipelined multiplier, the HAL system has synthesized a data path using

fewer registers and multiplexers than existing systems. The data path generated by the

system reported here uses an additional register but needs half the number of

multiplexer inputs. Although there is an additional overhead of four register files,

savings are made in wiring: 45% fewer connecting wires, 50% fewer control wires and

36% fewer point to point connections.

8.2 Future Developments with Structural Input.

In the synthesis system using structural input reported in this thesis restrictions

have been imposed on the input specifications of behaviour and structure in order to

reduce the complexity of the synthesis task. Future developments would be aimed at

removing certain restrictions so that a wider range of applications can be tackled.

In common with the majority of synthesis systems, this system cannot handle

behaviours which contain control or hierarchy. It is envisaged that a 'basic block'

format would be used internally to represent these constructs. Each block is effectively

a single data flow graph and so individual blocks can be handled by the present system.

It is intended that a synthesis system which handled control and hierarchical constructs

would make use of the present system to deal with these individual blocks. The use of

139

a system which accepts structural input is advantageous in this respect as it would be

possible to synthesise hardware to perform more than one task.

The absence of 'control' from the behaviour removed the need to handle control

structures in the structural input. The ability to handle control structures would not be

considered a high priority unless microprocessor-type design was to become a major

application. At present the synthesis system reported here cannot recognise the

potential for inter-memory data transfer within an input structure: data transfers must

always be made between memory and processing components. However, only minor

changes to the mapping and scheduling tools would be required to remove this

restriction.

8.3 Future Directions in High-Level Synthesis.

As the size and complexity of VLSI circuits increases, there will be a greater

need for high-level synthesis to be included in commercial design automation. The

primary task of high-level synthesis is to reduce the complexity of the design task

presented to engineers enabling them to produce designs more rapidly and with a

reduced risk of error. There is also the additional objective of minimising the silicon

area of a circuit within the allotted design time. Present synthesis systems have failed

to match the quality of designs produced by human designers and so current research is

looking into ways of both improving synthesis algorithms and using help from a

designer.

The development of more sophisticated synthesis algorithms is receiving more

attention. A synthesized structure at the register-transfer level is composed of four

classes of component: processing, memory, communications and control. Most

synthesis systems dealt with the classes of components in the order stated: an allocation

of processors is decided first; a schedule is constructed based on that allocation;

memory and communications are then constructed around the processors to support the

140

schedule; and then control is added to ensure the correct sequence of events. However,

this synthesis methodology is not well suited to the wide range of applications for VLSI

circuits as it focuses heavily on the processing aspect of the design architecture. There

are many applications where more suitable architecture can be synthesized if focus is

shifted onto one of the other components classes. In image processing applications the

memory architecture is often of greater importance whereas in microprocessor design

the control and communications architectures usually take priority. To tackle a wide

range of applications effectively the system must have a flexible synthesis

methodology. A methodology is required which will support a trade-off between

processing, memory, communications and control based on the requirements presented

by the input behaviour and associated constraints.

Increasingly, researchers are investigating ways of enabling the designer to

interact with the synthesis process. A number of systems permit the designer to alter

low-level decisions such as the control-step in which an operations is scheduled or the

register to which a signal is assigned. However, it is generally accepted that the use of

designers is most advantageous in making high-level architectural decisions. There are

two key problems with designer interaction which must be addressed: the first is how

the system should present the design task and the second is how the designer should

communicate his or her advice. The ability to support designer interaction at different

levels in the design hierarchy would be a useful development. This would give the

designer the opportunity to outline the basic architecture at a high level and then focus

on particular aspects. Interaction looks set to be performed in a graphical manner. The

designer will most probably be required to specify graphically a partial structure with

some tentative relationship to behaviour as a means of guiding or advising the synthesis

process.

141

References

M.H. Lang and RE. McCormick, Hierarchical Design Methodologies: A VLSI
Necessity, pp. 123-149 in Advances in CAD for VLSI, Vol. 6, "Design
Methodologies", edited by S. Goto, Elsevier Science Publishers (North-Holland)
ISBN 0-444-87896-3.

Silicon Compilation, edited by D.D. Gajski, Addison-Wesley, 1988, ISBN 0-207-
09915-2.

M.C. McFarland, A.C. Parker and R. Camposano, The High-Level Synthesis of
Digital Systems, in Proc. IEEE, vol.78 no. 2, pp. 301-318, February 1990.

M.C. McFarland, A.C. Parker and R. Camposano, Tutorial on High-Level
Synthesis, in Proc. 25 th Design Automation Conf., pp. 330-336, June 1987.

G. Borriello and E. Detjens, High-Level Synthesis: Current Status and Future
Directions, in Proc. 25 th Design Automation Conf., pp. 447-482, June 1987.

S .Y. Kung, H.J. Whitehouse and T. Kailith, VLSI and Modern Signal Processing,
Prentice-Hall, 1985.

rn -i 	 UT
	Synthesisj 'avu VV. flhapp,

	
`-. Partial o il

..t.... I
.
l
.
l
n

c_si
n
gii ivict1100010g1c.

VLSI and Computer Architecture, pp. 35-51, Elsevier Science Publishers B.V.
(North-Holland) IFIP 1989.

David W. Knapp, Datapath Optimization Using Feedback, in European Design
Automation Conf., pp. 129-134, Amsterdam, February 1991.

David W. Knapp, Manual Rescheduling and Incremental Repair ofRegister-Level
Datapaths, in Proc. ICCAD-89, pp. 58-61, Santa Clara, November 1989.

T.D. Friedman and S.C. Yang, Methods used in an Automatic Logic Generator:
ALERT, IEEE trans. on Computers, vol. C-18, pp.593-614, 1969.

S.W. Director, A.C. Parker, D.P. Siewiorek and D.E. Thomas, A Design
Methodology and Computer Aids for Digital VLSI Systems, in IEEE trans. on
Circuits and Systems, vol. CAS-28, no. 7, pp.634-645, July, 1981.

P. Marwedel, The MIMOLA Design System: A Design System which spans several
Levels, in Methodologies of Computer System Design, edited by B.D. Shriver,
pp.223-237, North-Holland,! 985.

H.Kramer and W. Rosenstiel, System Synthesis using Behavioural Descriptions,
in Proc. European Design Automation Conf., pp. 277-282, Glasgow, March 1990.

P. B. Denyer, D.A. Renshaw, and N.W. Bergmann, A Silicon Compiler for VLSI
Signal Processors, in Proc. ESSIRC 1982, pp. 215-218.

142

P.M. Grant, The DTI-Industry Sponsored Silicon Architectures Research
Initiative, TEE Electronics & Communications Engineering Journal, vol. 2, no. 3
June 1990.

D.M. Grant, Address Generator Synthesis, Ph.D. Thesis, University of
Edinburgh, October 1991.

H. DeMan, J. .Rabaey, P. Six and L. Claesen, Cathedral II: A Silicon Compilerfor
Digital Signal Processing, in IEEE Design and Test, pp.1 3-25, December 1986.

L. Stok, Architectural Synthesis and optimization of Digital Systems, Ph.D.
Thesis, ISBN 90-9003966-X.

L. Stok, Interconnect Optimisation During Data Path Allocation, in Proc.
- European Design Automation Conf;, pp. 141-145, Glasgow, March 1990.

P.G. Paulin, J.P. Knight and ER Girczyc, HAL: A Multiparadigin Approach to
Automatic Data Path Synthesis, in Proc. 23 rd Design Automation Conf., pp. 263-
270, June 1986.

P.O. Paulin and J.P. Knight, Force-Directed Scheduling for the Behavioural
Synthesis ofASIC's, in IEEE trans. on CAD, vol. 8 no. 6, pp. 661-679, June 1989.

P.O. Paulin and J.P. Knight, Algorithms for High-level Synthesis, in WEE Design
and Test of Computers, pp. 18-31, December 1989.

P.G. Paulin and J.P. Knight, Scheduling and Binding Algorithms for High-level
Synthesis, in Proc. 26th Design Automation Conf., Las Vegas, pp. 1-6, June 1989.

P.O. Paulin, High-Level Synthesis of Digital Circuits Using Global Scheduling
and Binding Algorithms, Ph.D. Thesis, Carleton University, January 1988.

B.S. Haroun and M.I. Elmasry, Architectural Synthesis for DSP Silicon
Compilers, in IEEE trans. on CAD, vol. 8 no. 4, pp. 431-447, April 1989.

A.C. Parker et aL, MAHA: A Program for Data Path Synthesis, in Proc. 23rd
Design Automation Conf., pp. 416-466, June 1986.

IC Jam, K. Kucukcakar, M. Mlinar and A.C. Parker, Experience with the ADAM
Synthesis System, in Proc. 26th Design Automation Conf., pp. 56-61, June 1989.

K. Kucukcakar and A.C. Parker, Data Path Tradeoffs using MABAL, in Proc. 27th

Design Automation Conf., pp. 505-510, June 1990.

N. Park and A.C. Parker, SEHWA: A Program for Synthesis of Pipelines, in Proc.
23' Design Automation Conf., pp. 454-460, June 1986.

F.J. Kurdhai and A.C. Parker, REAL: A Program for Register Allocation, in Proc.
24th Design Automation Conf., pp. 210-215, June 1987.

R. Jam, A. C. Parker and N. Park, Module Selection for Pipelined Synthesis, in
Proc. 25 th Design Automation Conf., pp.542-547, June 1988.

143

N. Park and F.J. Kurdhai, Module Assignment and Interconnect Sharing in
Register-Transfer Synthesis of Pipelined Data Paths, in Proc. ICCAD-89, pp. 16-
19, Santa Clara, November 1989.

A. Nagle, R. Cloutier and A. Parker, Synthesis of Optimal Clocking Schemes, in
Proc. 22 th Design Automation Conf., June 1985.

R.J. Cloutier and D.E. Thomas, The Combination of Scheduling, Allocation, and
Mapping in a Single Algorithm, in Proc. 27 th Design Automation Conf., pp. 71-
76, June 1990.

J.S. Lis and D.D. Gajski, Synthesis from VHDL, in Proc. IEEE Int. Conf. on
Computer Design, pp.378-381, 1988.

M. Potkonjak and J. Rabaey, A Scheduling and Resource Allocation Algorithm for
Hierarchical Signal Flow Graphs, in Proc. 26th Design Automation Conf., pp. 7-
12, June 1989.

P.E . R. Lippens et al., A Silicon Compiler for High Speed Algorithms, in Proc.
European Design Automation Conf., pp. 436-441, Amsterdam, February 1991.

J. Scheichenzuber and W. Grass, Global Hardware Synthesis from Behavioural
Dataflow Descriptions, in Proc. 27th Design Automation Conf., pp.456-461. June
1990.

R. Camposano, Structural Synthesis in the Yorktown Silicon Compiler, in VLSI
'87, VLSI Design of Digital Systems, pp.61-72, North-Holland, Amsterdam
1988.

V. Bettis, The V Compiler: Automating Hardware Design, in IEEE Design and
Test of Computers, pp.8-17, April 1989.

C.J. Tseng et al., Bridge: A Versatile Behavioral Synthesis System, in Proc. 25 th

Design Automation Conf., pp. 415-420, June 1988.

Nam-Sung Woo, A Global, Dynamic Register Allocation and Binding for A Data
Path Synthesis System, in Proc. 27th Design Automation Conf., pp. 505-510, June
1990.

A.E. Casavant et al., A Synthesis Environment for Designing DSP Systems, in
IEEE Design and Test of Computers, pp.35-43, April 1989.

K. Wakabayashi and T. Yoshimura, A Resource Sharing and Control Synthesis
Method for Conditional Branches, in ICCAD-89, pp. 62-65, Santa Clara,
November 1989.

T. Tanaka, T. Kobayashi and 0. Karatsu, HARP: Fortran to Silicon, in IEEE trans.
on CAD, vol. 8 no. 6, pp. 649-660, June 1989.

IEEE Standard VHDL Language Reference Manual, lEE std. 1076, 1987.

144

M.C. McFarland, Reevaluating the Design Space for Register-Transfer Hardware
Synthesis, in Proc. ICCAD-87, pp. 262-265, Santa Clara, November 1987.

W.F.J. Verhaegh et al., Improved Force-Directed Scheduling, in Proc. European
Design Automation Conf., pp. 430-435, February 1991.

F. Brewer and D. Gajski, CHIPPE: A System for Constraint Driven Behavioural
Synthesis, in IEEE trans. on CAD vol. 9 no. 7, pp. 681-695, July 1990.

B.M. Pangrle, Splicer: A Heuristic Approach to Connectivity Binding, in Proc.
25th Design Automation Conf., pp. 536-541, June 1988.

B.M. Pangrle and D. Gajski, Slicer: A State Synthesizer for Intelligent Silicon
Compilation, in Proc. ICCD., pp. 42-45, October1988.

D.E. Thomas, E.M. Dirkes et al., The System Architect's Workbench, in Proc. 25th
Design Automation Conf., pp.337-343, June 1988.

H. DeMan, Silicon Compilation for Real Time Signal Processing Systems,
Tutorial on High-Level Synthesis, Part 2, EDAC 1990.

D.W. Knapp and A.C. Parker, A Unified Representation for Design Information,
in Proc. 7m mt. Symp. on Computer Hardware Description Languages and their
Applications, lbkyo, August 1985.

M.C. McFarland and T.J. Kowalski, Incorporating Bottom-Up Design into
Hardware Synthesis, in IEEE trans. on CAD, vol. 9 no. 9, pp. 938-950, September
1990.

C.A. Papachristou and H. Konuk, A Linear Program Driven Scheduling and
Allocation Method Followed by an Interconnect Optimization Algorithm, in Proc.
27th Design Automation Conf., pp. 77-83, June 1990.

C. Huanget al., Data Path Allocation Based on Bipartite Weighted Matching, in
Proc. 27 Design Automation Conf., pp. 499-504, June 1990.

C.H. Gebotys and M.I Ehnasry, A Global Optimization Approach for
Architectural Synthesis, in ICCAD-90, pp.258-261,November 1990.

A. Hemani and A. Postula, A Neural Net based Self-Organising Scheduling
Algorithm, in Proc. European Design Automation Conf., pp. 136-139, Glasgow,
March 1990.

S. Devadas and R. Newton, Algorithms for Hardware Allocation in Data Path
Synthesis, in IEEE tans, on CAD, vol. 9 no. 7, pp. 768-781, July 1989.

P.J. Neil and P.B. Denyer, Exploring Design Space Using SAVAGE: A Simulated
Annealing based VLSI Architecture GEnerator, Proc. 33rd Mid-west Symp. on
Circuits and Systems, Calgary, August 1990.

145

E.F. Gfrczyc, R.J. Buhr and J.P. Knight, Applicability of a Subset of ADA as an
Algorithmic Hardware Description Language for Graph Based Hardware
Compilation, in IEEE trans. on CAD, vol. CAD-4, no. 2, April 1985.

A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1988, ISBN
0521-28881-9.

C.J. Tseng and D.P. Siewiorek, Automated Synthesis of Data Paths in Digital
Systems, in WEE trans. on CAD, vol. CAD-5, no. 3, July 1986.

Aho, Sethi and Ullman, Compilers Principles, Techniques, and Tools, Addison-
Wesley, ISBN 0-201-10194-7, 1986.

p Marwedel, Matching System and Component Behaviour in MIMOLA Synthesis
Tools, in Proc. European Design Automation Conf.,pp. 146-155, Glasgow, March
1990.

L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton University Press,
1962.

I.W. Finlay, J.P. Neil and P.B. Denyer, Filter Synthesis Using Behavioural Design
Tools, in Proc. 16th European Solid State Circuits Conference, pp. 205-208,
Grenoble, September 1990.

C.J. Tseng and D.P. Siewiorek, FACET: A Procedure for Automated Synthesis of
Digital Systems, in Proc. 20th Design Automation Conf., pp. 490-496, 1983.

H. Trickey, FLAMEL: A High-Level Hardware Compiler, in IEEE trans. on CAD,
vol. CAD-6, no. 2, pp.259-269, March 1987.

D.M. Grant and P. B. Denyer, Memory, Control and Communications Synthesis for
Scheduled Algorithms, in Proc. 27 th Design Automation Conf., pp. 499-504,
June 1990.

A. Mignotte and G. Saucier, Matching Method for Concurrent Operator, Register
and multiplexer Allocation, Synthesis and Simulation Meeting and International
Interchange, pp.215-222.

146

Appendix A
Graph Theoretical Algorithms.

A.! Clique Partitioning.

This algorithm uses the Bron-Kerbosch method and is coded in Ada.

with LIST;

generic
MAX VERTICES 	in POSITIVE;

package CLIQUE DEF is

DEBUG : BOOLEAN 	FALSE;

-- DATA TYPES AND STRUCTURES FOR GRAPHS AND SETS

-- A SET is represented by a Boolean array. In this application we
-- know that sets will always be of vertices. If we number all vertices
-- from 1 to N then a vertex m, can be considered a member of a set S
-- if S(m) is TRUE.

-- We can represent a graph using an adjacency matrix. This is easily
-- implemented as an array of sets; each set representing a row of
-- the adjacency matrix.

subtype VERTEX—RANGE is INTEGER range 1. .MAX VERTICES;

type SET_TYPE is array (VERTEX—RANGE) of BOOLEAN;
type GRAPH TYPE is array (VERTEX —RANGE) of SET—TYPE;

type SET PTR is access SET TYPE;
package CLIQUE is new LIST (ITEM => SET PTR); use CLIQUE;

-- SET AND GRAPH FUNCTIONS AND CONSTANTS

EMPTY—SET 	constant SET—TYPE 	(SET TYPE'RANGE => FALSE);

-- For set union (i.e. U) use logical OR
-- For set intersection (i.e. n) use logical AND
-- For set inversion use logical NOT

-- For vertex neighbours use index, i.e. neighbours of vertex v in
-- graph G are given by G(v)

147

function SIZE—OF (SET 	in SET TYPE) return INTEGER;
-- Returns an integer in the range 0. .max vertices indicating the number
-- of elements in the specified set.

function ANY MEMBER (SET 	in SET _TYPE) return INTEGER;
-- Returns an element a of the specified set. Returns zero (0) if
-- the set is empty; otherwise returns the index of a TRUE element of the set.

function UNIT—SET (ELEMENT 	in VERTEX RANGE) return SET_TYPE;
-- Returns a set where all but the specified elements are set to FALSE; i.e.
-- a set countining only the specified member.

procedure CLEAR (GRAPH in out GRAPH TYPE)

-- Clears the contetnts of the specified graph, i.e. all => FALSE.

-- CLIQUE PARTITIONING FUNCTIONS --

generic
with procedure USE CLIQUE (THE CLIQUE 	in SET TYPE)
-- This routine is used within "find_and_use_all_cliques". It does whatever
-- is needed to be done to each clique which is found.

procedure FIND _ AND _USE_ALL_CLIQUES (GRAPH in GRAPH TYPE);
-- The routine which takes a graph and returns all the maximal cliques
-- in the graph. The cliques will not be in lexicographic order.
-- The routine will not find 1-cliques.

-- This routine calls "use_clique" to perform some processing of each
-- clique - whether it be listing it, manipulating it, or adding it to some
-- data-structi.fre.

end CLIQUE DEF;

with TEXT 10; use TEXT 10;

package body CLIQUE DEF is

-- VARIABLES LOCAL TO THE PACKAGE --

THE FOUND CLIQUES 	CLIQUE .LIST;
CLIQUES FOUND NATURAL 	0;

-- SET AND GRAPH FUNCTIONS AND CONSTANTS --

function SIZE—OF (SET 	in SET—TYPE) return INTEGER is

148

-- Returns an integer in the range 0. .max vertices indicating the number
of elements in the specified set.

COUNT 	INTEGER 	C;
begin

for INDEX in SET TYPE' RANGE loop

if SET (INDEX) then COUNT 	COUNT + 1; end if;
end loop;

return COUNT;

end SIZE-OF;

function ANY-MEMBER (SET 	in SET TYPE) return INTEGER is
-_ Returns an element a of the specified set. Returns zero (0) if

the set is empty; otherwise returns the index of a TRUE element of the set.
MEMBER INTEGER := 0;

begin

for INDEX in SET TYPE'RANGE loop

if SET (INDEX)

then

	

MEMBER 	INDEX;

exit;

end if;

end loop;

-_ IF member = 0 THEN RAISE misuse;

return MEMBER;

end ANY MEMBER;

function UNIT SET (ELEMENT 	in VERTEX RANGE) return SET TYPE is

-- Returns a set where all but the specified elements are set to FALSE; i.e.
-- a set countaining only the specified member.

RESULT 	SET-TYPE := (SET TYPE'RANGE => FALSE);
begin

RESULT(ELEMENT) 	TRUE;
return RESULT;

end UNIT SET;

procedure CLEAR (GRAPH : in out GRAPH-TYPE) is
begin

GRAPH 	(GRAPH TYPE'RANGE => (SET TYPE'RANGE => FALSE));
end CLEAR;

-- CLIQUE PARTITIONING FUNCTIONS --

procedure FIND _AND_USE_ALL_CLIQUES (GRAPH in GRAPH TYPE) is

-- The routine which takes a graph and returns all the maximal cliques

-_ in the graph. The cliques will not be in lexicographic order.

-_ The routine will not find 1-cliques.

This routine calls "use clique" to perform some processing of each

-- clique - whether it be listing it, manipulating it, or adding it to some
-- data-structure.

VERTICES : SET TYPE;

procedure EXPAND (THE COMBINATION,

149

THE INTERSECTION,
THE-POSSIBLE 	in SET TYPE;
GRAPH in GRAPH TYPE) is

-- This is the routine which actually does all the hard work.
-- It recursively performs a depth-first search of the search-space.
-- The actual algorithm is a modified form of the Bron-Kerbosh method.
S : SET-TYPE;
LOCAL INTERSECTION SET-TYPE;
I 	INTEGER;
SIZE_OF_S 	INTEGER;
COMBINATION : SET TYPE := THE COMBINATION;
INTERSECTION 	SET-TYPE := THE-INTERSECTION;
POSSIBLE 	SET-TYPE 	THE-POSSIBLE;
begin

if DEBUG

then PUT LINE(STANDARD OUTPUT, "Entering EXPAND");
end if;

loop

-- calculate s, using the Simplified B-K method..
S 	POSSIBLE and not (GRAPH(ANYMEMBER(INTERSECTION)));

SIZE OFS 	SIZE OF(S);
if (SIZE_OF_S = 0)
then

if DEBUG then PUT_LINE (STANDARD OUTPUT, "exiting loop"); end if;
exit;

else
while (SIZE_CF_S > 1) loop

I 	ANY_MEMBER(S);
S 	S and (not UNIT _SET (I));
SIZE_OF_S := SIZE_OF_s - 1;
POSSIBLE := POSSIBLE and (not UNIT SET(I));
LOCAL-INTERSECTION := INTERSECTION and GRAPH(I);
if (LOCAL INTERSECTION = EMPTY _SET) then

if GRAPH(I) 7= EMPTY_SET
then USE _CLIQUE (COMBINATION or UNIT_SET (I));
end if;

else EXPAND (COMBINATION or UNIT SET(I),
LOCAL INTERSECTION,
POSSIBLE and GRAPH(I),GRAPB);

end if;
end loop;
I 	ANY-MEMBER(S);
COMBINATION 	COMBINATION or UNIT_SET (I);

- INTERSECTION 	INTERSECTION and GRAPH(I);
if (INTERSECTION = EMPTY-SET)
then

-- extra check added to try to prevent generation of spurious
-- 1-cliques when using a sparse matrix.
-- use_clique (combination)

if GRAPH(I) 7= EMPTY SET
then USE _CLIQUE (COMBINATION);
end if;

if DEBUG then PUT LINE (STANDARD OUTPUT, "exiting loop");
end if;
exit;

else
POSSIBLE 	POSSIBLE and GRAPH(I);

150

end if;
end if;

end loop;
if DEBUG then PUT LINE (STANDARD OUTPUT, "exiting EXPAND"); end if;
end EXPAND;

begin
VERTICES := not EMPTY SET;
EXPAND (EMPTY SET, VERTICES, VERTICES, GRAPH);

end FIND—AND—USE—ALL—CLIQUES;
end CLIQUE DEF;

A.2 Minimum Cost Flow.

This algorithm, also coded in Ada, is an implementation of the Out-of-kilter

method described in [67].

generic
N 	in POSITIVE; -- number of vertices;

package MINIMAL COST FLOW is

subtype VERTEX RANCH is INTEGER range 1.

type LABEL REC is
record

L : BOOLEAN;
S BOOLEAN;
V 	INTEGER;
E 	INTEGER;

end record;

type LABEL _T is array (VERTEX RANGE) of LABEL REC;

type VERTEX—ATTRIBUTE is array (VERTEX—RANGE) of INTEGER;
type ARC—ATTRIBUTE is array (VERTEX RANGE,VERTEX RANGE) of INTEGER;

procedure MINIMISE COST (c,l,a : in ARC ATTRIBUTE;
FEASIBLE : in out BOOLEAN;

f 	in out ARC—ATTRIBUTE);

end MINIMAL—COST—FLOW;

with TEXT 10; use TEXT 10;
with MISC;
use MISC;
package body MINIMAL COST FLOW is

procedure MINIMISE _COST (c,l,a 	in ARC ATTRIBUTE;
FEASIBLE 	in out BOOLEAN;

f 	in out ARC—ATTRIBUTE) is

package INT 10 is new INTEGER IO(INTEGER);
use INTIO;

151

-- global variables
k,abar ARC—ATTRIBUTE;
label 	LABEL T;
p1 VERTEX ATTRIBUTE;
s,t : INTEGER;
OUT—OF—KILTER BOOLEAN;

procedure UPDATE—KILTER—NUMBERS is

begin

for x in l..N loop
for y in 1. .N loop

if c(x,y) > 0 then -- arc exists
abar(x,y) 	a(x,y) + p1(x) - p1(y);
if a_bar(x,y) > 0 then
if f(x,y) = l(x,y) then

- 	 k(x,y) 	0;
elsif f(x,y) < l(x,y) then

k(x,y) 	l(x,y) - f(x,y);
else

k(x,y) 	abar(x,y)*(f(x,y) - l(x,y));

end if;
elsif abar(x,y) = 0 then

if f(x,y) C l(x,y) then
k(x,y) 	l(x,y) - f(x,y);

elsif f(x,y) > c(x,y) then

k(x,y) 	f(x,y) - c(x,y);

k(x,y) 	0;
end if;
else

if f(x,y) = c(x,y) then
k(x,y) 	0;

elsif f(x,y) C c(x,y) then
k(x,y) 	abar(x,y)*(f(x,y) - c(x,y));

else

	

k(x,y) 	f(x,y) - c(x,y);
end if;
end if;
end if;
end loop;
end loop;

end UPDATE—KILTER—NUMBERS;

procedure LABELLING (s 	in INTEGER; t 	in INTEGER) is

sink,x,d,e,u,v 	INTEGER;
SINK—FOUND BOOLEAN;
NON —BREAKTHROUGH BOOLEAN;

begin

if abar(s,t) > 0 and f(s,t) C l(s,t) then
label(t) 	(TRUE,TRUE,s, (l(s,t) - f(s,t)));
sink := 5; x 	t;

elsif abar(s,t) = 0 and f(s,t) C l(s,t) then
label(t) := (TRUE,TRUE,s, (c(s,t) - f(s,t))
sink 	5; x 	t;

elsif abar(s,t) < 0 and f(s,t) < c(s,t) then

152

label(t) 	(TRUE,TRUE,s, (c(s,t) - f(s,t)));
sink := 5; x :=
elsif abar(s,t) < 0 and f(s,t) > c(s,t) then
label(s) := (TRUE,TRUE,-t, (f(s,t) - c(s,t))
sink := t; x := 5;

elsif abar(s,t) > 0 and f(s,t) > l(s,t) then
label(s) := (TRtJE,TRUE,-t, (f(s,t) - l(s,t)));
sink := t; x := 5;

elsif abar(s,t) = 0 and f(s,t) > c(s,t) then
label(s) := (TRUE,TRUE,-t, (f(s,t) - l(s,t)));
sink := t; x := 5;

end if;

-- start of loop
SINK—FOUND := FALSE;
SEARCH: loop
-- search from x

label(x) .5 	TRUE;
for ' in 1 	N loop 	-
if c(x,y) > 0 then

if not label(y) .L then

if a_bar (x, y) > 0 and f (x, y) C 1 (x, y) then
e := MIN (label(x) .E, l(x,y) - f(x,y));
label(y) 	(TRUE,FALSE,x,e),
if y = sink then

SINK—FOUND := TRUE;
exit;

end if;
elsif abar(x.) <= 0 and f(x,y) C c(x,y) then

e := MIN (label(x) .E, c(x,y) - f(x,y));
label(y) 	(TRUE,FALSE,x,e);
if y = sink then

SINK FOUND := TRUE;
exit;

end if;
end if;
end if;
end if;

if c(y,x) > 0 then
if not label(y) .L then

if abar(y,x) >= 0 and f(y,x) > l(y,x) then
e := MIN (label(x) .E, f(y,x) - l(y,x));
label(y) 	(TRUE,FALSE,-x,e);
if y = sink then

SINK FOUND := TRUE;
exit;

end if;

elsif a_bar(y,x) < 0 and f(y,x) > c(y,x) then
e := MIN (label(x).E, f(y,x) - c(y,x));
label(y) : 	(TRUE,FALSE,-x,e);
if y = sink then

SINK—FOUND := TRUE;
exit;

end if;
end if;
end if;
end if;

end loop;

exit SEARCH when SINK FOUND;

153

-- find labelled and unscanned node
NON BREAKTHROUGH 	TRUE;
for in 	Nloop

if label(i) .L and not (label(j) .5) then
x := 1;
NON BREAKTHROUGH 	FALSE;
exit;

end if;
end loop;

exit SEARCH when NON—BREAKTHROUGH;

end loop SEARCH

-- breakthrough
if SINK—FOUND then

e 	label (sink) .E;
v 	sink;
loop

u 	label (v) .V;

if u < D then -- reverse arc
U 	-U;

f(v,u) 	f(v,u) -
else

f(u,v) 	f(u,v) + e;
end if;
V 	U;

exit when v = sink;
end loop;

elsif NON BREAKTHROUGH then
find delta

d 	INTEGER'LAST;
for x in 1 . N loop

for 	in 1.. Nloop
if o(x,y) > 0 then

if label(x) .L and not label(y) .L then
if abar(x,y) > 0 and f(x,y) <= c(x,y) then
d := MIN (d,abar(x,y));

end if;

elsif not label(x) .L and label(y) .L then

if abar(x,y) < 0 and f(x,y) >= l(x,y) then
d 	MIN (d,-abar(x,y));

end if;
end if;
end if;
end loop;
end loop;

if d = INTEGER'LAST then
FEASIBLE 	FALSE;

else

-- update vertex numbers
for x in 1 .. N loop

if not label(x) .L then
p1(x) 	p1(x) + d;

end if;
end loop;
end if;
end if;

154

end LABELLING;

begin
FEASIBLE 	TRUE;
for iinl ..Nloop

for j in 1. .N loop

	

k(i,j) 	0;
end loop;

p1(i) 	0;
end loop;
loop

UPDATE-KILTER-NUMBERS;

OUT—OF—KILTER 	FALSE;
-- find out of kilter arc

	

OUTER; for x in 	1 	N loop

	

for y in 1 	N loop
if c(x,y) > 0 and k(x,y) > 0 then

OUT—OF—KILTER 	TRUE;

	

S 	x; t :=
exit OUTER;

end if;
end loop;
end loop OUTER;
if OUT—OF—KILTER then

-- reset labels

	

for i in 1 	N loop
LABEL (i) := (FALSE,FALSE, 0, INTEGER' LAST);

end loop;

LABELLING(s,t);
else

exit;
end if;
if not FEASIBLE then

exit;
end if;
end loop;

end MINIMISE COST;

end MINIMAL COST FLOW;

155

Appendix B
Data for Examples.

B.1 Facet Example.

B.1.1 Behaviour:

This is a description of the data flow graph in [50] and [64]. The types of

operations have been changed but the flow graph and schedule bindings are equivalent.

network F
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal

operation
operation
operation
operation
operation
operation
operation
operation
end FACET

CET
Vi 	constant end
V2 	local end
V3 	local end
V4 	constantend
VS 	constantend

Si 	local end
$2 	local end
53 	local end
54 	local end
55 	local 	end
$6 	local end

MDL 1MtJLF V2 V3 Si end
MDL 2MDLF Vi Si $2 end
MUL3MULF V2 S2 S3 end
MUL4MULF V2 S3 V3 end
ADD SADDF Si V4 S4 end
AD]? 6ADDF Si $4 55 end
ADD 7ADDF $5 $6 V2 end
DIV ODIVF S4 VS $6 end

B.1.2 Resource-time Graph.

Although the types of processor and operation are different, the schedule and

binding are equivalent to [50].

RESOURCE - [ADDER-1 - i]
STEP i
STEP 2 [ADD 5 	51
STEP 3 [ADD 6 - 61
STEP 4 [ADD? - 7]

RESOURCE - [MULTi - 21
STEP 1 [MUL_i - 11

STEP 2 [MDL 2 - 21
STEP 3 [MUL3 - 31
STEP 4 [MDL 4 - 41

RESOURCE - [DIV_i - 31
STEP 1
STEP 2
STEP 3 [DIV_B - 81
STEP 4

156

B.2 Differential Equation.

B.2.1 Behaviour.

There are two widely used versions of the Differential Equation behaviour. The

version used in Section 7.1 is the same as the data flow graph used by HAL [24]. All

other examples are based on the version used by SPLICER [50].

network SPLICER network HAL

signal U input end signal U input end

signal X input end signal X input end

signal Y input end signal Y input end

signal Ui output end signal Ui output end

signal Xl output end signal Xi output end

signal Yl output end signal Yi output end

signal DX constant end signal DX constant end

signal C3 constant end signal C3 constant end

signal CS constant end

signal Si local end signal Si local end

signal S2 local end signal 52 local end

signal 54 local end signal S4 local end

signal S5 local end signal S5 local end

signal SE local end signal S6 local end

signal 57 local end signal S7 local end

signal SO local end signal SO local end

operation MUL1NUL U DX Si 	end operation MUL114UL U DX Si 	end

operation MUL2MUL CS X S2 	end operation MUL_2MUL C3 X S2 	end

operation ADD 3ADD 	DX X Xi 	end operation ADD 3ADD 	DX X Xi 	end

operation MUL4MUL Si S2 S4 	end operation MUL4MUL Si S2 S4 	end

operation NUL5MUL C3 Y S5 	end operation NUL5MUL C3 Y S5 	end

operation SUB6 SUB 	U S4 56 	end operation SUB 6SUB 	U S4 S6 	end

operation MUL7MUL DX 55 S7 	end operation MUL7NUL DX S5 S7 	end

operation MUL8MUL U DX SO 	end operation MUL8MUL U DX SO 	end

operation SUB 9SUB 	S6 S7 Ui 	end operation SUB_9SUB SE S7 Ui 	end

operation ADD 1DADD 	Y SO Yi 	end operation ADD 1OADD 	Y SO Yi 	end

end SPLICER end HAL

B.2.2 Structures.

Three different input specifications of structure are used in Chapter 7 with

Differential Equation behaviours. Structure HAL is a specification of a data path from

[22] and is used in Section 7.1. Structures STRUCT_A and STRUCT_B are used in

Section 7.3.

157

structure RAL

processor AUDi

type ADD

adapt FALSE
functions ADD;
ports

right aO from BUS 1;
left al from BUS 3;
out a2 to

WIRE 5, WIRE 6, WIRE 7;
allocation

processor MULl

type MUL

adapt FALSE
functions HUt;

ports

right no from BUS 3;

left ml from BUS 2;

out m2 to WIRE 4;
allocation

processor MUL2
type MDL

adapt FALSE
functions NUt;
ports

right n3 from MUX1;
left n4 from BUS 1;

out m5 to WIRE 2;
allocation

processor SUB
type SUB

adapt FALSE
functions SUB;

ports

right sO from WIRE 1;
left sl from BUS 2;

out s2 to WIRES,
WIRES;
allocation

memory REG1

type RED

adapt FALSE
capacity 1

ports

in rO from WIRE 2;
out rl to WIRE l,BUS 1;

allocation

memory REG2

type RED

adapt FALSE

capacity 1
ports

in r2 from WIRE 3;

out r3 to MUX1,BUS2;
allocation

memory REG3
type REG

adapt FALSE
capacity i.

ports

in r4 from WIRE 4;

out rS to MUXL,BUS1;
allocation

memory REO4

type REG

adapt FALSE

capacity 1
ports

in r6 from WIRE 5;

out r7 to BUS 3;
allocation

memory REDS

type REG

adapt FALSE
capacity 1

ports

in rS from WIRE 6;

out rY to BUS 3;

allocation

memory DX

type CONST

adapt FALSE
capacity 1
ports

in cc from

out cl to BUS 1,BUSB;
allocation

memory c3

type CONST

adapt FALSE

capacity 1
pertL

in c2 from

out c3 to BUS 2;
allocation

net WIRE-1
type WIRE

adapt FALSE
from rl

to so;

net WIRES

type WIRE

adapt FALSE
from m5

to rO;

net WIRES

type WIRE

adapt FALSE

from s2

to r2;

net WIRE —4

type WIRE

adapt FALSE
from m2

to r4;

net WIRES

type WIRE

adapt FALSE
from a2

to r6;

net WIRE — 6
type WIRE

adapt FALSE
from a2

to rO;

net WIRE 7

type MIRE

adapt FALSE
from a2
to OUT 1;

net WIRES

type WIRE
adapt FALSE

from s2
to OUT 2;

net MUX1

type MUX

adapt FALSE
from r5, r3,IN1

to n3;

net BUS-1
type BUS

adapt FALSE
from r5, rl, of;
to m4, aD;

net BUS-2

type BUS

adapt FALSE
from c3, r3, 1N3;

to sI, ml;

net BUS

type BUS

adapt FALSE

from ci, r7, IS, IN2
to al, so

io_port IN1

type INPUT

adapt FALSE
from

to MUX1;

allocation

ioport IN

type INPUT

adapt FALSE
from

to BUS 3;

allocation

ioport 1N3

type INPUT

adapt FALSE

from

to BUS 2;

allocation

ioport OUT-1
type OUTPUT

adapt FALSE
from WIRE 7;
to

allocation

io_port OUT

type OUTPUT
adapt FALSE
from WIRES;

to

allocation

158

structure STRUCTE 	 to n4;

processor ADD-1
type ADD
adapt FALSE
functions ADD;
ports
right n14 from
left n15 from
out ni6 to
allocation

processor MUL_2
type }IUL
adapt FALSE
functions MUL;
ports
right n17 from
left niB from
out nl9 to
allocation

processor SUB-1
type SUB

adapt FALSE
functions SUB;

ports
right n3 from WIRE 3;
left n4 from MUX2;
out n5 to WIRE 4,WIRE 5;
allocation

processor MULi
type MUL
adapt FALSE
functions MUL;
ports
right nO from WIRBi;
left nl from MUXi;
out n2 to WIRE 2;
allocation

memory REGi
type REG

adapt FALSE
capacity i
ports
in n6 from WIRE_2;
out n7 to WIRE 3,MUXi;
allocation

memory REG_2
type REG

adapt FALSE
capacity 1
ports

in niO from WIRE 4;
out nii to MUX2,MUX1;
allocation

memory CONSTi
type CONST
adapt FALSE
capacity i
ports
in nS from
out nB to MUX_i;
allocation

memory CONS T_2
type CONST
adapt FALSE
capacity i
ports
in n12 from
out n13 to MUX2;
allocation

net WIRE_i
type WIRE
adapt FALSE
from 1N2
toni;

net WIRE 2

type WIRE
adapt FALSE
from n2
to n6;

net WIRE 3
type WIRE
adapt FALSE
from n7
to n3;

net WIRE 4
type WIRE
adapt FALSE
from n5
to nlO;

net WIRE _S
type WIRE
adapt FALSE
from nS
to OUT-1;

net MUXi
type MUX
adapt FALSE
from n7, n9, nil
to nO;

net MUX2
type MUX
adapt FALSE
from nfl, n13, IN-1

in_port IN_i
type INPUT
adapt FALSE
from
to MUX2;
allocation

ioport 1N2
type INPUT
adapt FALSE
from
to WIRE 1;
allocation

ioport OUT-1
type OUTPUT
adapt FALSE
from WIRES;
to
allocation

finish

159

structure DIFF2

processor SUB-1
type SUB
adapt FALSE
functions SUB;
ports
right nG from MUX3;
left n7 from MDX 5;
out nB to MUXi, WIRE 5;
allocation

processor MUL_1
type MDL
adapt FALSE
functions MDL;
ports
right nO from WIRE 1;
left ni from WIRE 2;
out n2 to MUXi, MDX 2;
allocation

processor MUL2
type MDL
adapt FALSE
functions MDL;
ports
right n3 from MDX 4;
left n4 from WIRE 3;
out n5 to MDX 2;
allocation

memory REGi
type REG
adapt FALSE
capacity i
ports
in n9 from MUXi;
out nio to MDX 3,MUX 4,-

MDX 5;
allocation

memory REG2
type REG
adapt FALSE
capacity i
ports

in nfl from MDX 2;
out n12 to WIRE 3, MDX 5,

MDX 3;
allocation

memory CONSTi
type CONST
adapt FALSE
capacity 1
ports
in n13 from
out n14 to WIRE-1;
allocation

net MDXS
memory CONST2
	

type MDX
type CONST 	 adapt FALSE
adapt FALSE
	

from n12, niO
capacity i
	

to n7;
ports
in nis from 	 ioport IN-1
out n16 to MDX 4; 	 type INPUT
allocation 	 adapt FALSE

from
net WIRE-1
	

to WIRE 2;
type WIRE 	 allocation
adapt FALSE
from ni4
	

ioport 1N2
to nO;
	

type INPUT
adapt FALSE

net WIRE —2
	

from
type WIRE
	

to MDX 3;
adapt FALSE 	 allocation
from IN_i
to nl; 	 ioport OUT_i

type OUTPUT
net WIRE —3
	

adapt FALSE
type WIRE
	

from WIRE 5;
adapt FALSE
	

to
from ni2
	

allocation
to n4;

finish
net WIRE —5
type WIRE
adapt FALSE
from n8
to OUT 1;

net MUXi
type MDX
adapt FALSE
from n2, nB
to n9;

net MUX2
type MDX

adapt FALSE
from n2, n5
to nfl;

net MUX3
type MUX
adapt FALSE.
from niO, n12, 1N2
to nG;

net MUX4
type MDX
adapt FALSE
from n16, niO
to n3;

B.2.3 Resource-time graphs.

Resource-time graph used in Section 6.5.2 and Section 7.3

RESOURCE - [ADD-1 - i]
STEP i [ADD -3 - 31
STEP 2
STEP 3
STEP 4 [ADD-10 - iO]

RESOURCE - [MULi - 31
STEP i [MULi - i]
STEP 2 [MUL4 - 41
STEP 3 [MtJL7 - 71
STEP 4

RESOURCE - [SUB-1 - 2] RESOURCE - [MUL2 - 	 41
STEP i ----- STEP i 	[MDL 2 - 21
STEP 2 ---- STEP 2 	[MUL5 - 51
STEP 3 	[SUB

-
6 - 61 STEP 3 	[MUL8 - 81

STEP 4 	[SUB 9 - 91 STEP 4

Resource-time graph used in Section 6.5.2 for Figure 6.16

RESOURCE - [ALU1 - 11
STEP i [ADD -3 - 31
STEP 2
STEP 3
STEP 4
STEP 5 [SUBS - 61
STEP 6 [SUB -9 - 91
STEP 7 [ADD-10 - iD]

RESOURCE - [MULi - 21
STEP i [MUL_2 - 21
STEP 2 [MULl - i]
STEP 3 [MDL 5 - 51
STEP 4 [MUL4 - 41
STEP 5 [MDL 7 - 71
STEP 6 [MUL8 - 81
STEP 7

161

B.3 Wave Digital Filter.

B.3.1 Behaviour.

This behaviour is taken from [6]. It is a description of the same data flow graph

used by [18][24][52][5O].

network WDF

signal A input end

signal B local end
signal C local end
signal D local end
signal H local end
signal F local end
signal C local end
signal H local end

signal CT local constant end

signal Si local end
signal 52 local end
signal 53 local end
signal 54 local end
signal S5 local end
signal 56 local end
signal S7 local end
signal SB local end
signal 59 local end
signal 510 local end
signal Sil local end
signal S12 local end
signal S13 local end
signal 514 local end
signal 516 local end
signal S17 local end
signal 518 local end
signal S19 local end
signal 520 local end
signal 521 local end
signal S22 local end
signal S23 local end
signal S24 local end
signal 525 local end
signal S26 local end
signal 527 local end
signal 529 local end

operation ADDF1 ADOF A B Si end

operation ADDF2 ADDF G H S2 end
operation ADDF3 ADOF C 51 S3 end
operation ADDF4 ADDF 0 S3 S4 end
operation ADDF5 AD0F 54 S2 55 end
operation MULF6 MULF S5 CT 56 end
operation MULF7 WILT $5 CT 57 end
operation ADDFB ADDF S3 S6 SB end
operation ADDF9 ADDF S2 S7 59 end
operation ADDF 10 ADDF S3 SB SlO end
operation AD0F 11 ADDF $9 S2 Sli end
operation NULF 12 MULF 510 CT S12 end
operation ADOF 13 ADDF S5 58 S13 end
operation MULF 14 NULF 511 CT 514 end
operation ADDF 15 ADDF 513 S9 0 end
operation ADDF 16 ADDF Si S12 516 end
operation ADDF 17 ADDF S14 H $17 end
operation ADDF 18 ADOF S16 58 518 end
operation ADDF 19 ADDF 59 S17 S19 end
operation ADDF 20 ADDF Si S16 S20 end
operation ADDF 21 ADDF F S19 521 end
operation HULF 22 MULF 520 CT S22 end
operation ADOF 23 ADIJF H 518 $23 end
operation HULF 24 MULF S21 CT S24 end
operation ADDF 25 ADDF H S17 S25 end
operation ADDF 26 ADDF A 522 S26 end
operation WJLF 27 MULF $23 CT S27 end
operation ADDF 28 ADDF F 524 F end
operation MULF 29 MULF 525 CT S29 end
operation ADDF_30 ADDF S16 S26 B end
operation ADDF 31 ADDF 519 F C end
operation ADDF 32 ADDF S S27 S end
operation ADDF 33 ADDF S17 529 H end
operation ADDF 34 ADDF 518 5 C end

end

162

B.3.2 Resource-time graphs.

18 control-step schedule.

RESOURCE - [ADD-1 - 	 11 RESOURCE - [ADD 2 21
STEP 1 [ADDF'2 - 21 STEP 1 [ADDE1 - 11
STEP 2 ---- STEP 2 [ADDF3 - 31
STEP 3 ------ STEP 3 [ADDF4 - .4]
STEP 4 [ADDF5 - 51 STEP 4
STEP 5 ------ STEP 5

STEP 6 ---- STEP 6

STEP 7]ADDF9 - 91 STEP 7 [ADDF8 - 81
STEP 8 [ADDF11 - 11] STEP 8 [ADDF1O - 101
STEP 9 ---- STEP 9 [ADOF13 - 131

STEP 10 ---- STEP 10 [ADDF15 - 	 151

STEP 11 [ADDF17 - 	 171 STEP 11 [ADDF16 - 	 161

STEP 12 [ADDF25 - 	 251 STEP 12 [ADOF2O - 201

STEP 13 [ADDF19 - 	 191 STEP 13 [ADDF18 - 	 181
STEP 14 [ADDF'21 - 211 STEP 14 [A00F23 - 	 231
STEP 15 [ADD}'33 - 331 STEP 15 [ADDE'26 - 	 261
STEP 16 ---- STEP 16 [ADDF'30 - 	 301
STEP 17 [ADDF'28 - 	 281 STEP 17 [ADDF32 - 	 321
STEP 18 [ADDF31 - 	 311 STEP 18 [ADDF34 - 34)

SRESDURCE - [MULl - 	 31 RESOURCE - [MULE - 	 41
STEP 1 ---- STEP 1
STEP 2 ------ STEP 2
STEP 3 ---- STEP 3

STEP 4 ---- STEP 4
STEP 5 [MULE 7 - 71 STEP 5 [MDLF6 - 61
STEP 6 ---- STEP 6
STEP 7 ---- STEP 7
STEP 8 ---- STEP 8

STEP 9 [MULE' 14 - 141 STEP 9 [MULE 12 - 121
STEP 10 -- STEP 10
STEP 11 ---- STEP 11
STEP 12 ---- STEP 12

STEP 13 [MULE 29 - 	 291 STEP 13 [MULE' 22 - 	 221
STEP 14 ---- STEP 14
STEP 15]MULF24 - 	 241 STEP 15 [MULE 27 - 	 271
STEP 16 ---- STEP 16
STEP 17 ---- STEP 17

STEP 18 ---- STEP 18

163

19 control-step schedule.

RESOURCE - [ADD-1 	11

STEP 1 [ADDF2 - 21
STEP 2

STEP 3

STEP 4 [ADDE5 - 51

STEP 5

STEP 6

STEP 7

STEP 8 [ADOF9 - 91

STEP 9 [ADDE11 - 11]

STEP 10 [ADDF15 - 151

STEP 11
STEP 12 [ADOF17 - 171

STEP 13 [ADDF25 - 251
STEP 14 [ADDE19 - 191
STEP 15 [EDDY 21 - 211

STEP 16 [EDDY 33 - 331
STEP 17

STEP 18 [ADDF28 - 281

STEP 19 [ADDF'31 - 311

RESOURCE - [ADD _2 - 21
STEP 1 [ADOPt ­ 11
STEP 2 [ADDF3 - 31
STEP 3 [ADDF'4 - 41
STEP 4
STEP 5
STEP 6
STEP 7 [ADDE8 - 81
STEP 8]ADDF1D - 101
STEP 9 [ADDF13 - 131

STEP 10
STEP 11 [ADDF'16 - 161
STEP 12 [ADOF2O - 201
STEP 13 [ADDF'18 - 181
STEP 14 [AODE'23 - 231
STEP 15 [ADDE'26 - 261
STEP 16 [ADDE3O - 301
STEP 17 (ADDS 32 321
STEP 16 [ADOF'34 - 341
STEP 19

RESOURCE - [MULl - 31
STEP 1
STEP 2

STEP 3

STEP 4
STEP 5 [MULE 6 - 61
STEP 6 [MULF7 - 71
STEP 7

STEP 8

STEP 9 [MULE' 12 - 121

STEP 10 (MULE' 14 - 141
STEP 11
STEP 12

STEP 13
STEP 14 [MULE 22 - 221

STEP 15 [MULE 27 - 271

STEP 16 [MULF_24 - 241
STEP 17 [MULF_29 - 291
STEP 18

STEP 19

21 Control Steps.

RESOURCE - -[ADD 1 - 11
STEP 1 [ADDF'2 - 21
STEP 2
STEP 3

STEP 4 [A0DE'S - 51

STEP 5
STEP 6

STEP 7

STEP 8 [ADDF13 - 131
STEP 9 [ADDE9 - 91

STEP 10]ADDF15 - 151
STEP 11
STEP 12 [EDDY 18 - 181
STEP 13 [ADDE23 - 231
STEP 14 [ADDF19 - 191
STEP 15 [EDDY 21 - 211
STEP 16

STEP 17 [ADDF32 - 321
STEP 18 [ADDF34 - 341
STEP 19 [ADDF28 - 281
STEP 20 [ADDF31 - 311
STEP 21

RESOURCE - [ADD 2 - 21
STEP 1 [ADOPt - 11
STEP 2 [EDDY 3 - 31
STEP 3 [ADDF4 - 41
STEP 4
STEP 5
STEP 6

STEP 7 [ADDE8 - 81

STEP 8 [ADOF1O - 101
STEP 9
STEP 10 [ADDFL1 - 11]

STEP 11 [ADDF16 - 161
STEP 12 [ADDF20 - 201
STEP 13 [EDDY 17 - 17]
STEP 14 [ADDF25 - 251
STEP 15 [AODF26 - 261
STEP 16 [EDDY 30 - 301
STEP 17
STEP 18
STEP 19
STEP 20
STEP 21 [ADDF33 	33]

RESOURCE - [MULl - 31
STEP 1
STEP 2
STEP 3
STEP 4
STEP 5]MULF6 - 61
STEP 6 [MULE 6 - 61

STEP 7 (MULE'-7 - 71

STEP 8 [MULE? - 71

STEP 9 [MULE 12 - 121
STEP 10 [MULF12 - 121
STEP 11 [MULE' 14 - 141
STEP 12 [MULF14 - 141

STEP 13 [MULE' 22 - 221
STEP 14 [MULE 22 - 223
STEP 15 [MULE' 27 - 271
STEP 16 [MULE 27 - 271
STEP 17 [MULE' 24 - 241

STEP 18 [MULF24 - 241
STEP 19 [MULE 29 - 291
STEP 20 [MULE' 29 - 29]

STEP 21

164

