
Towards Practical
Privacy-Preserving Protocols

Vom Fachbereich Informatik der
Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des Grades
Doktor-Ingenieur (Dr.-Ing.)

von

Daniel Demmler, M.Sc.
geboren in Neuhaus am Rennweg

Referenten: Prof. Dr.-Ing. Thomas Schneider
Prof. Dr. Amir Herzberg

Tag der Einreichung: 11.10.2018
Tag der Prüfung: 22.11.2018

D 17
Darmstadt, 2018

Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt.

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-86051
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/8605

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Attribution – NonCommercial – NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
http://tuprints.ulb.tu-darmstadt.de/id/eprint/8605
http://creativecommons.org/licenses/by-nc-nd/4.0/

Erklärung

Hiermit versichere ich, Daniel Demmler, M.Sc., die vorliegende Dissertation ohne Hilfe Dritter
und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat
in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung überein.

Darmstadt, 11.10.2018

Daniel Demmler, M.Sc.

Wissenschaftlicher Werdegang

seit Oktober 2013 Promotion in der Informatik, Technische Universtität Darmstadt.

Juli 2011 – Juli 2013 Studium der Informationssystemtechnik, Technische Universität Darm-
stadt, Abschluss als Master of Science.

Oktober 2007 – Juni 2011 Studium der Informationssystemtechnik, Technische Universität
Darmstadt, Abschluss als Bachelor of Science.

II

Abstract

Protecting users’ privacy in digital systems becomes more complex and challenging over time,
as the amount of stored and exchanged data grows steadily and systems become increasingly
involved and connected. Two techniques that try to approach this issue are Secure Multi-Party
Computation (MPC) and Private Information Retrieval (PIR), which aim to enable practical
computation while simultaneously keeping sensitive data private. In this thesis we present
results showing how real-world applications can be executed in a privacy-preserving way.
This is not only desired by users of such applications, but since 2018 also based on a strong
legal foundation with the General Data Protection Regulation (GDPR) in the European Union,
that forces companies to protect the privacy of user data by design.

This thesis’ contributions are split into three parts and can be summarized as follows:

MPCTools Generic MPC requires in-depth background knowledge about a complex research
field. To approach this, we provide tools that are efficient and usable at the same time, and
serve as a foundation for follow-up work as they allow cryptographers, researchers and
developers to implement, test and deploy MPC applications. We provide an implementation
framework that abstracts from the underlying protocols, optimized building blocks generated
from hardware synthesis tools, and allow the direct processing of Hardware Definition
Languages (HDLs). Finally, we present an automated compiler for efficient hybrid protocols
from ANSI C.

The results presented in this part are published in:

[BDK+18] N. BÜSCHER, D. DEMMLER, S. KATZENBEISSER, D. KRETZMER, T. SCHNEIDER. “HyCC:
Compilation of Hybrid Protocols for Practical Secure Computation”. In: 25. ACM
Conference on Computer and Communications Security (CCS’18). ACM, 2018, pp. 847–
861. CORE Rank A*.

[DDK+15] D. DEMMLER, G. DESSOUKY, F. KOUSHANFAR, A.-R. SADEGHI, T. SCHNEIDER, S. ZEITOUNI.
“Automated Synthesis of Optimized Circuits for Secure Computation”. In: 22. ACM
Conference on Computer and Communications Security (CCS’15). ACM, 2015, pp. 1504–
1517. CORE Rank A*.

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY – A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation”. In: 22. Annual Network and Distributed
System Security Symposium (NDSS’15). Code: https://encrypto.de/code/ABY.
Internet Society, 2015. CORE Rank A*.

MPC Applications MPC was for a long time deemed too expensive to be used in practice.
We show several use cases of real-world applications that can operate in a privacy-preserving,
yet practical way when engineered properly and built on top of suitable MPC protocols. Use
cases presented in this thesis are from the domain of route computation using BGP on the
Internet or at Internet Exchange Points (IXPs). In both cases our protocols protect sensitive
business information that is used to determine routing decisions. Another use case focuses
on genomics, which is particularly critical as the human genome is connected to everyone

III

https://encrypto.de/code/ABY

during their entire lifespan and cannot be altered. Our system enables federated genomic
databases, where several institutions can privately outsource their genome data and where
research institutes can query this data in a privacy-preserving manner.

The results presented in this part are published in:

[ADS+17] G. ASHAROV, D. DEMMLER, M. SCHAPIRA, T. SCHNEIDER, G. SEGEV, S. SHENKER,
M. ZOHNER. “Privacy-Preserving Interdomain Routing at Internet Scale”. In:
Proceedings on Privacy Enhancing Technologies (PoPETs) 2017.3 (2017). Full version:
https://ia.cr/2017/393, pp. 143–163. CORE Rank B.

[CDC+16] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “Towards Securing
Internet eXchange Points Against Curious onlooKers (Short Paper)”. In: 1. ACM,
IRTF & ISOC Applied Networking Research Workshop (ANRW’16). ACM, 2016, pp. 32–34.

[CDC+17] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “SIXPACK: Securing
Internet eXchange Points Against Curious onlooKers”. In: 13. International Conference
on emerging Networking EXperiments and Technologies (CoNEXT’17). ACM, 2017, pp. 120–
133. CORE Rank A.

[DHSS17] D. DEMMLER, K. HAMACHER, T. SCHNEIDER, S. STAMMLER. “Privacy-Preserving Whole-
Genome Variant Queries”. In: 16. International Conference on Cryptology And Network
Security (CANS’17). Vol. 11261. LNCS. Springer, 2017, pp. 71–92. CORE Rank B.

PIR and Applications Privately retrieving data from a database is a crucial requirement for
user privacy and metadata protection, and is enabled amongst others by a technique called
Private Information Retrieval (PIR). We present improvements and a generalization of a
well-known multi-server PIR scheme of Chor et al. [CGKS95], and an implementation and
evaluation thereof. We also design and implement an efficient anonymous messaging system
built on top of PIR. Furthermore we provide a scalable solution for private contact discovery
that utilizes ideas from efficient two-server PIR built from Distributed Point Functions (DPFs)
in combination with Private Set Intersection (PSI).

The results presented in this part are published in:

[DHS14] D. DEMMLER, A. HERZBERG, T. SCHNEIDER. “RAID-PIR: Practical Multi-Server PIR”.
In: 6. ACM Cloud Computing Security Workshop (CCSW’14). Code: https://encrypto.
de/code/RAID-PIR. ACM, 2014, pp. 45–56.

[DHS17] D. DEMMLER, M. HOLZ, T. SCHNEIDER. “OnionPIR: Effective Protection of Sensitive
Metadata in Online Communication Networks”. In: 15. International Conference on
Applied Cryptography and Network Security (ACNS’17). Vol. 10355. LNCS. Code:
https://encrypto.de/code/onionPIR. Springer, 2017, pp. 599–619. CORE Rank B.

[DRRT18] D. DEMMLER, P. RINDAL, M. ROSULEK, N. TRIEU. “PIR-PSI: Scaling Private Contact
Discovery”. In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2018.4 (2018).
Code: https://github.com/osu-crypto/libPSI. CORE Rank B.

IV

https://ia.cr/2017/393
https://encrypto.de/code/RAID-PIR
https://encrypto.de/code/RAID-PIR
https://encrypto.de/code/onionPIR
https://github.com/osu-crypto/libPSI

Zusammenfassung

Es wird zunehmend schwieriger die Privatsphäre von Nutzerdaten in digitalen Systemen zu
schützen, da die Menge an gespeicherten und verarbeiteten Daten stetig wächst und Systeme
immer komplexer und vernetzter werden. Zwei Techniken, die dieses Problem angehen und
darauf abzielen praktische Berechnungen unter gleichzeitigem Schutz der Privatsphäre zu
ermöglichen, sind sichere Mehrparteienberechnung (MPC) und Private Information Retrieval
(PIR). Diese Dissertation präsentiert Ergebnisse, die zeigen wie Anwendungen aus der Praxis
mit Privatsphäre-Schutz versehen werden können. Dies ist nicht nur der Wunsch vieler
Anwender, sondern mit der europäischen Datenschutz-Grundverordnung (DSGVO) seit 2018
auch auf einer starken rechtlichen Basis verankert.

Die wissenschaftlichen Beiträge dieser Arbeit sind in die folgenden drei Teile gegliedert:

MPCWerkzeuge Die Verwendung von MPC-Techniken benötigt fundiertes Hintergrundwis-
sen in einem komplexen Forschungsfeld. Wir stellen dafür Werkzeuge zur Verfügung, die
effizient sind und gleichzeitig einen großen Fokus auf Benutzbarkeit legen. Diese Werkzeuge
diesen als Basis für viele Folge-Arbeiten und sie erleichtern es Kryptographen, Entwick-
lern und Forschern MPC Anwendungen zu entwickeln und zu evaluieren. Wir stellen ein
Implementierungs-Framework zur Verfügung, das von Protokolldetails abstrahiert, ergänzen
dieses mit Bausteinen aus der Hardware-Synthese und erlauben die direkte Verarbeitung
von Hardwarebeschreibungs-Sprachen. Weiterhin stellen wir einen Compiler vor, der ANSI C
Code vollautomatisiert in effiziente, hybride MPC Protokolle übersetzt.

Ergebnisse dieses Teils wurden veröffentlicht in:

[BDK+18] N. BÜSCHER, D. DEMMLER, S. KATZENBEISSER, D. KRETZMER, T. SCHNEIDER. “HyCC:
Compilation of Hybrid Protocols for Practical Secure Computation”. In: 25. ACM
Conference on Computer and Communications Security (CCS’18). ACM, 2018, S. 847–861.
CORE Rank A*.

[DDK+15] D. DEMMLER, G. DESSOUKY, F. KOUSHANFAR, A.-R. SADEGHI, T. SCHNEIDER, S. ZEITOUNI.
“Automated Synthesis of Optimized Circuits for Secure Computation”. In: 22. ACM
Conference on Computer and Communications Security (CCS’15). ACM, 2015, S. 1504–
1517. CORE Rank A*.

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY – A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation”. In: 22. Annual Network and Distributed
System Security Symposium (NDSS’15). Code: https://encrypto.de/code/ABY.
Internet Society, 2015. CORE Rank A*.

MPC Anwendungen MPC war lange Zeit als rein theoretisches Resultat angesehen, das
aufgrund seiner Komplexität in der Praxis kaum Verwendung findet. Wir präsentieren meh-
rere praktische Applikationen, die die Privatsphäre der verarbeiteten Daten schützen und
gleichzeitig praktikable Performanz erreichen. Eine Anwendung ist fokussiert auf die Be-
rechnung von Routen mittels des Border Gateway Protokolls (BGP) im Internet sowie deren
Verteilung bei Internet Exchange Points (IXPs). In beiden Fällen schützen unsere Protokolle

V

https://encrypto.de/code/ABY

sensitive Unternehmensdaten, die für Routing-Entscheidungen benötigt werden. Ein weiterer
Anwendungsfall stammt aus der Genetik und ist insofern von besonderer Relevanz, da das
menschliche Genom unveränderlich ist und für die komplette Dauer eines Menschenlebens an
ein Individuum gebunden ist. Unser System erlaubt es mehreren medizinischen Institutionen
ihre Genomdaten sicher in eine verteilte Genomdatenbank auszulagern und diese zentrale
Datenbank unter Schutz der Privatsphäre abzufragen.

Ergebnisse dieses Teils wurden veröffentlicht in:

[ADS+17] G. ASHAROV, D. DEMMLER, M. SCHAPIRA, T. SCHNEIDER, G. SEGEV, S. SHENKER, M. ZOH-
NER. “Privacy-Preserving Interdomain Routing at Internet Scale”. In: Proceedings on
Privacy Enhancing Technologies (PoPETs) 2017.3 (2017). Full version: https://ia.cr/
2017/393, S. 143–163. CORE Rank B.

[CDC+16] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “Towards Securing
Internet eXchange Points Against Curious onlooKers (Short Paper)”. In: 1. ACM,
IRTF & ISOC Applied Networking Research Workshop (ANRW’16). ACM, 2016, S. 32–34.

[CDC+17] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “SIXPACK: Securing
Internet eXchange Points Against Curious onlooKers”. In: 13. International Conference
on emerging Networking EXperiments and Technologies (CoNEXT’17). ACM, 2017, S. 120–
133. CORE Rank A.

[DHSS17] D. DEMMLER, K. HAMACHER, T. SCHNEIDER, S. STAMMLER. “Privacy-Preserving Whole-
Genome Variant Queries”. In: 16. International Conference on Cryptology And Network
Security (CANS’17). Bd. 11261. LNCS. Springer, 2017, S. 71–92. CORE Rank B.

PIR und Anwendungen Die private Abfrage von Daten aus einer Datenbank als Grundlage
für Anonymität und den Schutz von Metadaten wird ermöglicht durch Private Information
Retrieval (PIR). Wir zeigen Verbesserungen und die Generalisierung des PIR-Protokolls von
Chor et al. [CGKS95] sowie eine Implementierung und Evaluation davon. Wir implementieren
zudem ein effizientes anonymes Kommunikationssystem auf der Grundlage von PIR. Weiterhin
stellen wir eine skalierbare Lösung für private Schnittmengenberechnung (PSI), speziell für
den Kontext der privaten Kontaktsynchronisierung vor. Diese basiert auf effizienter 2-Parteien
PIR in Kombination mit PSI.

Ergebnisse dieses Teils wurden veröffentlicht in:

[DHS14] D. DEMMLER, A. HERZBERG, T. SCHNEIDER. “RAID-PIR: Practical Multi-Server PIR”.
In: 6. ACM Cloud Computing Security Workshop (CCSW’14). Code: https://encrypto.
de/code/RAID-PIR. ACM, 2014, S. 45–56.

[DHS17] D. DEMMLER, M. HOLZ, T. SCHNEIDER. “OnionPIR: Effective Protection of Sensitive
Metadata in Online Communication Networks”. In: 15. International Conference on
Applied Cryptography and Network Security (ACNS’17). Bd. 10355. LNCS. Code: https:
//encrypto.de/code/onionPIR. Springer, 2017, S. 599–619. CORE Rank B.

[DRRT18] D. DEMMLER, P. RINDAL, M. ROSULEK, N. TRIEU. “PIR-PSI: Scaling Private Contact
Discovery”. In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2018.4 (2018).
Code: https://github.com/osu-crypto/libPSI. CORE Rank B.

VI

https://ia.cr/2017/393
https://ia.cr/2017/393
https://encrypto.de/code/RAID-PIR
https://encrypto.de/code/RAID-PIR
https://encrypto.de/code/onionPIR
https://encrypto.de/code/onionPIR
https://github.com/osu-crypto/libPSI

Contributions

Scientific research in computer science is complex and has reached a level where single
authors that publish at top venues have become the exception. Nowadays it is the norm that
groups of researchers work together to achieve novel and significant results.

Similarly, the work presented here is in many cases interdisciplinary and combines compre-
hensive background knowledge from multiple areas. All publications that this thesis is based
on are the result of extensive collaboration. Many parts result from the close collaboration of
several authors combining their expertise from heterogeneous research fields, while other
parts are highly complex and were only achieved through cooperation of experts within one
domain. I am thankful for the opportunity to collaborate with my many great colleagues,
both internationally and at TU Darmstadt — especially within the collaborative research
center CROSSING, that awarded our work in [DKS+17] (cf. Chapter 4) with the CROSSING
Collaboration Award 2016.

I want to thank my co-authors for the exchange of ideas and their contributions (with regard
to works included in this thesis, in chronological order): Amir Herzberg, Thomas Schneider,
Michael Zohner, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Shaza Zeitouni,
Marco Chiesa, Marco Canini, Gilad Asharov, Michael Schapira, Gil Segev, Scott Shenker,
Marco Holz, Kay Hamacher, Sebastian Stammler, Peter Rindal, Mike Rosulek, Ni Trieu, Niklas
Büscher, Stefan Katzenbeisser, and David Kretzmer.

Enumerating the exact contribution and attributing parts of results to individual authors is
rather difficult, as often only joint discussions and iterative processes led to the final research
outcome. In this thesis I build upon the cited publications. In some cases I extended the
content and modified the presentation, but many parts are adopted in verbatim form and
hence might contain parts that are hard to attribute to individual authors. In almost all cases
the isolated contribution of each author individually would not be very meaningful when
looked at separately, and the final outcome was only achieved by putting the pieces together.
Still, in the following section I aim to specify which contributions were specifically made by
myself and how my co-authors, who were young researchers at the time of the respective
publication, contributed to the results presented here.

Chapter 3 is based on [DSZ15], where I contributed parts of the performance evaluation
and the implementation, as well as the Homomorphic Encryption (HE)-based multiplications
and their evaluation. I was and I am still actively involved in maintaining and extending the
code-base of ABY, which is available online on GitHub1. Michael Zohner contributed most
core protocols and their conversions and the majority of the initial implementation.

The results in Chapter 4 bases on [DKS+17], where I was responsible for the implementation
of an adapter for importing external circuits into the ABY framework, cf. Chapter 3, the
implementation and extensive performance evaluation of the building block and the use
cases. Many details of the circuit synthesis, the adaption of the hardware synthesis tools, and

1https://encrypto.de/code/ABY

VII

https://encrypto.de/code/ABY

many of the building blocks were contributions of my co-authors Ghada Dessouky and Shaza
Zeitouni.

Chapter 5 is based on [BDK+18]. I mainly worked on the runtime estimation, the performance
evaluation and implementations of interfaces between ABY, cf. Chapter 3, and the HyCC
compiler. Major parts of the compiler design and protocol selection were done by Niklas
Büscher. A great part of the implementation was done by David Kretzmer.

Chapter 6 is based on [CDC+17b] and [ADS+17]. Both works are very collaborative results.
In [CDC+17b], I contributed significantly to the design and implementation of the system,
the underlying algorithms and their performance evaluation. Marco Chiesa worked mainly
on the Python implementation of the demonstrator and the operator survey. Parts of the
implementation of [ADS+17] and their evaluation are my contribution, while other parts
were implemented by Michael Zohner. The security considerations and ideas for failure
handling were contributed by Gilad Asharov.

In Chapter 7 results from [DHSS17] are presented, where I contributed parts of the algorithm
design, and significant parts of the implementation and evaluation of the protocol as well
as the security considerations. Sebastian Stammler has worked on the size-efficient query
format and query setting, and contributed to the implementation and evaluation.

Chapter 8 takes results from joint work with Thomas Schneider and Amir Herzberg [DHS14].
I significantly contributed to all aspects of this publication, mostly the protocol idea and
design, implementation and evaluation. In the same chapter results from [DHS17] are
included, where the original application idea and the implementation came from Marco Holz.
I contributed to the final version of the protocol, the underlying optimizations and the system
model.

The work in Chapter 9 is based on [DRRT18], which was done mostly during my 10 week visit
at Oregon State University in spring 2017. I contributed to the protocol design, which was the
result of many discussions with Mike Rosulek, Peter Rindal and Ni Trieu. I contributed to the
implementation, while Peter was responsible for the majority of the code. Peter contributed
the experiments and formulas for the Cuckoo hashing failure probability. The evaluation and
the comparison with related work was done partly by me, and in part by Ni.

VIII

Acknowledgments

This thesis was certainly one of the most exciting and challenging parts of my life and only
possible due to the immense support of many people. I would like to thank everyone who
contributed to this process in one way or another.

First and foremost, I am incredibly grateful for the opportunity to have Thomas Schneider as
my Ph.D. advisor. Without his encouragement to pursue a Ph.D. after finishing my master’s
thesis in his group, this Ph.D. thesis would most certainly not exist — at least not in this form.
Thomas always had an open ear for questions and contributed to our joint work more than
most advisors that I know of. His many ideas, the feedback, and especially the meticulous
remarks on papers and their bibliographies were always very helpful. I’m immensely thankful
for his continuous dedication, trust and support during the past years.

I am honored to have Amir Herzberg as external advisor and would also like to thank him
for reviewing this thesis and for our successful joint work, many fruitful discussions, and
exchange of ideas. I thank Matthias Hollick, Stefan Katzenbeisser, and Felix Wolf for joining
my defense committee.

I want to say thank you to my colleagues and friends in the ENCRYPTO group: Michael
Zohner, Ágnes Kiss, Christian Weinert, Oleksandr Tkachenko and Amos Treiber. Working with
them was always productive, efficient and interesting. At the same time I enjoyed spending
time outside work together, not only during lunch.

I also like to thank the people behind the curtain, who always made things possible, especially
Melanie Schöyen, Heike Meißner, Stefanie Kettler, and Andrea Püchner.

There are a lot of people who work in security, cryptography, and privacy research worldwide,
or in one of the many projects and groups at TU Darmstadt — too many to list them all
separately. However, I’m grateful for the chance to be involved in all this and for the inspiration,
encouragement, and support from so many sides.

A huge thanks to Mike Rosulek, Peter Rindal and Ni Trieu for making my visit at Oregon State
University in spring 2017 so successful, exceptional, and unforgettable.

I am very grateful to have had the opportunity to work with my co-authors. I want to thank all
of them for their work, and list those that I have not mentioned before: Gilad Asharov, Marco
Canini, Marco Chiesa, Ghada Dessouky, Kay Hamacher, Farinaz Koushanfar, Ahmad-Reza
Sadeghi, Michael Schapira, Gil Segev, Scott Shenker, and Shaza Zeitouni.

Parts of this thesis were made possible by the hard and high-quality work of our students
Lennart Braun, David Kretzmer, and Marco Holz. I thank them a lot for this.

I would also like to thank everyone involved in Bedroomdisco for spreading love for great
music and offering me the opportunity to take a step away from work, allowing me to do
something exciting and fulfilling in my free time.

IX

Cheers to the iST Stammtisch that managed to survive even after everyone finished their
studies. To many more years to come!

On the same note, I’d like to thank those people that spent their valuable time with me,
both at work, and outside of the office — in particular: Sebastian Stammler (for genomes,
crypto currencies, Hong Kong, and Mr. Robot), Daniel Steinmetzer (for the gym endeavours),
Rebecca Burk (for always welcoming me back in Germany), Niklas Büscher (for the coffee
breaks and the compiler), Felix Günther (for being too good to keep up, the travels, and
the drink coupons), Johannes Gräbner (for the hikes in the forest), Patrick Lieser (for our
hate-love, the beers, and our immense CS:GO success), and Jan Römer (for the music, the
books, the movies, the travels, and all the talks).

I’m forever indebted to my parents and my family, who always supported me unconditionally,
in every way possible, and encouraged me to keep going.

I also want to thank Maxine. Thank you for being there, for understanding, and for keeping
me sane, especially in the last months.

X

Contents

Abstract III

Zusammenfassung V

Contents XI

1 Introduction 1
1.1 Thesis Outline . 3

2 Preliminaries 5
2.1 Notation and Security Parameters . 5
2.2 Adversary Models . 6
2.3 Oblivious Transfer . 6
2.4 Secure Multi-Party Computation (MPC) . 7
2.5 Private Information Retrieval (PIR) . 13
2.6 Alternative Privacy-Preserving Techniques . 15

I Tools for Efficient and Usable MPC 17

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation 18
3.1 Introduction . 18
3.2 Sharing Types . 21
3.3 Implementation and Benchmarks . 27

4 Automated Synthesis of Optimized Circuits for MPC 33
4.1 Introduction . 33
4.2 Preliminaries . 35
4.3 Our ToolChain . 37
4.4 Building Blocks Library . 44
4.5 Benchmarks and Evaluation . 46
4.6 Application: Privacy-Preserving Proximity Testing on Earth 51

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation 54
5.1 Introduction . 54
5.2 The HyCC MPC Compiler . 57
5.3 Protocol Selection and Scheduling . 59

XI

Contents

5.4 Benchmarks . 62
5.5 Conclusions and Future Work . 69

II MPC Applications in the Outsourcing Scenario 70

6 Privacy-Preserving Internet Routing 71
6.1 Introduction . 71
6.2 Preliminaries . 80
6.3 Related Work . 87
6.4 Centralized BGP Route Computation . 89
6.5 SIXPACK Privacy-Preserving Route Server . 96
6.6 Security and Privacy . 106
6.7 Deployment . 109
6.8 Implementation . 111
6.9 Benchmarks and Evaluation . 116
6.10 Conclusion and Future Work . 128

7 Privacy-Preserving Whole-GenomeMatching 130
7.1 Introduction . 130
7.2 Preliminaries . 131
7.3 Genetic Variant Queries on Distributed Databases 134
7.4 Our Protocol for Private Genome Variant Queries 137
7.5 Implementation . 140
7.6 Benchmarks . 141
7.7 Conclusion . 145

III Private Information Retrieval and Applications 146

8 Improving Multi-Server PIR for Anonymous Communication 147
8.1 Introduction . 147
8.2 Preliminaries . 149
8.3 RAID-PIR . 150
8.4 Analysis . 159
8.5 Implementation . 161
8.6 Benchmarks . 162
8.7 Applying RAID-PIR . 168
8.8 OnionPIR: A System for Anonymous Communication 171
8.9 Conclusion and Future Work . 178

9 PIR-PSI: Scaling Private Contact Disvocery 179
9.1 Introduction . 179
9.2 Preliminaries . 184
9.3 Our Construction: PIR-PSI . 187
9.4 Security . 190

XII

Contents

9.5 Implementation . 193
9.6 Performance . 198
9.7 Comparison with Prior Work . 202
9.8 Extensions and Deployment . 206

10Conclusion 209
10.1 Summary . 209
10.2 Future Work . 210

Bibliography 213

Lists 236

XIII

1 Introduction

Privacy is the ability to express oneself selectively and to actively decide which potentially
private information one discloses to others or to the public. This concept is fundamental to a
functioning democratic society and a core requirement for personal autonomy.

Article 12 of the internationally almost universally accepted United Nations’ Universal Decla-
ration of Human Rights [UN48] specifies:

“No one shall be subjected to arbitrary interference with his privacy [. . .]. Ev-
eryone has the right to the protection of the law against such interference or
attacks.”

Similarly, the European Union adopted the GDPR [EU16] in April 2016, and made it enforce-
able in May 2018. The GDPR obligates businesses to handle sensitive user data with “data
protection by design and by default” and aims to give individuals control over their private
data. GDPR violations can result in significant fines.

Along the same lines, the Indian supreme court has analogously ruled in August 2017 that
privacy is a fundamental human right for its more than 1.3 Billion people.1

All these laws and regulations show that many societies agree, that privacy is an important
concept and that sensitive data needs protection. Yet, in practice many processes require users
to give up control over their private data. This problem has become even more severe with
the rise of digital services that collect user data and their ubiquitous interconnection. Internet
services know our shopping preferences from media to pharmaceuticals, search engines
answer questions from all domains and cloud services store our contacts, calendars, pictures
and backups. Messaging services almost always know our social graph (who we talk to and
when) and many times even the actual content of exchanged messages (what we talk about).
More than 80% of the German population are using smartphones,2 which work heavily with
the aforementioned user data and extend all these with real-time location information. All
this data becomes even more valuable when multiple data sets are combined. This allows for
very detailed profiling of users, is valuable for companies and happens frequently.3,4

1https://www.eff.org/de/deeplinks/2017/08/indias-supreme-court-upholds-right-privacy-
fundamental-right-and-its-about-time

2https://www.bitkom.org/Presse/Anhaenge-an-PIs/2018/Bitkom-Pressekonferenz-Smartphone-
Markt-22-02-2018-Praesentation-final.pdf

3https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-
deal-to-track-retail-sales

4https://techcrunch.com/2018/06/13/salesforce- deepens- data- sharing- partnership- with-
google/

1

https://www.eff.org/de/deeplinks/2017/08/indias-supreme-court-upholds-right-privacy-fundamental-right-and-its-about-time
https://www.eff.org/de/deeplinks/2017/08/indias-supreme-court-upholds-right-privacy-fundamental-right-and-its-about-time
https://www.bitkom.org/Presse/Anhaenge-an-PIs/2018/Bitkom-Pressekonferenz-Smartphone-Markt-22-02-2018-Praesentation-final.pdf
https://www.bitkom.org/Presse/Anhaenge-an-PIs/2018/Bitkom-Pressekonferenz-Smartphone-Markt-22-02-2018-Praesentation-final.pdf
https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales
https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales
https://techcrunch.com/2018/06/13/salesforce-deepens-data-sharing-partnership-with-google/
https://techcrunch.com/2018/06/13/salesforce-deepens-data-sharing-partnership-with-google/

1 Introduction

Another very recent report claimed that attackers allegedly used modified hardware to
exfiltrate sensitive corporate data.5 Although the involved parties declined that these incidents
happened and since then doubts about the credibility of the report arose,6 there is certainly a
possiblity for these types of attacks to happen. In any case such attacks can be prevented,
if computations on the most sensitive data is moved to a protected domain, that can be
instantiated with suitable privacy-preserving techniques.

In light of companies tracking user data and insiders or attackers stealing corporate data, the
goal of this thesis is to give end users and businesses control over their data and for this it
contributes techniques for the protection of user data and corporate information.

A core concept in information security is confidentiality, i.e., the ability to make sensitive
information only available to parties who are eligible to access it and to hide it from everyone
else. Today, there are many practical cryptographic solutions that enable private and secure
transmission and storage of data, but ultimately the processing of data is still challenging
while maintaining confidentiality.

Homomorphic Encryption (HE) is a technique and an actively progressing research field
that provides encryption schemes that allow certain operations on encrypted data, without
revealing information about the contained plaintext. While huge improvements have been
made that reduced ciphertext sizes and sped up operations, generic HE is still somewhat
limited and applying it to generic real-life computations is far from straight forward.

Another approach that aims to solve the same problem of generic computation on private data
is Secure Multi-Party Computation (MPC). The first concepts have been introduced in the
1980s [Yao86; GMW87] and were initially merely theoretic constructs. Recently these ideas
have been picked up and improved up to a level where certain use cases can be considered
practical. The first practical breakthrough happened 2004 with Fairplay [MNPS04] and many
works followed that pushed MPC closer to practice.

An orthogonal approach that tries to solve a more specific problem of privately obtaining
data from a database is Private Information Retrieval (PIR). Introduced in 1995 [CGKS95], it
started a line of research that is still active today.

A core problem with the aforementioned privacy-preserving techniques is often performance,
which we approach with the results in this thesis.

To sum up, this thesis aims at providing an answer to the following question:

Can privacy-preserving techniques like MPC and PIR be applied to real-world
applications and use-cases in order to protect the privacy of the data they process,
while at the same time achieving efficiency that makes them usable in practice?

5https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-
chip-to-infiltrate-america-s-top-companies

6https://arstechnica.com/tech-policy/2018/10/bloomberg-stands-by-chinese-chip-story-as-
apple-amazon-ratchet-up-denials/

2

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://arstechnica.com/tech-policy/2018/10/bloomberg-stands-by-chinese-chip-story-as-apple-amazon-ratchet-up-denials/
https://arstechnica.com/tech-policy/2018/10/bloomberg-stands-by-chinese-chip-story-as-apple-amazon-ratchet-up-denials/

1 Introduction

1.1 Thesis Outline

To answer the above research question, we structure this thesis as follows:

In Chapter 2 we introduce concepts from preliminary work and explain the assumptions and
notation that we use in this thesis.

Part I describes tools that we developed with the goal of providing efficient and usable
MPC implementations. These tools are a foundation for our own work, as well as for other
developers and researchers, who can freely use them.

Chapter 3 introduces the ABY framework [DSZ15], that was the first step of having a unified
implementation of fundamental MPC protocols based mostly on symmetric cryptography and
efficient conversions between them. ABY abstracts from the underlying protocol details and
provides a unified interface to manually implement MPC applications using Yao’s garbled
circuits, the GMW protocol or arithmetic sharing, or a chosen mixture of them, called hybrid
protocols.

The ABY framework is then extended with efficient buildings blocks and the ability to process
circuits that were generated from hardware synthesis tools [DDK+15] in Chapter 4. This
allows to implement MPC applications in a Hardware Definition Language (HDL) or to use
new building blocks, such as floating-point operations. We demonstrate their efficiency by
showing performance results for privacy-preserving proximity testing.

Chapter 5 is based on [BDK+18] and presents the HyCC compiler, that is the first to allow
automated compilation of ANSI C code into efficient hybrid MPC protocols. For HyCC we
combine ideas from CBMC-GC [HFKV12; BFH+17] with the ABY framework and show that
our automatically compiled results are very performant and even able to outperform certain
hand-crafted protocols for a machine learning use case.

In Part II, we present efficient applications of MPC protocols. While MPC was initially seen as
a purely theoretical result, we provide examples of useful applications that can be evaluated
in a privacy-preserving way, at practical performance and real-world scale.

Chapter 6 is based on [CDC+17b] and [ADS+17] and provides approaches for privacy-
preserving routing using the Border Gateway Protocol (BGP). Specifically, we present two
types of results: We implement two graph algorithms in MPC that model the behavior of
BGP and thereby enable route computations that preserve the privacy of the underlying
bussiness information that is used to make routing decisions. Furthermore, we provide
a solution for efficient private route dispatch at Internet Exchange Points (IXPs), central
authorities that connect multiple parties with each other. Our performance results show that
our implementations allow private Internet-scale route computation and private real-time
IXP route dispatch, respectively.

Chapter 7 presents the results from [DHSS17], where we designed a system for privacy-
preserving querying of a federated database of genomes at large scale. These types of queries

3

1 Introduction

are frequently run in medical research and our system’s performance allows to do so efficiently,
while protecting the privacy of both the databases and the queries.

Finally, in Part III, we present improvements of existing Private Information Retrieval (PIR)
protocols and show two applications that make use of PIR in order to achieve anonymity and
privacy.

Chapter 8 summarizes results from [DHS14] and [DHS17], where we generalize and optimize
an existing PIR scheme in several ways. We propose an anonymous messaging system that
utilizes PIR to privately retrieve users’ public keys and relies on the anonymity network Tor
to achieve private communication.

In Chapter 9, which is based on [DRRT18] results from efficient 2-server PIR built from
Distributed Point Functions (DPFs) are combinded with Private Set Intersection (PSI). From
these techniques we build a solution that can be used for private contact discovery and show
that it performs well in practice and scales even for very large input sizes.

We summarize this thesis and provide an answer to many aspects of the research question
in Chapter 10, where we also look into points open to be answered in future work.

4

2 Preliminaries

In this chapter we introduce basic concepts and notations that are used in this thesis.

2.1 Notation and Security Parameters

Throughout this thesis we use the following notation and their default parameters. If there
are deviations from the default values, these are specified accordingly.

Table 2.1: Notation: Symbols and default values used.

Parameter Symbol Default Value

symmetric security parameter [bits] κ 128 bits
asymmetric security parameter [bits] ϕ 3 072 bits
statistical security parameter [bits] σ 40 bits
element length [bits] ℓ

The default security parameters that we use in our implementations are chosen such that
they achieve a security level that is expected to withstand attacks until year 2030 and
possibly beyond, according to the recommendations given for cryptographic key lengths
on keylength.com and from NIST [NIS12]. κ ∈ {80, 112, 128} denotes the symmetric security
parameter and ϕ ∈ {1 024, 2 048, 3 072} denotes the public-key security parameter, for legacy
(until 2010), medium (2011-2030), and long-term security (after 2030), respectively. We set
the statistical security parameter σ to 40, which means that statistical processes fail with a
probability of at most 2−σ = 2−40.

We denote public-key encryption with the public key of party Pi as c = Enci (m) and the
corresponding decryption operation as m= Deci (c) with m= Deci (Enci (m)).

In MPC protocols, we denote the two parties that run the secure computation protocol as P0
and P1.

We write x ⊕ y for bitwise XOR and x ∧ y for bitwise AND.

5

keylength.com

2 Preliminaries

2.2 Adversary Models

Privacy-preserving protocols offer security against adversaries, meaning that the protocol
aims to guarantee that adversaries can only learn the output that is intended for them and
nothing else, as long as they act within a certain adversarial model. The following adversary
models exist in the literature and are more formally defined in [HL10].

Semi-honest adversaries (also called honest-but-curious or passive adversaries) are adversaries
that try to gain access to secret information from the protocol execution and the messages
that they receive, while following the protocol specification. Semi-honest adversaries are
relatively weak adversaries, but are necessary as a baseline for verifying practicality and
an important step towards achieving stronger security guarantees. They are also used in
scenarios where somewhat trusted parties interact with each other, or to protect against
attacks from insiders that try to exfiltrate sensitive plaintext data.

Malicious or active adversaries can arbitrarily and actively deviate from the protocol execution
in order to access private information. They can modify, re-order or omit protocol messages
and are the strongest type of adversary.

Covert adversaries have all abilities of a malicious adversaries, but are guaranteed to be
caught with a given probability that the protocol ensures, e.g., 50%. This probability must be
high enough to discourage adversaries from attempting to cheat in the protocol in practice.

In this thesis most protocols are designed and implemented to tolerate semi-honest adversaries.
For some protocols we also describe extensions for security against stronger adversaries,
while maintaining practicality.

2.3 Oblivious Transfer

A core building block that serves as a foundation of the techniques used in this thesis
is Oblivious Transfer (OT) [Rab81; EGL85]. In a 1-out-of-2 OT, a sender inputs two ℓ-
bit messages (m0, m1) and a receiver inputs a choice bit c ∈ {0,1} in order to obliviously
obtain the message mc as output. OT guarantees that the receiver learns no information
about m1−c , while the sender learns nothing about c.

It was shown in [IR89] that OT protocols require costly public-key cryptography and cannot
be built from symmetric primitives alone. However, a technique called OT extension [Bea96;
IKNP03; ALSZ13; NPS99] allows to extend a few public-key-based OTs, for which we
use [NP01] in our experiments, using only symmetric cryptographic primitives and a constant
number of rounds. To further increase efficiency, special OT variants such as correlated OT (C-
OT) [ALSZ13] and random OT (R-OT) [NNOB12; ALSZ13] were introduced. In C-OT, the
sender inputs a correlation function f∆(·) and obtains a random m0 as output from the
OT protocol while the other message is correlated as m1 = f∆(m0). In R-OT, the sender has
no inputs and obtains two random messages (m0, m1). The random m0 in C-OT and (m0, m1)

6

2 Preliminaries

are output by a correlation robust one-way function H [IKNP03], which can be instantiated
using a hash function.

2.4 Secure Multi-Party Computation (MPC)

Secure Multi-Party Computation (MPC), sometimes also referred to as secure function evalu-
ation, multi-party computation, or simply secure computation, is an active field of research
that was established in the 1980s [Yao86; GMW87]. It was followed by surprising feasibility
results [BGW88; CCD88; RB89] that positioned MPC as a central and extremely powerful tool
in cryptography. These works show that multiple parties can carry out a joint computation
of any efficiently computable function on their respective inputs, without revealing any
information about the inputs, except for what is logically inferred from the output.

More concretely, n parties P0, . . . , Pn−1 that hold private inputs x0, . . . , xn−1 wish to compute
some arbitrary function f (x0, . . . , xn−1) = (y0, . . . , yn−1), where the output of Pi is yi. MPC
enables the parties to compute the function f using an interactive protocol, where each
party Pi learns exactly its designated output yi , and nothing else.

In an ideal world MPC protocols can be viewed as an ideal functionality that is run by a
trusted third party that collects all private inputs, computes the function on them, and sends
the respective output back to the parties. In the real world the protocol is run only between
the parties P0, . . . , Pn−1.

There are three major MPC paradigms, which we summarize in the next sections: Yao’s
garbled circuits protocol [Yao86] (Sect. 2.4.3), the secret-sharing-based protocols of Gol-
dreich, Micali, and Wigderson (GMW) [GMW87] (Sect. 2.4.4) as well as arithmetic shar-
ing [DSZ15; Gil99] (Sect. 2.4.5). We will also provide explanations for the offline-online
paradigm (Sect. 2.4.1), and the setting in which we deploy these protocols (Sect. 2.4.2).

The aforementioned protocols protect the privacy of the processed data by sharing it between
two parties either by using secret sharing (GMW and arithmetic sharing) or garbling and
evaluating a Boolean circuit (Yao’s garbled circuits). Thus, we also refer to the data processed
in the respective protocols as shares.

2.4.1 The Offline-Online Model for MPC

MPC protocols can often be divided into several phases. A common approach that we also
follow in this thesis is the separation of a setup phase and an online phase. The setup phase
(also called offline phase or precomputation phase), happens before the private inputs to the
protocol are known and requires only knowledge of (an upper bound of) the size of the inputs
of the function to be computed. In the setup phase, helper data is created and later used to
speed up the online phase. The online phase that is run as soon as the private inputs are
known, is optimized in order to achieve high performance. This separation of phases allows
for precomputation of expensive operations and modular protocol design.

7

2 Preliminaries

To improve the performance of the online phase of OT we use OT precomputations [Bea95].

The opposite approach of the offline-online model is pipelining [HEKM11], which breaks up
the execution of the MPC protocol into smaller parts, and intertwines the two phases closely
to reduce the memory footprint of the MPC protocol execution.

2.4.2 Two-Party and Outsourcing Setting

The MPC protocols that we present in this thesis in Part I and Part II are two-party protocols
run between the two MPC parties, which we denote as P0 and P1.

Naturally, such protocols can be used in client-server applications, e.g., for services on the
Internet, where both parties provide private inputs to the computation and jointly compute
the MPC protocol.

However, the protocols can also be used for multi-party applications where an arbitrary
number of input parties provide their confidential inputs, and an arbitrary number of result
parties receive the outputs of the secure computation (e.g., for auctions, surveys, etc.),
cf. [FPRS04; KMR11]. We refer to this setting as outsourcing scenario. Following the notation
used in [ABL+18], in this setting there are input parties that provide private inputs to a
computation that is carried out using MPC by computing parties, and result parties that learn
the plaintext computation outputs, or parts thereof.

For this, each input party secret-shares its inputs among two dedicated computation servers
P0 and P1, that are assumed to not collude. Then, the two computation servers run the MPC
protocol on the input shares during which they do not learn any information about inputs,
intermediate values or the outputs of the computation. Finally, the computation servers send
the output shares to the result parties who can reconstruct the plaintext outputs. Importantly,
from the perspective of the two computational parties, the shares are indistinguishable from
random bits. Naturally, the input and output parties can be the same parties. There are
several frameworks that have been proposed specifically for an outsourcing scenario [CMTB13;
CLT14; CMTB16].

Furthermore, there are several approaches that operate in a 3-party setting [BLW08; AFL+16;
FLNW17; MR18]. Secret-sharing-based protocols like GMW can naturally be extended to
more than two parties.

Recently, MPC protocols that support very large numbers of parties and achieve promising per-
formance results have been proposed. [HSS17] is built on top of the BMR protocol [BMR90].
An alternative approach was presented in [WRK17].

A conceptual overview of the outsourcing setting is depicted in Fig. 2.1.

8

2 Preliminaries

Computing Party P0

Computing Party P1

Input Party I P0

Input Party I P1

MPC Result Party RP0

Figure 2.1: Example setting with 2 input parties that secret share their inputs with 2 comput-
ing parties P0 and P1. The output is received by a single result party. Thin arrows
correspond to a single round of communication with small messages, while the
bold arrow symbolizes the execution of an MPC protocol with potentially many
rounds and high throughput.

2.4.3 Yao’s Garbled Circuits Protocol

In Yao’s garbled circuits [Yao86], two parties interactively evaluate a garbled version of a
Boolean circuit, consisting of gates that have input and output wires.

One party, referred to as garbler, creates the garbled circuit as follows: For all wires in the
circuit, including inputs and outputs, the garbler determines two random keys corresponding
to the two possible bits on every wire. Using these keys, every possible gate output is encrypted
with the corresponding combination of input keys and stored in a garbled table for each
gate. In the evaluation step the other party, called evaluator, receives the garbled circuit, the
encoding of the garbler input, as well as encodings of its own inputs via OT, cf. Sect. 2.3. The
evaluator then iterates through the circuit gate by gate to compute the encoding of the output,
which is finally decoded using a mapping from output keys to plaintext. Yao’s protocol has
only a constant number of communication rounds and the complexity stems from the total
number of AND gates in the circuit, as XOR gates can be evaluated for free [KS08b]. Other
state-of-the-art optimizations of garbled circuits that are used in today’s implementations are
point-and-permute [BMR90], fixed-key AES garbling [BHKR13], and half-gates [ZRE15].

The security of Yao’s garbled circuits protocol was proven in [LP09].

2.4.4 The Protocol of Goldreich, Micali, andWigderson (GMW)

In the GMW protocol [GMW87], two or more parties jointly compute a function that is
encoded as Boolean circuit. The parties’ private inputs to the function, all intermediate
wire values, and all outputs are hidden by bit-wise XOR-based secret sharing. For this, every
plaintext value v is XORed with a random value v0 of the same length to compute v1 = v⊕ v0.
The values v0 and v1 are called shares of v and are held by P0 and P1 respectively.

GMW allows to evaluate XOR gates locally, without interaction, using only one-time pad
operations and thus essentially for free. AND gates, however, require interaction in the form of
OTs [CHK+12] or Beaver’s multiplication triples [Bea96; ALSZ13] that can be precomputed in
the setup phase. A multiplication triple consists of correlated random bits a0, a1, b0, b1, c0, c1

9

2 Preliminaries

that satisfy the equation c0 ⊕ c1 = (a0 ⊕ a1)∧ (b0 ⊕ b1). After evaluating all circuit gates in
the online phase, the plaintext output can be reconstructed by computing the XOR of the
resulting output shares.

The performance of GMW depends on both the total number of AND gates in the circuit, as
well as the multiplicative depth of the circuit, i.e., the maximum number of data-dependent
AND gates on the critical path from any input to any output. This is due to the OT that has to
be performed for every AND gate, and at the same time, due to the round of communication
that is performed between the parties for each layer of data-dependent AND gates.

One main advantage of the GMW protocol is that it allows to precompute all (symmetric)
cryptographic operations in the setup phase, while the online phase consists solely of bit
operations. Moreover, the GMW protocol allows to efficiently evaluate the same sub-circuit
in parallel, similar to Single Instruction Multiple Data (SIMD) instructions in a CPU. Finally,
the GMW protocol also allows for highly efficient instantiation of multiplexers using vector
ANDs (cf. Sect. 3.2.3), which reduce the cost for evaluating a ℓ-bit multiplexer to the cost of
evaluating a single AND gate.

The proof of security for the GMW protocol was provided in [Gol04].

The protocols that we implement in this thesis in Part II are 2-party versions of the GMW
protocol with security against semi-honest adversaries.

2.4.5 Arithmetic Sharing

Arithmetic sharing, sometimes also referred to as linear secret sharing, works similar to the
GMW protocol and uses modular addition to secret-share arithmetic values ∈ Z2ℓ for a bit
length ℓ. Addition can be done for free, while multiplication requires one round of interaction,
analogously to XOR and AND in GMW. Multiplication is done using arithmetic multiplica-
tion triples, that can be efficiently precomputed using OTs [Gil99] or using homomorphic
encryption, cf. Sect. 3.2.2.

2.4.6 MPC Protocol Implementations

There were several proposals for MPC frameworks in the recent years. In this section we
provide an overview and group them into several categories, that differ by how the MPC
protocols are described.

MPC fromaDomain Specific Language (DSL) Domain Specific Languages (DSLs) are input
languages that are designed to cover specific properties and features of a certain research
domain. They can build on top of a known language, or be fully independent and designed
from scratch. In all cases DSLs require developers to carefully get accustomed to specific lan-
guage features. Fairplay [MNPS04], its extension to multiple parties in FairplayMP [BNP08],
and the compatible PAL compiler [MLB12] compile a functionality from a domain specific
input language, called Secure Function Definition Language (SFDL), into a Boolean circuit

10

2 Preliminaries

described in the Secure Hardware Definition Language (SHDL) which is evaluated with
Yao’s garbled circuits protocol. Sharemind [BLW08] is a 3-party framework for arithmetic
circuits evaluated using linear secret sharing-based that also offers their own DSL. The VIFF
framework [DGKN09] provides a secure computation language and uses a scheduler, which
executes operations when operands are available. Similarly, TASTY [HKS+10] proposed a
DSL called TASTYL that allows to combine protocols that mix Yao’s garbled circuits with
additively homomorphic encryption. The compiler presented in [KSS12] also provides a DSL
and showed scalability to circuits consisting of billions of gates that were evaluated with a
variant of Yao’s protocol with security against malicious adversaries. Wysteria [RHH14] is a
strongly typed high-level language for the specification of secure multi-party computation
protocols. More recently, ObliVM [LWN+15] introduced a DSL that is compiled into Yao’s
garbled circuits with support for Oblivious RAM (ORAM).

MPC Compilers from ANSI C The following secure computation tools use a subset of the
ANSI C programming language as input. CBMC-GC [HFKV12] initiated this line of devel-
opment and used a SAT solver to generate size-optimized Boolean circuits from a subset of
ANSI C. More details on CMBC-GC can be found in Sect. 2.4.6. PCF [KSMB13] compiles into
a compact intermediate representation that also supports loops. Both the initial CBMC-GC
and PCF target Yao’s garbled circuits protocol and hence only optimize for size. An exten-
sion for CBMC-GC that focuses on depth-optimized circuits for GMW was presented with
ShallowCC [BHWK16]. PICCO [ZSB13] is a source-to-source compiler that allows parallel
evaluation and uses secure computation protocols based on linear secret sharing with at least
three parties.

Further results were presented, that focused on improving the compilers’ scalability [KSS12],
Obliv-C [ZE15], and Frigate [MGC+16]. An approach to formally verifying a tool-chain was
presented with CircGen [ABB+17].

Very recently, the authors of [CGR+17] proposed an solution for hybrid compilation of MPC
protocols called EzPC. However, while their main motivation is similar to ours in HyCC,
cf. Chapt. 5, our results differ in several key points. In EzPC, a developer needs to manually
split the input program into suitable modules and needs to manually resolve private array
accesses into multiplexer-like structures, which hardly goes beyond what’s already possible
using the underlying ABY framework. Furthermore, EzPC does not apply circuit optimizations
and does not consider depth-optimized Boolean circuits, as required for an efficient execution
with the GMW protocol in low-latency networks.

MPC Libraries There is a separate line of work, where the developer composes the circuits
to be evaluated securely from circuit libraries that are instantiated at runtime. This approach
has been proposed in FastGC [HEKM11; HS13] and VMCrypt [Mal11] both of which are based
on Yao’s garbled circuits. In fact, all implementations of the GMW protocol [CHK+12; SZ13;
DSZ15] are secure computation libraries. SPDZ [DPSZ12], and [LN17] are frameworks for
secret sharing over arithmetic circuit-based MPC protocols, that fall in the same category.

11

2 Preliminaries

MPC fromHardware Synthesis Tools The TinyGarble framework [SHS+15] was the first
work to consider using hardware-synthesis tools to generate Yao’s garbled circuits and store
them as sequential circuits. This leads to a more compact representation and better memory
locality, but identical number of cryptographic operations during garbling and evaluation.
We show follow up work in Chapt. 4, that also targets the GMW protocol.

Mixed-Protocol MPC Combining multiple secure computation protocols to utilize the ad-
vantages of each of the protocols is used in several works. To the best of our knowledge, the
first work that combined Yao’s garbled circuits and homomorphic encryption was [BPSW07]
who used this technique to evaluate branching programs with applications in remote di-
agnostics. The framework of [KSS13b], implemented in the TASTY compiler [HKS+10],
combines additively homomorphic encryption with Yao’s garbled circuits protocol and was
used for applications such as face-recognition. The L1 language [SKM11] is an intermediate
language for the specification of mixed-protocols that are compiled into Java programs.
Sharemind [BLW08] was extended to mixed-protocols in [BLR13; BLR14]. ABY 3 [MR18] is
a novel framework for hybrid secure 3-party computation with a honest majority. We present
our ABY framework in Chapt. 3.

There are also automated approaches to mixed-protocol MPC: In [KSS14] applications are
built from primitive operations that can individually be evaluated either using HE or garbled
circuits. An automated optimization based on integer programming or on a heuristic is
used to determine an optimal solution. The run-time is estimated using a performance
model, introduced in [SK11], that is parameterized by factors such as execution times of
cryptographic primitives, bandwidth, and latency of the network. In Chapt. 5 we present our
own solution to automated compilation of hybrid protocols from ANSI C input.

2.4.7 MPC Applications

At first MPC was seen as merely theoretic construct, however, a recent line of research has
improved MPC primitives drastically and showed that practical implementations of MPC
are possible. A very productive line of research, e.g., [MNPS04; BLW08; HEKM11; MLB12;
CHK+12; HFKV12; KSMB13; CMTB13; DSZ14; LHS+14; LWN+15; BK15], has been devoted
to positioning MPC as a practical tool and off-the-shelf solution for a wide variety of problems,
and to minimize the complexity of the current schemes. Using these recent breakthroughs,
the benefits of MPC can be utilized in some real-life applications such as [BCD+09; BTW12;
BJSV15]. Despite the immense potential of MPC, it is still a great challenge to implement
scalable real-world applications using MPC in practice.

Mixed-protocols have been used for several privacy-preserving applications, such as medical
diagnostics [BFK+09; BFL+11], fingerprint recognition [HMEK11], iris- and finger-code au-
thentication [BG11], computation on non-integers and Hidden Markov Models [FDH+13],
and matrix factorization [NIW+13]. Privacy-preserving regression models for recommender
systems are proposed in [NWI+13]. Hand-built hybrid protocols for neural networks were

12

2 Preliminaries

presented in [LJLA17] and 3-party hybrid MPC protocols for machine learning were pre-
sented in [MR18]. A solution for MPC-based surveys for multiple participants is proposed
in [BHKL18]. A privacy-preserving ridesharing system built on top of our ABY framework
was proposed in [AHHK18]. Prelude [DCC18] also uses ABY to privately ensure correctness
of interdomain routing using Software Defined Networking (SDN).

2.5 Private Information Retrieval (PIR)

PIR is a technique that was introduced by Chor et al. in the 1990s [CGKS95]. It refers to the
privacy-preserving querying of data by a client from one or multiple data sources, such that
these data sources cannot infer any information about the query or the query response. In
contrast to the client’s query, the available data in the database DB is considered public and
does not need to be protected from the client. This allows for a trivial solution: Sending the
entire database to the client, who then performs the query locally. However, this is usually
impractical and expensive, especially so for large databases. PIR schemes allow clients to
retrieve data without exposing their privacy, and require less communication (compared to
sending the entire DB), albeit with computational overhead. PIR schemes can be viewed as a
form of 1-out-of-B OT (cf. Sect. 2.3), where a receiver retrieves a single b-bit block out of B
blocks. The difference is that in PIR the database DB is public, while in OT, blocks that are
not queried must be hidden from the receiver. The communication in PIR needs to be strictly
smaller than the size of the DB, while for OT such a restriction does not exist.

PIR protocols can be grouped into single-server schemes, that offer computational security
and multi-server schemes, that can offer information-theoretic security but always require a
non-collusion assumption between the PIR servers.

2.5.1 Multi-Server PIR

The first work that introduced the term PIR was presented by Chor et al. [CGKS95] and
introduced information-theoretically secure PIR in a setting with multiple servers. We de-
scribe this scheme in more detail in Sect. 2.5.2. Several other multi-server PIR schemes
followed: [Gol07] proposes multi-server PIR schemes with robustness properties built from
cryptographic primitives like Shamir’s secret sharing or HE, cf. Sect. 2.6.2. An experimental
comparison of the multi-server PIR schemes of [CGKS95] and [Gol07] was given in [OG11].
A robust multi-server PIR scheme that allows multi-block queries was introduced in [HHG13].
Efficiency of robust multi-server PIR was improved in [DGH12; DG14]. Multi-server PIR with
verifiability was proposed in [ZS14]. An efficient multi-server scheme based on secret sharing
was presented in [Hen16].

13

2 Preliminaries

2.5.2 The CGKS Scheme [CGKS95]

In this section we describe the original linear summation PIR scheme by Chor et al. [CGKS95].
An example query of this scheme is depicted in Fig. 2.2. A database DB is replicated on k PIR
servers Si. The client C is interested in privately querying blockc at index c. The request qi
that C sends to server Si is a randomly chosen string of B bits for i ∈ {1, . . . , k− 1}. The k-th
request qk corresponds to the XOR of all other requests except for one bit flipped at the index
c of blockc. The result of the XOR of all requests is the elementary vector ec with length B
bits that has a 1 in position c and 0 everywhere else. The servers’ responses have a length
of b bits each and are the XOR of all blocks that the user requested in their query, i.e., if the
bit at index j was set in the client’s query qi , the server XORs block j into its response. When
clients have received a reply from all servers they calculate the XOR of all k responses and
get blocki , as all other blocks are contained an even number of times and cancel out due to
the XOR. We generalize this scheme and improve the communication at the expense of a
small number of symmetric cryptographic operations in RAID-PIR in Chapt. 8.

rnd1

rnd2

rnd3

flip4

00100 00000 00000 00000

q1

q2

q3

q4
⊕

e3 =

k
=

4
qu

er
ie

s

Figure 2.2: Example for querying the third block from a DB with B = 20 blocks using CGKS
with k = 4 servers.

2.5.3 Single-Server PIR

Private Information Retrieval with a single computationally bounded server was first in-
troduced in [KO97], and is often referred to as Computationally Private Information Re-
trieval (CPIR). Since then, several CPIR schemes have been proposed, e.g., with polylog-
arithmic communication [CMS99]; a survey of several CPIR schemes is given in [OS07].
In [CMO00] it was shown that CPIR implies Oblivious Transfer which gives strong evidence
that CPIR cannot be constructed based on weak computational assumptions such as one-way
functions. [SC07] claim that non-trivial CPIR protocols implemented on standard PC hard-
ware are orders of magnitude less time-efficient than trivially transferring the entire database.
However, a lattice-based CPIR scheme was proposed in [MG08] and experiments in [OG11]
demonstrate that this scheme can be more efficient than downloading the database. By using
a trusted hardware token, the computational assumptions for CPIR can be circumvented
and information-theoretic security can be achieved, e.g., as shown in [WDDB06; YDDB08;
DYDW10]. In [MBC13] it was shown how to exploit the massive parallelism available in
cloud computing to split the server’s workload on multiple machines using MapReduce. A
CPIR scheme natively allowing multi-queries was given in [GKL10]. [DG14] constructs a

14

2 Preliminaries

hybrid CPIR protocol that combines the multi-server PIR protocol of Goldberg [Gol07] with
the single-server CPIR protocol of Melchor and Gaborit [MG08], for security even if all servers
are corrupted. PIR scheme built from lattice-based cryptography was presented in [ABFK16].
A single-server scheme that allows multi-block queries and is used for anonymous messaging
is presented in [AS16; ACLS18]. The combination of both approaches, called hybrid PIR, was
presented in [DG14]. An extension of PIR, where data can directly be queried via keywords
instead of locations, was proposed in [CGN98].

2.5.4 PIR Applications

There is a multitude of applications for PIR schemes, with different motivations for hiding the
identity of items requested by the user. A typical reason is to prevent disclosure of personal
or business interests in information from a database, e.g., patents, medical articles, company
evaluations, product descriptions, or legal precedences. For example, knowledge about patent
requests may allow a competitor to identify directions of a company, and knowledge about
requests for medical papers by an individual may expose an illness. PIR can also be employed
to improve the scalability of Tor, as proposed in PIR-Tor [MOT+11]. Cappos [Cap13] applies
Chor et al.’s PIR scheme [CGKS95] to hide the specific software updates being retrieved, since
knowing the requested update may allow an attacker to identify a outdated system, that
might use potentially vulnerable software. PIR can also be used to privately query messages
from an encrypted mailbox [SCM05; BKOS07; MOT+11] and is a building block in the
private presence service DP5 [BDG15]. Moreover, building blocks of private and untraceable
communication services be reused in other privacy-critical applications, such as electronic
voting systems [BV14] or privacy-preserving location-based services [MCA06; HCE11; DSZ14].
A further interesting use case from [GHSG16], is to allow caching of encrypted web objects
by an untrusted Content Delivery Network (CDN), preventing the CDN from learning details
by identifying the requested objects.

2.6 Alternative Privacy-Preserving Techniques

There are several related techniques that aim to achieve similar goals like MPC, but are out
of the main focus of this dissertation.

2.6.1 Oblivious RAM (ORAM)

Oblivious Random Access Memory (ORAM) [GO96] is more powerful than PIR as it allows
not only private retrieval of data, but also private write-access. A combination of ORAM
and PIR was presented recently in [MBC14]. Burst ORAM [DSS14] allows efficient online
requests through precomputation. A simple ORAM scheme with small client storage was
presented with Path ORAM [SDS+13]. An MPC framework that directly integrated ORAM
was presented with ObliVM [LWN+15]. Recently, an efficient hierarchical ORAM scheme was
proposed in [ACN+17].

15

2 Preliminaries

2.6.2 Homomorphic Encryption (HE)

HE enables direct computation on encrypted data. The field can be grouped in additively
homomorphic schemes, such as Paillier [Pai99; DGK09], that allow only additions and
multiplications with public constants on ciphertexts. There are also somewhat homomorphic
schemes, that additionally allow a limited number of multiplications of ciphertexts. Fully
homomorphic encryption, that enables arbitrary operations on ciphertexts was initially
proposed in [Gen09], but is typically not efficient enough for practical use cases. Other
schemes are, e.g., [GGH+13; GKP+13]. However, such general schemes are typically too slow
for practical applications [GHS12].

2.6.3 Intel SGX and Trusted Hardware

Intel Software Guard Extensions (SGX) [CD16; JDS+16] is a recent instruction set extension
that allows programmers to perform computation on data stored within protected regions
of memory that are not accessible by unauthorized processes. Despite its promise, SGX is
currently the subject of many discussions regarding its real level of security, in contrast to MPC,
which is a well-established methodology with proven security guarantees. A major concern
regarding SGX programs is that timing or memory access patterns can leak information about
private data. SGX does not include any mechanism for coping with such leaks [BMD+17].
While ORAM techniques can be used to mitigate these concerns [TLP+16], this comes at the
price of increased complexity and non negligible obstacles to scalability.

Furthermore, there is ongoing research that focuses on applying side-channel attacks like
Spectre and Meltdown to extract confidential data from SGX enclaves [BMW+18]. There also
exist publicly available proof-of-concept implementations attacking SGX.1

Another general concern regarding SGX is Intel’s role as the centralized point of trust for key
distribution and attestation.

Because of the above SGX limitations, recent studies propose combining trusted execution en-
vironments like SGX with MPC to strengthen the privacy of outsourced computation [KPR+15;
GMF+16]. This follows a line of research where trusted execution environments such as
smart cards are used to enhance MPC protocols [FPS+11; JKSS10; DSZ14]

1https://github.com/lsds/spectre-attack-sgx

16

https://github.com/lsds/spectre-attack-sgx

Part I

Tools for Efficient and Usable MPC

17

3 ABY: A Framework for Efficient Mixed-Protocol
Secure Two-Party Computation

Results published in:

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY – A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation”. In: 22. Annual Network
and Distributed System Security Symposium (NDSS’15). Code: https://
encrypto.de/code/ABY. Internet Society, 2015. CORE Rank A*.

3.1 Introduction

MPC has made tremendous progress since the first theoretical feasibility results in the
1980s [Yao86; GMW87]. Ever since, several secure schemes have been introduced and
repeatedly optimized, yielding a large variety of different secure computation protocols
and flavors for several applications and deployment scenarios. This variety, however, has
made the development of efficient secure computation protocols a challenging task for non-
experts, who want to choose an efficient protocol for their specific functionality and available
resources. Furthermore, since at this point it is unclear which protocol is advantageous
in which situation, a developer would first need to prototype each scheme for his specific
requirements before he can start implementing the chosen scheme. This task becomes even
more tedious, time-consuming, and error-prone, since each secure computation protocol has
its own specifig representation, like Arithmetic or Boolean circuits, in which a functionality
has to be described.

The development of efficient secure computation protocols for a particular function and
deployment scenario has recently been addressed by IARPA in a request for informa-
tion (RFI) [IAR14]. Part of the vision that is given in this RFI is the automated generation of
secure computation protocols that perform well for novel applications and that can be used
by a non-expert in secure computation. As shown in Sect. 2.4.6, several tools have started
to bring this vision towards reality by introducing an abstract language that is compiled
into a protocol representation, thereby relieving a developer from having to specify the
functionality in the protocol’s (often complex) underlying representation. These languages
and compilers, however, are often tailored to one particular secure computation protocol and
translate programs directly into the protocol’s representation. The efficiency of protocols that

18

https://encrypto.de/code/ABY
https://encrypto.de/code/ABY

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

are generated by these compilers is hence bounded by the possibility to efficiently represent
the function in the particular representation, e.g., the multiplication of two ℓ-bit numbers has
a very large Boolean circuit representation of size O(ℓ2), or O(ℓ1.59) when using Karatsuba
multiplication [KO62; HKS+10].

To overcome the dependence on an efficient function representation and to improve effi-
ciency, several works proposed to mix secure computation protocols based on homomorphic
encryption with Yao’s garbled circuits protocol, e.g., [BPSW07; BFK+09; HMEK11; SK11;
BG11; KSS13b; NWI+13; NIW+13; FDH+13]. The general idea behind such mixed-protocols
is to evaluate operations that have an efficient representation as an Arithmetic circuit (i.e.,
additions and multiplications) using homomorphic encryption and operations that have an
efficient representation as a Boolean circuit (e.g., comparisons) using Yao’s garbled circuits.
These previous works show that using a mixed-protocol approach can result in better perfor-
mance than using only a single protocol. Several tools have been developed for designing
mixed-protocols, e.g., [HKS+10; SKM11; BLR13; BLR14], which allow the developer to
specify the functionality and the assignment of operations to secure computation protocols.
The assignment can even be done automatically as shown recently in [KSS14]. However, since
the conversion costs between homomorphic encryption and Yao’s garbled circuits protocol are
relatively expensive and the performance of homomorphic encryption scales very poorly with
increasing security parameter, these mixed-protocols achieve only relatively small run-time
improvements over using a single protocol.

3.1.1 Overview and Our Contributions

We present ABY(for Arithmetic, Boolean, and Yao sharing), a novel framework for developing
highly efficient mixed-protocols that allows a flexible design process. We design ABY using
several state-of-the-art techniques in secure computation and by applying existing protocols
in a novel fashion. We optimize sub-routines and perform a detailed benchmark of the
primitive operations. From these results we derive new insights for designing efficient secure
computation protocols. We apply these insights and demonstrate the design flexibility of ABY
by implementing three privacy-preserving applications: modular exponentiation, private set
intersection, and biometric matching. We give an overview of our framework and describe
our contributions in more detail next. ABY is intended as a base-line on the performance of
privacy-preserving applications, since it combines several state-of-the-art techniques and best
practices in secure computation. The source code of ABY is freely available on GitHub at
https://encrypto.de/code/ABY.

The ABY Framework On a very high level, our framework works like a virtual machine
that abstracts from the underlying secure computation protocols (similar to the Java Virtual
Machine that abstracts from the underlying system architecture). Our virtual machine
operates on data types of a given bit-length (similar to 16-bit short or 32-bit long data types
in the C programming language). Variables are either in Cleartext (meaning that one party
knows the value of the variable, which is needed for inputs and outputs of the computation)
or secret shared among the two parties (meaning that each party holds a share from which

19

https://encrypto.de/code/ABY

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

it cannot deduce information about the value). Our framework currently supports three
different types of sharings (Arithmetic, Boolean, and Yao) and allows to efficiently convert
between them, cf. Fig. 3.1. The sharings support different types of standard operations
that are similar to the instruction set of a CPU such as addition, multiplication, comparison,
or bitwise operations. Operations on shares are performed using highly efficient secure
computation protocols: for operations on Arithmetic sharings we use protocols based on
Beaver’s multiplication triples [Bea91], for operations on Boolean sharings we use the protocol
of Goldreich-Micali-Wigderson (GMW) [GMW87], and for operations on Yao sharings we use
Yao’s garbled circuits protocol [Yao86].

A
(Sect. 3.2.2)

C

B
(Sect. 3.2.3)

Y
(Sect. 3.2.4)

A2YB2A

Y2B

B2Y

Figure 3.1: Overview of the ABY framework that allows efficient conversions between
Cleartexts and three types of sharings: Arithmetic, Boolean, and Yao.

FlexibleDesignProcess A main goal of our framework is to allow a flexible design of secure
computation protocols.

1) We abstract from the protocol-specific function representations and instead use standard
operations. This allows to mix several protocols, even with different representations, and
allows the designer to express the functionality in form of standard operations as known from
high-level programming languages such as C or Java. Previously, designers had to manually
compose (or automatically generate) a compact representation for the specific protocol, e.g.,
a small Boolean circuit for Yao’s protocol. As we focus on standard operations, high-level
languages can be compiled into our framework (cf. Chapt. 5) and it can be used as backend
in several existing secure computation tools, e.g., L1 [SKM11; SK11; KSS14], SecreC [BLR13;
BLR14], or PICCO [ZSB13]. ABY has been used as backend by follow-up work, such as
EzPC [CGR+17].

2) By mixing secure computation protocols, our framework is able to tailor the resulting
protocol to the resources available in a given deployment scenario. For example, the GMW
protocol allows to precompute all cryptographic operations, but the online phase requires

20

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

several rounds of interaction (which is an issue for networks with high latency), whereas Yao’s
protocol has a constant number of rounds, but requires symmetric cryptographic operations
in the online phase.

Efficient Instantiation and Improvements Each of the secure computation techniques is
implemented using most recent optimizations and best practices such as batch precom-
putation of expensive cryptographic operations [DKL+13; CHK+12; SZ13]. For Arithmetic
sharing (Sect. 3.2.2) we generate multiplication triples via Paillier with packing [Pai99; Pul13]
or DGK with full decryption [DGK08; Gei10], for Boolean sharing (Sect. 3.2.3) we use the
multiplexer of [MS13] and OT extension [IKNP03; ALSZ13], and for Yao sharing (Sect. 3.2.4)
we use free XOR [KS08b], fixed-key AES garbling [BHKR13], and half-gates [ZRE15] As
novel contributions and advances over state-of-the-art techniques for efficient protocol design,
we combine existing approaches in a novel way. For Arithmetic sharing, we show how to
multiply values using symmetric key cryptography which allows faster multiplication by one
to three orders of magnitude (Sect. 3.2.2). We outline how to efficiently convert from Boolean
respectively Yao sharing to Arithmetic sharing, and show how to combine Boolean and Yao
sharing to achieve better run-time compared to a pure Boolean or Yao instantiation in our
paper [DSZ15]. Finally, we outline how to modify the fixed-key AES garbling of [BHKR13] to
achieve better performance in OT extension (Sect. 3.3.1).

Feedback on Efficient Protocol Design We perform benchmarks of our framework from
which we derive new best-practices for efficient secure computation protocols. We show that
for multiplications in many cases OT extensions for precomputing multiplication triples is
faster than homomorphic encryption (Sect. 3.3.3). With our OT-based conversion protocols,
converting between different share representations is considerably cheaper than the methods
used in previous works, e.g., [HKS+10; KSS14], and scales well with increasing security
parameter. In fact, on a low latency network, the conversion costs between different share
representations are so cheap that already for a single multiplication it pays off to convert into
a more suited representation, perform the multiplication, and convert back into the source
representation, as shown in Sect. 3.3.4.

Applications We show that our ABY framework and techniques can be used to implement
and improve performance of several privacy-preserving applications. We present implemen-
tations of mixed protocols for modular exponentiation, PSI and biometric matching in our
paper [DSZ15]. Follow-up work line MiniONN [LJLA17] relied on ABY to implement neural
networks.

3.2 Sharing Types

In this section we detail the sharing types that our ABY framework uses: Arithmetic shar-
ing (Sect. 3.2.2), Boolean sharing (Sect. 3.2.3), and Yao sharing (Sect. 3.2.4). For each

21

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

sharing type we describe the semantics of the sharing, standard operations, and the state of
the art in the respective sub-sections.

3.2.1 Notation

We denote a shared variable x as 〈x〉t . The superscript t ∈ {A, B, Y } indicates the type of
sharing, where A denotes Arithmetic sharing, B denotes Boolean sharing, and Y denotes Yao
sharing. The semantics of the different sharing types and operations are defined in Sect. 3.2.
We also allow inputs and outputs to be in cleartext form denoted by C . We refer to the
individual share of 〈x〉t that is held by party Pi as 〈x〉ti . In a similar fashion, we define a
sharing operator 〈x〉t = Shrti (x) meaning that Pi shares its input value x with P1−i and a
reconstruction operator x = Rect

i

�

〈x〉t
�

meaning that Pi obtains the value of x as output.
When both parties obtain the value of x , we write Rect

�

〈x〉t
�

. We denote the conversion of
a sharing of representation 〈x〉s into another representation 〈x〉d with s, d ∈ {A, B, Y } and
s ̸= d as 〈x〉d = s2d (〈x〉s), e.g., A2B converts an Arithmetic share into a Boolean share.
Note that we require that no party learns any additional information about x during this
conversion. When performing an operation ⊙ on shares, we write 〈z〉d = 〈x〉s0⊙s0,s1

d 〈y〉s1 , for
⊙s0,s1

d : 〈x〉s0 ×〈y〉s1 7→ 〈z〉d and s0, s1, d ∈ {A, B, Y }. If all three variables are of the same type,
i.e., s0 = s1 = d, we write 〈z〉d = 〈x〉s0 ⊙ 〈y〉s1 .

3.2.2 Arithmetic Sharing

For Arithmetic sharing an ℓ-bit value x is shared additively in the ring Z2ℓ (integers modulo 2ℓ)
as the sum of two values. The described protocols are based on [ABL+04; PBS12; KSS14].
First we define the sharing semantics and operations and give an overview over related
work on secure computation based on Arithmetic sharing. Then we detail how to generate
Arithmetic multiplication triples using homomorphic encryption. In the following, we assume
all Arithmetic operations to be performed in the ring Z2ℓ , i.e., all operations are (mod 2ℓ).

Sharing Semantics

Arithmetic sharing is based on additively sharing private values between the parties. Every
ℓ-bit value 〈x〉A of x is secret shared as 〈x〉A0 + 〈x〉

A
1 ≡ x (mod 2ℓ) with 〈x〉A0, 〈x〉A1 ∈ Z2ℓ . To

secret share arithmetic inputs, parties run ShrAi (x): Pi chooses r ∈R Z2ℓ , sets 〈x〉Ai = x − r,
and sends r to P1−i, who sets 〈x〉A1−i = r. To reconstruct arithmetic outputs, parties run
RecA

i (x): P1−i sends its share 〈x〉A1−i to Pi who computes x = 〈x〉A0 + 〈x〉
A
1.

In an outsourcing scenario a separate input party chooses r ∈R Z2ℓ and shares input x by
computing 〈x〉A1 = x − r (mod 2ℓ), and sending r = 〈x〉A0 to P0 and 〈x〉A1 to P1. For outsourced
output reconstruction P0 and P1 send their shares to an output party who computes the
plaintext x = 〈x〉A0 + 〈x〉

A
1 (mod 2ℓ).

22

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

Operations

Every Arithmetic circuit is a sequence of addition and multiplication gates, evaluated as
follows: For addition 〈z〉A = 〈x〉A+ 〈y〉A Pi locally computes 〈z〉Ai = 〈x〉

A
i + 〈y〉

A
i . The mul-

tiplication 〈z〉A = 〈x〉A · 〈y〉A is performed using a precomputed Arithmetic multiplication
triple [Bea91] of the form 〈c〉A = 〈a〉A · 〈b〉A: Pi sets 〈e〉Ai = 〈x〉

A
i −〈a〉

A
i and 〈 f 〉Ai = 〈y〉

A
i −〈b〉

A
i ,

both parties perform RecA (e) and RecA (f), and Pi sets 〈z〉Ai = i · e · f + f · 〈a〉Ai + e · 〈b〉Ai + 〈c〉
A
i .

We discuss protocols to precompute Arithmetic multiplication triples later in this section.

State-of-the-Art

The protocols we employ in Arithmetic sharing use additive sharing in the ring Z2ℓ . They
were described in [ABL+04; PBS12; KSS14], and provide security in the semi-honest setting.
The BGW protocol [BGW88] was the first protocol for secure multi-party computation of
Arithmetic circuits that is secure against semi-honest parties for up to t < n/2 corrupt parties
and secure against malicious adversaries for up to t < n/3 corrupt parties. The Virtual
Ideal Function Framework (VIFF) [DGKN09] is a generic software framework for secure
computation schemes in asynchronous networks and implemented secure computation using
precomputed Arithmetic multiplication triples. The SPDZ protocol [DPSZ12; DKL+13] allows
secure computation in the presence of t = n− 1 corrupted parties in the malicious model; a
run-time environment for the SPDZ protocol was presented in [KSS13a; KOS16]. Arithmetic
circuits for computing various primitives have been proposed in [CH10; CS10].

Generating Arithmetic Multiplication Triples via Additively Homomorphic Encryption

Typically, Arithmetic multiplication triples of the form 〈a〉A · 〈b〉A = 〈c〉A are generated in the
setup phase using an additively homomorphic encryption scheme as shown in Prot. 3.1. This
protocol for generating multiplication triples was mentioned as “well known folklore” in
[ABL+04, Appendix A]. For homomorphic encryption we use either the cryptosystem of Pail-
lier [Pai99; DJ01; DJN10], or the one of Damgård-Geisler-Krøigaard (DGK) [DGK08; DGK09]
with full decryption using the Pohlig-Hellman algorithm [PH78] as described in [Gei10;
Mak10; BG11]. In Paillier encryption, the plaintext space is ZN and we use statistical blinding
with parameter r; in DGK encryption we set the plaintext space to be Z22ℓ+1 and use perfect
blinding with parameter r. For proofs of security and correctness we refer to [PBS12] and
[Pul13].

Complexity For asymmetric security parameter ϕ, to generate an ℓ-bit multiplication triple,
P0 and P1 exchange 3 ciphertexts, each of length 2ϕ bits for Paillier (resp. ϕ bits for DGK),
resulting in a total communication of 6ϕ bits (resp. 3ϕ bits). For Paillier encryption we also
use the packing optimization described in [PBS12] that packs together multiple messages
from P1 to P0 into a single ciphertext, which reduces the number of decryptions and reduces
communication per multiplication triple to 4ϕ + 2ϕ/⌊ϕ/(2ℓ+ 1+σ)⌋ bits.

23

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

P0 P1, holding public key of P0

〈a〉A0, 〈b〉A0 ∈R Z2ℓ 〈a〉A1, 〈b〉A1 ∈R Z2ℓ

r ∈R Z22ℓ+1+σ for Paillier

(resp. r ∈R Z22ℓ+1 for DGK)

〈c〉A1 = 〈a〉
A
1 · 〈b〉

A
1 − r (mod 2ℓ)

Enc0

�

〈a〉A0
�

,Enc0

�

〈b〉A0
�

d = Enc0

�

〈a〉A0
�〈b〉A1 · Enc0

�

〈b〉A0
�〈a〉A1 · Enc0 (r)

〈c〉A0 = 〈a〉
A
0 · 〈b〉

A
0 +Dec0 (d) (mod 2ℓ)

Protocol 3.1: Generating Arithmetic MTs via HE.

Generating Arithmetic Multiplication Triples via Oblivious Transfer

Instead of using homomorphic encryption, Arithmetic multiplication triples can be generated
based on OT extension. The protocol was proposed in [Gil99, Sect. 4.1] and used in [BCF+14].
It allows to efficiently compute the product of two secret-shared values using OT. In our
paper [DSZ15], we describe a variant of the protocol that uses slightly more efficient correlated
OT extension.

3.2.3 Boolean Sharing

The Boolean sharing uses XOR-based secret sharing to share a variable. We evaluate func-
tions represented as Boolean circuits using the protocol by Goldreich-Micali-Wigderson
(GMW) [GMW87]. In the following, we first define the sharing semantics, describe how
operations are performed, and give an overview over related work.

Sharing Semantics

Boolean sharing is built from XOR-based secret sharing. To simplify presentation, we assume
single bit values; for ℓ-bit values each operation is performed ℓ times in parallel.

A Boolean share 〈x〉B of a private bit x is shared between the two parties, such that 〈x〉B0 ⊕
〈x〉B1 = x with 〈x〉B0 , 〈x〉B1 ∈ Z2. To share a Boolean input value ShrBi (x) Pi chooses r ∈R {0, 1},
computes 〈x〉Bi = x⊕ r, and sends r to P1−i who sets 〈x〉B1−i = r. For reconstructing a Boolean
value RecB

i (x) P1−i sends its share 〈x〉B1−i to Pi who computes x = 〈x〉B0 ⊕ 〈x〉
B
1 .

In an outsourcing scenario a separate input party chooses r ∈R {0,1}, shares input x by
computing 〈x〉B1 = x ⊕ r, and sending r = 〈x〉B0 to P0 and 〈x〉B1 to P1. For outsourced output
reconstruction P0 and P1 send their shares to an output party who computes the plaintext
x = 〈x〉B0 ⊕ 〈x〉

B
1 .

24

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

Operations

Every efficiently computable function can be expressed as a Boolean circuit consisting of
XOR and AND gates, for which we detail the evaluation in the following. An XOR 〈z〉B =
〈x〉B ⊕ 〈y〉B is computed locally by every party Pi as 〈z〉Bi = 〈x〉

B
i ⊕ 〈y〉

B
i . An AND 〈z〉B =

〈x〉B∧〈y〉B is evaluated using a precomputed Boolean multiplication triple 〈c〉B = 〈a〉B∧〈b〉B

as follows [Bea91]: Pi computes 〈e〉Bi = 〈a〉
B
i ⊕ 〈x〉

B
i and 〈 f 〉Bi = 〈b〉

B
i ⊕ 〈y〉

B
i , both parties

perform RecB (e) and RecB (f), and Pi sets 〈z〉Bi = i · e · f ⊕ f · 〈a〉Bi ⊕ e · 〈b〉Bi ⊕ 〈c〉
B
i . As

described in [ALSZ13], a Boolean multiplication triple can be precomputed efficiently using
two R-OTs run in opposite directions. For multiplexer operations we use a protocol proposed
in [MS13] that requires only R-OT2

ℓ
, whereas evaluating a MUX circuit with ℓ AND gates

requires R-OT2ℓ
1 . More detailed, an ℓ-bit vector AND (or multiplexer) is evaluated using a

vector multiplication triple, which consists of two random bits a0, a1 ∈ {0, 1} and four random
ℓ-bit strings b0, b1, c0, c1 ∈ {0, 1}ℓ with c0[i]⊕ c1[i] = (a0 ⊕ a1)∧ (b0[i]⊕ b1[i]) for 1≤ i ≤ ℓ,
where [i] denotes the i-th bit of a string. Similar to a regular multiplication triple, a vector
multiplication triple can be generated using two OTs on random inputs [PSZ14].

For further standard functionalities we use the depth-optimized circuit constructions summa-
rized in [SZ13].

State-of-the-Art

The first implementation of the GMW protocol for multiple parties and with security in the
semi-honest model was given in [CHK+12]. Optimizations of this framework for the two-
party setting were proposed in [SZ13] and further improvements to efficiently precompute
multiplication triples using R-OT extension were given in [ALSZ13]. These works show that
the GMW protocol achieves good performance in low-latency networks. TinyOT [NNOB12;
LOS14] extended the GMW protocol to the covert and malicious model.

3.2.4 Yao Sharing

In Yao’s garbled circuits protocol [Yao86] for secure two-party computation, one party, called
garbler, encrypts a Boolean function to a garbled circuit, which is evaluated by the other
party, called evaluator. More detailed, the garbler represents the function to be computed
as Boolean circuit and assigns to each wire w two wire keys (kw

0 , kw
1) with kw

0 , kw
1 ∈ {0,1}κ.

The garbler then encrypts the output wire keys of each gate on all possible combinations of
the two input wire keys using an encryption function Gb. He then sends the garbled circuit
(consisting of all garbled gates), together with the corresponding input keys of the circuit to
the evaluator. The evaluator iteratively decrypts each garbled gate using the gate’s input wire
keys to obtain the output wire key and finally reconstructs the cleartext circuit output.

In the following, we assume that P0 acts as garbler and P1 acts as evaluator and detail
the Yao sharing assuming a garbling scheme that uses the free-XOR [KS08b], point-and-
permute [MNPS04], and half-gates [ZRE15] optimizations. Using these techniques, the

25

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

garbler randomly chooses a global κ-bit string R with R[0] = 1. For each wire w, the wire keys
are kw

0 ∈R {0, 1}κ and kw
1 = kw

0 ⊕ R. The least significant bit kw
0 [0] resp. kw

1 [0] = 1− kw
0 [0] is

called permutation bit. We point out that the Yao sharing can also be instantiated with other
garbling schemes.

Sharing Semantics

Intuitively, P0 holds for each wire w the two keys kw
0 and kw

1 and P1 holds one of these keys
without knowing to which of the two cleartext values it corresponds. To simplify presentation,
we assume single bit values; for ℓ-bit values each operation is performed ℓ times in parallel.
A garbled circuits share 〈x〉Y of a value x is shared as 〈x〉Y0 = k0 and 〈x〉Y1 = kx = k0⊕ xR. To
share an input ShrY0 (x), the garbler P0 samples 〈x〉Y0 = k0 ∈R {0, 1}κ and sends kx = k0 ⊕ xR
to the evaluator P1. ShrY1 (x): both parties run C-OT1

κ where P0 acts as sender, inputs the
correlation function fR(x) = (x ⊕ R) and obtains (k0, k1 = k0 ⊕ R) with k0 ∈R {0,1}κ and
P1 acts as receiver with choice bit x and obliviously obtains 〈x〉Y1 = kx . To obtain the
plaintext output RecY

i (x), P1−i sends its permutation bit π= 〈x〉Y1−i[0] to Pi who computes
x = π⊕ 〈x〉Yi [0].

Operations

Using Yao sharing, a Boolean circuit consisting of XOR and AND gates is evaluated as follows:
The XOR 〈z〉Y = 〈x〉Y ⊕ 〈y〉Y is evaluated using the free-XOR technique [KS08b], where Pi
locally computes 〈z〉Yi = 〈x〉

Y
i ⊕〈y〉

Y
i . The AND 〈z〉Y = 〈x〉Y ∧〈y〉Y is evaluated as follows: P0

creates a garbled table using Gb〈z〉Y0
�

〈x〉Y0 , 〈y〉Y0
�

, where Gb is a garbling function as defined

in [BHKR13]. P0 sends the garbled table to P1, who decrypts it using the keys 〈x〉Y1 and 〈y〉Y1
to obtain 〈z〉Y1 . Other standard functionalities are implemented using the size-optimized
circuit constructions summarized in [KSS09].

State-of-the-Art

Beyond the optimizations mentioned above, several further improvements for Yao’s garbled
circuits protocol exist: garbled-row reduction [NPS99; PSSW09] and pipelining [HEKM11],
where garbled tables are sent in the online phase. A popular implementation of Yao’s garbled
circuits protocol in the semi-honest model was presented in [HEKM11]. A formal definition
for garbling schemes, as well as an efficient instantiation of Gb using fixed-key AES was
given in [BHKR13]. In our implementation we use these state-of-the-art optimizations of
Yao’s garbled circuits protocol except pipelining (we want to minimize the complexity of the
online phase and hence generate and transfer garbled circuits in the setup phase). To achieve
security against covert and malicious adversaries, some implementations use the cut-and-
choose technique, e.g., [KSS12; FN13; SS13; CMTB13]. The most recent optimization that
we also implement in ABY is half-gates [ZRE15], that allows to reduce the communication
even further at the expense of slightly more computation.

26

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

3.3 Implementation and Benchmarks

In the following section, we provide insights on the implementation of our ABY frame-
work (Sect. 3.3.1). We then outline the deployment scenarios for our benchmarks (Sect. 3.3.2).
We perform a theoretical and empirical comparison of the multiplication triple generation
using Paillier, DGK, and OT (Sect. 3.3.3). We list one-time initialization costs in Sect. 3.3.3.
Finally, we benchmark protocol conversions and primitive operations (Sect. 3.3.4).

3.3.1 Design and Implementation

The main design-goal of our ABY framework is to achieve an efficient online phase, which is
why we batch-precompute all cryptographic operations in parallel in the setup phase (the only
remaining cryptographic operations in the online phase is symmetric crypto for evaluating
garbled circuits). If precomputation is not possible, the setup and online phase could be
interleaved to decrease the total computation time. Our framework has a modular design that
can easily be extended to additional secure computation schemes, computing architectures,
and new operations, while also allowing special-purpose optimizations on all levels of the
implementation. Our framework allows to focus on applications by abstracting from internal
representations of sharings and protocol details.

We build on the C++ GMW and Yao’s garbled circuits implementation of [CHK+12] with the
optimized two-party GMW routines of [SZ13], the fixed-key AES garbling routine of [BHKR13],
half-gates [ZRE15], and the OT extension implementation of [ALSZ13]. The generation
of Arithmetic multiplication triples using Paillier and DGK is written in C using the GNU
Multiple Precision Arithmetic Library (GMP) and was inspired by libpaillier1. We include
several algorithmic optimizations for Paillier’s cryptosystem as proposed in [DJN10] and use
packing [Pai99; Pul13] to combine several multiplication triples into one Paillier ciphertext.
Our implementation optimizations for both Paillier and DGK include encryption using fixed-
base exponentiation and the Chinese remainder theorem (CRT), as well as decryption using
CRT. In the multiplication triple protocol we use double-base exponentiations.

For Boolean and Yao sharings, we implement addition (ADD), multiplication (MUL), compari-
son (CMP), equality test (EQ), and multiplexers (MUX) using optimized circuit constructions
described in [KSS09; SZ13; MS13]. We benchmark the Boolean sharing on depth-optimized
circuits and the Yao sharing on size-optimized circuits. For arithmetic sharing, we only imple-
ment addition and multiplication. Protocols for bitwise operations on arithmetic sharings can
be realized using bit-decomposition. More efficient protocols for EQ and CMP on Arithmetic
shares were proposed in [CH10], but they either require O(ℓ) multiplications of ciphertexts
in an order-q subgroup (i.e., for symmetric security parameter κ, q is a prime of bit length
2κ) and constant rounds or O(ℓ) multiplications of cipher-texts with elements in a small
field (e.g., Z28) and O(log2 ℓ) rounds. In contrast, the EQ and CMP we use need only O(ℓ)

1http://acsc.cs.utexas.edu/libpaillier/

27

http://acsc.cs.utexas.edu/libpaillier/

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

symmetric cryptographic operations and constant rounds: we transform the Arithmetic share
into a Yao share and perform the operations with Yao.

ABY supports inputs to be provided by the parties P0 and P1 or to be supplied from external
input parties in an outsourcing scenario. Similarly, outputs can be reconstructed by P0, P1
and also by separate output parties that receive outputs from outsourced MPC.

3.3.2 Deployment Scenarios

For the performance evaluation of ABY, we use two deployment scenarios: a local setting
(low-latency, high-bandwidth) and an intercontinental cloud setting (high-latency). These two
scenarios cover two extremes in the design space as latency heavily affects the performance
of Boolean and Arithmetic sharings.

Local setting In the local setting, we run the benchmarks on two Desktop PCs, each equipped
with an Intel Haswell i7-4770K CPU with 3.5 GHz and 16 GB RAM, that are connected via
Gigabit-LAN. The average run-time variance in the local setting was 15%. For algorithms which
use a pipelined computation process (e.g., the multiplication triple generation algorithms),
we send packets of size 50 kB.

Cloud setting In the cloud setting, we run the benchmarks on two Amazon EC2 c3.large

instances with a 64-bit Intel Xeon dualcore CPU with 2.8 GHz and 3.75 GB RAM. One virtual
machine is located at the US east coast and the other one in Japan. The average bandwidth
in this scenario was 70 MBit/s, while the latency was 170 ms. In our measurements we
rarely encountered outliers with more than twice of the average run-time, probably caused
by the network, which we omit from the results. The resulting average run-time variance
in the cloud setting was 25%. For algorithms which use a pipelined computation process,
we operate on larger blocks compared to the local setting and send packets of size 32 MB to
achieve a lower number of communication rounds.

We run all benchmarks using two threads in the setup phase (except for Yao’s garbled circuits,
which we run with one thread as its possibility to parallelize depends on the circuit structure)
and one thread in the online phase. All machines use the AES new-instruction set (AES-NI)
for maximum efficiency of symmetric cryptographic operations. All experiments are the
average of 10 executions unless stated otherwise.

3.3.3 Efficient Multiplication Triple Generation

We benchmark the generation of Arithmetic multiplication triples (used for multiplication in
Arithmetic sharing, cf. Sect. 3.2.2) for legacy-, medium-, and long-term security parameters (cf.
Sect. 2.1) and for typical data type sizes used in programming languages (ℓ ∈ {8, 16, 32, 64}
bits) using two threads. We measure the generation of 100 000 multiplication triples excluding
the time for the base-OTs and generation of public and private keys, which we depict separately
in Sect. 3.3.3, since they only need to be computed once and amortize fairly quickly. The

28

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

communication costs and average run-times for generating one multiplication triple are
depicted in Tab. 3.1.

Table 3.1: Overall amortized complexities for generating one ℓ-bit multiplication triple using
Homomorphic Encryption or Oblivious Transfer Extension using two threads.
Smallest values marked in bold.

Communication [Bytes] Time [µs]
Local Cloud

Bit-length ℓ 8 16 32 64 8 16 32 64 8 16 32 64

Paillier-based
legacy 528 531 541 555 245 246 278 328 842 867 990 1 139
medium 1 039 1 043 1 051 1 067 1 430 1 475 1 572 1 748 4 485 4 654 5 198 5 669
long 1 551 1 555 1 563 1 579 4 309 4 374 4 565 4 957 12 990 13 080 13 805 14 614

DGK-based
legacy 384 384 384 384 94 104 151 322 449 464 572 1 134
medium 768 768 768 768 259 313 465 1 020 971 1 128 1 651 3 107
long 1 152 1 152 1 152 1 152 534 629 929 2 005 1 894 2 118 3 049 6 319

Oblivious Transfer Extension-based
legacy 169 354 772 1 800 3 4 8 20 39 62 86 170
medium 233 482 1 028 2 312 3 6 10 24 44 77 107 219
long 265 546 1 156 2 568 3 6 11 27 46 82 110 224

The OT-based protocol is in all tested cases faster than the Paillier-based and the DGK-based
protocols: in the local setting by a factor of 15 – 1 400 for Paillier and by a factor of 15 – 180
for DGK and in the cloud setting by a factor of 6 – 280 for Paillier and by a factor of 6 – 40
for DGK. DGK is more efficient than Paillier for all parameters due to the shorter exponents
for encryption and smaller ciphertext size. The run-time of DGK depends heavily on the
bit-length ℓ of the multiplication triples, such that for very large values of ℓ Paillier might be
preferable. In terms of communication, the DGK-based protocol is better than the OT-based
protocol for longer bit-lengths (ℓ = 32 and ℓ = 64), at most by factor 4, while for short
bit-lengths it is the opposite.

Overall, our experiments demonstrate that using OT to precompute multiplication triples is
substantially faster than using homomorphic encryption and scales much better to higher
security levels. Moreover, for homomorphic encryption our method of batching together all ho-
momorphic encryption operations in the setup phase allows to make full use of optimizations
such as packing. In contrast, when using homomorphic encryption for additions/multiplica-
tions during the online phase of the protocol, as it was used in previous works (cf. Sect. 3.1),
such optimizations can only be done when the same homomorphic operations are computed
in parallel, which depends on the application. This clearly demonstrates that using OT and
multiplication triples is much more efficient than using homomorphic encryption.

Initialization Costs

In Tab. 3.2 we give the initialization costs for the Paillier-based, DGK-based, and OT-based
multiplication triple generation. For Paillier and DGK, these costs include key generation, key

29

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

exchange and precomputations for fixed-base exponentiations. The key generation (given
in parentheses) has to be done only once by the server, as keys can be re-used for multiple
clients. The key exchange and fixed-base precomputation have to be performed per-client.
The depicted values are for ℓ = 64-bit multiplication triples. Smaller multiplication triple
sizes will result in slightly faster key generation for DGK. For OT, the initialization costs
include the Naor-Pinkas base-OTs [NP01], which have to be performed once between each
client and server. Note that the base-OTs are also required for Boolean and Yao sharing, but
only need to be computed once.

Table 3.2: Initialization costs for homomorphic encryption and OT-based protocols for differ-
ent security parameters and ℓ= 64-bit multiplication triples.

Security Level Paillier-based DGK-based OT-based

Communication [Bytes]
legacy 384 392 10 496
medium 768 776 29 184
long-term 1 152 1 160 49 920

Local Runtime [ms] (one-time key generation)
legacy 34 (22) 42 (232) 12
medium 114 (192) 12 (10 868) 62
long-term 581 (788) 22 (104 432) 164

Cloud Runtime [ms] (one-time key generation)
legacy 346 (32) 287 (284) 412
medium 357 (296) 217 (16 066) 657
long-term 754 (1 258) 288 (130 173) 989

3.3.4 Benchmarking of Primitive Operations

We benchmark the costs for evaluating 1000 primitive operations of each sharing and all
transformations in our framework by measuring the run-time in the local and cloud scenario
and depict the asymptotic communication for ℓ= 32-bit operands. Here we use long-term
security parameters (cf. Sect. 2.1). For the online phase, we build two versions of the circuit.
In the first version (Seq), we run the 1 000 operations sequentially to measure the latency of
operations; in the second version (Par) we run 1 000 operations in parallel to measure the
throughput of operations. The benchmark results are given in Fig. 3.2.

The first and most crucial observation we make from the results in the local setting is
that the conversion costs between the sharings are so small that they even allow a full
round of conversion for a single operation. For instance, for multiplication, where the
best representation is Arithmetic sharing, converting from Yao shares to Arithmetic shares,
multiplying, and converting back to Yao shares is more efficient than performing multiplication
in Yao sharing (76 µs vs. 1 003 µs setup time, 183 µs vs. 970 µs sequential online time, and
259 µs vs. 1973 µs total sequential run-time). The most prominent operations for which a
conversion can pay off are multiplication (MUL), comparison (CMP), and multiplexer (MUX),
for which we depict for each sharing the size (a measure for the number of crypto operations

30

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

needed in the setup phase and also for Yao in the online phase) and number of communication
rounds in Tab. 3.3. The lowest size in Tab. 3.3 (marked in bold) matches with the lowest
setup and parallel online time in the local setting. Comparison is best done in Yao sharing,
because the Boolean sharing requires a logarithmic number of rounds. Multiplexer operations
can be evaluated very efficiently with Boolean sharing, especially when multiple multiplexer
operations are performed in parallel, since their size and number of rounds are constant. Note
that the setup time for multiplication is higher compared to the evaluation of multiplication
protocols in Sect. 3.3.3 since we amortize over less multiplication triples.

A
(Sect. 3.2.2)

B
(Sect. 3.2.3)

Y
(Sect. 3.2.4)

A2Y
Local Cloud

Comm
Seq Par Seq Par

66.2 46.4 436 876.5 2 755.1 3 076

B2A
Local Cloud

Comm
Seq Par Seq Par

27.3 18.8 419 841.7 1 205.8 578

Y2B (Seq / Par)
Local Cloud Comm

10.2 / 7.5 14.7 / 8.8 0

B2Y
Local Cloud

Comm
Seq Par Seq Par

20.8 18.5 479 774.7 1 294.8 1 028

Boolean Sharing

Op
Local Cloud

Comm
Seq Par Seq Par

ADD 1 997 124 2 471 105 4 235 7 540
MUL 10 325 637 6 745 539 11 784 65 520
XOR 3.4 0.9 4.7 1.3 0
AND 148 13 193 204 1 302 1 040
CMP 756 43 1 080 214 2 369 2 893
EQ 628 18 1 130 028 2 161 1 008
MUX 121 2 225 174 510 40

Arithmetic Sharing

Op
Local Cloud

Comm
Seq Par Seq Par

ADD 1.4 0.6 0.3 0.1 0
MUL 155 19 239 123 1 920 1 156

Yao Sharing

Op
Local Cloud

Comm
Seq Par Seq Par

ADD 68 48 2 354 2 323 1 536
MUL 1 973 1 146 12 681 11 567 96 768
XOR 23 20 1 155 1 151 0
AND 49 43 2 325 2 316 1 536
CMP 65 46 2 327 2 305 1 536
EQ 57 45 2 333 2 312 1 488
MUX 59 46 2 318 2 300 1 536

Figure 3.2: Total time (setup + online in µs) and communication (in Bytes) for one atomic
operation on ℓ = 32-bit values in a local and cloud scenario, averaged over 1 000
sequential / parallel operations using long-term security parameters.

Latency (Seq): The best performing sharing for sequential functionalities depends on the
network latency. While in the local setting a conversion from Yao to Arithmetic sharing
for performing multiplication is more efficient than computing the multiplication in Yao,
multiplication using Yao’s protocol becomes more efficient in the cloud setting. This is due to
the impact of the high latency on the communication rounds, which have to be performed in
Arithmetic and Boolean sharing. In contrast, Yao sharing has a constant number of interactions
and is thus better suited for higher latency networks.

Throughput (Par): Instantiating operations in parallel greatly improves the online run-time in
the Arithmetic and Boolean sharing, mainly because the number of rounds is the same as doing
a single operation. While Yao’s protocol also improves with parallel circuit instantiations,
these benefits are smaller and mostly due to tto memory locality. Hence, Arithmetic and
Boolean sharing benefit more more from parallel circuit evaluation, than garbled circuits.

31

3 ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation

Table 3.3: Asymptotic complexities of selected operations in each sharing on ℓ-bit val-
ues; smallest numbers in bold. Not implemented operations marked with —
(cf. Sect. 3.3.1).

Sharing
MUL CMP MUX

size rounds size rounds size rounds

Arithmetic ℓ 1 — — — —
Boolean 2ℓ2 ℓ 3ℓ log2 ℓ 1 1
Yao 2ℓ2 0 ℓ 0 ℓ 0

3.3.5 GMW vs. Yao

There are two different approaches for secure two-party computation on Boolean Circuits:
the GMW protocol [GMW87] or Yao’s garbled circuits [Yao86]. In this section we justify why
GMW is beneficial for many implementations.

The properties of each protocol make it advantageous for use in different scenarios. A core
difference appears when looking at network latency and the multiplicative depth of the
evaluated circuit. GMW requires communication rounds that with the depth, while Yao’s
garbled circuits protocol requires a constant number of rounds. In some cases evaluation
using GMW can still be beneficial, even if the evaluated circuits have a high depth. In an
outsourcing scenario, this can be mitigated by using a low-latency network between the
computational parties P0 and P1. Concretely, GMW has the following advantages over Yao’s
garbled circuits:

Precomputation GMW allows precomputation of all symmetric cryptographic operations
and communication independently of the circuit and its inputs. Additionally, this setup phase
can be parallelized and easily computed by multiple machines.

Multi-Party GMW allows for easy extension to multiple computing parties, which is good
for settings where we might want to distribute trust to more parties.

BalancedWorkload Unlike Yao’s protocol, GMW balances the workload equally between
all computational parties.

Memory Consumption The memory consumption for circuit evaluation is much lower for
GMW, since GMW only needs to process single bits while Yao’s garbled circuits needs to
process symmetric keys of length κ= 128 bits.

SIMD Evaluation GMW allows more efficient parallel evaluation of gates by processing
multiple bits per register, which is especially important for large circuits.

Vector ANDs GMW supports vector ANDs, that reduce the number of required OTs and
allows the construction of efficient MUX gates.

32

4 Automated Synthesis of Optimized Circuits for MPC

Results published in:

[DDK+15] D. DEMMLER, G. DESSOUKY, F. KOUSHANFAR, A.-R. SADEGHI, T. SCHNEIDER,
S. ZEITOUNI. “Automated Synthesis of Optimized Circuits for Secure
Computation”. In: 22. ACM Conference on Computer and Communications
Security (CCS’15). ACM, 2015, pp. 1504–1517. CORE Rank A*.

4.1 Introduction

While designing efficient and correct MPC circuits for smaller building blocks and simple
applications can be performed manually by experts, this task becomes highly complex and
time consuming for large applications such as floating-point arithmetic and signal processing,
and is thus error-prone. Faulty circuits could potentially break the security of the underlying
applications, e.g., by leaking additional information about the parties’ private inputs. Hence,
an automated way of generating correct large-scale circuits, which can be used by regular
developers is highly desirable.

A large number of compilers for secure computation such as [MNPS04; BNP08; HKS+10;
HEKM11; Mal11; MLB12; KSS12; HFKV12; SZ13; KSMB13; ZSB13] implemented circuit
building blocks manually. Although tested to some extent, showing the correctness of these
compilers and their generated circuits is still an open problem.

Recently, TinyGarble [SHS+15] took a different approach by using established hardware
logic synthesis tools and customizing them to be adapted to automatically generate Boolean
circuits for the evaluation with Yao’s garbled circuits protocol. The advantage of this approach
lies in the fact that these tools are being used by industry for designing digital circuits, and
hence are tested thoroughly, which is justified by the high production costs of Application
Specific Integrated Circuits (ASICs). However, these tools are designed primarily to synthesize
circuits on hardware target platforms such as ASICs, configurable platforms such as Field
Programmable Gate Arrays (FPGAs) or Programmable Array Logics (PALs). Using hardware
logic synthesis tools for special purposes such as generating circuits for secure computation,
requires customizations and workarounds. Exploiting these tools promises accelerated and
automated circuit generation, significant speedup, and ease in designing and generating

33

4 Automated Synthesis of Optimized Circuits for MPC

circuits for much more complicated functions, while also maintaining the size (and depth)
efficiency of hand-optimized smaller circuit building blocks.

In this work we continue along the lines of using logic synthesis tools for secure computation
and automatically synthesize an extensive set of basic and complex operations, including
IEEE 754 compliant floating-point arithmetic. In contrast to TinyGarble, which generated
only size-optimized circuits for Yao’s garbled circuits protocol, we focus also on synthesizing
depth-optimized circuits for the GMW protocol [GMW87]. Although the round complexity of
the GMW protocol depends on the circuit depth, it has some advantages compared with Yao’s
constant-round protocol: 1) it allows to precompute all symmetric cryptographic operations
in a setup phase and thus offers a very efficient online phase, 2) its setup phase is independent
of the function being computed, 3) it balances the workload equally between all parties, 4) it
allows for better parallel evaluation of the same circuit (SIMD operations) [SZ13; DSZ15] 5)
it can be extended to multiple parties, and 6) the TinyOT protocol [NNOB12] which provides
security against stronger active adversaries, has an online phase which is very similar to that
of GMW, and its round complexity also depends on the circuit depth. A similar goal was also
followed in ShallowCC [BHWK16], which appeared slightly later than our corresponding
paper [DDK+15].

We combine industrial-grade logic synthesis tools with our ABY framework, presented
in Chapt. 3, which implements state-of-the-art optimizations of the two-party protocols
by GMW and Yao. On the one hand, our approach allows to use existing and tested li-
braries for complex functions such as IEEE 754 compliant floating-point operations that are
already available in these tools without the need for manual re-implementation. On the other
hand, this allows to use high-level input languages such as Verilog where we map high-level
operations to our optimized implementations of basic functions.

4.1.1 Outline and Our Contributions

After summarizing preliminaries in Sect. 4.2, we present our following contributions:

Architecture and Logic Synthesis (Sect. 4.3) We provide a fully-automated end-to-end
toolchain, that allows the developer to describe the function to be computed securely in
a high-level Hardware Definition Language (HDL), such as Verilog, without the require-
ment to learn a new domain-specific language for MPC. Our work is the first to consider
automated hardware synthesis of low-depth combinational circuits optimized for use in the
GMW protocol [GMW87], as well as size-optimized circuits for Yao’s protocol [Yao86]. For
this, we manipulate and engineer state-of-the-art open-source and commercial hardware
synthesis tools with synthesis constraints and customized libraries to generate circuits for
either protocol according to the developer’s choice.

34

4 Automated Synthesis of Optimized Circuits for MPC

Optimized Circuit Building Blocks (Sect. 4.4) We develop a library of depth- and size-
optimized circuits, including arithmetic operations (e.g., addition, subtraction, multiplication,
division), comparison, counter, and multiplexer, which can be used to construct more complex
functionalities such as various distances, e.g., Manhattan, Euclidean, or Hamming distance.
Some of the implemented building blocks show improvements in depth compared with
hand-optimized circuits of [SZ13] by up to 14%, while others show at least equivalent
results. Assembling sub-blocks from our customized library can be used to construct more
complicated functionalities, which would otherwise be challenging to build and optimize
by hand. We exploit the capabilities of our synthesis tools to bind high-level operators (e.g.,
the ‘+’ operator) and functions to optimized circuits in our library to allow the developer
to describe circuits in Verilog using high-level operators. We also utilize built-in Intellectual
Property (IP) libraries in commercial hardware synthesis tools, which have been tested
extensively to generate Boolean circuits for more complex functionalities such as floating-
point arithmetic.

Benchmarks and Evaluation (Sect. 4.5) We use ABY to securely evaluate the Boolean
circuits generated by our hardware synthesis toolchain. Moreover, we extend the list of
available operations in ABY by multiple floating-point operations. In contrast to previous
works that built dedicated and complex protocols for secure floating-point operations, we
use highly tested industrial-grade floating point libraries. We compare the performance of
our constructions with related work. For floating-point operations we achieve between 0.5 to
21.4 times faster runtime than [ABZS13] and 0.1 to 3 267 times faster runtime than [KW14].
We emphasize that we achieve these improvements even in a stronger setting, where all but
one party can be corrupted and hence our protocols also work in a two-party setting, whereas
the protocols of [ABZS13; KW14] require a majority of the participants to be honest and thus
need n≥ 3 parties. We also present timings for integer division that outperform related work
of [ABZS13] (3-party) by a factor of 0.6 to 3.7 and related work of [KSS13b] (2-party) by
a factor of 32.4 to 274. Additionally, we present benchmarks for matrix multiplication, but
these are less efficient than previous approaches [BNTW12; ZSB13; DSZ15].

Application: Private Proximity Testing (Sect. 4.6) A real-world application of floating-
point calculations is privacy-preserving proximity testing on Earth [ŠG14]. We implement
the formulas from [ŠG14] with our floating-point building blocks and achieve faster runtime,
and higher precision compared to their protocols. This demonstrates that our automatically
generated building blocks can outperform hand-built solutions.

4.2 Preliminaries

In this section we provide preliminaries and background related to hardware synthe-
sis (Sect. 4.2.1), and the IEEE 754 floating-point standard (Sect. 4.2.2). Information about
the underlying MPC protocols can be found in Sect. 2.4.

35

4 Automated Synthesis of Optimized Circuits for MPC

4.2.1 Hardware Synthesis

Hardware or logic synthesis is the process of translating an abstract form of circuit description
into its functionally equivalent gate-level logic implementation using a suite of different
optimizations and mapping algorithms that have been a theme of research over years. A logic
synthesis tool is a software which takes as input a function description and transforms
and maps this description into an output suitable for the target hardware platform and
manufacturing technology.

Tools Common target hardware platforms for synthesized logic include FPGAs, PALs, and
ASICs. ASIC synthesis tools, as opposed to FPGA synthesis tools, are used in this work due to
the increased flexibility and available options, and because FPGA synthesis tools map circuits
into Look-up Tables (LUTs) and flip-flop gates in accordance with FPGA architectures, but
not Boolean gates. We used two main ASIC synthesis tools interchangeably: The Synopsys
Design Compiler (DC) [Syn10], which is one of the most popular commercial logic synthesis
tools, and the open-source academic Yosys-ABC toolchain [Wol; Ber]. In the following, we
briefly describe the synthesis flow of Synopsys DC.

Synthesis Flow A HDL description of the desired circuit is provided to Synopsys DC. Oper-
ations in this description get mapped to the most appropriate circuit components selected
by Synopsys DC from two types of libraries: the generic technology (GTECH) library of
basic logic gates and flip-flops called cells, and synthetic libraries consisting of optimized
circuit descriptions for more complex operations. Designware [Syn15] is a built-in synthetic
library provided by Synopsys, consisting of tested IP constructions of standard and complex
cells frequently used, such as arithmetic or signal processing operations. This first mapping
step is independent of the actual circuit manufacturing technology and results in a generic
structural representation of the circuit. This gets mapped next to low-level gates selected from
a target technology library to obtain a technology-specific representation: a list of Boolean
and technology-specific gates (e.g., multiplexers), called netlist.

Synopsys DC performs all of the above mapping and synthesis processes under synthesis
and optimization constraints, which are directives provided by the developer to optimize the
delay, area and other performance metrics of a synthesized circuit.

Input to these hardware synthesis tools can be a pure combinational circuit, which maps only
to Boolean gates, or a sequential circuit that requires a clock signal and memory elements
to store the current state. The output of a sequential circuit is a function of both the circuit
inputs and the current state. In this work, we constrain circuit description to combinational
circuits.

High-Level Synthesis Logic synthesis tools accept the input function description most
commonly in a HDL format (Verilog or VHDL), whereas more recent logic synthesis tools
additionally support high-level synthesis (HLS). This allows them to accept higher-level circuit
descriptions in C/C++ or similar high-level programming alternatives. The HLS tools then
transform the functional high-level input code into an equivalent hardware circuit description,

36

4 Automated Synthesis of Optimized Circuits for MPC

which in turn can be synthesized by classic logic synthesis. Although this higher abstraction
is more developer-friendly and usable, performance of resulting circuits is often inferior to
HDL descriptions, unless heavy design constraints are provided to guide the mapping and
optimization process.

4.2.2 The IEEE 754 Floating-Point Standard

Floating-point (FP) numbers allow to represent approximations of real numbers with a trade-
off between precision and range. The IEEE 754 floating-point standard [IEE08] defines
arithmetic formats for finite numbers including signed zeros and subnormal numbers, in-
finities, and special “Not a Number” values (NaN) and rounding rules to be satisfied when
rounding numbers during floating-point operations, e.g., rounding to nearest even. Addition-
ally, the standard defines exception handling such as division by zero, overflow, underflow,
infinity, invalid and inexact.

The IEEE 754 Standard 32-bit single precision floating-point format consists of 23 bits for
significand, 1 bit for sign and 8 bits for exponent distributed from MSB to LSB as follows:
sign [31], exponent [30:23], and significand [22:0]. The 64-bit double precision format
consists of 52 bits for significand, one bit for sign, and 11 bits for exponent.

4.3 Our ToolChain

We describe our toolchain here by presenting our architecture followed by a detailed descrip-
tion of each component.

4.3.1 Architecture

An overview of our architecture is shown in Fig. 4.1. We provided the hardware synthesis
tools with optimization and synthesis constraints along with a set of customized technology
and synthesis libraries (cf. Sect. 4.3.2), to map the input circuit description in Verilog (or
any other HDL) into a functionally-equivalent Boolean circuit netlist in Verilog. The output
netlist, is constrained to consist of AND, XOR, INV and MUX gates.

The Verilog netlist is parsed and scheduled, and input into ABY (cf. Chapt. 3), which we
extended to process this netlist and generate the Boolean circuit described in it.

In the following we describe in further detail the main components of our toolchain architec-
ture: logic synthesis (Sect. 4.3.2), customizing synthesis (Sect. 4.3.3), function and operator
mapping (Sect. 4.3.4), developer usage(Sect. 4.3.5), challenges of logic synthesis for MPC
(Sect. 4.3.6), scheduling (Sect. 4.3.7), and extending the ABY framework (Sect. 4.3.8).

37

4 Automated Synthesis of Optimized Circuits for MPC

Hardware
Synthesis

Netlist

Scheduler

Parsed & Scheduled
Netlist

ABY

MPC Protocol

Functionality in HDL

Constraints

Input0 Input1

Outputs

Synthetic

Synopsys
Designware

Customized
Technology

Circuit
Building
Blocks

Libraries

Figure 4.1: Architecture Overview

4.3.2 Hardware and Logic Synthesis

The GMW protocol and Yao’s protocol require that the function to be computed is represented
as a Boolean circuit. As described in detail in Sect. 2.4.7, previous work used different
approaches like DSLs or custom compilation to create garbled circuits. This may be considered
as “reinventing the wheel” since Boolean mapping and optimization is the core of hardware
synthesis tools, and has been researched for long. It has been argued, however, that such
“hardware compilers” target primarily hardware platforms and therefore involve technology
constraints and metrics which are not directly related to the purpose of generating Boolean
circuits for secure computation. Writing circuits in HDL, such as Verilog or VHDL, is not
entirely high-level, and involves hardware description paradigms which may not be similar
to high-level programming paradigms. Furthermore, they rely on the use of sequential logic
rather than pure combinational logic.

Exploiting Logic Synthesis The TinyGarble framework [SHS+15] exploited these very
same points, and employed hardware synthesis tools in order to generate compact sequential
Boolean circuits for secure evaluation by Yao’s garbled circuits protocol [Yao86]. This approach
does usually not scale well for the GMW protocol, as sequential circuits have a large depth.
The work in this chapter extends this approach further by using the hardware synthesis
tools to generate combinational circuits of more complex functionalities for evaluation
by both Yao’s protocol and the GMW protocol [GMW87], while excluding all design and
technology optimization metrics. The synthesis and generation of the Boolean netlist by

38

4 Automated Synthesis of Optimized Circuits for MPC

the synthesis tools (cf. Sect. 4.2.1) can be optimized according to the synthesis constraints
and optimization options provided. Hardware synthesis tools conventionally target circuit
synthesis on hardware platforms, but can be adapted and exploited for secure computation
purposes to generate Boolean netlists which are AND-minimized (depth-optimized primarily
for GMW or size-optimized for Yao’s garbled circuits).

4.3.3 Customizing Synthesis

In the following, we focus on how we customized the synthesis flow of Synopsys DC to
generate our Boolean netlists.

Synthesis Flow The synthesis and optimization constraints that can be provided to Syn-
opsys DC allow us to manipulate it to serve our purposes in this work, and generate depth-
optimized circuit netlists for evaluation with GMW. Moreover, we developed a synthetic
library of optimized basic cells and depth/size-optimized circuit building blocks that can
be assembled by developers to build more complex circuits, and a customized technology
library to constrain circuit mapping to XOR and AND gates only. The different libraries and
our engineered customizations to achieve this are described next.

Synthetic Libraries The first step of the synthesis flow is to convert arithmetic and condi-
tional operations (if-else, switch-case) to their functionally-equivalent logical representa-
tions. By default, they are mapped to cells (either simple gates or more complex circuits such
as adders and comparators) extracted from the GTECH library and the built-in Synopsys DC
DesignWare library [Syn15] (cf. Sect. 4.2.1).

Our Optimized Circuit Building Blocks Library Besides the standard built-in libraries, we
developed our own DesignWare circuits in a customized synthetic library. It consists of depth-
optimized circuit descriptions (arithmetic, comparators, 2-to-1 multiplexer, etc.) customized
for GMW, as well as size-optimized counterparts for Yao’s garbled circuits. Synopsys DC
can then be instructed to prefer automated mapping to our customized circuit descriptions
(cf. Sect. 4.4) rather than built-in circuits (cf. Sect. 4.3.5 for developer usage).

Technology Library The intermediate representation of the circuit obtained in the step
before is then mapped into low-level gates extracted from a technology library. A technology
library is a library that specifies the gates and cells that can be manufactured by the semi-
conductor vendor onto the target platform. The library consists of the functional description
(such as the Boolean function they represent) of each cell, as well as their performance and
technology attributes, such as timing parameters (e.g., intrinsic rise and fall times, capacitance
values) and area parameters.

Technology libraries targeting ASICs contain a range of cells ranging from simple 2-input
gates to more complex gates such as multiplexers and flip-flops. A single cell can also have
different implementations which have varying technology attributes. Ultimately, the goal of
the synthesis tool is to map the generic circuit description into a generated netlist of cells

39

4 Automated Synthesis of Optimized Circuits for MPC

from this target technology such that user-provided constraints and optimization goals are
satisfied.

Our Customized Technology Library In order to meet our requirements of the Boolean
circuit netlists required in this work, we constrain Boolean mapping to non-free AND and free
XOR gates. We developed a customized technology library which has no manufacturing or
technology rules defined, similar to the approach in TinyGarble, and we manipulated the
cost functions of the gates by setting the area and delay parameters of XOR gates to 0, and
setting very high non-zero values for OR gates to ensure their exclusion in mapping. Their
very high area and delay costs force Synopsys DC to re-map all instances of OR gates to AND
and INV gates according to their equivalent Boolean representation (A∨B=¬(¬A∧¬B)), and
to optimize the Boolean mapping in order to meet the specified area/delay constraints. We
set the area and delay costs of an inverter (INV) gate to zero, as they can be replaced with
XOR gates with one input fixed to constant one. For AND gates, the area and delay costs are set
to reasonably high values, but not too high so that they are not excluded from synthesis. We
set MUX gates to area cost equivalent to that of a single AND gate (since the 2-to-1 multiplexer
construction in [KS08b] is composed of a single AND gate and 2 XOR gates), and set its delay
cost equivalent to 0.25 times more than that of an AND gate due to the extra XOR operations.
We concluded that these settings give the most desirable mapping results after experimenting
with Synopsys DC mapping behavior in different scenarios.

Synthesis Constraints We provide constraints that make delay optimization of the circuit
a primary objective followed by area optimization as a secondary objective when generating
depth-optimized circuits for GMW. We set the preference attribute to XOR gates, and disable
circuit flattening to avoid remapping of XOR gates to other gates. Synthesis tools are not
primarily designed to minimize Boolean logic by maximizing XOR gates and reducing the
multiplicative complexity of circuits within multi-level logic minimization. This is because
XOR gates are only considered as “free” gates in secure computation applications, whereas
in the domain of traditional hardware CMOS design, NAND gates are the universal logic
gates from which all other gates can be constructed. Hence, the tools need to be heavily
manipulated to achieve our objectives.

Construction of More Complex Circuits The customized circuit descriptions we developed
can be used to build higher-level and more complex applications. We assembled complex
constructions such as Private Set Intersection (PSI) primitives (bitwise-AND, pairwise com-
parison, and Sort-Compare-Shuffle networks as described in [HEK12]) using our customized
building blocks, and they have demonstrated equivalent AND gate count and depth as their
hand-optimized counterparts in [HEK12]. In general, all sorts of more complex functionalities
and primitives can be constructed by assembling these circuit building blocks along with
built-in Designware IP implementations. Consequently, these more complex circuits can then
be appended to our library to be re-used in building further more complex circuits, in a
modular and hierarchical way.

40

4 Automated Synthesis of Optimized Circuits for MPC

HDLs also allow a developer to describe circuits recursively which can be synthesized, which
is often the most efficient paradigm for describing depth-optimized circuit constructions
such as the depth-optimized “greater than” operation [GSV07], the Waksman permutation
network [Wak68], or the Boyar-Peralta counter [BP06] for computing the Hamming weight.

4.3.4 High-level Function and Operator Mapping

An alternative to describing the circuits for HLS in high-level C/C++ is to allow developers to
input their circuit descriptions in high-level Verilog, by calling operators and functions, which
we map to “instantiate” circuit modules such as depth-optimized adders or comparators from
our customized synthetic library. This allows high-level circuit descriptions without incurring
the drawbacks of using HLS tools, such as inferior hardware implementation (cf. Sect. 4.2.1).

Mapping operators We prepared a library description which links our customized circuits
into the Synopsys DC. This provides a description of each circuit module, its different imple-
mentations, and the operator bound to each module. These operators can be newly created,
or already built-in, such as (‘+’, ‘-’, ‘*’, etc.), but bound to our customized circuits. For instance,
when synthesizing the statement Z = X + Y, Synopsys DC is automated to map the ‘+’ to our
customized Ladner-Fischer adder, rather than a built-in adder implementation.

Mapping Functions We mapped functions to instantiate circuit modules by creating a global
Verilog package file which declares these functions and which circuit modules they instantiate
when being called. This package file is then included in the high-level Verilog description
code which calls on these functions.

Explicit Instantiation Other more complex circuits can only be explicitly called from our
customized building blocks library, as well as from the Designware IP library which offers a
wide range of IP implementations, all of which have verified and guaranteed correctness, such
as the floating-point operations we present and benchmark in Sect. 4.5.3. A list of available
Designware IP implementations can be found in [Syn15].

High-level Circuit Description Example In Fig. 4.2, we show how the depth-optimized
constructions of the Manhattan, Euclidean and Hamming distances [SZ13] are described
using high-level Verilog. The Manhattan distance between two points is the distance in a 2-
dimensional space between these two points based only on horizontal and vertical paths. The
Euclidean distance between two points computes the length of the line segment connecting
them. The Hamming distance between two strings computes the number of positions at
which the strings are different.

In the Euclidean distance description, in lines 19 and 20 the ‘-’ operator is mapped auto-
matically to our Ladner-Fischer subtractor. The function sqr called in lines 23 and 24, is
automatically mapped to instantiate our Ladner-Fischer squarer. We declared and bound this
function correctly in the package file ‘func_global.v’ which is included in line 6. case

41

4 Automated Synthesis of Optimized Circuits for MPC

26-35: conditional
statements mapped to
multiplexers

23,24: “sqr “ operator is
bound to LF-squarer in
synthetic library description

38: “ csn “ instantiated from synthetic library explicitly

12: “reducing_xor “ mapped
to equivalent module in
“func_global.v “

14: “ boyar_counter“ instantiated
from synthetic library explicitly

12: “ + “ mapped to LF-adder and “abs_diff“
function mapped to instantiate “abs_diff“
module in “func_global.v “ package file

19,20: “ - “ mapped to LF-subtractor

Figure 4.2: High-level description of the Hamming, Euclidean and Manhattan distances.

statements (as are if...else statements) in lines 26-34 are also mapped to our depth-
optimized multiplexer. In line 38, a carry-save network is explicitly instantiated from our
library described in Sect. 4.4.2, since some circuit blocks are not mapped to functions and
operators and have to be explicitly instantiated due to their structure and design. In the Man-
hattan distance description, the absolute differences are computed by calling the ‘abs_diff’

function in line 12 which is also mapped to instantiate the corresponding circuit. The same
high-level abstraction can be seen in the Hamming distance description. Once these distance
circuits are constructed, they can be appended to our blocks library to be easily re-used in
more complex functionalities.

4.3.5 Developer Usage

By default, Synopsys DC selects the most appropriate circuit description which best satisfies
the constraints provided by the developer. Alternatively, the developer can also explicitly
select a specific circuit description to map an operation to.

In order for developers to use our synthetic libraries instead of Designware to map to our cus-
tomized circuits, they have to decide for which metric to optimize: depth or size. Accordingly,
developers add the libraries’ paths and a single command in the synthesis script to direct
Synopsys DC to optimize for either depth (for GMW) or size (for Yao), and to prefer mapping
to which set of circuit descriptions.

42

4 Automated Synthesis of Optimized Circuits for MPC

Optimization constraints are generally specified by the developer once for the entire top-level
circuit description in the synthesis script, while some sub-circuits require specific optimization
constraints. We already specified the optimization constraints for our customized circuit
building blocks.

4.3.6 Challenges of Logic Synthesis for MPC

Conventionally synthesis tools are best at synthesizing sequential hardware circuits with a
clock input and flip-flops. This also means that the actual circuit netlists synthesized are
much more compact than combinational Boolean circuits. However, for the purpose of this
work, we require combinational netlist. This implies synthesis of circuits which can reach
up to 100 million gates and beyond, which is time- and resource-consuming for hardware
synthesis tools. This issue can be mitigated by generating sub-blocks in a hierarchical fashion,
and appending them into one top-level circuit.

4.3.7 Scheduling

The output netlist generated from the hardware synthesis tools has to be parsed in an
intermediate step before being provided to ABY. A parser and scheduler topologically sorts
and schedules the netlist gates [KA99], since the Verilog netlist output from some synthesis
tools is not topologically sorted, i.e., a wire can be listed as input to one gate before assigning
output to it from another. The scheduler generates a Boolean netlist in a format which is
similar to Fairplay’s Secure Hardware Definition Language (SHDL) [MNPS04]. All gates and
wires are renamed to integer wire IDs for easier processing by ABY, and complex statements
are rewritten as one or several available gates. These steps ensure that the final netlist
contains only AND, XOR, INV and MUX gates.

4.3.8 Extending ABY

The ABY framework, cf. Chapt. 3, is an extensive tool that enables a developer to manually
implement secure two-party computation protocols by offering several low-level as well as
intermediate circuit building blocks that can be freely combined. We extended the ABY
framework with an interface where externally constructed blocks made of low-level gates can
be input in a simple text format, similar to SHDL [MNPS04] and the circuit format from [ST],
that we could parse as well, with some modifications.

This interface is used to input the parsed and scheduled netlists from our hardware synthesis.
ABY creates a Boolean circuit with low depth from that input netlist, i.e., it schedules AND
gates on the earliest possible layer and automatically processes all AND gates in one layer
in parallel. A developer has two options: 1) our hardware synthesized netlist can be used
as a full protocol instance from private inputs to output or 2) the netlist’s functionality can
be used as a building block and combined with other synthesized or hand-built sub-circuits
within ABY in order to create the whole secure computation protocol. The output of ABY is a

43

4 Automated Synthesis of Optimized Circuits for MPC

fully functional secure computation protocol that is split into setup phase and online phase,
that can be evaluated on two parties’ private inputs.

4.4 Building Blocks Library

We implemented multible building blocks in Verilog as pure combinational circuits and
synthesized their Boolean netlists using both Synopsys DC and Yosys-ABC, to show that
the framework is independent of the used synthesis tool. All implemented circuits have
configurable parameters such as the bit-width ℓ of the inputs and/or the number of inputs n.
We summarize and compare our synthesis results with their hand-optimized counterparts
in [HKS+10; HEK12; SZ13]. The two main comparison metrics are size S which is the circuit
size in terms of non-free AND gates, and depth D which is the number of AND gates along
the critical path of the circuit. XOR gates are considered to be free, as the GMW protocol
and Yao’s protocol with free XORs [KS08b] allow to securely evaluate XOR gates locally
without any communication. Next we show the results for functionalities that have improved
depth or size compared with their hand-optimized counterparts in Sect. 4.4.1, and then in
Sect. 4.4.2 we describe further functionalities and blocks that we have implemented, which
show equivalent results as their hand-optimized counterparts. Finally, in Sect. 4.4.3, we
describe the floating-point operations and integer division that we benchmark in Sect. 4.5.

4.4.1 Improved Functionalities

In this section, we present the implemented functionalities that achieved better results in
terms of size or depth compared with [HKS+10; SZ13]. Results are given in Tab. 4.1.

Ladner-FischerLFAdder/Subtractor The LF adder/ subtractor has a logarithmic depth [LF80;
SZ13]. Our results show improvement for both depth (up to 10%) and size (up to 14%) in the
subtraction circuit, while maintaining the same size and depth for addition of power-of-two
numbers. Both circuits can also handle numbers that are not powers-of-two and achieve
better size (up to 20%) as the hardware synthesis tool automatically removes gates whose
outputs are neither used later as inputs to other gates nor assigned directly to the output of
the circuit.

Karatsuba Multiplier KMUL We implemented a recursive Karatsuba multiplier [KO62]
using a ripple-carry multiplier for inputs with bit-width ℓ < 20, while for ℓ ≥ 20 inputs
are processed recursively. We compare our results with numbers given in [HKS+10], which
generated size-optimized Boolean circuits for garbled circuits, but did not consider circuit
depth. Here we achieve up to 3% improvement in size.

44

4 Automated Synthesis of Optimized Circuits for MPC

ManhattanDistanceDSTM Manhattan distance is implemented as a depth-optimized circuit
using Ladner-Fischer addition ADDLF and subtraction SUBLF or using ripple-carry addition
ADDRC and subtraction SUBRC for a size-optimized circuit [CHK+12; SZ13]. Our results
demonstrate improvements in terms of size (up to 16%) and depth (up to 13.6%).

4.4.2 Further Functionalities

We list further functionalities that we implemented next. Their circuit sizes and depths
are equivalent to the hand-optimized circuits in [HEK12; SZ13]: ripple-carry adder and
subtractor [BPP00; KSS09], n× ℓ-bit carry-save and ripple-carry network adders [Sav97;
SZ13], multipliers and squarers [Sav97; KSS09; SZ13], depth-optimized multiplexer [KS08b],
comparators (equal and greater than) [SZ13], full-adder [SZ13] and Boyar-Peralta coun-
ters [BP06; SZ13], and the Sort-Compare-Shuffle circuit for private set intersection (PSI)
[HEK12] and its building blocks (bitonic sorter, duplicate-finding circuit, and Waksman
permutation network [Wak68]).

Matrix Multiplication We implemented size and depth-optimized matrix multiplication
circuits that compute one entry in the resulting matrix by computing dot products.

This circuit is evaluated such that it computes the entries of the resulting matrix in parallel.
Thereby, we can exploit the capability of the ABY to evaluate circuits in parallel, which reduces
the memory footprint of the implementation.

Size-optimized matrix multiplication uses the Karatsuba multiplier and a ripple-carry network
adder, whereas depth-optimized matrix multiplication uses the carry-save network multiplier
and a carry-save network adder. Both implementations are configurable, i.e., we can set the
bit-width ℓ and number of elements per row or column n.

The depths and sizes of these circuits for matrix multiplication are given in Tab. 4.3 and their
performance is evaluated in Sect. 4.5.2.

4.4.3 Floating-Point Operations and Integer Division

We generated floating-point operations using the DesignWare library [Syn15], which is a set of
building block IPs used to implement, among other operations, floating-point computation cir-
cuits for high-end ASICs. The library offers a suite of arithmetic and trigonometric operations,
format conversions (integer to floating-point and vice versa) and comparison functions. The
provided functionalities are parametrized allowing the developer to select the precision based
on either IEEE single or double precision or set a custom-precision format. We can also enable
the ieee_compliance parameter when we need to guarantee IEEE compatible floating-point
numbers ("Not a Number" NaN and denormalized numbers). Some functionalities provide an
arch parameter which can be set for either depth-optimized or size-optimized circuits.

Some of the floating-point functions provide a 3-bit optional input round, to determine how
the significand should be rounded, e.g., 000 rounds to the nearest even significand which is

45

4 Automated Synthesis of Optimized Circuits for MPC

the IEEE default. They also have an 8-bit optional output flag status, in which bits indicate
different exceptions of the performed operation allowing error detection. We can choose to
truncate or use these status bits as desired.

We generated circuits for floating-point addition, subtraction, squaring, multiplication, di-
vision, square root, sine, cosine, comparison, exponentiation to base e, exponentiation to
base 2, natural logarithm (ln), and logarithm to base 2 for single precision, double precision
and a custom 42-bit precision format for comparison with [ABZS13]. The 42-bit format
consists of 32 bits for significand, one bit for sign and 9 bits for exponent distributed from
MSB to LSB as follows: sign [41], exponent [40:32] and significand [31:0]. We extended
ABY with these floating-point operations and benchmarked them. We give runtimes, depths
and sizes for various floating-point operations in Sect. 4.5.3.

We also generated circuits for integer division for different bit-widths ℓ ∈ {8, 16, 32, 64} using
the built-in DesignWare library [Syn15]. Another possibility for generating division circuits
is to use the division operator ‘/’ which will be implicitly mapped to the built-in division
module in that library. As we optimize for depth our circuits have size O(ℓ2 logℓ)≈ 24576
gates for ℓ = 64 but low depth 512. In contrast, optimizing for size would yield better
size O(ℓ2) ≈ 3ℓ2 = 12288 gates (for ADD/SUB, CMP, and MUX), but worse depth O(ℓ2) =
4096. We give circuit sizes and depths for integer division in Tab. 4.2 and benchmarks
in Sect. 4.5.1.

In addition to the previously listed functions, we also generated two fixed-point operations,
sine and cosine for 16-bit or 32-bit inputs. Depth, size, and runtime are shown in Tab. 4.6.

4.5 Benchmarks and Evaluation

We extended ABY to process the parsed and scheduled netlist generated by our hardware
synthesis tool and evaluate it with ABY’s optimized implementations of the GMW protocol
and Yao’s garbled circuits (cf. Sect. 4.3.8). In contrast to TinyGarble [SHS+15], which mainly
focused on a memory-efficient representation of the circuits and gave only a single example
for the time to securely evaluate the circuit, we measure the total execution times for several
operations and applications: integer division (Sect. 4.5.1), matrix multiplication (Sect. 4.5.2)
and an extensive set of floating-point operations (Sect. 4.5.3). For Yao’s protocol we use
today’s most efficient garbling schemes implemented in ABY: free XOR [KS08b], fixed-key
AES garbling with the AES-NI instruction set [BHKR13] and half-gates [ZRE15]. For better
comparability of the runtimes we use depth-optimized circuits for both, GMW and Yao.

Compilation and synthesis times even for our largest circuits (FPEXP2, FPDIV) using Synopsys DC
are under 1 hour on a standard PC, but this is only a one-time expense, after which the
generated netlist can be re-used without incurring compilation costs again.

We provide runtimes for the setup phase, which can be precomputed independently of the
private inputs of the participants and the online phase, which takes place after the setup-phase

46

4 Automated Synthesis of Optimized Circuits for MPC

Table 4.1: Synthesis results of improved functionalities compared to hand-optimized circuits
for inputs of bit-width ℓ: Ladner-Fischer ADDLF/SUBLF , Karatsuba multiplication
KMUL, and Manhattan Distance DSTM.

Circuit Size S Depth D
Hand- Hand-

optimized Ours Improvement optimized Ours Improvement

Depth-Optimized

ADDLF (ℓ= 20) 151 121 20% 11 11 0%
ADDLF (ℓ= 30) 226 214 5% 11 11 0%
ADDLF (ℓ= 40) 361 301 16.6% 13 13 0%

SUBLF (ℓ= 16) 113 97 14% 10 9 10%
SUBLF (ℓ= 32) 273 241 11% 12 11 8%
SUBLF (ℓ= 64) 641 577 10% 14 13 7%

DSTM (ℓ= 16) 353 296 16% 22 19 13.6%
DSTM (ℓ= 32) 825 741 10% 26 23 11.5%
DSTM (ℓ= 64) 1 889 1 778 5.8% 30 27 10%

Size-Optimized

KMUL (ℓ= 32) 1 729 1 697 1.8% − 63 −
KMUL (ℓ= 64) 5 683 5 520 2.9% − 127 −
KMUL (ℓ= 128) 17 972 17 430 3% − 255 −
DSTM (ℓ= 16) 65 65 0% 34 32 5.8%
DSTM (ℓ= 32) 129 129 0% 66 64 3%
DSTM (ℓ= 64) 257 257 0% 130 128 1.5%

is done and the inputs to the circuit are supplied by both parties. All runtimes are median
values of 10 protocol runs. We measured runtimes on two desktop computers with an Intel
Core i7 CPU (3.5 GHz) and 16 GB RAM connected via Gigabit-LAN. In all our experiments
we set the symmetric security parameter to κ= 128 bits.

4.5.1 Benchmarks for Integer Division

A complex operation that is not trivially implementable by hand is integer division, as
described in Sect. 4.4.3. In Tab. 4.2 we list the runtime, split in setup phase and online
phase and list the circuit parameters for multiple input sizes. We compare our runtime with
the runtime prediction of 32-bit integer long division of [KSS13b] which we speed up by a
factor of 32, and even more for Single Instruction Multiple Data (SIMD) evaluation. We also
compare with the runtime of 3-party 64-bit integer division of [ABZS13], which outperforms
our single evaluation with GMW by a factor of 1.8. However, for parallel SIMD evaluation
we improve upon their runtime by up to factor 3.7. When comparing to the 3-party 32-bit
integer division of [BNTW12], we achieve a speedup of factor 6.5 for single execution with
GMW, while our GMW evaluation requires more than 5 times the total runtime of [BNTW12]
for 10 000 parallel executions.

47

4 Automated Synthesis of Optimized Circuits for MPC

Table 4.2: Runtimes (setup + online phase) in ms per single integer division. ‘–’ indicates
that no numbers were given. Protocols marked with ∗ are in the 3-party setting;
all other protocols are in the 2-party setting. Entries marked with × could not be
run on our machines.

Integer Division
Parallel Batch Size AND Gates

1 100 10 000 Size Depth

8-bit GMW 0.3+ 42.4 0.2+ 0.52 0.2+ 0.004 367 32
8-bit Yao 1.1+ 0.7 0.2+ 0.04 0.2+ 0.035 367 32

16-bit GMW 7.8+ 47.7 0.8+ 0.79 0.6+ 0.01 1 542 93
16-bit Yao 2.0+ 1.1 0.7+ 0.14 0.7+ 0.14 1 542 93

32-bit [KSS13b] 2 000 – – – –
32-bit [BNTW12]∗ 400 4 0.5 – –
32-bit GMW 3.5+ 58.2 3.5+ 3.66 2.7+ 0.04 7 079 207
32-bit Yao 5.2+ 2.1 3.3+ 0.63 × 7 079 207

64-bit [ABZS13]∗ 60 41 40 – –
64-bit GMW 16.9+ 90.3 12.0+ 7.50 10.8+ 0.15 28 364 512
64-bit Yao 27.5+ 5.6 13.1+ 2.49 × 28 364 512

4.5.2 Benchmarks for Matrix Multiplication

Matrix multiplication of integer values is an important use case in many applications. Here
we exploit ABY’s ability to evaluate circuits in parallel in a SIMD fashion and instantiate
dot product computation blocks, each of which calculates a single entry in the result matrix.
In Tab. 4.3 we give the runtimes for dot product computations of 16 values of 16 bit each or
32 values of 32 bit each with two different multiplication circuits as described in Sect. 4.4.2.
We compare with the 3-party secret-sharing-based implementations of [BNTW12; ZSB13] as
well as the 2-party arithmetic sharing implementation of ABY. For this comparison we use the
values reported in the respective papers and interpolate them to our parameters.

Solutions based on secret sharing or artihmetic sharing outperform our Boolean Circuits
significantly, due to their much faster methods for multiplication.

4.5.3 Benchmarks for Floating-Point and Fixed-Point Operations

There is a multitude of use cases for floating-point and fixed-point operations in academia
and industry, ranging from signal processing to data mining, but due to the complexity of the
format it has only recently been considered as application for secure computation [FK11].
Until today there are only few actual implementations of floating-point arithmetic in secure
computation, all of which use custom-built protocols [ABZS13; KW14]. Instead, we use
multiple standard floating-point building blocks offered by Synopsys DC and synthesize them
automatically (cf. Sect. 4.4.3). Tab. 4.4 and Tab. 4.5 depicts the runtime in ms per single
floating-point operation, when run once or multiple times in parallel using a SIMD approach.

48

4 Automated Synthesis of Optimized Circuits for MPC

Table 4.3: Runtimes (setup + online phase) in ms per single dot product computation, as
described in Sect. 4.4.2. Protocols marked with ∗ are in the 3-party setting; all
other protocols are in the 2-party setting. Entries marked with × could not be run
on our machines. Data from referenced works are interpolated from values given
in the respective paper.

Dot Product
Parallel Batch Size AND Gates

1 100 10 000 Size Depth

size-optimized RC 16×16-bit GMW 3.1+ 45.9 3.9+ 0.62 3.2+ 0.04 8 427 36
size-optimized RC 16×16-bit Yao 7.4+ 3.0 4.3+ 1.01 × 8 427 36

32×32-bit Multiplication [BNTW12]∗ 25.9 0.261 0.058 – –
32×32-bit Multiplication [ZSB13]∗ 0.289 0.185 0.184 – –
32×32-bit Arithmetic Multiplication [DSZ15] 5.44+ 0.196 5.44+ 0.061 5.44+ 0.060 – –
size-optimized RC 32×32-bit GMW 55.7+ 68.6 21.0+ 1.12 21.5+ 0.30 56 314 69
size-optimized RC 32×32-bit Yao 76.7+ 18.5 28.5+ 6.74 × 56 314 69

depth-optimized CSN 16×16-bit GMW 4.3+ 69.7 5.5+ 0.62 4.7+ 0.06 12 317 30
depth-optimized CSN 16×16-bit Yao 10.1+ 3.6 6.1+ 1.37 × 12 317 30

depth-optimized CSN 32×32-bit GMW 42.1+ 87.7 33.1+ 1.61 33.6+ 0.47 89 112 38
depth-optimized CSN 32×32-bit Yao 77.2+ 30.4 44.1+ 10.1 × 89 112 30

Results for fixed-point operations benchmarks are depicted in Tab. 4.6. We compare our
results for Yao and GMW with hand-optimized floating-point protocols of [ABZS13], who
used a 3-party secret sharing approach with security against semi-honest adversaries and
desktop computers connected on a Gigabit-LAN for their measurements. The largest runtime
improvements can be achieved when evaluating our generated circuits in parallel. We improve
the runtime by up to a factor of 21 for parallel evaluation and show similar or somewhat
improved runtimes for the lower parallelism levels reported. We can improve upon many
results of [KW14]which is in the 3-party setting, except for highly parallel multiplication, even
though the 3-party setting is typically much more efficient than the 2-party setting. We show
that our automatically generated circuits are able to outperform hand-crafted circuits in many
cases, especially for high degrees of parallelism. We give an application for floating-point
arithmetic in Sect. 4.6.

4.5.4 Benchmark Evaluation

In general, when comparing the implementations of Yao and GMW in ABY, we show that
Yao outperforms GMW in most cases but scales much worse, up to a point where the largest
circuits cannot be evaluated in parallel, due to the high memory consumption of Yao’s protocol.
GMW remains beneficial for highly parallel protocol evaluation, as the more critical online
time scales almost linearly with the level of parallelism. The setup times of Yao and GMW
are similar for all parameters.

Our improved performance stems from both, the optimized circuits generated by the state-
of-the-art hardware synthesis tools which we manipulate to optimize the circuits for either

49

4 Automated Synthesis of Optimized Circuits for MPC

Table 4.4: Runtimes (setup + online phase) in ms per single floating-point operation for
multiple precisions. ‘–’ indicates that no numbers were given. Protocols marked
with ∗ are in the 3-party setting; ours are in the 2-party setting. Entries marked
with × could not be run on our machines. (Continued in Tab. 4.5)

FP Operation
Parallel Batch Size AND Gates

1 10 100 1 000 10 000 Size Depth

32-bit GMW 0.4+ 39.6 0.1+ 4.1 0.1+ 0.45 0.1+ 0.06 0.1+ 0.003 218 12
32-bit Yao 1.1+ 0.7 0.3+ 0.1 0.5+ 0.03 0.1+ 0.03 0.1+ 0.033 218 12
42-bit [ABZS13]∗ – 5.4 3.2 2.3 2.2 – –
42-bit GMW 0.4+ 39.6 0.2+ 4.3 0.2+ 0.44 0.2+ 0.05 0.1+ 0.003 290 13
42-bit Yao 1.0+ 0.7 0.3+ 0.1 0.2+ 0.04 0.2+ 0.04 0.2+ 0.043 290 13
64-bit GMW 0.4+ 40.6 0.3+ 4.3 0.2+ 0.49 0.2+ 0.05 0.2+ 0.004 427 15

FPCMP

64-bit Yao 1.1+ 0.7 0.3+ 0.1 0.2+ 0.06 0.2+ 0.06 0.2+ 0.065 427 15

32-bit GMW 0.9+ 42.8 0.5+ 4.7 0.6+ 0.67 0.6+ 0.03 0.6+ 0.01 1 550 28
42-bit GMW 1.2+ 245.7 3.4+ 4.9 1.5+ 0.53 1.0+ 0.02 1.0+ 0.02 2 681 30FPSQR
64-bit GMW 2.8+ 246.5 3.6+ 5.2 3.2+ 0.72 2.5+ 0.07 2.5+ 0.04 6 596 36

32-bit [KW14]∗ 1 370 137.0 14.5 1.9 1.6 – –
32-bit GMW 3.0+ 46.1 1.1+ 5.3 1.0+ 0.66 0.7+ 0.06 0.7+ 0.01 1 820 59
32-bit Yao 2.0+ 1.1 1.0+ 0.2 0.9+ 0.17 0.9+ 0.17 0.9+ 0.18 1 820 59
42-bit [ABZS13]∗ – 19.0 11.0 9.3 9.1 – –
42-bit GMW 5.3+ 46.3 1.5+ 5.8 1.3+ 1.07 1.0+ 0.07 0.9+ 0.02 2 490 69
42-bit Yao 2.6+ 1.3 1.3+ 0.3 1.2+ 0.24 1.2+ 0.23 1.2+ 0.24 2 490 69
64-bit [KW14]∗ 1 471 147.1 16.7 4.8 4.1 – –
64-bit GMW 2.1+ 46.9 2.2+ 6.3 2.3+ 0.73 1.6+ 0.03 1.6+ 0.03 4 303 72

FPADD

64-bit Yao 3.6+ 1.6 2.2+ 0.5 2.0+ 0.40 2.0+ 0.40 2.0+ 0.40 4 303 72

FPMULT

32-bit [KW14]∗ 434.8 43.5 4.4 0.6 0.2 – –
32-bit GMW 1.8+ 42.9 1.6+ 5.6 1.4+ 0.67 1.1+ 0.05 1.1+ 0.02 3 016 47
32-bit Yao 8.1+ 1.1 1.6+ 0.3 1.4+ 0.27 1.4+ 0.27 1.4+ 0.29 3 016 47
42-bit [ABZS13]∗ – 4.2 3.4 3.2 3.1 – –
42-bit GMW 2.0+ 47.3 2.4+ 6.3 2.6+ 0.82 1.9+ 0.08 1.8+ 0.03 4 757 72
42-bit Yao 4.1+ 1.7 2.5+ 0.5 2.2+ 0.43 2.2+ 0.43 2.2+ 0.43 4 757 72
64-bit [KW14]∗ 476.2 47.6 5.1 0.9 0.3 – –
64-bit GMW 15.5+ 170.1 5.6+ 8.7 5.0+ 0.95 4.1+ 0.08 4.2+ 0.05 11 068 111
64-bit Yao 13.3+ 2.7 5.4+ 1.1 5.2+ 1.00 5.1+ 0.99 × 11 068 111

32-bit [KW14]∗ 11 111 1 177 142.9 41.7 31.3 – –
32-bit GMW 1.3+ 57.7 1.2+ 6.6 1.2+ 1.22 0.9+ 0.12 0.8+ 0.01 2 455 197
32-bit Yao 2.6+ 0.8 1.5+ 0.3 1.2+ 0.23 1.2+ 0.22 1.2+ 0.23 2 455 197
42-bit GMW 2.6+ 66.4 2.2+ 8.8 2.4+ 1.69 1.6+ 0.15 1.6+ 0.03 4 810 300
42-bit Yao 3.9+ 1.2 2.4+ 0.5 2.3+ 0.43 2.2+ 0.42 2.2+ 0.44 4 810 300
64-bit [KW14]∗ 12 500 1 316 217.4 103.1 96.2 – –
64-bit GMW 10.5+ 87.4 6.4+ 14.9 5.1+ 6.23 4.3+ 0.23 4.3+ 0.06 12 706 557

FPSQRT

64-bit Yao 9.4+ 2.6 6.2+ 1.3 6.3+ 1.14 5.9+ 1.12 × 12 706 557

32-bit [KW14]∗ 6 250 625.0 71.4 16.9 12.7 – –
32-bit GMW 2.3+ 64.3 3.1+ 9.3 2.6+ 1.78 2.0+ 0.16 2.0+ 0.03 5 395 296
32-bit Yao 4.2+ 1.9 2.7+ 0.6 2.5+ 0.49 2.5+ 0.49 2.5+ 0.49 5 395 296
42-bit [ABZS13]∗ – 15.0 12.0 12.0 12.0 – –
42-bit GMW 9.9+ 79.8 5.4+ 13.0 4.6+ 2.48 3.7+ 0.23 3.7+ 0.05 9 937 462
42-bit Yao 7.0+ 2.7 4.9+ 1.0 4.7+ 0.90 4.6+ 0.89 × 9 937 462
64-bit [KW14]∗ 6 667 666.7 83.3 43.5 19.2 – –
64-bit GMW 16.6+ 123.4 12.5+ 25.4 8.4+ 4.92 8.6+ 0.38 8.7+ 0.12 22 741 994

FPDIV

64-bit Yao 15.2+ 5.0 11.1+ 2.4 10.6+ 2.06 10.6+ 2.09 × 22 741 994

50

4 Automated Synthesis of Optimized Circuits for MPC

Table 4.5: Runtimes (setup + online phase) in ms per single floating-point operation for
multiple precisions. ‘–’ indicates that no numbers were given. Protocols marked
with ∗ are in the 3-party setting; ours are in the 2-party setting. Entries marked
with × could not be run on our machines. (Continuation of Tab. 4.4)

FP Operation
Parallel Batch Size AND Gates

1 10 100 1 000 10 000 Size Depth

32-bit GMW 5.5+ 144.2 5.2+ 14.7 4.7+ 0.85 3.7+ 0.09 3.8+ 0.05 9 740 100
32-bit Yao 6.5+ 1.8 4.7+ 0.9 4.5+ 0.84 4.5+ 0.83 × 9 740 100
42-bit [ABZS13]∗ – 88.0 80.0 75.0 75.0 – –
42-bit GMW 14.5+ 179.1 12.6+ 23.7 10.2+ 1.14 9.4+ 0.17 9.3+ 0.12 24 357 156
42-bit Yao 15.8+ 4.4 11.9+ 2.4 11.3+ 2.13 11.2+ 2.14 × 24 357 156
64-bit GMW 16.7+ 455.1 12.2+ 88.9 9.2+ 17.33 8.1+ 0.51 8.2+ 0.12 21 431 1214

FPEXP2

64-bit Yao 14.3+ 4.2 10.6+ 2.2 10.0+ 1.91 9.9+ 1.89 × 21 431 1214

32-bit GMW 4.1+ 67.0 5.7+ 8.0 5.0+ 1.48 4.1+ 0.10 4.0+ 0.05 10 568 157
32-bit Yao 7.0+ 2.1 5.1+ 1.0 4.9+ 0.91 4.9+ 0.90 × 10 568 157
42-bit [ABZS13]∗ – 159.0 103.0 97.0 96.0 – –
42-bit GMW 16.0+ 67.4 12.5+ 20.5 9.8+ 2.80 8.5+ 0.19 8.9+ 0.11 23 041 266
42-bit Yao 15.9+ 4.1 11.1+ 2.3 10.7+ 2.01 10.6+ 1.99 × 23 041 266
64-bit GMW 19.7+ 95.8 11.0+ 32.1 8.5+ 6.34 7.6+ 0.45 7.6+ 0.10 19 789 649

FPLOG2

64-bit Yao 13.3+ 3.9 9.7+ 2.0 9.2+ 1.76 9.2+ 1.75 × 19 789 649

FPSIN
32-bit GMW 7.3+ 178.9 2.5+ 6.6 2.9+ 1.00 2.1+ 0.05 2.0+ 0.03 5 215 93
42-bit GMW 17.0+ 57.0 7.3+ 17.2 6.0+ 1.27 5.2+ 0.12 5.1+ 0.07 13 378 172

FPCOS
32-bit GMW 4.3+ 50.7 2.4+ 6.6 2.9+ 0.80 2.0+ 0.06 2.0+ 0.03 5 227 96
42-bit GMW 22.6+ 58.6 7.3+ 28.6 5.5+ 1.93 5.0+ 0.12 5.1+ 0.07 13 343 173

Table 4.6: Runtimes (setup + online phase) in ms per single fixed-point operation.

Parallel Batch Size AND Gates
Fixpoint Operation 1 100 10 000 Size Depth

FIXPSIN
16-bit 2.0+ 41.9 0.9+ 0.62 0.6+ 0.008 1 489 45
32-bit 5.1+ 55.2 4.8+ 0.89 3.9+ 0.052 10 171 119

FIXPCOS
16-bit 2.0+ 122.6 1.0+ 0.58 0.6+ 0.009 1 487 45
32-bit 5.0+ 153.4 4.9+ 0.88 3.9+ 0.056 10 172 119

depth or size, and from the efficient implementation of GMW and Yao’s garbled circuits with
most recent optimizations in ABY. Since both protocols are based on Boolean circuits, we
improve the performance of operations that require many bit operations. Operations that
involve many integer multiplications are better suited for solutions based on arithmetic or
secret sharing.

4.6 Application: Privacy-Preserving Proximity Testing on Earth

As application for secure computation on floating-point operations, we consider privacy-
preserving proximity testing on Earth [ŠG14]. Here, the goal is to compute if two coordinates
C0 and C1 input by party P0 and P1 respectively are within a given distance ε: D(C0, C1)< ε.

51

4 Automated Synthesis of Optimized Circuits for MPC

This is a useful but rather privacy-critical use case that has many applications, such as finding
nearby friends, points of interest or targeted advertising, and is widely used with the recent
spread of end-user GPS receivers and geolocation via IP addresses. The authors of [ŠG14]
present and compare three different distance metrics: UTM, ECEF, and HS described below.
In their paper, the authors design secure protocols based on additively HE or Yao’s garbled
circuits that require to quantize all values to integers, which means a loss of precision. Instead,
our framework allows to compute the distance formulas directly on floating-point numbers
with multiple precision options available and thus can offer a higher precision.

Universal TransverseMercator (UTM) This distance metric maps Earth over a set of planes
and provides accurate results if P0 and P1 are located relatively close to each other, within
the same UTM zone.

In this metric coordinates are expressed as 2-dimensional points: C0 = (x0, y0) and
C1 = (x1, y1).

DUTM(C0, C1)< ε⇔ (x0 − x1)2 + (y0 − y1)2 < ε2, where underlined variables are inputs of
party P0 and the other terms are inputs of party P1. For computing this formula we need
2 FPSQR, 3 FPADD, and 1 FPCMP operations.

Earth-Centered, Earth-Fixed (ECEF) This distance metric uses the Earth-Centered, Earth-
Fixed (ECEF, also known as Earth Centered Rotational, or ECR) coordinate system which
provides very accurate results when the parties are far apart.

The coordinates are expressed as 3-dimensional points where (0,0,0) is the center of the
Earth: C0 = (x0, y0, z0) and C1 = (x1, y1, z1).

DECEF(C0, C1)< ε⇔
(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2 < 4R2aε,

with aε =
(tan ε

2R)
2

1+ (tan ε
2R)2

. Underlined variables are inputs of party P0 and the other terms are

inputs of party P1. Computing this formula takes 3 FPSQR, 5 FPADD, and 1 FPCMP operations.

Haversine (HS) This distance metric is based on the haversine (HS) formula which is a
trigonometric formula used to compute distances on a sphere and is very accurate regardless
of the position of P0 and P1.

The coordinates are expressed as spherical coordinates with latitude (lat) and longitude (lon):
C0 = (lat0, lon0) and C1 = (lat1, lon1).

DHS(C0, C1)< ε⇔
α2 · β2 − 2αγ · βδ + γ2 · δ2 + ζθ2 · ηλ2 − 2ζθµ · ηλν+ ζµ2 · ην2 < aε, with aε as defined
above and

52

4 Automated Synthesis of Optimized Circuits for MPC

α= cos(lat0/2)

γ= sin(lat0/2)

ζ= cos(lat0)

θ = sin(lon0/2)

µ= cos(lon0/2)

β = sin(lat1/2)

δ = cos(lat1/2)

η= cos(lat1)

λ= cos(lon1/2)

ν= sin(lon1/2).

Underlined terms are inputs of party P0 while all other terms are inputs of party P1. Computing
this formula requires 6 FPMULT, 5 FPADD, and 1 FPCMP operations.

Table 4.7: Runtimes (setup + online phase) in ms and circuit complexity per single proximity
test for multiple precisions. ‘–’ indicates that no numbers were given. All protocols
are in the 2-party setting. Entries marked with× could not be run on our machines.

Distance Metric
Parallel Batch Size AND Gates

1 100 10 000 Size Depth

HE [ŠG14] 700 . . . 1 100 – – – –
GC [ŠG14] 401.0 + 102.0 – – – –
32-bit GMW 4.4+ 59.8 4.0+ 1.49 3.3+ 0.05 8 815 146
32-bit Yao 18.0+ 2.4 4.2+ 0.87 × 8 815 146
64-bit GMW 19.9+ 67.2 10.6+ 2.65 10.2+ 0.14 26 588 195

UTM

64-bit Yao 18.1+ 5.7 12.5+ 2.54 × 26 588 195

HE [ŠG14] 1 000 . . . 1 300 – – – –
GC [ŠG14] 404.0 + 105.0 – – – –
32-bit GMW 5.7+ 60.1 5.8+ 1.56 5.3+ 0.07 14 042 205
32-bit Yao 12.8+ 3.3 6.6+ 1.32 × 14 042 205
64-bit GMW 13.9+ 78.1 15.8+ 2.91 16.0+ 0.20 41 850 267

ECEF

64-bit Yao 27.4+ 8.8 19.9+ 3.88 × 41 850 267

HE [ŠG14] 1 700 – – – –
GC [ŠG14] 409.0 + 124.0 – – – –
32-bit GMW 13.6+ 67.5 11.6+ 2.11 10.5+ 0.14 27 525 224
32-bit Yao 17.9+ 5.6 12.8+ 2.48 × 27 525 224
64-bit GMW 49.5+ 283.6 33.3+ 3.40 33.4+ 0.41 88 530 342

HS

64-bit Yao 67.8+ 18.0 41.4+ 8.03 × 88 530 342

Comparison We implemented the three proximity testing algorithms from [ŠG14] using
our floating-point building blocks. In Tab. 4.7 we compare the runtime of the original
implementation of [ŠG14] that uses HE and Yao’s garbled circuits with our implementation
based on GMW and Yao for single and parallel evaluation. We are able to achieve better
runtimes for single executions of the protocol (by factor 6.2 for HS and more than factor 14
for UTM and ECEF), and more than two orders of magnitude speedup for highly parallel
execution. Thereby, we show that our approach allows to substantially improve upon the
runtime of hand-crafted protocols while at the same time it benefits from the heavily tested
and verified circuit building blocks from industry-grade hardware synthesis libraries.

53

5 Automated Compilation of Hybrid Protocols for
Practical Secure Computation

Results published in:

[BDK+18] N. BÜSCHER, D. DEMMLER, S. KATZENBEISSER, D. KRETZMER, T. SCHNEIDER.
“HyCC: Compilation of Hybrid Protocols for Practical Secure Computa-
tion”. In: 25. ACM Conference on Computer and Communications Security
(CCS’18). ACM, 2018, pp. 847–861. CORE Rank A*.

5.1 Introduction

MPC is an active field of research and the large number of protocols and optimizations has
led to a significant performance improvement of MPC, yet also has the drawback that MPC
becomes harder and more complex to access for people outside the field. Identifying a (near)
optimal choice of MPC protocols for a given application requires experience with many MPC
protocols, their optimizations, programming models, and the conversions to securely switch
between protocols in hybrid computations. Furthermore, for realizing an actual application
not only expert knowledge in MPC, but also a background in hardware design is needed to
implement the application in an efficient Boolean and/or arithmetic circuit representation,
which are the most common function representations in MPC. Consequently, creating efficient
applications by hand is a tedious and error-prone task and therefore multiple compilers have
been proposed, which share similarities with high-level synthesis from the area of hardware
design, e.g., as shown in Chapt. 4.

Previous MPC compilers often only targeted a single protocol, e.g., Yao’s garbled cir-
cuits [HFKV12; MNPS04; SHS+15], the GMW protocol [BHWK16], or linear-secret-sharing-
based MPC [BLW08], or the compilers required the developer to use specific annotations to
mark which protocol is used for each statement, e.g., [HKS+10; DSZ15]. While our work
in Chapt. 4 can generate Boolean circuits for either Yao’s garbled circuits or the GMW protocol,
this only applies to the full circuit that is compiled and has to be specified by the developer
manually. The only other compiler that addresses the compilation of a program using two
MPC protocols (Yao’s gabled circuits and arithmetic sharing) is EzPC [CGR+17]. However,
EzPC only provides semi-automation for a domain specific language (DSL), as the input code
must be manually decomposed, array accesses have to be manually resolved into multiplexer

54

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

structures, and the compiled circuits are left unoptimized. Moreover, EzPC is limited to two
MPC protocols, which are selected statically and independently of the execution environment,
by following a strict set of rules for each expression in the program. Similar HyCC, presented
in this chapter, EzPC also uses our ABY framework from Chapt. 3 to evaluate generated
circuits.

Compilation for Hybrid MPC In this chapter, we propose HyCC, a novel hybrid circuit
compiler, capable of compiling and optimizing applications written in ANSI C into an efficient
combination of MPC protocols. Other than previous work, we present a fully automated
approach that decomposes the source code, translates the decomposed code into Boolean
and arithmetic circuits, optimizes these circuits, and finally selects suitable MPC protocols for
a given deployment scenario, optimizing for given criteria, such as latency (minimal total
runtime), throughput (minimal per-operation runtime), or communication.

Fig. 5.1 illustrates the two main components of our approach. The first component is the
(one-time) compilation of the application source code in ANSI C into a decomposed program
description in the form of multiple circuits. We refer to the different parts of a decomposed
program, i.e., the compact logical building blocks a larger application consists of, as modules.
Each module is compiled into multiple circuit representations. HyCC compiles arithmetic
circuits (A), depth-optimized circuits for GMW (B), and size-optimized circuits for Yao’s
garbled circuits (Y). The second component in HyCC is protocol selection, in which the most
suitable combination of MPC protocols is selected for a decomposed program depending on
the computational environment. This protocol selection can be included in an MPC framework
and can also be done after compilation.

Environment C Program

Circuit Compiler

Protocol Selection

Hybrid Protocol Description

CompilationCompilation Compilation

Program Decomposition

B CircuitsA Circuits Y Circuits

Figure 5.1: High-level overview of the HyCC compilation architecture. The circuit compiler
decomposes an input program and compiles each part into multiple circuit
representations. The protocol selection recombines the different parts.

Optimizing Circuit Compiler MPC is still significantly slower and more expensive than
generic plaintext computation regarding both computation and communication. Thus, a tool-
chain is required that optimizes the compilations of a program description into an efficient
MPC protocol and its corresponding circuits. Even though the optimization of an input
program has limits, i.e., an inefficient algorithm description cannot automatically be translated
into a fast program, a programmer expects the compiler to not only correctly translate every

55

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

statement of a high-level description, but also to optimize the given representation, e.g.,
by removing unnecessary operations and using efficient instructions of a selected target
architecture. This is of special interest for MPC compilers, where code optimizations that are
too expensive to be applied by traditional compilers become affordable when considering the
trade-off between compile time and evaluation costs of the program in MPC. For example, in
Yao’s protocol a 32× 32 bit signed integer multiplication requires the evaluation of ≈ 1000
non-linear Boolean gates (using the best known circuit), which results in ≈ 5 000 symmetric
encryptions during the protocol execution. Consequently, the removal of any unnecessary
operation in MPC has more impact than in traditional compilation, where only a single
CPU cycle is lost during program execution. Furthermore, optimizations performed on the
source code level, e.g., constant propagation, are computationally cheaper than minimization
techniques applied on the gate level after the compilation to circuits.

These observations are incorporated in our compiler architecture: Before decomposing the
input source code into different parts, a rigorous static analysis is performed to realize
constant propagation, detect parallelism, and determine the decomposition granularity. Logic
optimization techniques are then gradually applied on the circuit level. To achieve scalable
optimizing compilation, we guide the logic optimization based on the results of static analysis
of the source code. For example, loop bodies with a large number of iterations will be
optimized with more effort than a piece of code that is used only once. Thus, in contrast
to classic logic optimization or arithmetic expression rewriting, we rely on the structural
information available in the high-level code.

Im summary, HyCC is capable of compiling optimized Boolean circuits and arithmetic circuits
suiting the requirements of most constant- and multi-round MPC protocols. Our tool-chain is
highly flexible and independent of the underlying MPC protocols, as only the respective cost
models for primitive operations, e.g., addition or Boolean AND, have to be adapted to reflect
future protocol developments in MPC.

Protocol Selection Protocol selection refers to mapping each part of a decomposed pro-
gram to a specific MPC protocol. The circuits created by HyCC for each module and the
mapping of modules into MPC protocols is sufficient to evaluate an application in a hy-
brid MPC framework. Overall, this is an optimization problem, where the best mapping is
identified in regard to the cost model that considers the cost of evaluating each circuit in
the respective MPC protocol as well as the conversion costs between them. The concept of
protocol selection has previously been studied independently from compilation in [KSS14;
PKUM16]. Kerschbaum et al. [KSS14] investigated protocol selection for a combination of
Yao’s garbled circuits and additively homomorphic encryption (HE). They conjectured that
the optimization problem is NP-hard and proposed two heuristic approaches based on integer
linear programming and a greedy optimization algorithm. Pattku et al. [PKUM16] used
similar heuristics to optimize the protocol selection for minimal cloud computing costs.

We follow an approach that is different in several aspects. First, we show that the compilation
of an efficient hybrid MPC protocol is not only a protocol selection problem, but also a
scheduling problem. Second, in contrast to previous work, we make use of the structural

56

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

information in the source code before its translation into circuits. By grouping expressions
that perform similar operations, e.g., loops, it becomes possible to perform an exhaustive
search over the problem state for many practically relevant applications. If applications cannot
be optimized to the full extent, we combine exhaustive search with heuristics. Finally, by
separating compilation and protocol selection, an optimized selection can be chosen tailored
to a specific deployment scenario. For this purpose, we implement a probing technique, which
evaluates the computational power and network capabilities, for precise cost estimation
during protocol selection.

5.1.1 Outline and our Contributions

We present the first complete tool-chain that automatically creates partitioned circuits and
optimizes their selection for hybrid MPC protocols from standard ANSI C code, which makes
hybrid MPC accessible to non-domain experts. We contribute techniques and heuristics for
efficient decomposition of the code, scalable compilation, and protocol selection. We explain
our architecture in Sect. 5.2.

We separate compilation from optimizing partitioning. Using a probing technique for MPC
protocol implementations, we optimize the protocol selection at runtime for the actual
deployment scenario. Protocol selection and partitioning is discussed in Sect. 5.3.

In Sect. 5.4 we provide an evaluation and comparison of HyCC with related work. We
report speed-ups for our automatically compiled hybrid protocols of more than one order of
magnitude over stand-alone protocol compilers, and factor three over previous handmade
protocols for an exemplary machine learning application [LJLA17].

We conclude and provide an outlook into future work in Sect. 5.5.

5.2 The HyCCMPC Compiler

Here we describe our hybrid compiler HyCC1. After introducing the challenges, we provide
details on all steps of the compilation chain.

5.2.1 Hybrid Compilation and its Challenges

In this section we describe our approach to efficient hybrid compilation.

In the first step, HyCC decomposes the input source code into distinct parts, which we call
modules. The decomposition can happen on the source code level or on an intermediate
representation of the code, like Single Static Assignment (SSA) form. Modules are the finest
level of granularity used later in protocol selection and code within a module is evaluated with
a single MPC protocol. In this work, we consider size-optimized Boolean circuits required for

1An open source implementation will be made available at https://gitlab.com/securityengineering/HyCC.

57

https://gitlab.com/securityengineering/HyCC

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

Yao’s garbled circuits (Y), size- and depth-optimized Boolean circuits required for the GMW
protocol (B), and arithmetic circuits (A), which we describe in more detail in Sect. 2.4.

Each module is compiled into all possible circuit representations for the different MPC
protocols and then optimized. Finally, the hybrid protocol is put together during protocol
selection and scheduling (cf. Sect. 5.3).

Multiple challenges (besides the complexity of compiling efficient Boolean or arithmetic
circuits itself) arise when following this approach. All of them relate to a trade-off between
compilation resources, i.e., time and storage, and the circuit properties (size and depth) that
result from compilation. We describe identified challenges and propose solutions, which
motivate our actual compilation architecture.

Determining the right size of code modules that are big enough to enable circuit level
optimization and small enough to allow to benefit from protocol conversions is challenging.
Furthermore determining the right scope of optimizations between local and global scale is
nontrivial. The same issue occurs for loops, when trying to determine if and how far to unroll
them. Even though compilation is a one-time task, its efficiency is relevant in practice and
might be prohibitive for very large circuits.

We tackle these challenges and trade-offs with heuristics based on static analysis of the source
code and use Source-guided optimization [BKJK16] to optimize circuits under configurable time
constraints by distributing an optimization budget. Static source code analysis is sufficient,
as MPC applications are evaluated without data-side channels, such that all possible program
paths are taken during execution and thus can be studied at compile time. We provide more
details on these challenge and our solutions in our paper [BDK+18].

5.2.2 Architecture

Our compilation architecture works in a resource-constrained environment and gets a source
code, and compilation time limit as inputs. The compiler outputs a program description
consisting of multiple modules, compiled to multiple circuit representations, and a direct
acyclic dependency graph that describes the dependencies between the modules, which can
be used to evaluate the program in a hybrid MPC framework.

HyCC’s architecture consists of the following compilation phases, which themselves can consist
of multiple compilation passes:

1. Automated Parallelization: Automated identification and annotation of code blocks, and
in particular loops, that can be evaluated in parallel using external tools.

2. Preprocessing, Lexing and Parsing: Construction of an Abstract Syntax Tree (AST) from
the automatically annotated input code using CBMC-GC [HFKV12].

58

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

3. Source Code Optimization and Loop Unrolling: The source code is partially evaluated
using constant propagation, which requires a costly symbolic execution. This happens in
multiple passes and runs until a configurable time limit is reached. Given enough time,
this process converges to a fully optimized compilation result, while intermediate results
do only optimize within functions or loops.

4. Code Decomposition: The input program is decomposed into multiple modules, that
can be efficiently evaluated in a single protocol, and the dependencies between them
are determined. Functions or procedures are naturally regarded as separate modules,
and optionally split up further. The same happens for loops, where loops that are not
unrolled require a pointer analysis and array accesses that depend on private variables are
extracted and handled separately. Other candidates are groups of arithmetic operations
or control flow and bit operations, which should end up in different modules.

5. Circuit Compilation: Each previously identified module is compiled into all possible circuit
representations: a size-optimized Boolean circuit using CBMC-GC, a depth-optimized
Boolean circuit with Shallow-CC [BHWK16], or an arithmetic circuit where each operation
maps to an arithmetic gate in ABY.

6. Inter-Procedural Circuit Optimization: All Boolean and arithmetic circuits are optimized
across multiple modules by removing unused gates and propagating constants between
modules and across circuit types.

7. Circuit Export: The decomposed circuit with I/O interfaces is written to a file and can be
used in the protocol selection.

Steps 2, 3, and 5 are also part of CBMC-GC’s original tool-chain [HFKV12], while the others
have been added for the compilation of hybrid protocols in HyCC. All steps are described in
much more detail in our paper [BDK+18].

5.3 Protocol Selection and Scheduling

Determining an efficient combination of protocols (cf. Sect. 2.4) for given optimization goals is
a challenging task. It depends on the use case and its complexity, the available hardware, and
the network connection between the parties. In this section, we describe how to determine
an optimized scheduling and mapping of the modules that were created in the compilation
in an automated way.

5.3.1 Problem Definition

Our goal is to minimize the evaluation cost of a hybrid MPC application by determining
an efficient protocol assignment and evaluation order of the compiled modules for a given
program description and a user-specified cost model. The user can guide the optimization to
optimize for the protocol’s total, or online runtime, cloud computing costs as in [PKUM16],

59

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

amount of data transferred, or even energy consumption in the context of mobile devices, or
a constrained combination thereof.

For determining an efficient combination of hybrid modules not only the cost of evaluating
each module can be considered, but also the cost of the conversions if protocols change
between modules.

Different from previous work [KSS14; PKUM16], we observe that it is crucial for the optimiza-
tion to not only find an efficient module to protocol mapping but also a module scheduling,
i.e., the evaluation order of parallel modules to save conversions and benefit from caching
effects in large homogeneous computations.

We provide more details and an example for this, as well as a formalization of our approach
in our paper [BDK+18].

5.3.2 Protocol Selection in HyCC

Scheduling and protocol selection are closely related problems, where the latter alone is
conjectured to be NP-hard [KSS14; PKUM16]. Therefore, in HyCC we begin with determining
an evaluation schedule from a heuristic for a given program decomposition. This schedule is
then used as a starting point in a second step that optimizes the protocol selection. In HyCC
we use the input source code and the automatically generated parallelism annotations to
guide the protocol scheduling and with that explicitly schedule modules to be evaluated in
parallel. This especially benefits secret-sharing-based protocols that require multiple rounds
of interaction as well as circuit optimization that is more effective on modules that are grouped
together.

Scheduling Apart from parallelization, modules are scheduled as soon as possible (ASAP).
Combining both strategies in a single algorithm, parallel modules are temporarily merged in
a single module which is then scheduled ASAP. Finally, the merged modules are restored and
placed in the same instruction of the evaluation schedule.

Protocol Selection Protocol selection is assumed to be NP-hard in the general case [KSS14;
PKUM16], however, given a relatively coarse-grained decomposition, as with HyCC, an
optimal protocol selection can be computed with reasonable computational effort for many
practical applications, as shown in Sect. 5.4.1. This is because the complexity of the protocol
selection is mostly determined by the width of the program’s Directed Acyclic Graph (DAG)
rather than by its size.

To identify the optimal protocol selection for a given DAG of modules, we enumerate all
possible protocol combinations using dynamic programming.

If the module DAG exceeds the computationally manageable width, the optimization algorithm
will determine the optimal protocol selection for sub-graphs, with solvable width. For the

60

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

remaining sub-graphs, or a combination of multiple sub-graphs, heuristics, such as hill-
climbing [KSS14] can be used to search for an optimized selection in the combination of
different optimally solved sub-graphs.

Further details on this process and especially their algorithmic implementation as well as a
formalization are described in our paper [BDK+18].

5.3.3 Cost Model and Probing

The most relevant cost factors of MPC are protocol runtime, bandwidth requirement and
the number of communication rounds between the MPC parties. An accurate cost model
is required for the optimizing protocol selection. The total communication complexity can
precisely be determined by summing the communication costs of all individual building
blocks of a protocol, whereas the runtime prediction is more complex. For large circuits
with millions of non-linear gates a simple approach can give a rough estimate, where circuit
depth d is multiplied by the communication latency Tlat and added to the number of non-
linear gates Gnl divided by the maximum throughput of non-linear gates per second T Pnl to
get a runtime estimate Testim = d · Tlat + Gnl/T Pnl . However, this is inaccurate for smaller
circuits that do not fully saturate the network connection. In HyCC, we follow a more complex
approach, where the input of the runtime prediction is the computation and communication
costs of the individual protocol building blocks, i.e., input and output sharing, AND and XOR
gates, arithmetic addition and multiplication gates, share conversions, as well as the available
computation and communication resources. We automatically measure runtime, required
communication and circuit depth of each individual building block for different input sizes
and all available sharing types. We also evaluate them with different degrees of parallelism,
to assess the efficiency gain of parallelization and also to determine the limits of the available
resources. To optimize for the best possible performance, this probing happens on the systems
where the final hybrid protocol will be deployed. By doing this, we can estimate the runtime
and bandwidth requirement of compiled hybrid MPC protocols without actually running
them by linear inter- and extrapolation of the previously measured smaller building blocks.

Fig. 5.2 shows a comparison of empirically measured runtimes (solid lines) and estimated
runtimes (dashed lines) for three use cases: Minimum-Euclidean-Distance (described in
Sect. 5.4.2) and AES evaluated with Yao’s garbled circuits and the GMW protocol, respectively.
We benchmark the building blocks for different number of inputs, evaluated in parallel.
Extrapolating from runtime that was measured on small building blocks to a full-sized circuit
and the influence of the network connection between the MPC parties leads to imprecision
in the runtime prediction. In our measurements we found that the prediction was always
within ±50% of the actual achieved runtime. For better runtime prediction, a larger number
of measurements and more data points of the underlying building blocks are required to limit
the influence of noise on a busy network or on shared hardware. As our results show, the
runtime estimate that is interpolated from measuring the underlying building blocks captures
the relative runtime between the protocols well and allows for identifying the most efficient
sharing in the protocol selection step for a given deployment scenario.

61

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

27 28 29 210 212211 213 214

102

103

104

Input size

R
un

ti
m

e
[m

s]
Total Runtime and Estimates for LAN connection

27 28 29 210 211 212 213 214

104

105

Input size

R
un

ti
m

e
[m

s]

Total Runtime and Estimates for WAN connection

AES GMW AES Yao Mininmum Euclidean Distance

Figure 5.2: Comparison of measured runtimes (solid lines) and corresponding estimates
(dashed lines) using a log-log plot.

A different approach was followed in [SK11], that performed a run-time forecast based on
the number of cryptographic operations, the number of communication rounds, and the
total communicated bits. We argue that our forecast mechanism is more accureate, since,
especially symmetric cryptographic operations are becoming a less dominant factor, e.g.,
AES-NI enables a standard desktop PC to evaluate AES very efficiently.

5.4 Benchmarks

In this section, we present an experimental evaluation of HyCC. We study the efficiency
of protocol selection, the circuits created by HyCC, and their performance in hybrid MPC
protocols for various use cases in two different deployment scenarios. The goal of this
evaluation is to illustrate that the circuits that were automatically created by HyCC from
ANSI C code achieve comparable complexity as hand-crafted hybrid circuits and significantly
more efficient than previous single-protocol compilers. As such, we are able to show that HyCC
is simplifying the ease-of-use of hybrid MPC, and is thus a powerful tool to prototype a
solution for a privacy problem, which allows to identify whether generic MPC protocols
achieve sufficient efficiency or whether dedicated protocols need to be developed. We remark
that the goal of this work is not to outperform dedicated secure computation protocols,
which are optimized to achieve maximum efficiency for a specific use case. We start with an
evaluation of the runtime of the protocol selection algorithm presented in Sect. 5.3.2.

5.4.1 Protocol Selection

To illustrate that exhaustive search is a sufficient solution for the protocol selection problem
in most practical cases, we measure the runtime of the protocol selection algorithm in Fig. 5.3.

62

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

Shown are the runtimes averaged over k = 10 executions of a straight forward (unoptimized)
implementation running on a commodity laptop for randomly generated graphs with n = 2 ·w
modules and increasing graph width w. We observe the expected exponential growth in
runtime when increasing w. Albeit being a limiting factor of our approach, to the best of our
knowledge all applications in privacy research studied so far have a very small branching
factor in their functionalities, which leads to very small width w. For example, all use cases
in this work have a width of at most w = 3, which is solved in less than 0.01 seconds and we
remark that even larger graphs with a width of w= 10 are solved in seconds.

2 4 6 8 10 12 14

10−3

10−2

10−1

100

101

102

Graph width w

R
un

ti
m

e
[s
]

Figure 5.3: Runtime of the protocol selection algorithm for different graph widths w.

5.4.2 Use Cases

Next, we evaluate the circuits and protocol selections generated by HyCC for different use
cases in ABY, cf. Chapt. 3. Note that the circuits generated by HyCC are generic and could be
evaluated by any suitable MPC framework, e.g., ABY or ABY 3 [MR18]. For the evaluation,
we use applications that illustrate the versatility of HyCC or that have previously been used
to benchmark MPC protocols and compilers.

Experimental setup All applications are implemented based on textbook algorithms and
compiled with HyCC using a total optimization time of T = 10 minutes. The generated circuits
are evaluated on two identical machines with an Intel Core i7-4790 CPU and 32 GiB RAM,
connected via a 1 Gbps local network, denoted as LAN. To simulate an Internet connection
between the MPC parties, denoted as WAN, we use the Linux tool tc to set a latency of 50 ms
(100 ms RTT) and limit the throughput to 100 Mbps. We set the symmetric security parameter
to κ =128 bit. Running times are median numbers from 10 measurements. “—” denotes that
no values were given or benchmarked.

For all applications the number of non-linear (multiplicative) gates, communication rounds,
transferred bytes, and the protocol runtime of the setup phase and of the online phase are
measured. For comparison purposes we provide these numbers not only for the best protocol

63

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

Table 5.1: Modules and their circuit complexity when compiling the biometric matching
example with HyCC.

Module Non-Linear Gates Non-Linear # bits
A B Y Depth Inputs Outputs

mpc_main 0 0 0 0 8256 32
match (×128) 2 1785 1 536 20 128 32
loop1 (×127) — 120 64 10 64 32

total 128 2 · 105 2 · 105 909 8256 32

selection, but also for different instantiations of the same functionality, e.g., all modules
evaluated in a Boolean circuit-based protocol, or a hybrid of a Boolean circuit and arithmetic
sharing. As before, we use A for arithmetic sharing, B for Boolean sharing using the GMW
protocol, and Y for Yao’s garbled circuits. We omitted A-only measurements for use cases
that include bit-operations (e.g., minimum, comparison), since these are extremely costly in
A sharing and therefore not implemented in ABY [DSZ15].

Biometric Matching (Minimum Euclidean Distance)

The minimum Euclidean distance is the minimum of the distances from a single coordinate
to a list of coordinates. It is used in biometric matching between a sample and a database,
and is a well-known benchmark for MPC, e.g., [BHWK16; DSZ15; HKS+10]. For illustration
purposes a code example for the biometric matching functionality is shown in Listing 5.1 for
a database of size n = 128 and dimension d = 2. The identified modules and their circuit
sizes when compiling this code with HyCC are given in Tab. 5.1.

For the experimental evaluation we use databases consisting of n ∈ {1000;4096;16384}
samples with dimension d = 4, where each coordinate has bit length ℓ = 32 bits. The
performance results are given in Tab. 5.2. We compare a hand-built hybrid ABY circuit [DSZ15]
to a circuit that is compiled with HyCC. The results show that the circuits that we automatically
compiled from a standard ANSI C description achieve the same complexity as the hand-built
and manually optimized circuits in ABY. Here, a combination of arithmetic sharing and Yao’s
protocol (Y+A) achieves the best runtime in all settings. The runtimes in both cases show a
slight variation that is due to variance of the network connection. We remark that the setup
phase of the ABY circuit is more efficient, because ABY allows Single Instruction Multiple
Data (SIMD) preprocessing, which is currently not implemented in HyCC.

To show the efficiency gain of hybrid protocols over standalone protocols, we give experiments
using B or Y sharing only. These protocols are significantly less efficient and for larger input
sizes even exceed the memory resources of our benchmark hardware.

64

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

1 #define N 128
2 #define D 2
3

4 #include <inttypes.h>
5 typedef int32_t DT;
6

7 DT match(DT db1, DT db2, DT s1, DT s2) {
8 DT dist1 = db1 - s1;
9 DT dist2 = db2 - s2;

10 return dist1 * dist1 + dist2 * dist2;
11 }
12

13 void mpc_main() {
14 DT INPUT_A_db[N][D];
15 DT INPUT_B_sample[D];
16 DT matches[N];
17

18 DT min = match(INPUT_A_db[0][0], \
19 INPUT_A_db[0][1], INPUT_B_sample[0], \
20 INPUT_B_sample[1]);
21

22 for(int i = 1; i < N; i++) {
23 DT dist = match(INPUT_A_db[i][0], \
24 INPUT_A_db[i][1], INPUT_B_sample[0], \
25 INPUT_B_sample[1]);
26

27 if(dist < min) {
28 min = dist;
29 }
30 }
31 DT OUTPUT_res = min;
32 }

Listing 5.1: Biometric matching code example.

Machine Learning

Machine learning (ML) has many applications and is a very active field of research. Protecting
the privacy of training data or ML inputs is also an active research area.

Supervisedmachine learning – Neural networks Deep (Convolutional) Neural Networks
(CNNs) are one of the most powerful ML techniques. Therefore, many dedicated pro-
tocols for private data classification using CNNs have been proposed recently [GDL+16;
LJLA17; RWT+18]. We implemented CryptoNets [GDL+16] and the very recent MiniONN
CNN [LJLA17], which both have been proposed to detect characters from the MNIST hand-
writing data set2. Previously these use cases needed to be carefully built by hand, while

2http://cis.jhu.edu/~sachin/digit/digit.html

65

http://cis.jhu.edu/~sachin/digit/digit.html

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

Table 5.2: Minimum Euclidean distance benchmarks comparing a hand-built cir-
cuit (ABY,cd. Chapt. 3) with a compilation from HyCC (best values marked in
bold).

Setup Phase Online Phase
Circuit Sharing non-linear Comm. LAN WAN Comm. LAN WAN Comm.

Gates Rounds [ms] [ms] [MiB] [ms] [ms] [KiB]

min. Euclid ABY [DSZ15] (n= 1000) Y+A 98936 6 167 2878 8 55 557 1 567
min. Euclid HyCC (n= 1000) Y+A 98 936 10 175 1920 8 70 584 1 582

min. Euclid ABY [DSZ15] (n= 1000) B+A 155879 78 151 2206 9 73 3 971 1620
min. Euclid HyCC (n= 1000) B+A 155 879 80 190 3622 10 131 4249 1 643
min. Euclid HyCC (n= 1000) Y 3 166 936 3 1498 10 239 99 1177 1 789 4016
min. Euclid HyCC (n= 1000) B 3497 879 93 550 8228 107 2932 7974 1725

min. Euclid ABY [DSZ15] (n= 4096) Y+A 405440 6 420 7336 34 211 1 234 6 416
min. Euclid HyCC (n= 4096) Y+A 405 440 10 536 5162 34 330 1406 6 480

min. Euclid ABY [DSZ15] (n= 4096) B+A 638855 92 417 8016 37 303 5 606 6629
min. Euclid HyCC (n= 4096) B+A 635 020 94 555 4337 41 689 5802 6 722

min. Euclid HyCC (n= 16384) Y+A 1 621 952 10 2239 13 522 112 1 419 4 041 25 920
min. Euclid HyCC (n= 16384) B+A 2540 935 108 2286 15 179 164 3155 11024 26883

we achieve even better performance when conveniently compiling easily understandable
C source code to a hybrid MPC protocol.

Tab. 5.3 shows the machine learning performance results. For Cryptonets, HyCC automatically
determined A as the best sharing in the LAN setting. When changing the activation function
(from the square function to f (x) = max(0, x), known as RELU function), or when changing
the number representation (fixed-point instead of integer), a hybrid Y+A protocol becomes
the fastest option.

For the MiniONN CNN, HyCC proposes to use Y+A, where Y is mainly used to compute
the RELU activation function, which results in a hybrid protocol that requires only a third
of the online runtime, total runtime, and total communication compared to the original
MiniONN protocol [LJLA17]. When expressing the entire MiniONN functionality solely as a
Boolean circuit, more than 250 million non-linear gates are used. Using Yao’s protocol in the
LAN setting, sending the corresponding garbled circuit would take more than one minute,
assuming perfect bandwidth utilization. Thus, in comparison to all existing Boolean circuit
compilers for MPC, i.e., single protocol compilers, HyCC achieves a runtime that is more than
one order of magnitude faster.

Unsupervised machine learning – k-means Clustering is another data mining task that
is frequently used to identify centroids in unstructured data. One of the most well known
clustering algorithms is k-means, and multiple works proposed dedicated privacy-preserving
k-means protocols, e.g., [JW05; VC03]. We evaluate a textbook algorithm that detects c = 4
clusters in 2-dimensional data sets of size n = 500 using i = 8 iterations and show our results
in Tab. 5.3. Also in this use case, a hybrid Y+A protocol achieves the best runtime.

66

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

Table 5.3: Machine learning benchmarks comparing with MiniONN [LJLA17], Cryp-
toNets [GDL+16] with different activation functions, and the k-means algorithm
(best values marked in bold).

Setup Phase Online Phase
Circuit Sharing non-linear Comm. LAN WAN Comm. LAN WAN Comm.

Gates Rounds [ms] [ms] [MiB] [ms] [ms] [KiB]

MiniONN MNIST [LJLA17] — — — 3580 — 21 5740 — 651 877
MiniONN MNIST HyCC B+A 2275 880 90 1750 14 469 165 2689 9 443 35 864
MiniONN MNIST HyCC Y+A 1 838120 34 1825 14041 150 1 621 5 882 35 094

CryptoNets Square [GDL+16] — — — 0 — 0 297 500 — 381133
CryptoNets Square HyCC A 107570 7 683 10348 131 134 1359 2 018

CryptoNets RELU HyCC Y+A 195 455 19 784 11238 134 163 1297 3 330
CryptoNets RELU HyCC B+A 195455 33 735 11298 134 187 1917 3360

CryptoNets Fix-Point HyCC B+A 195 455 33 765 11416 134 187 1910 3 694
CryptoNets Fix-Point HyCC Y+A 195455 19 780 11264 134 162 1 296 3330

k-means HyCC (n= 500) B+A 7894 592 6 578 3453 21 887 293 5917 337 083 30 473
k-means HyCC (n= 500) Y+A 4 991816 125 4414 21007 206 3 748 10 503 38915

Gaussian Elimination

Solving linear equations is required in many applications with Gaussian elimination being
the most well known solving algorithm. We implement a textbook Gauss solver with partial
pivoting for n ∈ {10,16} equations using a fixed-point number representation and present
our results in Tab. 5.4. Fixed-point numbers can easily be implemented in software, and thus
also using HyCC, which is illustrated in our paper [BDK+18]. In all scenarios, HyCC identifies
Y+A as the most efficient protocol, where Y is mainly used to compute row permutations and
divisions. Note that due to the large circuit depth, we did not measure runtime for Boolean
circuits evaluated with the GMW protocol in the WAN setting.

Table 5.4: Gaussian elimination benchmarks for a 10× 10 and a 16× 16 matrix
(best values marked in bold).

Setup Phase Online Phase
Circuit Sharing non-linear Comm. LAN WAN Comm. LAN WAN Comm.

Gates Rounds [ms] [ms] [MiB] [ms] [ms] [KiB]

Gauss 10× 10 HyCC B+A 555611 41305 340 — 29 5843 — 2 989
Gauss 10× 10 HyCC B 1158 995 41 829 268 — 23 6020 — 1412
Gauss 10× 10 HyCC Y+A 494215 147 348 2849 17 256 4235 1 997
Gauss 10× 10 HyCC Y 1030 225 3 561 3850 31 429 631 101

Gauss 16× 16 HyCC B+A 2516 310 67920 1 245 — 57 11 182 — 10031
Gauss 16× 16 HyCC Y+A 2294 615 243 1 515 8 842 79 1 258 8126 7740
Gauss 16× 16 HyCC Y 4393 173 3 2 445 13749 134 1957 2 190 257

67

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

Database Analytics

Performing data analytics on sensitive data has numerous applications and therefore many
privacy-preserving protocols and use cases have been studied, e.g., [BJSV15; DHC04].
Using generic MPC techniques is of interest for database analytics, as it allows to perform
arbitrary analytics, e.g., hypothesis testing, or allows to add data perturbation techniques,
e.g., differential privacy, before releasing the result with minimal effort. We study exemplary
use cases, where each party provides a database (array) of size nA and nB that has two
columns each, which are concatenated (merged) leading to a database of size n = nA+ nB or
joined (inner join on one attribute) yielding a database of maximum size n = nA · nB, and
then the mean and the variance of one column of the combined database are computed.
Our performance evaluation is shown in Tab. 5.5. We observe that in both use cases, a
combination of Y+A achieves minimal runtime in the LAN setting, with the division (and
join) being performed in Y . In the WAN setting, Y achieves optimal runtime and minimal
online communication.

Table 5.5: Database operation benchmarks for merging or joining two databases
with basic statistical analysis (best values marked in bold).

Setup Phase Online Phase
Circuit Sharing non-linear Comm. LAN WAN Comm. LAN WAN Comm.

Gates Rounds [ms] [ms] [MiB] [ms] [ms] [KiB]

DB Merge 500+ 500 HyCC B 1441 732 1237 593 3 776 44 1310 63430 733
DB Merge 500+ 500 HyCC B+A 5395 1 187 29 927 2 144 59 319 56
DB Merge 500+ 500 HyCC Y 849711 3 858 3 619 26 679 886 752
DB Merge 500+ 500 HyCC Y+A 4990 17 22 815 1 4 606 30

DB Join 50× 50 HyCC B 4429 046 765 1 645 13 312 135 4219 43090 2179
DB Join 50× 50 HyCC B+A 529526 708 451 5 201 26 564 36 652 6 827
DB Join 50× 50 HyCC Y 2550 076 3 1 725 8 317 78 1272 1 451 100
DB Join 50× 50 HyCC Y+A 443900 32 472 3 433 23 435 2395 6 705

DB Join 25× 200 HyCC B 8981 870 767 3 521 26 766 274 9846 48937 4403
DB Join 25× 200 HyCC B+A 1 163575 708 832 7 085 54 1202 38155 13 295
DB Join 25× 200 HyCC Y 5158 825 3 3 212 15 960 158 2660 2 861 250
DB Join 25× 200 HyCC Y+A 937049 32 927 5 837 47 942 3603 12 861

Summary of Experiments Summarizing the results obtained in all use cases, we observe
that hybrid protocols consisting of Y+A, achieve efficient runtime in a LAN, whereas Y is
often the fastest protocol for a WAN network. We observe that the GMW protocol (B) has
barely been identified to achieve optimal runtime for any of the benchmark applications. This
is because we performed all benchmarks in the function-dependent preprocessing model,
which is the default setting in ABY, and which allows to garble the circuit in the setup phase.
When using a function-independent cost model for preprocessing, HyCC identifies B+A as
the fastest protocol combination in the LAN setting for many applications.

68

5 Automated Compilation of Hybrid Protocols for Practical Secure Computation

5.5 Conclusions and Future Work

In our evaluation we observed that hybrid protocols can significantly outperform standalone
protocols. HyCC is capable of automatically synthesizing the required hybrid protocols from
a high-level description in ANSI C and selecting them for a given deployment scenario. As
such, HyCC is even capable of outperforming certain hand-optimized protocols. Moreover,
as the manual creation of circuits and their selection are tedious and error-prone tasks, we
conclude that HyCC makes hybrid MPC more practical and also accessible to developers
without expert-knowledge in MPC.

In future work, we will extend HyCC with floating point operations and integrate more MPC
protocols with different cost models. A natural candidate for extension is homomorphic
encryption, similar to TASTY [HKS+10]. Another possibility would be integrating trusted
execution environments such as Intel’s SGX.

69

Part II

MPC Applications in the Outsourcing Scenario

70

6 Privacy-Preserving Internet Routing

Results published in:

[ADS+17] G. ASHAROV, D. DEMMLER, M. SCHAPIRA, T. SCHNEIDER, G. SEGEV, S. SHENKER,
M. ZOHNER. “Privacy-Preserving Interdomain Routing at Internet Scale”.
In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2017.3 (2017).
Full version: https://ia.cr/2017/393, pp. 143–163. CORE Rank B.

[CDC+16] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “Towards
Securing Internet eXchange Points Against Curious onlooKers (Short Pa-
per)”. In: 1. ACM, IRTF & ISOC Applied Networking Research Workshop
(ANRW’16). ACM, 2016, pp. 32–34.

[CDC+17] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “SIXPACK:
Securing Internet eXchange Points Against Curious onlooKers”. In: 13.
International Conference on emerging Networking EXperiments and Technologies
(CoNEXT’17). ACM, 2017, pp. 120–133. CORE Rank A.

6.1 Introduction

Routing is the process of finding a path in a network. For that, path selection is based on
certain criteria that are used as inputs to a routing algorithm, which uses these inputs to
determine routes and tries to achieve certain optimization goals. The optimization can target
goals of technical nature, e.g., shortest latency or highest throughput, but also monetary,
where the goal is to keep the routing cost as low as possible. An optimization strategy can
even have political background in order to avoid routes through certain nodes or entire
network segments. Naturally, inputs that influence these routing decisions are considered
sensitive business information and operators want to keep them confidential.

Routing on the Internet is done using the Border Gateway Protocol (BGP) and happens in
2 processes: Route computation, cf. Sect. 6.1.1, is run in a decentralized process between
so-called Autonomous Systems (ASes) and establishes paths to nodes in the network. Route
dispatch, cf. Sect. 6.1.2, is the process of selecting, ranking and distributing the computed
routes that takes place at central authorities, called Internet Exchange Points (IXPs).

71

https://ia.cr/2017/393

6 Privacy-Preserving Internet Routing

In this chapter, we describe shortcomings with the current routing system and propose
solutions that focus on achieving equivalent functionality with reasonable performance, while
preserving the privacy of sensitive business information.

6.1.1 Interdomain Route Computation

Interdomain routing is the task of computing routes between the administrative domains,
called “Autonomous Systems” (ASes), which make up the Internet. While there is a variety
of intradomain routing designs to compute routes within an organizational network (e.g.,
RIP, OSPF, IS-IS), there is only one interdomain routing algorithm: the Border Gateway
Protocol (BGP). BGP stitches together the many (over 55 000) ASes that the Internet is
composed of and can thus be regarded as the glue that holds together today’s Internet. BGP
was specifically designed to meet the particular demands of routing between Internet domains,
allowing each AS the freedom to privately and freely implement arbitrary routing policies, i.e.,
the expressiveness to both (i) select a route from the routes learned from its neighboring ASes
according to its own local business and operational considerations and (ii) decide whether
to advertise or not advertise this route to each of its neighboring ASes. Importantly, ASes’
routing policies can leak sensitive information about their business relationships with other
ASes and are therefore often kept private.

BGP achieves the dual goals of policy freedom and policy privacy through an iterative,
distributed route computation. At each stage of the computation, a domain (AS) chooses
which routes to use (among the routes being advertised to it by its neighbors), and then
chooses to which neighboring ASes the resulting routes should be advertised. This process
is repeated until convergence, thus allowing each domain to make its own policy-induced
choices, without needing to explicitly reveal these choices to other domains. However, as
pointed out in [MK06; GZ11] (and the references within), while BGP computation does not
force domains to explicitly reveal policies, much information about routing policies can be
inferred by passively observing routing choices.

While BGP has served the Internet admirably, it has many well-known drawbacks ranging
from slow convergence to inability to deal with planned outages. Thus, we should explore
alternative methods for interdomain routing. As suggested in [GSP+12], the use of secure
multi-party computation (MPC) offers an intriguing possibility: executing the route com-
putation centrally (among a few mutually distrustful parties) while using MPC to retain
policy privacy. However, while the MPC technology provides ASes with provable privacy
guarantees, scaling this approach to current Internet infrastructure sizes with over 55 000
ASes is a significant challenge. Specifically, the computation in [GSP+12] already required
0.13 s for a toy example of only 19 ASes and would hence require several minutes for today’s
Internet, even when assuming a low number of neighbors per AS. This chapter is devoted
to the cryptographic paradigms, protocols, optimizations, and concrete tools necessary to
compute interdomain routes at Internet scale in a privacy-preserving and efficient way.

72

6 Privacy-Preserving Internet Routing

Privately Centralizing BGP via MPC

The vision of (logically) centralizing interdomain routing can be regarded as the interdomain-
level analogue of the SDN approach to routing within an organization (i.e., intradomain
routing), which is revolutionizing computer networking, by allowing configuration changes in
a software controller, However, reaping these benefits in the context of interdomain routing
involves overcoming two grand challenges: (1) preserving privacy of the business-sensitive
routing policies of the many independent organizations that take part in the computation,
and (2) computation at very large scale, outputting a routing configuration spanning tens of
thousands of organizations.

To overcome these challenges we combine knowledge of the two research areas of networking
and secure computation. We build on top of our ABY framework (cf. Chapt. 3) and outsource
the route computation to two computational parties P0 and P1, who are managed by two
different operators, which we assume to not collude. To protect the privacy of their business
relations, the ASes secret share their routing preferences with these two computational
parties, such that no party gets any information about the ASes’ routing preferences. The
computational parties run our secure interdomain routing computation protocols to determine
the routes for each AS in the network. The computation results are sent back to each AS,
which can then reconstruct the plain text output of the algorithm. More specifically, the CPs
only send a small message to the ASes which contains their next hop for a specific destination,
while the communication- and round-intensive MPC protocol is run solely between the CPs.
An example setting with 4 ASes is depicted in Fig. 6.2. In this setting all ASes are input and
output parties at the same time (cf. Sect. 2.4.2).

Computing Party P0

Computing Party P1

AS1

AS2

AS3

AS4

MPC

Figure 6.1: Example setting with 4 ASes that secret share their inputs with 2 computational
parties P0 and P1. Thin arrows correspond to 1 round of communication with
small messages, while the bold arrow symbolizes the execution of a secure
computation protocol with many rounds and high bandwidth.

Motivation - Why use MPC for Interdomain Routing?

In the following section, we list some of the benefits that privately centralizing BGP via MPC
can offer.

73

6 Privacy-Preserving Internet Routing

Better Convergence And Resilience To Disruption As opposed to BGP’s inherently decen-
tralized and distributed computation model, which involves communication between tens
of thousands of ASes, in our scheme interdomain routes are computed by only two compu-
tational parties P0 and P1. BGP can take seconds to minutes to converge [LABJ00; ZMZ04;
OZPZ09]. In the interim period, BGP’s path exploration can have adverse implications for
performance. Indeed, a huge fraction of VoIP (e.g., Skype’s) performance issues are the
result of bad BGP convergence behavior [KKK07]. Worse yet, BGP’s long path exploration
can even lead to intermittent connectivity losses. By centralizing computation and thus
avoiding the long distributed (and asynchronous) path-exploration process, convergence
time is reduced significantly. We demonstrate that our approach, despite harnessing MPC
machinery, is much faster to compute global routing configurations than today’s decentralized
convergence process and, consequently, faster to recover from network failures and to adapt
to changes in ASes’ routing policies.

Less Congestion BGP permits ASes great expressiveness in specifying local routing policies
at the potential cost of persistent global routing instability. However, as shown in [GR01],
under natural economic assumptions (the so called “Gao-Rexford Conditions”) BGP’s con-
vergence to a stable routing configuration is guaranteed. Unfortunately, even under these
conditions, convergence might take exponential time (in the number of ASes) due to the
exchange of an exponential number of messages between ASes [FSR11]. In contrast, our
scheme guarantees fast convergence to the desired routing outcomes as our communication
overhead is polynomial (linear in the size of the network).

Enhanced Privacy Many ASes regard their routing policies as private and do not reveal
them voluntarily, as routing policies are strongly correlated to business relationships with
neighboring ASes. BGP seemingly offers policy freedom and policy privacy, as each AS is
free to choose which routes to use and which routes to advertise to others, without having
to explicitly reveal its routing policies. However, BGP’s privacy guarantees are limited, and
are even fictitious. Monitoring selected BGP routes, in particular when done from multiple
vantage points, can reveal much information about ASes’ routing policies, e.g., their local
preferences over BGP routes (see, e.g., [MK06; GZ11] and references within). In addition,
AS business relationships can be reconstructed from publicly available datasets [CAI16]. We
refer the reader to [GZ11] for an illustration of how monitoring the BGP convergence process
can yield much information about ASes’ routing policies.

Using MPC for interdomain routing can remedy this situation by providing provable privacy
guarantees that cannot be achieved with today’s routing on the Internet. Our scheme
guarantees that no information about routing policies and inter-AS business relationships,
other than that implied by the routing outcome, is leaked. In fact, each node (AS) learns
only its “next hop” node in the final routing outcome with respect to a destination, and not
even the full route. We also hide the entire convergence process, which potentially leaks
information. As a side note, even with multiple vantage points, inferring routing policies is
no easy task. While our scheme would not completely remove this kind of leakage, it would
definitely decrease it compared to routing using BGP, where the ASes broadcast their full

74

6 Privacy-Preserving Internet Routing

routing table. Furthermore, it is unclear whether information about the policy preferences
can be gained using only the next hop as information.

Enhanced Security BGP’s computation model, which is distributed across all ASes, enables
ASes to launch devastating attacks against the protocol, which can result in Internet out-
ages [BFMR10]. By outsourcing BGP computation to a few parties, attacks on BGP that
manipulate its decentralized computation, e.g., propagating bogus AS-level routes to neigh-
boring nodes, are eliminated. We point out that centralizing interdomain routing is also
compatible with the ongoing efforts to deploying Resource Public Key Infrastructure (RPKI)
— a centralized certification infrastructure for issuing cryptographic public keys to ASes and
for mapping IP addresses to owner ASes, thus preventing ASes from successfully announcing
IP prefixes that do not belong to them (“prefix hijacking”). Verifying routing information
through RPKI can be executed efficiently in a centralized manner in our approach.

Freedom to Adapt and Innovate The computational parties can easily update to new and
more advanced protocols, thus offering more complex functionality, such as new security
solutions, multiple paths per destination prefix, multicast routing, fast failover in response to
network failures, etc.

‘What if’ Analysis Due to our low runtimes, we can precompute paths for cases of failure,
i.e., simulate the removal of nodes and therefore significantly reduce the recovery times for
these cases. This is possible since the network topology is known publicly and therefore
topology changes can be simulated.

6.1.2 Route Distpatch at IXPs

With the rise of Internet Exchange Points (IXPs) as the emerging physical convergence points
for Internet traffic, new privacy concerns arise. IXPs offer centralized Route Server (RS)
services for ranking, selecting, and dispatching BGP routes to their (potentially many hundreds
of) member networks [RSF+14]. However, to benefit from these centralized services, IXP
members need to divulge private information, such as peering relationships and route-export
policies to the IXP or, even worse, to other IXP members. Such information can reflect
sensitive commercial and operational information, and is consequently often regarded as
private [GSP+12; ZZG+16]. Indeed, our interaction with IXP administrators, and our survey
of network operators (Sect. 6.2.4), reveal that such privacy concerns are widespread and that
some networks even refrain from subscribing to RS services for precisely this reason. Beyond
privacy, our survey reveals three additional IXP members’ concerns for RS usage: limited
routing policy expressiveness, reliability, and insufficient value. This situation hinders RS
adoption and makes it hard to provide novel valuable routing services to IXP members, as
these can rely on the exposure of (even more) sensitive data. Indeed, on one hand, advanced
performance-oriented routing services are fundamental to improve performance of video and
latency-critical Internet applications [TG04; JD08; CB09; PMH09; XYC09; CML10; CLM11;
WLL+14; KRG+16; PTH16]. In this regard, today’s largest content providers (e.g., Google and

75

6 Privacy-Preserving Internet Routing

Twitch) resort to active measurement techniques for inferring route performance [Vah17], a
difficult task in practice [CML10]. On the other hand, our survey reveals that a large majority
of network operators (60%) is concerned about sharing network performance information
such as IXP port utilization with external entities. Therefore, the goal of supporting advanced
Internet routing features while protecting sensitive information is the subject of several recent
studies [MK04b; GSP+12; HR13; KSH+15; LPB+16; ZZG+16; KHH+17; BCP+17].

How should we design RSes?

To increase trust in IXPs and motivate further adoption of RS services, we argue that RSes
should meet the following basic requirements:

1. Easy management, i.e., relieve IXP members from the burden of configuring numerous
BGP peering sessions.

2. Policy expressiveness, i.e., provide IXP members with highly-expressive route selection
at least equivalent to having multiple bilateral BGP sessions [GSG14].

3. Performance-driven routing, i.e., dispatching tools that leverage the IXP’s superior
visibility into data-plane network conditions.

4. Efficiency, i.e., today’s RSes are required to compute and dispatch routes in the order of
hundreds per second, with full routing-table transfers performed in the order of min-
utes [AMS12; DEC16], in order to be able to quickly react to new routing information
or network failures.

5. Privacy preservation, i.e., neither an IXP member nor the IXP itself should be able to
learn information about routing policies of the other members (except for information
that can be deduced from its own RS-assigned routes).

6. Reliability, i.e., guaranteed connectivity upon failures in the IXP infrastructure.

SIXPACK: A privacy-preserving advanced RS

To accomplish the above, we advocate implementing an RS via MPC, cf. Sect. 2.4. With an
MPC-based realization of an RS, the desired routing outcome can be computed without the
IXP or IXP members gaining visibility into the “inputs” to this computation, i.e., members’
private routing policies.

However, realizing our vision of a privacy-preserving RS is highly nontrivial. General-purpose
MPC machinery is excessively heavy in terms of computation and communication overheads
and is thus infeasible to employ for this purpose [GSP+12]. Consequently, attaining feasible
runtimes and communication costs requires devising a suitable highly-optimized, privacy-
preserving scheme specifically tailored to the RS context. We present SIXPACK, the first IXP

76

6 Privacy-Preserving Internet Routing

route server service that satisfies all the aforementioned requirements.1 It efficiently ranks,
selects, and dispatches BGP routes based on the members’ expressive routing policies and
any IXP-provided performance information without leaking any confidential business peering
information.

A conceptual overview of SIXPACK is given in Fig. 6.2. The IXP route server service is jointly
performed by two independent and non-colluding computational parties, P0 and P1, run an
MPC protocol. We also refer to P0 and P1 as Route Servers (RSes). Each IXP member encrypts
its BGP routes, announces them to the RSes, and creates two “shares” of its (private) business
peering policy that are sent to the two RSes. Each of the RSes, in turn, sends to each IXP
member, upon completion of the MPC, a share of its output, that the member can use to
recover its selected routes. SIXPACK provably guarantees that as long as the RSes P0 and
P1 do not collude with each other, neither the RSes nor other IXP members will learn any
information regarding an IXP member’s business and routing policies. We envision P0 and
P1 as being run by the IXP and a neutral and well-regarded international organization (e.g.,
NANOG or RIPE), which is already trusted to support and operate fundamental Internet
services (though not necessarily trusted for privacy).2 In addition, one of the two RSes should
be executed on a machine that is located outside the IXP but in very close proximity (i.e.,
within the same colocation data center) so as to be in a separate security domain while
keeping latency of inter-RS communication at a minimum (i.e., < 1 ms).

Route Server P0

Route Server P1

Member mA

Member mB

Member mC

Member mD

IXP

MPC

Figure 6.2: Conceptual overview of SIXPACK. The four IXP members communicate with the
two route server entities P0 and P1, which run MPC to perform ranking, selection,
and dispatch of BGP routes.

We observe (Sect. 6.5) that a naïve application of MPC to RS computation, in which the
entire RS computation is carried out via MPC machinery, is infeasible in practice as a result of
unrealistic computation and communication overheads in MPC. In fact, network operators rely
on a highly-expressive inter-domain routing protocol to export, rank, and filter routes based
on their own routing policies. In the Border Gateway Protocol (BGP), the standard de-facto

1While the focus in this work is not reliability, even today, at large IXPs, members are contractually requested
to set multiple peering sessions with distinct RSes for redundancy requirements. Also, recently proposed
Internet drafts [BHS+17] further mitigate the impact of failures in the IXP network.

2In addition, our survey of network operators [CDC+17a] reveals RIRs enjoy the trust of a large fraction (88%)
of respondents.

77

6 Privacy-Preserving Internet Routing

inter-domain routing protocol, such operations often entail evaluating regular expressions
based on the traversed networks, a computationally prohibitive operation in MPC [Kel15,
§5]. To preserve the same routing expressiveness of BGP, we thus resort to the following
approach: SIXPACK is carefully designed to keep complex computation outside the MPC,
to the largest extent possible without compromising privacy. Specifically, in SIXPACK, we
carefully decompose the RS functionality into two simple, yet crucial, MPC-based building
blocks for efficient route-dispatch, called EXPORT-ALL and SELECT-BEST, while performing the
most complex computation over unencrypted data outside of the MPC without leaking any
private information. Namely, all members that wish to announce a route through the IXP
will first locally compute the set of members to whom each route should be exported using
any arbitrarily complex “export” routing policy. This computation is performed outside of the
MPC. Using EXPORT-ALL, all available BGP routes that are exportable to an IXP member, i.e.,
the routes that other IXP members are willing to advertise to that member, are dispatched
to the member in a fully privacy-preserving manner. Then, the member locally ranks its
available routes outside of the MPC according to its possibly complex local preferences over
routes and feeds the resulting ranking as input into SELECT-BEST. SELECT-BEST leverages this
information and information from the IXP (e.g., port utilization) to select the best route for
that member without leaking any information.3 Performing the ranking of routes outside of
the MPC greatly enhances the performance of the system.

Thus, SIXPACK both goes well beyond the services offered by today’s RSes (by delegating route-
selection from the RS to the member and incorporating performance-related information into
the route selection process) and provides strong privacy guarantees to IXP members.

We discuss SIXPACK’s optimized design, underlying assumptions, threat model, deployment
challenges, IXP visibility of data-plane traffic, etc., in detail in the following sections.

6.1.3 Outline and Contributions

In the following, we summarize our contributions for privacy-preserving route computa-
tion Sect. 6.1.3 and privacy-preserving route computation in SIXPACK Sect. 6.1.3. Afterwards,
we present shared preliminaries of both approaches presented in this chapter in Sect. 6.2 and
an overview of related work in Sect. 6.3.

Our Contributions for Privacy-Preserving Route Computation

Interdomain Routing Algorithms for MPC (Sect. 6.4) Interdomain routing is a long-
standing research topic for which several efficient algorithms exist. When transferred to
the MPC domain, however, the complexity of the algorithms changes drastically, since
data-dependent optimizations of the algorithms are not possible in MPC. In this chapter, we
select two interdomain routing algorithms, which provide different capabilities for setting
routing policies: one approach is based on neighbor relations and the other approach is based

3Thanks to our modular design, a member may skip the SELECT-BEST phase at the cost of revealing to the IXP
that it disregards using IXP information.

78

6 Privacy-Preserving Internet Routing

on neighbor preferences. The neighbor relations-based routing algorithm is due to [GSG11]
and uses business relations between ASes to perform routing decisions (Sect. 6.4.1). The
neighbor preference-based routing algorithm was used in the MPC protocol of [GSP+12] and
allows ASes to rank neighbors based on their preferences and give export policies which
specify whether a route to a neighbor i should be disclosed to a neighbor j (Sect. 6.4.2). We
implement these algorithms in a centralized setting, which allows for consistency checks
of the ASes’ inputs and thereby prevents malicious ASes from providing inconsistent input
information (cf. Sect. 6.10.1).

Construction and Optimization of Boolean Circuits for BGP (Sect. 6.4.4) We convert the
neighbor relation BGP algorithm of [GSG11] and the neighbor preference BGP algorithm
of [GSP+12] into a distributed secure computation protocol between two parties to provide
privacy. We explain challenges facing the implementations of these functionalities as a
Boolean circuit, optimized for both low multiplicative depth (the number of AND gates on
the critical path of the circuit) and low multiplicative size (the total number of AND gates)
for evaluation with the GMW protocol [GMW87] implemented in ABY (cf.Chapt. 3). We
provide details on several building blocks, how we optimize them, and the techniques we use
to achieve high performance so as to be able to process real-world data.

Deployment and Future Directions (Sect. 6.7) Our aim is to demonstrate the practical
feasibility of using MPC for interdomain routing. However, we view our work only as a first
stepping stone that should serve as a basis for further research. We first explain our assump-
tions about the network in Sect. 6.7.2. We list promising directions for further enhancing
robustness and measures against misconfigurations in Sect. 6.10.1 and discuss security against
stronger adversaries in Sect. 6.10.2. Of course, deploying MPC for interdomain routing is
a challenging undertaking that involves cooperation of tens of thousands of independent
entities, alongside significant operational challenges. We argue, however, that our approach
can also yield notable benefits when applied at a smaller scale. In addition, we show that
even when applying our approach to high-density networks in fairly compact areas, namely,
the German interdomain network, runtimes decrease to 0.20 s precomputation time and
0.17 s online time (cf. Fig. 6.12). We discuss the possibility of deployment and related issues
of our approach in Sect. 6.7.3.

Benchmarks and Evaluation (Sect. 6.9.1) We benchmark our implementations on a recent
empirically derived BGP dataset with more than 50 000 ASes with maximal degree 5 936
and almost 240 000 connections between them. We propose to exclude stub nodes from the
computation as further optimization and evaluate complex Boolean circuits with several mil-
lion AND gates. The neighbor relation algorithm requires about 6 s of topology-independent
precomputation time and an online time of about 3 s on two mid-range cloud instances, that
are comparable to off-the-shelf desktop computers. The neighbor preference algorithm takes
about 13 s of topology-independent precomputation time and 10 s online time. We argue that
while the online runtimes alone are not sufficient to provide adequate response to network
failures, it allows the precomputation of routes for many failure scenarios, which would
enable almost instantaneous failure recovery.

79

6 Privacy-Preserving Internet Routing

Our Contributions for Privacy-Preserving Route Dispatch with SIXPACK

The contributions we provide with SIXPACK are the following:

Preliminaries (Sect. 6.2.4) We analyze operators’ concerns about peering with RSes at IXPs
through a survey with 119 responses and a measurement of RS usage at one of the largest
IXP worldwide and summarize our findings.

SIXPACK System Design(Sect. 6.5) We design and implement the first IXP route server
capable of keeping the peering policies and routing preferences private, while allowing the
IXP members to express arbitrary BGP routing policies including policies that incorporate
confidential performance-related information available at the IXP.

Security (Sect. 6.6) We discuss the security and privacy guarantees of our schemes that
inherit their properties from the underlying protocols and building blocks.

Deployment (Sect. 6.7.6) We believe that SIXPACK can be incrementally deployed in practice
with little effort and in coexistence with traditional RS services.

Implementation (Sect. 6.8.1) We describe our implementation for applying MPC to the
important and timely context of route dispatch at IXPs and our efficient and privacy-preserving
MPC building blocks for RSes.

Performance Evaluation (Sect. 6.9.2) We provide a performance evaluation of our proto-
type. Through experiments with a BGP trace from one of the largest IXPs in the world, our
results show that SIXPACK scales to hundreds of IXP members and achieves BGP processing
times below 90 ms at the 99-th percentile. Via microbenchmarks we assess the online costs of
MPC-based RSes to be well within real-time processing requirements of large IXPs.

6.2 Preliminaries

We provide preliminaries on our setting and assumptions (Sect. 6.2.1), modeling the BGP
protocol (Sect. 6.2.2), and detail our protocols’ input data in (Sect. 6.2.3). We provide an
survey regarding privacy and IXP usage in Sect. 6.2.4 and discuss the IXP threat model and
our assumptions inSect. 6.2.5.

80

6 Privacy-Preserving Internet Routing

6.2.1 Setting and Assumptions

We introduce the core concept of MPC in Sect. 2.4 and the definition of the adversary model
in Sect. 2.2.

In our setting (as well as in [GSP+12]), we assume that the computing parties are semi-honest.
Our basic variant of the protocols assumes that the ASes are semi-honest as well (and may
collude with some of the computing parties). In the more involved variant of our protocols
(unlike [GSP+12]), we tolerate even malicious behavior of the ASes (cf. Sect. 6.10.1).

In this work, we use MPC in an outsourcing scenario, cf. Sect. 2.4.2, where many ASes secret-
share their private inputs to two computational parties, who run the secure computation on
these inputs. The outputs are sent back to the ASes, who reconstruct the plaintext output.

6.2.2 Modeling BGP

We now give an overview on important aspects of modeling BGP, as discussed in [GR01;
GSW02; GSG12] (and references therein). Throughout this chapter the terms AS, domain,
vertex or node are used interchangeably. When peering at an IXP, ASes are called members.

The AS-Level Graph

The AS-level topology of the Internet is modeled as a network graph G = (V, E) where vertices
represent ASes and edges represent connections between them. Each edge is annotated with
one of two business relationships: customer-provider, or peering. A customer-provider edge is
directed from customer to provider; the customer pays its provider for transmitting traffic
to/from the customer. A peering edge represents two ASes that agree to transit traffic between
their customers at no cost. We assume that these relationships are symmetric, i.e., if AS a
is a peer of AS b, then b is also a peer of a and if AS c is a customer of AS d, then d is a
provider of c. ASes with customers are Internet Service Providers (ISPs). We call an AS with
no customers a “stub AS”.

Routing Policies

ASes’ routing polices reflect their local business and performance considerations. Conse-
quently, routing policies are considered sensitive information as revelation of an AS’s routing
policy can potentially leak information about its business relationships with others to its
competitors (or other relevant information). We use the standard model of routing policies
from [GR01; GSW02]. Each AS a computes routes to a given destination AS dest based
on a ranking of simple (loop-free) routes between itself and the destination, and an export
policy, which specifies, for any such route, the set of neighbors to which that route should be
announced. We next present a specific model of routing policies that is often used to simulate
BGP routing (see, e.g., [GSHR10; GSG11; GSG12]).

81

6 Privacy-Preserving Internet Routing

Ranking AS a selects a route to dest from the set of paths it learns from its neighbors ASes
according to the following ranking of routes:

• Local preference. Prefer outgoing routes where the “next hop” (first) AS is a customer
over outgoing routes where the next hop is a peer over routes where the next hop is
a provider. This captures the intuition that an AS is incentivized to select revenue-
generating routes through customers over free routes through peers over costly routes
through providers. Optionally, an AS can have preferences within each group of
neighbors, i.e., it can prefer a certain provider over another one.

• Shortest paths. Break ties between multiple routes with the highest local preference
(if exist) in favor of shorter routes (in terms of number of ASes on them). Intuitively,
this implies that an AS breaks ties between routes that are equally good from a business
perspective, in favor of routes that offer better performance.

• Arbitrary tie breaking. Break any ties between multiple remaining routes arbitrarily.

Export policies The following simple export policy captures the idea that an AS is willing
to transit traffic between two other ASes if and only if one of these ASes is a paying customer:
AS b announces a path via AS c to AS a iff at least one of a and c is a customer of b.

BGP Convergence

BGP computes routes to each destination independently and so, henceforth, we consider
route computation with respect to a single destination AS dest. In BGP, each AS repeatedly
uses its ranking function to select a single route from the set of routes it learns from its
neighbors, and then announces this route to the set of neighbors dictated by its export policy.
This goes on until BGP computation converges to a stable routing outcome where no AS
wishes to change its route. Observe that an AS can only select a single route offered to
it by a neighbor. The set of selected routes upon convergence must form a tree rooted in
the destination dest, referred to as the routing tree to AS dest. Under the routing policies
specified above, BGP is guaranteed to converge to a unique stable routing tree [GR01] given
the arbitrary tie-breaking strategy.

6.2.3 BGP Input Data

It is our goal to simulate the algorithms under realistic conditions and show their practicality
on real-world data. To this end, we use the network topology and AS business relationships
provided in the CAIDA dataset from November 2016 [CAI16]. This dataset is empirically
generated and provides us with both a realistic network topology, which we can use as public
input, as well as inferred business relationships between domains, which we use to simulate
the private inputs of the ASes. We evaluate our protocols on datasets from the past 10 years
for full topologies and recent subgraphs thereof to show how our implementations scale and
provide detailed results in Sect. 6.9.1.

82

6 Privacy-Preserving Internet Routing

A possible way of deploying our solutions for MPC-based route computation could be with
the help of a Regional Internet Registry (RIR) or on smaller, regional scale. Starting from the
original CAIDA topology, we created subgraphs using the GeoLite database4 for each of the
5 RIRs and Germany as an example of a regional topology (cf. Sect. 6.7.3).

The BGP Network

Here, we provide insights into the development and growth of the BGP network since 1998.
With the historic data collected by CAIDA [CAI16], we can assess how the BGP network
develops over time. In Fig. 6.3, we depict the count of ASes with a given number of neighbors.
We show that many ASes are only sparsely connected and only very few nodes have a large
number of neighbors. In Fig. 6.4, we show the number if ASes and connections between
them for both the full CAIDA dataset, as well as the set with the stub nodes removed. Note
that both axes are in a logarithmic scale. 91% of the nodes have at most 8 neighbors in the
full topology, while in the no-stub topology the average degree is higher and the number of
nodes with degree 8 and less is 69%.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

1

10

100

1000

10 000

Node Degree (#Neighbors)

#
A

Se
s

Full Topology
Topology Without Stub Nodes

Figure 6.3: Distribution of node degree for the full 20161101 CAIDA dataset compared to
the set without stub nodes.

6.2.4 On IXPs and Privacy

We present below preliminaries on Internet exchange points and quantify, via measurements,
the extent to which route server services are used. We also report on our interaction with IXPs
and member network administrators, including a survey of network operators, indicating that
privacy concerns are a significant factor hindering widespread RS usage and corroborating
assumptions underlying past research regarding the privacy of routing policies.

4http://dev.maxmind.com/geoip/

83

http://dev.maxmind.com/geoip/

6 Privacy-Preserving Internet Routing

1998 2001 2004 2007 2010 2013 2016

0

20 000

40 000

60 000
#

A
Se

s

1998 2001 2004 2007 2010 2013 2016

0

100000

200000

#
Ed

ge
s

1998 2001 2004 2007 2010 2013 2016

0

2 000

4 000

6 000

M
ax

.
D

eg
re

e

Full Topology Topology Without Stub Nodes

Figure 6.4: Statistics for the number of ASes, edges between them and the maximum degree
for all available CAIDA ASrel datasets from January 1998 until November 2016
for the full topology compared to the topology without stub nodes.

Background on IXPs

IXPs are high-bandwidth physical networks located within a single metropolitan area. IXPs
are typically geographically distributed5,6 and hosted within colocation centers,7 facilities
operated by third party providers that offer high levels of physical security.

Heterogeneous economic entities, called members, use IXPs to exchange Internet traffic among
each other [ACF+12]. To do so, each member connects its own network to one or more
physical ports at the IXP network. After physical connectivity is established, each member
announces the set of IP prefix destinations for which it is willing to receive traffic and starts
receiving route announcements from the other members of the IXP.

The routes used to reach prefixes are spread and selected via the de facto standard inter-
domain routing protocol of the Internet, i.e., Border Gateway Protocol (BGP). To this end, a
full-mesh of BGP sessions among each pair of IXP members may be established. At medium to
large IXPs, which can have over 800 members and carry over 5 Tbps, such full-meshes can be
partially replaced by a Route Server (RS) service to ease the exchange of BGP announcements
among members [RSF+14]. The RS establishes a BGP session with each IXP member, and

5https://ams-ix.net/technical/ams-ix-infrastructure
6https://www.de-cix.net/en/access/the-apollon-platform/setup-frankfurt
7http://www.interxion.com/

84

https://ams-ix.net/technical/ams-ix-infrastructure
https://www.de-cix.net/en/access/the-apollon-platform/setup-frankfurt
http://www.interxion.com/

6 Privacy-Preserving Internet Routing

collects and distributes their BGP route-announcements. Note that data-plane traffic does
not traverse the RS, which is only involved in control-plane traffic.

Each IXP member has the freedom to specify, for each destination IP prefix, an export policy,
i.e., the set of other IXP members that are allowed to receive its route announcements. The
RS selects, for each member, a route (per IP prefix) that is “exportable” to that member
(according to members’ export policies), and dispatches it to that member.

Today’s IXPs do not allow their members to influence the RS’s route selection with the members’
import policies. These policies comprise of the traditional BGP local preferences [Cis16] and
regular expressions that the RS uses to rank and filter available routes [GSG14]. For instance,
an operator may be interested in routing its traffic through a certain IXP member unless the
announced route traverses a specific network.

Howwidespread is RS usage?

Despite the fact that such an RS service eases the management of BGP sessions, facilitates
peering, and lowers hardware requirements on connected BGP routers, there is anecdotal
evidence of its limited usage. To corroborate this, we performed an analysis of RS usage at
one of the largest IXPs worldwide. We have been reported that similar values hold for at least
another of the largest IXPs worldwide. We examined both data traffic and BGP control plane
messages so as to quantify the fraction of traffic that is routed along the routes dispatched by
the RS. Fig. 6.5 presents a CDF graph showing the fraction of IXP members that have less
than a certain fraction of “public traffic”, i.e., traffic routed along the RS-computed routes.
As shown in the leftmost part of the figure, 40% of members do not route their traffic via
RS-prescribed routes. About two-thirds of the remaining members route less than half of
their traffic according to the RS and only 20% of members route over 50% of their traffic
along RS-computed routes. In terms of absolute amount of traffic, we discovered that less
than 17% of the overall traffic is routed via RS-prescribed routes. While Ager et al. [ACF+12]
observed that most of the networks peer with the RS, we showed that members prefer to
route the vast majority of their traffic based on the information exchanged through bilateral
BGP sessions.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Share of public traffic

Sh
ar

e
of

IX
P

m
em

be
rs

Figure 6.5: CDF of RS usage at a large IXP.

85

6 Privacy-Preserving Internet Routing

Are privacy concerns hindering wider RS usage and innovation?

One of the main barriers facing the transition from a full-mesh of BGP peering sessions to a star
topology (via an RS) is that the export policy of each member (and, to support route-selection
at the RS, potentially also the import policy of each member) must be revealed to the IXP.
This information is considered confidential, primarily due to commercial reasons. Indeed, our
interaction with IXP administrators and network operators reveals such privacy concerns and,
moreover, that some networks do not connect to RSes for precisely this reason. In particular,
we circulated a survey among the network operator community [CDC+17a] with the aim
of exploring their perceptions about privacy at IXPs. We collected 119 responses belonging
to a broad range of different networks: Tier 1 ISPs (8%), Tier 2/3 ISPs (57%) CDNs (6%),
content providers (12%), and others (17%), with almost all networks connecting to an IXP
and 80% of them using RS services (at least for that fraction of traffic not belonging to an
established bilateral peering). According to our survey, the most critical concerns regarding
RSes among respondents were: no control over best route selection, i.e., lack of import policy
configuration tools (53%), reliability (40%), lack of route visibility (37%), privacy (19%),
and legal restrictions (7%). Since the 1st and 3rd item require members to disclose their
policies to the RS, we further investigated this privacy aspect: (i) 40-45% of respondents
consider their local preferences over BGP routes to be private, both with respect to the IXP
and with respect to other members, (ii) 60% of respondents expressed concerns about sharing
their IXP port utilization with other members, and (iii) 1 of every 4 respondents that do not
use an RS service marked concerns about disclosing export policies to the IXP as a reason.
With comments ranging from “Nothing should be considered private” to ’“Everything listed
is supposed to be private/proprietary information”, our survey revealed the heterogeneous
requirements of Internet domains. Despite the existence of many networks with open peering
policies, our survey reveals that local-preferences over routes and port utilizations are still
considered as a private information not to be divulged.

We point out that beyond privacy concerns, revealing sensitive information also entails the
risk of triggering attacks on the weaker parts of the network [MK04a], e.g., easier bandwidth-
exhaustion attacks if port utilization is revealed [WR04].

Overall, SIXPACK preserves the benefits of centralized route computation while tackling 3 out
of 4 concerns from operators with RSes (i.e., route visibility, best route control, privacy), en-
hancing RS functionality with performance information, and retaining easy management.

6.2.5 IXP-Threat Model and Assumptions

To provide strong privacy guarantees, SIXPACK relies on three assumptions (A), which we list
and justify next.

Assumption 1: Two Non-colluding RSes We assume that the RS service consists of two
distinct route servers: one is operated by the IXP and one by an independent, non-colluding
entity. The latter RS is executed on a machine that is outside of the IXP domain but connects

86

6 Privacy-Preserving Internet Routing

to the IXP network at the co-location center where the IXP is hosted. Since this instance lives
in a separate security domain, this solution minimizes the possibility of an RS instance being
compromised by the IXP, while keeping latency at a minimum.8

We believe that neutral international organizations (e.g., RIPE), which are already trusted
to support and operate fundamental Internet services such as DNS and IP allocation, should
be assigned the task of running an instance of an RS or, alternatively, supervising those that
do. We argue that running an RS instance is a simpler task than operating a distributed DNS
system. Our survey of network operators [CDC+17a] reveals that RIRs enjoy the trust of an
overwhelming fraction (88%) of respondents. We point out that, even at today’s large IXPs,
members are requested to set up multiple peering sessions with distinct RSes for redundancy
requirements.9 In MPC, redundancy is required for both RS instances.

Assumption 2: Honest-but-curious RSes SIXPACK protects against so-called “honest-but-
curious attackers”, i.e., RSes that stick to the protocol but try to infer the members’ private
inputs. We argue that as today some networks refrain from peering with others via route
servers because of fear of revealing private information to the RSes, this model captures
an important desideratum in the IXP ecosystem. Furthermore, if cheating (e.g., deviation
from the protocol by an RS) was detected, this would result in massive loss of trust in the
service and, consequently, severe economic consequences for the IXP. We point out, however,
that our MPC circuit constructions (Sect. 6.5.4 and Sect. 6.5.5) could be evaluated with a
framework secure against malicious adversaries (e.g., [NNOB12]) if desired, though at higher
computation and communication overheads.

Assumption 3: No Visibility into Data Traffic SIXPACK is designed to hide control-plane
information from the RSes. We view data-plane privacy-preservation, i.e., preventing the IXP
from inferring routing policies from observing data traffic traversing the IXP network, as an
orthogonal problem that requires further exploration. We refer the reader to Sect. 6.7.5 for
an explanation of why inferring routing policies from the data plane is highly challenging
even when information about BGP routes is available. We point out, however, that SIXPACK

actually does make the inference of routing policies from data traffic more challenging for
the IXP. Guaranteeing data-plane-level privacy can also involve other approaches such as
encrypting and decrypting IP headers at IXP ingress and egress. We leave this interesting
topic for future research.

6.3 RelatedWork

The innovative idea of using MPC for BGP was first proposed in [GSP+12]. The aim of
that paper was to illustrate benefits and challenges of this approach, and to explore generic

8https://ams-ix.net/technical/statistics/real-time-stats
9https://www.de-cix.net/en/news-events/news/faq-peer-in-frankfurt-and-new-york-with-one-
port

87

https://ams-ix.net/technical/statistics/real-time-stats
https://www.de-cix.net/en/news-events/news/faq-peer-in-frankfurt-and-new-york-with-one-port
https://www.de-cix.net/en/news-events/news/faq-peer-in-frankfurt-and-new-york-with-one-port

6 Privacy-Preserving Internet Routing

cryptographic schemes towards its realization. In our work, we take an important step
forward, providing a more concrete cryptographic approach that is tailored to interdomain
routing, and thus leads to significant improvements, and show that we achieve reasonable
performance at the scale of today’s Internet.

Even though [GSP+12] outsources the route computation to few non-colluding parties, it
does not utilize this approach to the fullest extent possible. In terms of functionality, the
internal protocol of [GSP+12] that the clusters execute is very close to the BGP protocol. That
is, the computational parties get the secret shares of routing preferences of all ASes, and then
simulate an execution of the BGP protocol on “virtual” ASes with these shared preferences:
The clusters run several iterations until convergence, where in each iteration, each virtual AS
(i) selects a route from the routes learned from neighboring ASes and (ii) decides whether or
not to advertise this route to each of its neighbors based on a set of export policies. These
decisions, however, incur a high overhead in cryptographic computations since, in order to
hide the policy that is applied, all policies have to be applied once per iteration. In order to
securely evaluate the routing algorithm, [GSP+12] uses the MPC protocol of [BGW88], which
provides passive security in the case of a honest majority, i.e., if t < n/2 of the n parties have
been corrupted. Therefore it needs at least n = 3 parties, whereas our approach requires only
n= 2 parties.

In this work, we follow up on the work of [GSP+12] and suggest the use of a second
established interdomain routing algorithm that avoids these computation-heavy policies using
a simpler routing strategy based on business relations [GSG11], given in Sect. 6.4.1. We
compare the performance of this algorithm to the preference-based algorithm that was used
in [GSP+12] and which we outline in Sect. 6.4.2. In addition, we use the secure computation
protocol of Goldreich-Micali-Wigderson [GMW87] for secure evaluation of the algorithms,
since it provides security in case of dishonest majority. Also, [BLO16] recently showed
that the protocol of [GMW87] scales better to a larger number of parties than the protocol
of [BGW88].

While the results in [GSP+12] studied how BGP routes across the whole Internet can be
computed in a privacy-preserving manner, we additionally focus on route dispatching at IXPs,
the crucial crossroads of the Internet that run computation on private, business-sensitive
routing information. We argue that applying MPC to this narrower context is a promising
approach to privacy-preserving interdomain route-computation and we built a prototype that
handles real-world traces from a large IXP. Additionally to computing routes in a multihop
network, we also solve the simpler problem of exporting and ranking sets of available routes,
based on confidential business information, which even allows real-time processing of data.

Other related works proposed privacy-preserving graph algorithms, but did not consider the
more complex BGP algorithm: [HR13] proposes STRIP, a protocol for vector-based routing
that computes the shortest path based on the Bellman-Ford algorithm. In their protocol,
the routers forward encrypted messages along the possible paths that accumulate the costs
along the path using additively homomorphic encryption. This approach requires many
messages until it converges and the routers need to implement costly public-key encryption

88

6 Privacy-Preserving Internet Routing

whereas in our solution all cryptographic operations are outsourced to the two mutually
distrustful computational parties. [BS05] provides privacy-preserving graph algorithms with
security against passive adversaries for all pairs shortest distance and single source shortest
distance. [BSA13] provides data-oblivious graph algorithms for secure computation, such
as breadth-first search, single-source single-destination shortest path, minimum spanning
tree, and maximum flow, the asymptotic complexities of which are close to optimal for
dense graphs. [CMTB13] introduces an outsourced secure computation scheme that is secure
against active adversaries and uses it to compute Dijkstra’s shortest path algorithm. [LWN+15]
introduces a framework that compiles high-level descriptions into programs that combine
secure computation and ORAM and gives speed-ups for Dijkstra’s shortest path algorithm.
However, the complexities of these algorithms that hide the topology of the graph are too
high to scale to the size of today’s Internet consisting of thousands of nodes.

A further routing-related study is SPIDER [ZZG+16], a distributed mechanism for verifying
if a peering agreement between ASes (involving, e.g., a requirement to always export the
shortest route available) is respected by the involved parties without revealing control-plane
information (e.g., which routes are available). Applying SPIDER to our context could aid
IXP members in verifying that the RS is indeed executing the protocol (in contrary to, e.g.,
selecting an un-optimal route for each member). Our focus is different: we guarantee that
the RS does not learn anything about members’ export and import policies. Finally, while SGX
could be used to preserve the privacy of interdomain routing policies [KSH+15; MDL+17],
we discussed its limitations in Sect. 2.6.3. Thus, we consider SGX as complementary to our
solution. Our results establish that MPC alone is also a viable solution in the RS context.

Past studies utilized MPC to address privacy concerns in a variety of other networking-
related problems [MK04b; CJV+11; RZ06; BSMD10]. Unlike these studies, our focus is on
guaranteeing the privacy of peering policies. Additionally, the protocols proposed in these
studies are either evaluated under questionable conditions, or exhibit runtimes in the order
of seconds, whereas RSes are required to operate at faster runtimes.

We note that in dealing with the privacy of export policies, our work solves an orthogonal
problem to that of securing BGP routing from IP-prefix hijacks and BGP path-manipulation,
which is an active topic of research [BFMR10; GSG11; HRA11]. Finally, while higher visibility
over routes has been proposed (e.g., BGP Add-Paths [WRCS16]), when deploying such
techniques at the RS, no confidentiality about the export policies and IXP performance-related
information is guaranteed.

6.4 Centralized BGP Route Computation

We consider two centralized algorithms for computing interdomain routes: an algorithm
based on business relations (Sect. 6.4.1) and an algorithm that ranks neighbors based on pref-
erences (Sect. 6.4.2). We first outline the pseudo-code for these algorithms, which can be con-

89

6 Privacy-Preserving Internet Routing

sidered as the “code of the trusted party” in terms of secure computation and then show how
to reduce the complexity of the route computation by removing stub-nodes (Sect. 6.4.3).

6.4.1 Centralized Algorithmwith Neighbor Relations

We present the algorithm from [GSG11] for computing the BGP routing tree for the routing
policies described in Sect. 6.2.2. The algorithm gets as input the AS-topology G = (V, E),
where each outgoing edge (u, v) ∈ E is associated with one of three labels: customer (v is a
customer of u), peer (u and v are peers) or provider (v is a provider of u). The algorithm
also receives as input the destination AS dest ∈ V . The output of the algorithm is, for each
AS, the next hop on the routing tree to destination dest. As shown in [GSG11], the induced
routing tree generated by this algorithm agrees with the BGP outcome for the routing policies
described in Sect. 6.2.2.

The algorithm computes for each AS its next hop on the routing tree using the following
three-stage breadth-first search (BFS) on the AS graph:

1. Customer routes. A partial routing tree is constructed by performing a BFS “upwards”
from the root node dest using only customer edges.

2. Peer paths. Next, single peering edges connect new ASes to the ASes already added to
the partial routing tree from the first stage of the algorithm.

3. Provider paths. The computed partial routing tree is traversed with a BFS, and new
ASes are iteratively added to the tree using provider edges.

We proceed with a detailed pseudo-code of the above algorithm. Implementing this algorithm
involved several decisions that will mitigate the conversion to a secure protocol, and careful
selection of data-structures. E.g., variables with Boolean values are preferred when possible,
since these simplify the conversion to the Boolean circuit. Also, sometimes further optimiza-
tions of the algorithm (like breaking a loop according to some condition), are avoided as to
not reveal information about the internal state. Note that all nodes are processed in parallel,
i.e., the state is read once for all nodes and updated at the end of each iteration.

We distinguish between public and private algorithm inputs. We assume public inputs are
global knowledge and do not reveal sensitive information. Private inputs describe the privacy-
sensitive input of each AS.

A formal description of the algorithm is given in Algorithm 6.1. The state of the algorithm
consists of three vectors, each of size |V |: next, fin and dist. The vector next stores nodes,
where for every node v ∈ V , next[v] stores the next hop in the routing tree to the node dest.
The vector fin is a Boolean vector, where fin[v] stores whether the route from v to dest is
already determined. The vector dist is a vector of integers, where dist[v] stores the number
of hops in the current route between v and dest (this helps us to break ties between multiple
routes with the highest local preference, if exist, in favor of shorter routes). It is easy to see
that this pseudo-code is a concrete implementation of the algorithm presented in [GSG11],

90

6 Privacy-Preserving Internet Routing

Public inputs: (V,dest, ddepth), where V = {v1, . . . , vn} represents the set of vertices (ASes), dest ∈ V is the
destination node, and ddepth is a bound on the depth of the customer-provider hierarchy, i.e., the longest
route in the AS-graph in which each edge is from customer to provider. We use 10 as a very conservative
upper bound on this depth. The topology of the AS-graph is assumed to be public knowledge. That is, for
every v ∈ V the list of its neighbors Adj[v] ⊆ V is public. We discuss hiding the topology in Sect. 6.7.4.
Private inputs: Every AS v ∈ V inputs a private list typev , where for every u ∈ Adj[v], typev[u] ∈
{customer,peer,provider}.
Outputs: Upon completion, every AS v ∈ V obtains its next hop in the routing tree next[v].

1: Initialize a vector next of size |V |, that stores the next hop in the routing tree to node dest, where
for every v ∈ V we set next[v] = DUMMY, where DUMMY ̸∈ V is an unconnected node. Set next[dest] =
dest.

2: Initialize a Boolean vector fin of size |V |, that indicates if a route to dest was found, and set all the
elements to false. Set fin[dest] = true.

3: Initialize a distance vector dist of size |V | that holds the number of hops to dest. Set all elements
to∞, except for dist[dest] = 0.

// BFS of customers:

4: for ddepth iterations:

5: for all v ∈ V do:

6: for all u ∈ Adj[v] do:

7: if fin[u] = true and fin[v] = false and typev[u] = customer then

8: next[v]←− u

9: dist[v]←− dist[u] + 1

10: fin[v]←− true

// BFS of peers:

11: for all v ∈ V do:

12: for all u ∈ Adj[v] do:

13: if fin[u] = true and fin[v] = false and typev[u] = peer and dist[v]> dist[u] + 1 then

14: next[v]←− u

15: dist[v]←− dist[u] + 1

16: fin[v]←− true

// BFS of providers:

17: for ddepth iterations:

18: for all v ∈ V do:

19: for all u ∈ Adj[v] do:

20: if fin[u] = true and fin[v] = false and

typev[u] = provider and dist[v]> dist[u] + 1 then

21: next[v]←− u

22: dist[v]←− dist[u] + 1

23: fin[v]←− true

24: return next

▷ in parallel

▷ for all neighbors of v

▷ in parallel

▷ for all neighbors of v

▷ in parallel

▷ for all neighbors of v

Algorithm 6.1: Neighbor Relation Routing [GSG11]

91

6 Privacy-Preserving Internet Routing

Public inputs: Same as in Algorithm 6.1.
Private inputs: Every AS v ∈ V inputs a private list of preferences prefv , where for every
u ∈ Adj[v], prefv[u] corresponds to the preference for u, and a private bit-matrix pubv of size
|Adj[v] + 1| × |Adj[v]| that specifies the export policy, i.e., if a route to a neighbor is published to
other neighbors.
Outputs: Same as in Algorithm 6.1.

1: Initialize a vector next of size |V |, that stores the next hop in the routing tree to node
dest. For every v ∈ V set next[v] = DUMMY, where DUMMY ̸∈ V is an unconnected node. Set
next[dest] = dest.

2: Initialize a Boolean vector fin of size |V |, that indicates if a route to dest was found, and
set all the elements to false. Set fin[dest] = true.

3: for all v ∈ V do: Initialize pubv[DUMMY, u] = true for all u ∈ Adj[v] and prefv[DUMMY] = 0.

// BFS for all ASes:

4: for 2ddepth + 1 iterations do:

5: for all v ∈ V do:

6: for all u ∈ Adj[v] do:

7: if fin[u] = true and pubu[next[u], v] = true and prefv[next[v]]< prefv[u] then

8: next[v]←− u

9: fin[v]←− true

10: return next

▷ in parallel
▷ for all neighbors of v

Algorithm 6.2: Neighbor Preference Routing [GSP+12]

and thus we conclude that the routes computed by this algorithm agree with the outcome of
BGP (where the preferences of the ASes are according to Sect. 6.2.2).

6.4.2 Centralized Algorithmwith Neighbor Preferences

The algorithm in Sect. 6.4.1 can be extended such that it allows the ASes to specify preferences
for each neighbor route and freely choose an individual export policy. In [GSP+12], such an
algorithm was proposed, that behaves similar to the one in [GSG11], but is computationally
more complex due to the added degree of freedom.

We can emulate the behavior of Algorithm 6.1 by grouping each neighbor relation to a
certain range of preferences: we ensure that customers have a higher preference than
all other nodes, and that providers have lower preference than others. The advantage of
this algorithm is that within each neighbor relation we can have a preferred node, e.g.,
a favorite provider. In addition, this algorithm allows a node to freely specify his export
policy, i.e., to choose whether he wants to disclose a certain route to a neighbor or not.
The pseudo-code of the algorithm is given in Algorithm 6.2. We use a preference bit-length
of ℓ= 4 for good expressiveness in practice.

92

6 Privacy-Preserving Internet Routing

6.4.3 Removing Stub ASes

To reduce the complexity of the route-computation, our protocols are only run on the subgraph
of the AS-graph that is induced by the non-stub ASes (i.e., by the ISPs). Stubs (by definition)
have no customers, and so should never transit traffic between other ASes. Hence, in our
scheme MPC is used to compute routes between ISPs (that form the core of the Internet).
Then, stubs select an ISP through which to connect to the Internet according to their local
routing policies. We point out that:

1. As stubs are roughly 85% of the ASes, this means that the MPC protocol needs only be
run on a fairly small part of the AS graph. In our experimental evaluation in Sect. 6.9.1
we show that removing the stubs improves the runtime of the MPC protocol by a factor
of ≈ 2.5. For the CAIDA topology from November 2016, the number of ASes is reduced
from almost 56 000 to 8 407 ASes, when excluding stubs.

2. Whether an AS is a stub (and not an ISP) is not considered confidential information
and so our partition of the AS graph into these two distinct groups of ASes does not
leak any sensitive information.

3. Observe that according to the routing policies presented in Sect. 6.2.2, to select between
ISPs after the MPC step is complete, a stub needs only to know whether or not the ISP
has a route to the destination, and the length of the route. This information can be
announced directly to the stub by its ISP.

6.4.4 Boolean Circuits for Route Computation

As a first step towards securely computing Algorithm 6.1 and Algorithm 6.2, we show how to
construct Boolean circuits that implement these algorithms. In the following section we detail
how to construct a Boolean circuit from the neighbor relation algorithm given in Algorithm 6.1,
describe the optimizations that we apply to it (Sect. 6.8), and give a summary of the circuit
for the neighbor preference algorithm in Algorithm 6.2. We emphasize that our circuits could
be evaluated also with other MPC protocols (e.g., Yao’s garbled circuits [Yao86]) or protocols
that provide security against stronger adversaries (e.g., [NNOB12]) and/or use more than
two computational parties (of which a fraction can be corrupted). However, these protocols
have significantly higher communication and/or computation complexities.

‘Naive’ Implementation of Algorithm 6.1

We first outline the global structure of the circuit, depicted in Fig. 6.6, and then show how to
implement sub-routines and analyze their complexities. We provide the complete circuit of
our centralized BGP algorithm in Circ. 6.1.

93

6 Privacy-Preserving Internet Routing

1: Initialization of next, fin and dist identical to Algorithm 6.1.

// BFS of customers:

2: for ddepth times do:

3: for all v ∈ V do:

4: for all u ∈ Adj[v] do:

5: sel←− fin[u] ∧ !fin[v] ∧ incust
v [u]

6: sum←− ADD(dist[u], 1)

7: next[v]←− MUX(next[v], u, sel)

8: dist[v]←− MUX(dist[v], sum, sel)

9: fin[v]←− MUX(fin[v], sel, sel)
// BFS of peers:

10: for all v ∈ V do:

11: for all u ∈ Adj[v] do:

12: sum←− ADD(dist[u], 1)

13: cmp←− GT(dist[v], sum)
14: sel←− fin[u] ∧ !fin[v] ∧ cmp ∧ inpeer

v [u]

15: next[v]←− MUX(next[v], u, sel)

16: dist[v]←− MUX(dist[v], sum, sel)

17: fin[v]←− MUX(fin[v], sel, sel)
// BFS of providers:

18: for ddepth times do:

19: for all v ∈ V do:

20: for all u ∈ Adj[v] do:

21: sum←− ADD(dist[u], 1)

22: cmp←− GT(dist[v], sum)
23: sel←− fin[u] ∧ !fin[v] ∧ cmp ∧ inprov

v [u]

24: next[v]←− MUX(next[v], u, sel)

25: dist[v]←− MUX(dist[v], sum, sel)

26: fin[v]←− MUX(fin[v], sel, sel)

Circuit 6.1: Neighbor Relation Routing Circuit

94

6 Privacy-Preserving Internet Routing

incust

inpeer

inprov

next fin dist

Customer

Peer/Prov.

Peer/Prov.

Outputs

Inputs

State

next

State

State

ddepth×

ddepth×

Figure 6.6: Circuit Structure Overview.

Inputs The circuit gets as input from each AS the secret shared relationship information
for its neighbors. For efficiency reasons we have three separate input bit arrays for each AS,
one for each type of AS relation: incust, inpeer, and inprov. For a node with n neighbors,
we have three inputs of length n bits each, where the i-th bit corresponds to the relation
to the i-th neighbor. Note that the ASes only need to secret share their inputs among the
computational nodes when updating their relationships since the computational nodes can
re-use existing data for multiple executions. (If it should be hidden that a particular AS
changed its relationships, then the secret sharing can be run again by all ASes. This might
happen on a regular basis.) The routing destination dest and network topology are public
inputs and thus not secret-shared.

State We operate on a secret-shared state where we store for each node: a finish bit fin,
a δ-bit long destination id of the next node on the routing tree next, and a σ-bit long hop
distance to the target node dist. Initially, fin is set to false and next is set to zero, while dist is
set to the maximum value 2σ−1. This state is then iteratively updated using the methods for
each relation. The peer and provider methods are identical, except for the different iterations
and type of AS relation. We have ddepth iterations of the customer sub-circuit and 1+ ddepth
iterations of a combined peer/provider sub-circuit, where we use the peer relation as input
once, and the provider relation for the remaining iterations.

Outputs After secure evaluation of the next hop on the route to dest for each AS v ∈ V ,
the computational parties send their share next[v] to every v, who can then reconstruct the
plaintext output.

Parameters According to the CAIDA dataset, we set the parameters in the protocol
of Sect. 6.4 to ddepth = 10 and therefore have 10 iterations of the customer routine, a single
iteration for the peer routine, and 10 iterations for the provider routine. Furthermore, we set
the id-bit length δ = ⌈log2 |V |⌉ and the destination bit-length to σ = ⌈log2 21⌉= 5, since we
can at most achieve a distance of 21 hops between any AS and the destination (1 hop per
each of the 10 customer and provider iterations and one peer iteration).

95

6 Privacy-Preserving Internet Routing

Operations and Complexities The operations of the pseudo-code in Circ. 6.1 are imple-
mented using standard circuit constructions. Apart from the standard bit-wise operations
AND (∧) and NOT (!), we use the following operations:

Addition (ADD) We use the Ripple-Carry addition circuit [BPP00] with ℓ AND gates and
a multiplicative depth of ℓ for addition of ℓ-bit values. While the Ladner-Fischer adder is
optimized for depth, it has a much higher total number of 5/4ℓ⌈log2 ℓ⌉+ℓ AND gates for ℓ-bit
inputs and would thus go beyond the boundaries of our implementation.

Greater-Than (GT) We use the greater-than circuit of [KSS09] which has ℓ AND gates and
a multiplicative depth of ℓ when comparing two ℓ-bit values.

if-Condition (MUX) To compute the if-condition securely, both branches must be evaluated
to hide which branch has been chosen. The results are then assigned to the variables depending
on the condition bit sel ∈ {0,1} using a multiplexer MUX. A multiplexer for ℓ-bit values
requires ℓ AND gates [KS08b] and its multiplicative depth is 1. There exist optimizations for
the GMW protocol that allow the evaluation of an ℓ-bit multiplexer at the cost comparable to
a single AND gate [DSZ15], as explained in Sect. 6.8.

We estimate the number of AND gates and the depth of the primitive operations for the
customer, peer, and provider functionality and provide the resulting total numbers for the
CAIDA dataset of November 2016 in Tab. 6.4. We estimate that naively implemented circuits
would have more than one hundred million AND gates, and a multiplicative depth of several
hundred thousand. Furthermore, we estimate that the total number of gates is around
400 million. Since modern secure computation frameworks are able to evaluate 4-8 million
AND gates per second [DSZ15; LWN+15], securely evaluating the circuit would require nearly
100 s, which is arguably too long. Finally, the high depth translates to a huge number of
communication rounds for the GMW protocol. In the next section, we show how the circuit
can be optimized substantially to overcome these limitations.

6.5 SIXPACK Privacy-Preserving Route Server

In this section, we introduce SIXPACK, a privacy-preserving RS service for IXPs. SIXPACK

combines the benefits of a centralized route dispatch service with the provable guarantee
of privacy preservation. Through SIXPACK, IXP members can receive the best available BGP
routes according to arbitrary local route preferences and auxiliary information of the IXP
(e.g., knowledge of congestion level and other performance metrics [KRG+16]).

Building on recent advances in MPC, SIXPACK employs two independent and non-colluding
computational entities in the MPC outsourcing scenario (cf. Sect. 2.4.2) to correctly dispatch
route announcements without gaining any visibility into the members’ routing policies (i.e.,
export/import policies) nor leaking any private IXP performance-related information to the
members.

96

6 Privacy-Preserving Internet Routing

EXPORT-ALL SELECT-BEST

Local RankingRoute prefs.

IXP Information

Members

RSes

BGP routes &
export policies

exportable
routes

next-hop
ranking

members’
selected routes

Figure 6.7: SIXPACK’s 3-step route dispatching process.

To illustrate the non-trivial challenges facing SIXPACK’s design, we first discuss a fairly naïve
approach of applying MPC to route-dispatch at IXPs, and why this approach fails. We then
describe the key design ideas behind SIXPACK, present the routing policy model, and discuss
in detail the two main components of the system.

6.5.1 A Naïve Approach

As general-purpose MPC is capable of performing arbitrary computation, it would be tempting
to implement SIXPACK solely within a single MPC, thus providing arbitrary privacy-preserving
policy expressiveness. This task entails devising a function that takes as input the set of
members’ export policies, the set of arbitrarily complex members’ import policies (e.g., regular
expressions on the AS networks traversed by a route), and the IXP’s performance-related
information (e.g., port utilization), and outputs the resulting “best” BGP routes.

However, even performing a single full regular expression string matching operation in
MPC using state-of-the-art implementations is overly prohibitive in practice [Kel15, §5] as
this operation is shown to require runtimes in the order of minutes. Even by restricting
the members to use a single regular expression in their import policy (a fairly restrictive
assumption), evaluating the import policies in a large IXP with 500 members would take
days! In contrast, SIXPACK computes and dispatches routes in the order of tens of milliseconds,
improving upon the naïve approach by 5 orders of magnitude. This is made possible through
a combination of several ingredients, as discussed below.

6.5.2 SIXPACK Design

To achieve practical runtimes, SIXPACK is carefully designed to keep complex computation to
the largest extent possible outside the MPC, without compromising privacy (see Fig. 6.7).
Specifically, the route dispatch computation is split into three operations to be performed
sequentially, called EXPORT-ALL, LOCAL-RANKING, and SELECT-BEST. Both EXPORT-ALL and
SELECT-BEST are MPC-based components of the system that are executed within the RS by
the two non-colluding entities (depicted as a single green-colored box). The LOCAL-RANKING

component, in contrast, is locally executed by each member (depicted as a single blue-colored

97

6 Privacy-Preserving Internet Routing

box). Next, we describe the SIXPACK pipeline for processing BGP route announcements. We
observe that BGP withdrawal messages can be handled in a similar way. For readability, we
assume members to connect with a single BGP router.

Step I: ExportingAll PermissibleRoutes SIXPACK processes streams of BGP announcements
generated by the IXP members. Through EXPORT-ALL, SIXPACK takes as input a BGP route
destined to a prefix π and its associated export policy and outputs the route to the IXP
members authorized to see that route. This operation is performed in MPC, and so neither
the route nor the export policy is disclosed to any unintended entity. The route and its export
policy are both stored in encrypted form within the RS. We discuss EXPORT-ALL in detail later
in Sect. 6.5.4.

Step II: Ranking Routes Based on Local Preferences At this point, each member that re-
ceived the new route executes LOCAL-RANKING to rank all its available routes towards π
according to its (arbitrarily complex) local import policies. A key idea embedded into SIX-
PACK’s design is performing this computationally-heavy operation outside of the MPC, i.e.,
at the member-side. Now, recall that in BGP, each IXP member only announces at most one
single route towards π. Thus, a ranking of the routes destined to π corresponds to a ranking
of the IXP members, where a member assigns the lowest preference to those IXP members
from whom it did not receive a route to π. We call such ranking the next-hop ranking, and
this is the output of Step II.

Step III: Incorporating IXP Information Into Route Selection When multiple routes for a
certain prefix are available, members submit the next-hop ranking received to the RS service.
Upon receiving a next-hop ranking from a member, the RS proceeds to run the MPC-based
SELECT-BEST component for dispatching the best-selected route to that member. The best
route is computed based on the next-hop ranking and, importantly, the performance-related
information available to the IXP (e.g., port utilization). This operation is performed in MPC,
and so neither the members’ rankings nor the IXP performance-related information is revealed
to any unintended entity. We discuss the SELECT-BEST in detail later in Sect. 6.5.5.

Benefits of our Design Approach Through EXPORT-ALL, an IXP member gains full visibility
of the available routes and can possibly select the best one according to any arbitrary local
import policy (e.g., next-hop preferences, shortest route, avoid specific AS networks). Then,
by taking part in SELECT-BEST, the IXP member can incorporate IXP information into its route
selection process. By implementing EXPORT-ALL and SELECT-BEST via carefully optimized
MPC and keeping LOCAL-RANKING’s potentially highly complex computation outside of the
MPC framework, this pipeline preserves the member’s and the IXP’s privacy, and is efficiently
executable. Observe that, since BGP treats each IP prefix destination independently, multiple
instances of the two RSes can be easily instantiated to dispatch routes in parallel, thus
enhancing the system throughput. However, multiple route announcements towards the
same IP prefix have to be processed sequentially.

98

6 Privacy-Preserving Internet Routing

Peering at Multiple Sites/IXPs We have so far assumed that each organization has a single
point of presence at an IXP. In practice, organizations may connect at different physical
locations at the same IXP with the same goal of further reducing latencies. In SIXPACK,
each connection to the same IXP from the same member is treated as an independent
member. This allows operators to arbitrarily export/rank/filter BGP routes at those locations
independently.

Enhancing Securitywith RPKI To achieve RPKI for route validation, members could reveal
the IP prefix of a route and its originator so as to allow the IXP to validate that information.
Alternatively, RPKI validation can be implemented within the MPC framework as it only
involves a simple lookup operation on a dictionary.

Before we get into the details of the two MPC-based components of SIXPACK, we first formalize
our model of export policies (and next-hop rankings) in Sect. 6.5.3. We then describe EX-
PORT-ALL in Sect. 6.5.4 and SELECT-BEST in Sect. 6.5.5. We discuss the schemes’ security and
privacy guarantees are given in Sect. 6.6.

6.5.3 Routing Policies Model

Export-Policy The EXPORT-ALL component of SIXPACK dispatches routes according to the
export policies pertaining to the routes that it received from its members. Each route carries
its own export policy specification, i.e., the set of members to whom that route can be
exported. Since BGP computes routes independently for each destination IP prefix, w.l.o.g.,
we henceforth assume throughout this section that there exists only a single destination IP
prefix π. Moreover, the BGP route computation only depends on the last route announced
by a neighbor. Hence, our model only needs to store the set of routes currently available at
the RS and the currently specified export policies. To achieve efficient MPC computation, we
model BGP export policies as follows. Let M = {m1, . . . , m|M |} be the set of IXP members and
R = {r1, . . . , r|R|} be the set of available routes. We define the export policy matrix P, with |M |
rows and |R| columns. Entry Pi, j in the matrix, for 1≤ i ≤ |M | and 1≤ j ≤ |R|, is 1 if route r j
is exportable to member mi , and 0 otherwise.

An example export policy matrix is shown in Fig. 6.8(a) where mA, mB, mC , mD are IXP
members and rA, rB are routes announced by mA and mB, respectively. While route rA is
exported to mC only, route rB is exported to mC and mD. Observe that rA and rB are not
exported to mA and mB, respectively, i.e., to the member they originate from.

In EXPORT-ALL, all permissible routes are exported. Each IXP member mi should receive
each route r j for which Pi, j = 1. In Fig. 6.8(a), mC receives both rA and rB, and mD receives
only rB, while mA and mB do not receive any route. In the SELECT-BEST component, each
member mi could receive any route r j with Pi, j = 1. The actual route that will be received
depends on the ranking and the IXP’s performance information.

99

6 Privacy-Preserving Internet Routing

rA rB
mA 0 0

mB 0 0

mC 1 1

mD 0 1

rA rB
mA 0 1

mB 1 0

mC 0 0

mD 1 1

rA rB
mA 0 1

mB 1 0

mC 1 1

mD 1 0

(a) (b) (c)

= ⨁

Figure 6.8: (a) Export policy matrix in plain text. (b) Random shares received by RS1.
(c) Element-wise XOR of (a) and (b) received by RS2.

Next-Hop Ranking (a.k.a. Local Preferences over Routes) SELECT-BEST receives as input,
from each participating IXP member, its next-hop ranking with respect to the destination IP
prefix. Each next-hop corresponds to a route announced by a member, thus next-hop rankings
model local preferences over the received routes. For each IP prefix π, we model preferences
over the available routes at the RS as a matrix Ψ with size |M | × |M |. Each element ψi, j of
that matrix represents member mi ’s local preference (value) for routes announced by m j,
where routes announced by members with higher local preference are preferred over routes
announced by members with lower local preference. Using SELECT-BEST, each IXP member mi
thus receives a single route r announced by m j such that ψi, j is the highest priority value in
row i of Ψ, for which Pi, j = 1 holds. Ties are broken deterministically.

The matrix Ψ can easily be extended to represent preferences over routes based on a combi-
nation of members’ local preferences and IXP performance-related recommendations. For
instance, if each preference value ψ is encoded as an ρ = 8-bit integer, we can use the four
most significant bits of ψ to create 16 different classes of members’ local preferences over
routes and use the four least significant bits to create another 16 additional classes for the
IXP performance-related recommendations. In this way, the IXP information is used only
to break ties among routes with the same rank. Alternatively, IXP information can be given
higher priority and members’ local preferences can be used to break ties.

6.5.4 The Export-All Component

Through EXPORT-ALL, the RSes export to each member all permissible (i.e., exportable) routes,
while keeping each member’s export policy private. We note that this problem could also be
solved by using public-key cryptography if we assume that each sending member knows the
public keys of all other IXP members. However, a public-key solution alone cannot incorporate
IXP performance-related information without revealing it — a concern for 60% of the surveyed
operators. Furthermore, MPC circumvents all key management challenges, protects against
side-channel attacks, and easily integrates with the SELECT-BEST MPC component.

Observe that, for EXPORT-ALL, not only is the computation per-prefix independent, i.e., the
computation is executed independently for each destination IP prefix, but it is per-route
independent, in the sense that the announcement of a specific route to a member does not

100

6 Privacy-Preserving Internet Routing

depend on what other routes to the same prefix are announced to that member. Hence,
w.l.o.g., we describe EXPORT-ALL with respect to a single route to a single prefix π.

Fig. 6.9 illustrates an example of the EXPORT-ALL computation. Two independent RSes, P0
and P1 (center of the figure), perform the redistribution of a route from mA according to its
export policy. We consider the scenario presented in Fig. 6.8(a). The computation operates
over a policy that is kept private using MPC and the route is dispatched in such a way that
neither the RSes nor the IXP members can distinguish whether a route is announced to any
other member or not. Each member attempts to decrypt the information received from the
RSes (right side of the figure). This operation succeeds iff the route is actually exported to
that member, which then learns the route. We now discuss in more detail the different parts
of EXPORT-ALL.

Route Server P0

Route Server P1
Member mD (receive)

c

Member mC (receive)
Member mA (send)

random nA

EXPORT-ALL

decrypt

decrypt

kdm

encrypt

key kA
random nkA

route rA kA

EXPORT-ALL

route rA

export: mC

key kA nkA

export: mC nA⊕

⊕

random nkA

random nA

export: mC nA

key kA nkA

route rA kA

C0

D0

C1

D1

route rA kA

route rA kA

kA
C0 C1

D0 D1

⊕

⊕

route rA

route rA

Figure 6.9: The EXPORT-ALL component. The RSes export to IXP members all permissible
routes.

Encrypted Routes Each route that needs to be distributed is first encrypted. W.l.o.g., we
assume that member mA wants to send a route rA as shown in Fig. 6.9. Then, mA encrypts rA
using a route-specific key kA and a symmetric encryption scheme (we use AES) and sends the
encrypted route to P0, which, in turn, redistributes it to all the members. Receiving members
can decrypt rA only if they possess the route key kA. SIXPACK guarantees that an IXP member
receives the key kA only if the route can be exported to it, and that routes are not revealed to
the IXP. We use a “dummy key” kdm to notify a member when a route cannot be exported to
it. Recall that a receiving member does not have visibility of the routes in plain text, so it
does not know which routes are announced. Even if a member colludes with one of the two
RS entities, it cannot distinguish whether a certain route is exported to any of the other IXP
members.

Alternatively, we could make plaintext routes available for the IXP and move the encryption
step to the RSes. This mighe be viable since information about the route itself is far less
sensitive than peering information, local preferences and export policies. More specifically, the
sending members could simply announce their routes (with sensitive information stripped off)
to the IXP, who selects random symmetric keys and encrypts these routes before it broadcasts
them to the receiving members. The remainder of the protocol remains the same. This would

101

6 Privacy-Preserving Internet Routing

reduce the complexity for sending members since they don’t have to carry out symmetric
encryption operations, even though they are very cheap, especially due to the wide-spread
deployment of AES-NI acceleration.

ExportingKeysviaMPC We now leverage MPC to dispatch the key kA in a privacy-preserving
manner. Specifically, we devise a tailored MPC circuit (shown in Circuit 6.2) that is jointly
executed via MPC by the two RSes P0 and P1. The EXPORT-ALL circuit consists of one
multiplexer X i per member mi , which outputs either the valid or dummy key kdm depending
on the export policy entry Pi, j (cf. Sect. 6.5.3), where i (j) is the member announcing
(receiving) a route. Since we process the inputs in a SIMD fashion, the routes for all receiving
members are processed in parallel MUX blocks. If only an incremental update to a single
route is processed, the circuit consists only of a single MUX.

MUX

kdm ki

Pi, j

kout,i, j

(1) Circuit Building Block X j

X1 X2 . . . X|M |

(2) Circuit Structure

Circuit 6.2: The EXPORT-ALL circuit is a set of |M | multiplexers, each of which outputs either
the valid or dummy key depending on entry Pi, j , where i (j) is the member an-
nouncing (receiving) a route. Since we process the inputs in a SIMD fashion, the
routes for all receiving members are processed in parallel. If only an incremental
update to a single route is processed, the circuit consists only of a single MUX.

To generate the MPC input (left of Fig. 6.9), member mA secret-shares rA’s export policy and
the corresponding key kAwith P0 and P1. Assuming non-collusion between P0 and P1, they
are able to decrypt neither the export policy nor the key. We show in Fig. 6.8 on page 100
an example of (a) the export policies of two routes rA and rB, (b) the random values chosen
by mA and mB, respectively, and (c) the resulting inputs to P1.

Once the two RSes receive their shares of the export policy and key kA, P0 and P1 (center
of Fig. 6.9) output to every member mX two shares X0 and X1 of the output, respectively.
XORing X0 with X1 (right of Fig. 6.9) produces a key that can be used to decrypt the encrypted
route rA if and only if PX ,A = 1, (i.e., route rA can be exported to member mA), or the dummy
key kdm, otherwise. In Fig. 6.9, mC receives C0 and C1; when XORed, they give kA. Similarly,
mD receives D0 and D1; when XORed, they give kdm, leading mD to discard the encrypted
route rA.

We formally describe the EXPORT-ALL protocol in Prot. 6.1.

102

6 Privacy-Preserving Internet Routing

The EXPORT-ALL Protocol

Sending P0 P1 Receiving

Member Member j

. Secret-share export policies .

n ∈R {0, 1}|ep|

n′← n⊕ ep
n

−−−−−→
n′

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
. .Broadcast encrypted routes. .

R
−−−−−→

k ∈R {0,1}|k|

R′← Enc(k, R)
broadcast R′

R′
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

store R′

. .MPC execution. .

run MPC on(k, n) run MPC on({0}|k|, n′)
MPC execution MPC execution

k0←MPC(k, n) k1←MPC({0}|k|, n′)

. Send resulting key share .

k0[j]
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

store k0[j]

k1[j]
−→

store k1[j]

. Member receives MPC output .

k′← k0[j]⊕ k1[j]
if k′ ̸= kdummy then

R← Dec(k′, R′)
endif

Protocol 6.1: The EXPORT-ALL Protocol. Inputs: R: a BGP route stripped off its export
policy ep; |ep|: the length in bits of ep; |k|: the bit length of key k.

103

6 Privacy-Preserving Internet Routing

6.5.5 The Select-Best Component

To leverage the superior IXP’s visibility into dataplane conditions, we design SELECT-BEST, a
privacy-preserving component that allows IXP members to select the best permissible route
according to both their own local preferences and the IXP performance-related information.

To execute SELECT-BEST, each IXP member will first translate its ranking of available routes
(e.g., prefer shortest routes) to a ranking of the corresponding IXP members that announced
them, where members that are neither exporting nor announcing a route to this member are
assigned the lowest preference. Analogously, the IXP translates its sensitive performance-
related information, such as members’ port utilization, to preference values. As explained
in Sect. 6.5.3, these preferences values can be combined into a single preference value ψ per
route, where we envision the members’ local preference to be given precedence over the IXP’s
inputs. This information is provided as input to SELECT-BEST, which privately computes the
best route. We note that this functionality cannot be realized with public-key cryptography
alone and is thus an interesting and practical real-world application of MPC.

In Fig. 6.10 we provide an example of the SELECT-BEST computation, where we consider the
export policy scenario of Fig. 6.8(a). Namely, two members mA and mB announced two routes
rA and rB, respectively. Through EXPORT-ALL, mC received both rA and rB while mD only
received rB, with the latter deciding not to execute SELECT-BEST. Based on port utilization
levels and assuming mC equally ranks rA and rB, the IXP gives route rB a higher preference.

Member mc (send)

⊕ SELECT-BEST Member mC (receive)

route rA

route rB

selector

IXP recommendations

random pC

mC ranking

mB = mA
pC

random nA

random nB

outC0

Route Server

𝑃1

Route Server

𝑃0

SELECT-BEST

random pC

mC ranking

mB = mA

mC ranking

mB = mA
pC rB > rA

export: mC

export: mD,mC

nA

nB

outC1

⊕

Figure 6.10: The SELECT-BEST component. The RSes export to each IXP member the best
preferred permissible route.

Choosing theBest Route viaMPC We now leverage MPC to select the best route of each IXP
member in a privacy-preserving manner. To this end, we devise a tailored MPC circuit (shown
in Circuit 6.3) that, for each member m, takes as input the next-hop ranking (i.e., preferences
over members) and the IXP route recommendations, and outputs to m the identifier of the
best route.

The first step (left of Circuit 2) is similar to the EXPORT-ALL circuit: based on the export policy,
the preference of all non-exportable routes is set to zero. After that (right of Circuit 2), we
feed the resulting priorities as well as the route keys (which are used as identifiers) into a
MaxIdx tree circuit [KSS09, Sect. 3.3], that determines the index of the maximum in a given

104

6 Privacy-Preserving Internet Routing

list of values. With it, we determine the best route, i.e., output the route key with the highest
preference. We also input the dummy key kdm, which is returned if the receiving member does
not have any permissible route. The comparison among two routes rY and rW (announced by
members mY and mW , resp.) is performed by the * circuit (Circuit 1), where ψZ ,Y and ψZ ,W
are the mZ ’s preferences over rY and rW , resp., while kY and kW are the keys of routes rY
and rW , resp. The selection bit of the MUX is chosen such that the route key with the higher
preference value gets propagated to the next level of the tree. The multiplicative depth of the
SELECT-BEST circuit, for a priority value of ℓ bit, is ⌈log2(#Routes)⌉ · (⌈log2(ℓ)⌉+ 2) + 1.

MUXMUX

kY kW

≥

ψZ ,YψZ ,W

ψout kout

(1) Recursive Circuit Building
Block *

* * . . . * *

* *. . .

*

X X X X. . .

(2) Circuit Tree Structure

Circuit 6.3: The SELECT-BEST circuit for exporting the single highest ranked route key to a
member mZ . Each * circuit compares 2 routes rY and rW announced by mY and
mW , resp., whereψZ ,Y andψZ ,W are the mZ ’s preferences over rY and rW , resp.,
while kY and kW are the keys of routes rY and RW , resp.

Both input and output are considered private information, and are not visible to the RS in
clear. The IXP members are responsible for generating and then reconstructing the MPC’s
input and output through secret sharing.

The input to the MPC (i.e., the next-hop ranking) is generated similarly to the input of the
EXPORT-ALL component. In the example (left side of Fig. 6.10), mC generates a |M | ·ρ-bits
random mask pC that is XORed with its next-hop ranking (i.e., rowψC of the ranking matrix Ψ,
Sect. 6.5.3). The XORed result is sent to P1, while pC is sent to P0. Neither P0 nor P1 are able
to decrypt the ranking as they are assumed to not collude.

At this point, the two RSes combine the member’s preferences with the IXP preferences, where
only P0, which runs at the IXP supplies the preferences based on performance information;
P1 uses a vector of zeros. The two RSes execute the SELECT-BEST circuit on the given inputs
(center of Fig. 6.10). Then, mX receives two values outX1 and outX2; when XORed, they
produce an identifier of the best route. In Fig. 6.10, mC receives rB as the best route based
on the IXP performance-based preference. Observe that if mC had preferred rA over rB, it
would have received an identifier to rA.

105

6 Privacy-Preserving Internet Routing

As for the other circuit, it is worth noting that our design of the SELECT-BEST circuit can
process multiple next-hop rankings at once from different members for improved efficiency.
In fact, SELECT-BEST takes as input a ranking matrix Ψ (Sect. 6.5.3), which may consist of
just one row as a special case.

We detail how new local preferences are shared in Prot. 6.2 and provide a formal description
of the SELECT-BEST protocol in Prot. 6.3.

The SELECT-BEST Protocol: sending new member preferences.

Member i P0 P1
n ∈R {0,1}|prefs|

n′← n⊕ prefs n
−−−−−−−−−−→

prefs_db[i]← n
n′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
prefs_db[i]← n′

Protocol 6.2: Secret sharing of the member preferences prefs in the SELECT-BEST protocol.

Route Oscillations

As with any algorithm that dynamically adapts the routing paths based on network perfor-
mance, there exists a risk of not converging to a stable routing configuration. For instance,
when an IXP ranks routes based on congestion levels, traffic might move back and forth
between IXP ports as these become more or less congested and so are assigned new priorities.
We propose addressing this in SELECT-BEST by ensuring that when a member is offered a
new route this is either because (1) its old route was withdrawn, or (2) a new route, ranked
higher by the member’s local preference, appears. We mention next two ways of accomplishing
this: one on the member side and one on the RS side.

Importantly, in both schemes, members’ local route preferences should be given higher
preference than the IXP’s preference. When a member receives its best route from the MPC,
it could temporarily (slightly) increase the priority of that route to ensure its selection in
successive iterations, unless a better route is available, and communicate its new preferences
to the RSes. Alternatively, this could also be realized within the MPC itself, thus minimizing
communication between members and RSes, though at the price of higher circuit complexity.

6.6 Security and Privacy

The overall security and privacy of our MPC-based route computation (Sect. 6.4) and SIX-
PACK (Sect. 6.5) stems from the proven security and privacy of the GMW protocol (cf. [GMW87;
Gol04] for proofs).

106

6 Privacy-Preserving Internet Routing

The SELECT-BEST Protocol.

Sending P0 P1 Receiving

Member Member j

n ∈R {0,1}|ep|

n′← n⊕ ep
R, n
−−−→ i← ind[R.dst][R.mem]

if i == null

i← len(ind[R.dst]) + 1

ind[R.dst][R.mem]← i

endif

ep[R.dst][i]← n

k ∈R {0,1}|k|

keys[R.dst][i]← k

R′← Enc(k, R)

broadcast R′, R.dst, i
R′, R.dst, i

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
routes[R.dst][i]← R′

i
−−−→ store i

R.dst, n′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ep[R.dst][i]← n′

. .MPC execution. .

MPC(ke ys[R.dst], ep[R.dst], MPC({0}|k|·m, ep[R.dst],

prefs_db[R.dst], recc) prefs_db[R.dst], {0}r l)

MPC execution MPC execution

(k0, i0)←MPC(. . .) (k1, i1)←MPC(. . .)

. .Send resulting key and index. .

k0[j], i0[j]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

store k0[j], store i0[j]

k1[j], i1[j]
−−−−−−→

store k1[j], store i1[j]

. Member decryption .

k′← k0[j]⊕ k1[j]

i← i0[j]⊕ i1[j]

if k′ ̸= kdummy then

R← Dec(k′, routes[R.dst][i])

endif

Protocol 6.3: The SELECT-BEST protocol. Inputs: R: a BGP route stripped off its export
policy ep; |ep|: the length in bits of ep; |k|: the bit length of key k; recc(R):
route recommendation at the IXP; m: the number of members.

107

6 Privacy-Preserving Internet Routing

In SIXPACK, we additionally employ symmetric encryption for routes that are transferred from
sending to receiving members. In our implementation we use AES with a key size of 128 bit
in counter-mode (CTR). We are not aware of any significant attacks on AES in this mode of
operation and thus believe it to be a viable choice for our purpose. Alternatively any suitably
block cipher can be used for encryption.

We ensure that the symmetric keys that are required to decrypt a route are only provided to
those members who are explicitly allowed to receive them. This is achieved by relying on the
GMW protocol that provably guarantees correctness, security and privacy. The correctness
property of GMW together with the correctness of the circuits we evaluate with it ensure that
only those members who are explicitly allowed by the export policy of a sending member will
receive the correct key to decrypt an encrypted route. All other members receive a dummy
key, that will not successfully decrypt the route. We describe the circuits that implement this
behavior in Sect. 6.5.4 and Sect. 6.5.5.

The privacy property of GMW ensures that the computational parties, who carry out the
operations on the routes and secret-shared export policies cannot gain access to this data
unless they break the non-collusion assumption. This is guaranteed by using information-
theoretic XOR-based secret sharing that masks plaintext inputs with random data and splits it
between the computational parties. These parties evaluate our circuits gate by gate using the
GMW protocol, while maintaining the invariant that the values on each wire in the circuit is
secret-shared among the parties. The circuits’ outputs are sent only to the eligible receiving
members who are able to reconstruct the plaintext output values.

It is easy to see that our circuits (e.g., Circ. 6.1) correctly implement our algorithms. These
are direct translations of the algorithms into lower level components, such as AND (∧) and
NOT (!) gates, as well as ADD, GT and MUX. We rely on the correctness of the implementations
of [BPP00] for ADD-gates, [KSS09] for GT and [DSZ15] for MUX, to conclude our final circuits,
that use only AND and XOR gates. The correctness of the protocols is derived from correctness
of the GMW protocol, and the correctness of our circuits.

We summarize our observations above in the following Theorem 1.

Theorem 1. Correctness, Security, Privacy of SIXPACK and privacy-preserving central-
ized route computation: The EXPORT-ALL protocol (Circuit 6.2), the SELECT-BEST protocol
(Circuit 6.3), the protocol for computing Algorithm 6.1, and the protocol for computing Al-
gorithm 6.2 correctly, securely, and privately compute the respective functionality described
in Prot. 6.1, in Prot. 6.3, in Algorithm 6.1, and in Algorithm 6.2 respectively, in the presence of
a semi-honest adversary, corrupting either P0 or P1, but not both, in addition to at most all but
one of the ASes.

108

6 Privacy-Preserving Internet Routing

6.7 Deployment

In this section, we explain our network assumptions and propose a method for enforcing
input consistency. We discuss how to handle failures and byzantine behavior, and possible
deployment.

6.7.1 Disadvantages of Centralized Routing

The centralized routing schemes that are discussed in this chapter have some disadvantages
over decentralized approaches. First, the ASes have to trust that the computational parties
do not collude and the computational parties become a single point of failure. Second, the
computation of light-paths for rapid restoration is more complex compared to a distributed
model. Finally, the centralized approach is contradictory to the decentralized philosophy
which has driven the rapid development of the Internet. Another issue with centralized
approaches is latency. We propose to mitigate this, by applying our techniques not on global
scale, but on smaller topologies, as described in Sect. 6.7.3.

6.7.2 Network Setting

The connection between the CPs is a critical point in our system and has to be low-latency
and high-throughput. We argue that this is realistic, since reputed entities that run the
CPs are often co-located in the same data centers, yet managed by different authorities.
The communication between ASes and CPs can be an arbitrary Internet connection with
no special requirements. Error correction can be applied on the usual network layers (e.g.,
within TCP/IP or on application level). Packet loss between ASes and CPs does not cause
severe problems, as old inputs from ASes can be re-used in multiple protocol iterations. Lost
outputs have the same consequences as lost BGP messages nowadays. However, packet loss
is covered by the use of TCP/IP that re-sends lost packets. The ASes have to do one round
of communication with the computational parties that run our protocols. Thus, we have
measured the round trip time (RTT) between our computational parties and other Amazon
EC2 regions and observed average RTTs between 90 ms and 311 ms, as depicted in Tab. 6.1.
This time has to be added to the MPC runtime to get the time an individual AS has to wait for
a computation result. The standard deviation of the RTTs and packet loss was less than 1%.

6.7.3 Route Computation Deployment

Our approach to privacy-preserving route computation is primarily intended as a broad vision
for the future of interdomain routing. Of course, transitioning to MPC of interdomain routes
is an extremely challenging undertaking that involves cooperation of tens of thousands of
independent financial and political entities, alongside significant deployment and operational
challenges. We believe, however, that our approach can also yield significant benefits (e.g., in
terms of privacy, security, and ability to innovate) when applied at a country/region-level scale,

109

6 Privacy-Preserving Internet Routing

Table 6.1: Average network round trip times between Amazon EC2 regions measured from
EU (Frankfurt) to the listed regions.

Location ∅ RTT

US East (Northern Virginia) 90.2 ms
US West (Northern California) 162.5 ms
South America (São Paulo) 193.4 ms
Asia Pacific (Mumbai) 112.5 ms
Asia Pacific (Tokyo) 228.5 ms
Asia Pacific (Sydney) 311.3 ms

while alleviating many of the challenges a global transition entails. Often, for performance
and security reasons, traffic within a geographic/political region is expected to not leave the
boundaries of that region. One example for this is that many end-users retrieve content from
servers in their geographic region due to the popularity of content delivery networks (à la
Akamai). Thus, a natural deployment scenario for MPC of interdomain routes is focusing on
a specific region and executing MPC only for routes between the ASes in that region, while
all other routes will be computed via traditional (decentralized) BGP routing.

This would also offer very natural instantiations of the MPC parties: The computation could
be done by the RIR as well as a local IXP, such as DE-CIX. While being independent entities,
they typically share a fast and low latency network connection, which is required for our
protocols. We give the runtimes for such subgraphs for the RIRs in Fig. 6.12 and observe
that such a regional execution also drastically decreases the runtime of our algorithms (e.g.,
0.20 s setup time and 0.17 s online time for the German RIR RIPE-DE). We point out that
such a scheme, beyond MPC’s inherent privacy guarantees and the other benefits listed
in Sect. 6.1.1, can provide the guarantees that all routes between ASes in the region will
indeed only traverse other ASes in that region. This should be contrasted with today’s insecure
routing with BGP, which allows a remote AS to manipulate the routing protocol so as to
attract traffic to its network. Our evaluations show that, beyond the above guarantees, it
also yields better running times due to the smaller size of the “input”. We believe that a
region/country-level implementation of such MPC of routes is a tangible and beneficial first
step en route to larger-scale deployment scenarios.

6.7.4 Hiding the Network Topology

Currently, we exploit the fact that the network topology is public for many implementation
optimizations in the circuit. However, we could also keep the topology private, which comes
at an overhead of O(n3), where n is the number of ASes [ACM+13]. For country-level ASes,
especially when excluding stub-nodes, this overhead seems tolerable. E.g., the RIPE-DE
country-level AS has 250 non-stub ASes, which would result in a circuit with 30 million AND
gates for the neighbor relations algorithm of Sect. 6.4.1 and around 200 million gates for the
neighbor preference algorithm of Sect. 6.4.2.

110

6 Privacy-Preserving Internet Routing

6.7.5 Leakage Through Received Routes

Naturally, this raises the question of what can be inferred from the received routes and how
effective the protection of SIXPACK is.

While many techniques have been designed to infer peering relationships, and even rout-
ing policies, in the Internet, using control- and data-plane traffic information [CDE+10;
DKF+07; WG03; Gao01; MKA+09; SBS08; JCC+13], such solutions not only have limited
accuracy [RWM+11] (e.g., globally visible AS-paths neither reveal local preferences nor
“negative” export policies, i.e., not exporting a route) but might also be detectable (e.g.,
BGP AS-path spoofing [JCC+13]). Finally, SIXPACK supports ranking routes based on the IXP
members’ port utilization, a fundamental performance metric that is challenging to infer in
practice [CML10].

6.7.6 SIXPACK Deployment

SIXPACK can easily and incrementally be deployed at IXPs since it needs not replace the
traditional RS service, i.e., the two can coexist. Each member can independently decide
whether to share its routes in a privacy-preserving manner or not. Observe that the routes
shared via the traditional RS can be forwarded to SIXPACK so that the early adopters have the
same route visibility of the members peering at the traditional route server. We believe that
the desire to keep peering relationships private can incentivize adoption.

Moreover, SIXPACK only requires small modifications at both the IXP and member side (i.e.,
route servers and BGP border routers). Members could run SIXPACK as a BGP proxy that
receives updates intended for the RS from its BGP border router and performs the MPC input
sharing process. Similarly, the BGP proxy will receive the output of the MPC from the two
MPC-enabled route servers and translate it into BGP updates that will, in turn, be forwarded
to the member’s BGP border router. Members not using SIXPACK require no changes to their
infrastructure.

We believe that bringing innovation to today’s networks is no longer as prohibitive a task
as it has been in the past. The rise of programmable networks with SDN is boosting in-
novation in different environment such as data centers [SOA+15] and, more recently, IXP
networks [SFLR13; GVS+14; Lig15; END15; AMS16; GMB+16]. Deploying SIXPACK in a
so-called Software-Defined-eXchange (SDX) could provide the opportunity for using custom
interfaces and avoid the need for compatibility with BGP. Advanced route dispatch services,
based for instance on port congestion metrics, should obliviously be designed to avoid route
oscillations (cf. Sect. 6.5.5).

6.8 Implementation

In this section we explain details of our implementations.

111

6 Privacy-Preserving Internet Routing

Optimized Implementation of Algorithm 6.1

In order to counter the problem of the high number of AND gates, the memory complexity
for storing the circuit, and the high number of communication rounds, we propose to use
the following three optimizations: reduce the complexity for evaluating AND gates by using
vector ANDs, decrease the number of gates in the circuit description by using SIMD circuits,
and decrease the circuit depth by building certain parts of the circuits as tournament-like
evaluation. In Tab. 6.5 we give the improvements of our optimizations and break down the
resulting complexities into the sub-functionalities in Tab. 6.6. We describe these optimizations
in more detail next.

Vector ANDs The naive circuit in Circ. 6.1 consists of many multiplexer gates operating on
ℓ-bit values, needed to realize if conditions. As outlined in [DSZ15] these multiplexers can
be instantiated using vector ANDs that reduce the precomputation cost from ℓ AND gates to
the cost of one AND gate, cf. Sect. 3.2.3.

Overall, the multiplexers constitute to around 75% of the total number of AND gates in our
circuits. By using the vector AND optimization, we can therefore reduce the number of AND
gates by factor 3 for the neighbor relation algorithm in Algorithm 6.1 and by up to factor 45
for the neighbor preference algorithm in Algorithm 6.2 (as shown in column Total ANDs vs.
Vector ANDs in Tab. 6.2). Note, however, that this optimization can only be applied when
performing the evaluation with the GMW protocol, while an evaluation with Yao’s garbled
circuits has to process the total number of AND gates (cf. middle column in Tab. 6.6).

SIMD circuits In order to cope with large circuits, there are two common approaches:
pipelining the circuit construction and evaluation [HEKM11] and building a Single Instruction
Multiple Data (SIMD) circuit. While the approach of pipelining the circuit construction and
evaluation is especially suited for processing circuits of arbitrary size, we decided to pursue
a solution based on SIMD techniques. A SIMD circuit also consists of gates, but instead
of operating on single bits, it operates on multiple bits in parallel. Thereby, the time for
the load / process / store operations of a gate amortizes, which drastically speeds up the
evaluation [SZ13]. In contrast, a pipelined construction and evaluation approach would need
to perform a load / process / store operation per bit of evaluation. We will now describe how
to build such a SIMD circuit that evaluates our BGP functionality.

Note that for the customer, peer, and provider functionality, we perform the same operation
for each node v ∈ V in parallel. Using SIMD circuits, we can combine the values for each node
into vectors instead of single bits and thereby only build a single copy of the functionality.
Thereby, we can operate on multiple values in parallel, which allows us to reduce the memory
footprint of the circuit as well as to decrease the time for circuit evaluation. However, applying
the SIMD programming style is not straight-forward since for each node the circuit depends
on its degree, i.e., the number of its neighbor nodes n, which differs drastically between ASes.
The obvious solution, that builds the circuit for the node with the highest degree nmax and
pads the number of neighbor nodes for all other nodes to nmax, introduces a non-tolerable
overhead in terms of AND gates. We solve this problem as described next.

112

6 Privacy-Preserving Internet Routing

All nodes are divided into groups of similar degree. After each iteration the results from all
groups are merged into a state, that is used as input to the next iteration. The challenge is
to find the right amount and size of groups to partition the nodes. For our experiments, we
use the following partitioning: {1,2, . . . , 6, 8, 12,20,32,64,128,256, . . . , nmax}, where nmax
is the highest number of neighboring nodes that any AS in the topology has. This partitioning
was chosen based on the degree distribution shown in Fig. 6.3, and resulted in good overall
runtimes for all datasets that we performed our benchmarks on.

Tournament Evaluation The current circuit has a high multiplicative depth, which makes
it inefficient for MPC protocols which require communication rounds linear in the circuit
depth, e.g., the GMW protocol. The reasons for the high depth of the circuit are the iterative
structure of Algorithm 6.1 and the sequential processing of neighbors, which results in a
circuit depth linear in nmax, i.e., the highest number of neighbors of any AS in the graph (for
the CAIDA dataset, nmax=5 936). In order to reduce the depth for processing the neighbors,
we adopt a tournament evaluation style by arranging operations in form of a tree and thereby
achieve a logarithmic depth. We give the selection function for the customer functionality
in Func. 6.4 and for the peer / provider functionality in Func. 6.5. Note that we can compute
sel in Func. 6.4 as well as sumL and sumR in Func. 6.5 once in the beginning and pass/re-use
them during the tournament evaluation to decrease the number of AND gates. Thereby, the
overall number of AND gates in the circuit remains the same as for the sequential circuit.

Input: v ∈ V, (next[uL],dist[uL], fin[uL], incust
v [uL]),

(next[uR],dist[uR], fin[uR], incust
v [uR]) with

uL , uR ∈ Adj[v], uL ̸= uR

1: sel←− fin[uL] ∧ !fin[v] ∧ incust
v [uL]

2: next′←− MUX(next[uR],next[uL], sel)

3: dist′←− MUX(dist[uR],dist[uL], sel)

4: fin′←− MUX(fin[uR], fin[uL], sel)
5: in′←− MUX(incust

v [uR], incust
v [uL], sel)

Output: (next′,dist′, fin′, in′)

Circuit 6.4: Selection Function customer

Implementation of Algorithm 6.2

The structure of the neighbor preference algorithm described in Sect. 6.4.2 is very similar to
that of the peer/provider part of Algorithm 6.1 described in Sect. 6.4.1. Thus, we can use
the same structure, ideas and optimizations as described before to efficiently realize it as a
Boolean circuit optimized for the evaluation with the GMW protocol. The main difference
between the neighbor preference and the relation algorithm is the publish matrix pub, held
by each AS. This matrix has dimension |Adj[v]| × |Adj[v]| and hence becomes very large for

113

6 Privacy-Preserving Internet Routing

Input: v ∈ V, (next[uL],dist[uL], fin[uL], incust
v [uL]),

(next[uR],dist[uR], fin[uR], incust
v [uR]) with

uL , uR ∈ Adj[v], uL ̸= uR

1: distmax = 2σ − 1

2: sumL ←− MUX(distmax,dist[uL], fin[uL] ∧ inpeer/prov
v [uL])

3: sumR←− MUX(distmax,dist[uR], fin[uR] ∧ inpeer/prov
v [uR])

4: sel←− GT(sumR, sumL)

5: next′←− MUX(next[uR],next[uL], sel)

6: dist′←− MUX(dist[uR],dist[uL], sel)
7: fin←− MUX(fin[uR], fin[uL], sel)

8: in←− MUX(inpeer/prov
v [uR], inpeer/prov

v [uL], sel)
Output: (next′,dist′, fin′, in′)

Circuit 6.5: Selection Function peer / provider

ASes with many neighbors. In fact, for the full CAIDA dataset from November 2016, only
the AS with the most neighbors (nmax = 5936) has a matrix with 35236096 bits. Each
bit of this matrix has to be accessed once for each of the 2ddepth + 1 rounds in order to
hide the current next hop, which costs one AND gate per bit. Overall, the total number of
AND gates in the circuit for the full CAIDA dataset from November 2016 amounts to nearly
8 billion (cf. Tab. 6.2). The vector AND optimization allows us to perform a more efficient
access and reduces the cost for processing this matrix in the setup phase to 130 million AND
gates (cf. Tab. 6.2). However, during the online phase we have to evaluate the total number
of AND gates, regardless of the vector AND optimization, which results in a communication of
approximately 2 GiB of data which is an order of magnitude higher than for the relation-based
algorithm of Sect. 6.4.1.

Additionally, in the neighbor preference algorithm, the computation parties need to per-
form lookups by secret-shared values in Step 7 (i.e., the lookups pubu[next[u], v] and
prefv[next[v]]). We implement these lookups by updating the values pubu and prefv for all
nodes each time a new next hop is chosen. Note that updating the values is done using the
vector AND optimization, which greatly reduces the costs.

6.8.1 SIXPACK Implementations

MPC Circuit Representation

In this section, we describe the Boolean circuits representing EXPORT-ALL Sect. 6.5.4 and
SELECT-BEST Sect. 6.5.5 that we built for evaluation with the GMW protocol.

We rely only on two gates: a greater-or-equal gate (≥), and a multiplexer (MUX) that outputs
one of its two data inputs, depending on a selection input bit. We intentionally choose

114

6 Privacy-Preserving Internet Routing

to restrict our circuit construction to a minimalistic design in order to achieve practical
runtimes. Our circuits are evaluated in a SIMD (Single Instruction Multiple Data) fashion
that allows to efficiently process the inputs for each of the members in parallel. Furthermore,
our circuits have a very low multiplicative depth, so they can be evaluated efficiently with
the GMW protocol, whose round complexity is linear in the multiplicative depth. For the
EXPORT-ALL approach the depth is constant and for the SELECT-BEST approach, it grows only
logarithmically with the number of routes, which is never larger than 30 in our real-world
example data (see Sect. 6.9.2). We stress that our circuits are generic Boolean circuits that
could potentially be evaluated with arbitrary MPC solutions and can thus be extended to
active security or more than 2 parties, given additional resources.

SIXPACK Implementation

We implemented the two MPC components shown in Fig. 6.9 and Fig. 6.10 in C++ using
ABY (Chapt. 3) in ≈ 700 lines of code.

With ABY’s SIMD evaluation, we can run our two MPC circuits for inputs from arbitrarily many
members in parallel while vector operations allow the efficient processing of long bit strings,
such as the route keys. The circuits that we built are optimized to process multi-bit values
efficiently, which benefits the processing of route keys and comparing preference values.
The SELECT-BEST circuit is evaluated in a tournament fashion by arranging the preference
comparison gates in a tree. Thereby we achieve a circuit depth that grows logarithmically
in the number of members, thus resulting in optimized latency for GMW. We designed our
circuits to be minimalistic and performant, while still being as expressive as needed for our
use cases.

We rely on the proven security of a symmetric cipher for encrypting/decrypting routes, which
we instantiate with 128-bit AES in CTR mode. We verified that AES adds negligible overhead
compared to the MPC, which holds in general and especially on machines with the AES-NI
instruction set.

Our route server service, which wraps the MPC components and handles the distribution
and processing of all the BGP update information among the IXP members, is implemented
as 1 800 lines of code in Python. The RSes run as independent processes, each executing
its own instance of MPC as a daemon subprocess, and communicate via TCP sockets. To
improve the efficiency of SELECT-BEST, we observe that, in practice, it is convenient to batch
several next-hop ranking messages together before executing SELECT-BEST as shown in our
evaluation (Sect. 6.9.2).

Although we did not optimize our implementation to the fullest extent possible, our evaluation
(Sect. 6.9.2) shows that our approach already scales to the size of the largest IXPs in the
world. We discussed deployment consideration in Sect. 6.7.6.

115

6 Privacy-Preserving Internet Routing

Optimizations

We believe that the running time of SIXPACK can be drastically reduced through the following
two improvements:

First, the current implementation of the MPC does not allow to separate the setup and online
phases. For example, the runtime of the MPC part for the SELECT-BEST approach, when
processing 32 inputs and using 4 bits for representing preferences, currently takes a total time
of 158.0 ms, while the online phase only amounts to 35.9 ms of that. Since for all our results
the setup phase accounts for at least 77% of the total MPC processing time, we believe that
the per-prefix processing time can be improved significantly as soon as our implementation
becomes capable of precomputing the setup phase. We stress that this is possible in theory
and the current situation is merely a limitation of our implementation.

Second, our Python code could be rewritten in a more performance-oriented programming
language such as C/C++, thus gaining an additional decrease in runtimes.

6.9 Benchmarks and Evaluation

In this section we evaluate the complexity and performance of our solutions. In Sect. 6.9.1,
we provide evaluation results for the BGP route computation algorithms from Sect. 6.4. The
performance analysis of SIXPACK (Sect. 6.5) can be found in Sect. 6.9.2.

6.9.1 Route Computation Benchmarks

In this section, we provide benchmark results of our protocols and evaluate the practicality of
our solution privacy-preserving route computation. We show that we are capable of securely
evaluating the circuit for the full CAIDA dataset in a reasonable runtime and further improve it
using the algorithmic optimization of excluding stubs from the computation (cf. Sect. 6.4.3).

We implement our protocols in the GMW protocol using ABY. The main reason for the GMW
protocol are the optimizations from Sect. 6.8, that are only possible with GMW. Using Yao’s
garbled circuits, runtimes would become impractical. We provide further arguments for
choosing the GMW protocol in Sect. 3.3.5.

To the best of our knowledge, the optimizations described in Sect. 6.8 are only implemented
in ABY. We are not aware of automated tools capable of using the same optimizations to the
same extent that we do in our hand-built circuits. We would like to point out, however, that
our efficient circuits are generic Boolean circuits that could be evaluated with any secure
computation framework and could thus be extended to more than 2 parties or even security
against malicious adversaries (e.g., using [NNOB12] or [NST17]), with additional cost in
communication and runtime.

116

6 Privacy-Preserving Internet Routing

BenchmarkingEnvironment Our MPC benchmarks are run on two Amazon EC2 c4.2xlarge

instances with 8 virtual CPU cores with 2.9 GHz and 15 GiB RAM located in the same region,
connected via a Gigabit network connection. The symmetric security parameter in our
experiments is set to 128 bits. All runtime results are median values of 10 protocol executions
and their standard deviation. The communication numbers provided are the sum of sent and
received data for each party.

CAIDA (Fig. 6.11) The graphical evaluation of both protocols (neighbor relationship Algo-
rithm 6.1 and neighbor preference Algorithm 6.2) on CAIDA datasets of the past 10 years
is provided in Fig. 6.11. The detailed results are given in Tab. 6.2. Our results show that
both protocols spend most of the time in the setup phase which takes 15.5 s for the neighbor
relation algorithm (35.1 s for the neighbor preference algorithm) for the full CAIDA Novem-
ber 2016 topology and reduces to 6.4 s (12.8 s) if we exclude stub nodes. This part of the
computation is less critical than the online phase for two reasons: a) it is independent of
the network topology and input of the ASes and thus can be precomputed at any time and
b) it can be ideally parallelized by adding more machines and thus is just dependent on
the available resources. The online phase is the time required from a secret shared input of
the ASes until the resulting next hop on the routing tree can be provided to them. For the
full network, the online runtime is 6.1 s for the neighbor relation algorithm (29.9 s for the
neighbor preference algorithm) and decreases to 3.2 s (10.5 s) when ignoring stub nodes.

2006 2 008 2010 2012 2 014 2016
0

10

20

30

R
un

ti
m

e
[s
]

Setup Phase Runtime

2006 2 008 2010 2 012 2014 2 016
0

10

20

30

Online Phase Runtime

Full, Neighbor Preference Full, Neighbor Relation
No Stubs, Neighbor Preference No Stubs, Neighbor Relation

Figure 6.11: Median runtimes for setup and online phase, for the CAIDA topology of Novem-
ber of every year, with and without stub nodes, comparing the neighbor relation
algorithm (Algorithm 6.1, Sect. 6.4.1) and the neighbor preference algorithm
(Algorithm 6.2, Sect. 6.4.2).

Generally speaking, the algorithmic improvement of removing stub nodes from the network
topology speeds up both protocols by a factor of 2 to 3.

117

6 Privacy-Preserving Internet Routing

The required bandwidth between the two MPC parties in the online phase for the neighbor
relationship algorithm is less than 60 MiB, while the more complex neighbor preference
algorithm requires ≈ 800 MiB for the newest topology without stub nodes. Our results also
show that the online runtime of the preference algorithm scales worse with a growing topology
size. In general, communication between the two computing parties takes approximately
1/3 of the runtime of the online phase and is also the part that induces the biggest runtime
variations, even on a local network. The remaining 2/3 of the online phase runtime are spent
on local computations consisting of bit operations and memory accesses.

RIRs (Fig. 6.12) We show similar measurements for subgraphs of CAIDA’s November 2016
topology for 5 RIRs and a regional topology for German ASes (RIPE-DE) in Fig. 6.12 and
provide detailed numbers in Tab. 6.3. When considering the smaller RIR topologies, the
online time decreases below 10 s for both algorithms, even for big sub-topologies such as
RIPE or ARIN; for smaller sub-topologies even further. For instance, on the full RIPE-DE
sub-topology, the online runtime for the neighbor relation algorithm is 0.3 s (0.5 s for the
neighbor preference algorithm) and decreases to 0.2 s (0.3 s), when leaving out stubs. In
a similar fashion, the required bandwidth decreases to1.0 MiB for the neighbor relation
algorithm and to3.6 MiB for the neighbor preference algorithm without stub nodes.

RIPE ARIN LACNIC APNIC
RIPE-DE

AFRINIC

0

5

10

R
un

ti
m

e
[s
]

Setup Phase Runtime

RIPE ARIN LACNIC APNIC
RIPE-DE

AFRINIC

0

5

10

Online Phase Runtime

Full, Neighbor Preference Full, Neighbor Relation No Stubs, Neighbor Preference No Stubs, Neighbor Relation

Figure 6.12: Median runtimes for setup and online phase, for subgraphs of CAIDA’s Novem-
ber 2016 topology, with and without stubs, comparing the neighbor relation
algorithm (Algorithm 6.1, Sect. 6.4.1) and the neighbor preference algorithm
(Algorithm 6.2, Sect. 6.4.2).

In Tab. 6.2, we provide detailed evaluation results for both of our protocols on the CAIDA
datasets of the past 10 years, where the most recent results for the topology of November 2016
are marked in bold. We list the number of ASes, the connections between them, and the
maximum degree for each benchmarked topology. Furthermore, we list the circuit sizes as
total number of AND gates (that one would have to evaluate without using the vector gate

118

6 Privacy-Preserving Internet Routing

optimization of the GMW protocol respectively when using Yao’s protocol), the number of
gates when using the vector gate optimization for GMW, and the depth of the circuit, i.e., the
number of communication rounds between the two computational parties.

Table 6.2: Comparison of topology, circuit and MPC runtimes of both algorithms
from Sect. 6.4, using CAIDA datasets from past years, comparing the full dataset
with the topology without stubs. The depicted communication happens solely
between the CPs. We used the November dataset from every respective year. Most
recent values are marked in bold.

Topology Circuit Benchmarks
max. Total Vector AND Setup Phase Online Phase

CAIDA ASes Edges Degree ANDs ANDs Depth Runtime Comm. Runtime Comm.
Dataset [·106] [·106] [s] [MiB] [s] [MiB]

2008 30 018 82 630 2 632 123 37 1 042 5.2 (± 1%) 1 136 3.0 (± 1%) 47
2012 42 847 138 306 3 703 217 63 1 042 8.9 (± 1%) 1 921 4.2 (± 0%) 82
2016

Alg. 6.1
Sect. 6.4.1 55 809 239 064 5 936 380 110 1 118 15.5 (± 0%) 3 344 6.1 (± 1%) 143

2008 30 018 82 630 2 632 2 074 58 1 430 9.5 (± 1%) 1 767 8.0 (± 2%) 520
2012 42 847 138 306 3 703 4 428 99 1 430 18.1 (± 0%) 3 028 15.0 (± 2%) 1 105

Fu
ll

To
po

lo
gy

2016

Alg. 6.2
Sect. 6.4.2 55 809 239 064 5 936 6 603 184 1 535 35.1 (± 0%) 4 577 29.9 (± 0%) 2 130

2008 4 550 29 275 764 43 14 890 2.1 (± 3%) 418 0.9 (± 1%) 16
2012 6 483 52 661 1 384 78 25 966 3.5 (± 2%) 760 1.6 (± 0%) 30
2016

Alg. 6.1
Sect. 6.4.1 8 407 95 157 2 913 147 45 1 042 6.4 (± 1%) 1 374 3.2 (± 1%) 55

2008 4 550 29 275 764 434 22 1 220 3.7 (± 2%) 687 2.0 (± 1%) 111
2012 6 483 52 661 1 384 1 173 41 1 325 6.8 (± 1%) 1 255 4.3 (± 1%) 296N

o
St

u
bs

2016

Alg. 6.2
Sect. 6.4.2 8 407 95 157 2 913 3 142 75 1 430 12.8 (± 0%) 2 283 10.5 (± 1%) 785

In Tab. 6.3, we list the same values for subgraphs of the CAIDA dataset from November 2016
that correspond to the RIR networks and a local topology as described in Sect. 6.7.3.

Estimating Circuit Gate Counts

In Sect. 6.4.4 we described a ‘naive’ circuit for the neighbor relation algorithm Algorithm 6.1.
Here we detail the gate counts that we estimated.

From the results in Tab. 6.5 we observe that rewriting the circuit as SIMD circuit increases
the total number of AND gates by factor 3, and by factor 1.4 when using GMW with vector
ANDs. However, at the same time the total number of gates (AND plus XOR) that have to be
held in memory is reduced by a factor of 130 from 400 Million to 3 Million. This allows us to
hold the complete circuit in memory, which greatly improves the runtime.

The tournament evaluation method (cf. Sect. 6.8) allows us to construct a tree of all neighbor
nodes that has a worst-case depth logarithmic in the highest number of neighbors log2(nmax).
Thereby, we are able to reduce the multiplicative depth of the circuit by two orders of magni-
tude, as depicted in Tab. 6.5. From Tab. 6.6 we can observe that most of the multiplicative
depth of the optimized circuit is due to the peer and provider functionalities. This can be
explained by the comparisons that need to be done between each pair of neighbor distances
for the peer and provider iterations. During a customer iteration, if a node that has no route

119

6 Privacy-Preserving Internet Routing

Table 6.3: Comparison of topology, circuit and MPC runtimes of both algorithms
from Sect. 6.4, using subgraphs of the CAIDA datasets from November 2016,
comparing the full dataset with the sub-topology, with and without stub nodes.
The depicted communication happens solely between the CPs. Most recent values
are marked in bold.

Topology Circuit Benchmarks
max. Total Vector AND Setup Phase Online Phase

ASes Edges Degree ANDs ANDs Depth Runtime Comm. Runtime Comm.
Dataset [·106] [·106] [s] [MiB] [s] [MiB]

CAIDA 2016 55 809 239 064 5 936 380 110 1 118 15.5 (± 0%) 3 344 6.1 (± 1%) 143
RIPE 21 723 95 909 1 769 149 44 966 6.3 (± 1%) 1 358 2.5 (± 1%) 56
ARIN 16 942 39 563 3 047 56 17 1 042 2.5 (± 3%) 518 2.4 (± 1%) 21
APNIC 7 505 18 802 727 25 8.1 890 1.2 (± 4%) 249 0.7 (± 1%) 9.5
LACNIC 5 283 28 374 1 066 39 12.5 966 1.8 (± 3%) 381 1.1 (± 1%) 15
RIPE-DE 1 328 5 375 372 6.8 2.4 814 0.4 (±11%) 72 0.3 (± 1%) 2.6
AFRINIC

Alg. 6.1
Sect. 6.4.1

916 1 644 199 1.8 0.7 738 0.1 (±16%) 21 0.2 (± 2%) 0.7

CAIDA 2016 55 809 239 064 5 936 6 603 184 1 535 35.1 (± 0%) 4 577 29.9 (± 0%) 2 130
RIPE 21 723 95 909 1 769 2 844 71 1 325 13.1 (± 1%) 2 185 9.6 (± 2%) 711
ARIN 16 942 39 563 3 047 1 325 26 1 430 5.2 (± 1%) 789 6.1 (± 1%) 330
APNIC 7 505 18 802 727 200 12.5 1 220 2.0 (± 4%) 386 1.4 (± 1%) 52
LACNIC 5 283 28 374 1 066 693 20 1 325 3.4 (± 3%) 622 2.8 (± 2%) 174
RIPE-DE 1 328 5 375 372 44 3.8 1 115 0.8 (± 8%) 118 0.5 (± 2%) 12

Fu
ll

To
po

lo
gy

AFRINIC

Alg. 6.2
Sect. 6.4.2

916 1 644 199 6.3 1.0 1 010 0.3 (±14%) 33 0.2 (± 3%) 1.8

CAIDA 2016 8 407 95 157 2 913 147 45 1 042 6.4 (± 1%) 1 374 3.2 (± 1%) 55
RIPE 3 646 41 274 918 58 19 890 2.8 (± 2%) 583 1.0 (± 1%) 22
ARIN 1 849 8 501 665 11 3.7 890 0.6 (± 7%) 112 0.5 (± 1%) 4.0
APNIC 1 140 5 398 338 6.7 2.3 814 0.4 (±11%) 71 0.3 (± 1%) 2.5
LACNIC 1 012 8 367 484 9.9 3.6 814 0.5 (± 9%) 109 0.4 (± 1%) 3.8
RIPE-DE 250 2 219 167 2.5 1.0 738 0.2 (±16%) 31 0.2 (± 2%) 1.0
AFRINIC

Alg. 6.1
Sect. 6.4.1

178 371 77 0.4 0.2 662 0.0 (±12%) 5.1 0.1 (± 3%) 0.2

CAIDA 2016 8 407 95 157 2 913 3 142 75 1 430 12.8 (± 0%) 2 283 10.5 (± 1%) 785
RIPE 3 646 41 274 918 884 32 1 220 5.7 (± 2%) 971 3.3 (± 3%) 223
ARIN 1 849 8 501 665 86 6 1 220 1.0 (± 6%) 182 0.9 (± 1%) 23
APNIC 1 140 5 398 338 36 3.7 1 115 0.7 (± 9%) 117 0.5 (± 2%) 9.7
LACNIC 1 012 8 367 484 109 5.8 1 115 1.2 (± 6%) 182 0.8 (± 2%) 28
RIPE-DE 250 2 219 167 13 1.6 1 010 0.3 (±14%) 53 0.3 (± 2%) 3.6

N
o

St
u

bs

AFRINIC

Alg. 6.2
Sect. 6.4.2

178 371 77 1.0 0.2 905 0.1 (±10%) 9.2 0.1 (± 4%) 0.3

to the target has a neighbor with a route to the target (i.e., its finish bit is set to 1), this route
is automatically the shortest path to the target AS. If there was a closer neighbor, it would
have been found in an earlier iteration of the customer circuit. If there are multiple neighbor
nodes who have a route, it is not required to determine the node with the minimal distance,
since all are equally far away from the destination node dest.

6.9.2 SIXPACK Evaluation

We evaluate our SIXPACK prototype to demonstrate that our approach is both feasible and
practical. We first provide insights into the performance of the MPC part of SIXPACK by
performing micro benchmarks across a realistic range of numbers of IXP members and inputs.
We then evaluate our system by replaying a real trace of BGP announcements from one of the
largest IXPs worldwide and by performing a stress test. Our results highlight the following:

120

6 Privacy-Preserving Internet Routing

Table 6.4: Estimated number of AND gates per edge and AND depth for the sub-routines
of the circuit for Algorithm 6.1 for ddepth = 10,δ = 16,σ = 5, nmax = 5936 for
CAIDA 2016 full and nmax = 2913 for CAIDA 2016 without stubs.

Sub-Function
Asymptotic CAIDA 2016 full CAIDA 2016 no stubs

#AND gates AND depth #AND gates AND depth #AND gates AND depth

customer ddepth(2σ+δ+ 3) ddepthnmax(σ+ 1) 69 328 560 356 160 27 595 530 174 780
peer 3σ+δ+ 3 nmax(σ+ 3) 8 128 176 47 488 3 235 338 23 304
provider ddepth(3σ+δ+ 3) ddepthnmax(σ+ 3) 81 281 760 474 880 32 353 380 233 040

Total 158 738 496 878 528 63 184 248 431 124

Table 6.5: Total number of AND gates (as required by Yao’s garbled circuits), number of AND
gates that need to be evaluated with the vector AND functionality of GMW, and
multiplicative (AND) depth for each of our optimizations.

CAIDA 2016 full CAIDA 2016 no stubs
#AND gates #Vector ANDs AND depth #AND gates #Vector ANDs AND depth

Original 158 738 496 — 878 528 63 184 248 — 431 124
Vector AND 158 738 496 55 940 976 878 528 63 184 248 22 266 738 431 124
SIMD 380 481 105 109 540 680 878 528 147 251 331 44 997 018 431 124
Tournament 380 481 105 109 540 680 1 118 147 251 331 44 997 018 1 042

Table 6.6: Number of AND Gates (Total and Vector) and Depth for 1 iteration of each sub-
circuit.

Total Vector AND
Dataset Sub-Circuit AND Gates ANDs Depth

2016 No Stubs customer 5 399 507 530 254 16
2016 No Stubs peer/provider 8 463 319 3 594 066 81

2016 Full Topology customer 14 479 639 1 365 866 17
2016 Full Topology peer/provider 21 893 495 8 779 722 87

121

6 Privacy-Preserving Internet Routing

(1) While MPC is (as expected) the costliest part performance-wise, our results show that
the online phase is even at worst below 38 ms. The maximum setup and online runtime we
measured in our evaluation were 131.9 ms and 37.2 ms, respectively for 32 inputs in the
SELECT-BEST component.

(2) Our still unoptimized SIXPACK prototype achieves BGP processing times below 90 ms
at the 99-th percentile, and, specifically, below 23.6 ms and 62.8 ms for EXPORT-ALL and
SELECT-BEST at the 99-th percentile, respectively. Furthermore, we measured negligible
bandwidth requirements. SIXPACK processes a full-routing-table of 250 000 prefixes in ≈11
minutes, comparable to today’s RSes. We stress the fact that our prototype can be improved
to achieve better performance by precomputing the MPC setup phase.

It is worth comparing these numbers with the convergence time of BGP on the Internet, which
can be in the order of minutes [MBGR03], that is, several orders of magnitude higher than
time overhead due to dispatching routes with SIXPACK.

IXP Dataset

We assess our system using a trace of BGP updates from one of the largest IXPs worldwide,
which interconnects more than 600 members. Our data shows that 511 IXP members connect
to the IXP’s route server. The trace covers a two-hour time window in August 2015. It contains
25 676 BGP update messages, consisting of 76 506 IP prefix announcements and withdrawals.
The average number of BGP updates per second is 3.57, the first and third quartiles are 2
and 4, respectively, while the minimum and maximum numbers per second are 1 and 29,
respectively. The average number of IP prefix announcements or withdrawals per second
is 10.62, the first and third quartiles are 6 and 12, respectively, while the minimum and
maximum numbers per second are 2 and 379, respectively. In addition to that trace, our data
also contains a snapshot of the RS routing table at the beginning of the trace of updates. The
routing table contains roughly 400 000 routes towards ≈ 240 000 IP prefixes.

In Fig. 6.13b, we use a CDF to show what fraction of the announced IP prefixes (y-axis) are
reachable through no more that a certain number of routes (x-axis). We observed that for
more than half of the IP prefixes there exists a single available route, with an average of 1.9,
the 95-th percentile of 5 and a maximum of 25 routes per prefix. In Fig. 6.13b, we use a CDF
to show what fraction of the IXP members (y-axis) announced no more than a certain number
of routes (x-axis). We observed that on average each member announces 626.5 routes, the
95-th percentile is 1581 and the maximum is approximately 150 000.

SIXPACKMPCMicrobenchmarks

To benchmark the MPC circuits, we consider an IXP with 750 members, which is ≈ 1.5 times
the number of members connected to the RS encountered in the IXP dataset we analyzed.
From the dataset, we observe that at most 27 members export a route for the same IP prefix.
Thus, we run benchmarks for a number of route keys up to 32.

122

6 Privacy-Preserving Internet Routing

0 5 10 15 20 25

0

0.5

1

Number of routes

Fr
ac

ti
on

of
pr

efi
xe

s

(a) IP prefixes reachable via a given maximum
number of routes.

100 101 102 103 104 105

0

0.5

1

Number of IP prefixes

Fr
ac

ti
on

of
m

em
be

rs

(b) Members announcing at most a given maxi-
mum number of IP prefixes.

Figure 6.13: IP prefix CDFs for routes per prefix and prefixes per member.

We measure the runtime of the MPC setup and online phase. One invocation of MPC cor-
responds to processing a single IP prefix announcement. For all experiments, we perform
50 circuit executions and report median values of the runtimes and their standard deviation.
Measurements were performed on two servers with 2.6 GHz CPUs and 128 GiB RAM, con-
nected via a local 10 Gbps network. We evaluate with a preference value bit length of 8 bits.
The reported communication is the sum of sent and received data by one party.

The number of total AND gates reported in Tab. 6.7 is the number of AND gates we would
have to evaluate if we would use Yao’s garbled circuits protocol for our MPC implementation.
By using vector gates, that precompute multi-bit AND gates for the cost of 1-bit AND gates and
that are only possible in the GMW protocol, we can save more than two orders of magnitude
for the runtime of the setup phase.

Runtimes Tab. 6.7 shows the setup and online runtimes as well as the required communi-
cation and circuit complexity. Our results show that the setup phase takes between 1.7 ms
and 122.4 ms, and depends on the number of inputs processed and the circuit used. In the
best case, an IP prefix is announced by a single member and the EXPORT-ALL component can
be used to dispatch the announcement to the legitimate members since no route comparison
is needed. In the EXPORT-ALL component, each route is processed independently, even those
towards the same destination IP prefix. This case corresponds to the computation with just
2 inputs (i.e., a given route and the dummy one) and requires an online computation of
only 0.6 ms and an amount of transferred data of 25 KiB. However, as both setup and online
runtimes grow sub-linearly with the number of routes, it is beneficial to compute on many
routes in parallel, e.g., at times where several BGP announcements happen simultaneously.
The runtimes of SELECT-BEST are large due to the deeper MPC circuit. Note that SELECT-BEST

may not be used when an IP prefix is announced by a single route (i.e., 2 inputs). We also
verified that our MPC circuits scale linearly with respect to the number of members, i.e., with
1 500 members, SELECT-BEST takes less than 70 ms to process 32 routes.

123

6 Privacy-Preserving Internet Routing

Table 6.7: MPC micro benchmarks: Circuit properties and runtimes of both building-blocks
from Sect. 6.5 for 750 members, and a given number of input keys, where one
input is the dummy key and the remaining inputs are route keys.

Circuit Benchmarks
Setup Phase Online Phase

Total Vector AND Runtime Comm. Runtime Comm.
Approach #Inputs ANDs ANDs Depth [ms] [KiB] [ms] [KiB]

2 102 000 750 1 1.7 (± 8%) 28 0.6 (±17%) 25
4 306 000 2 250 1 3.6 (± 5%) 76 1.3 (±11%) 75
8 714 000 5 250 1 7.2 (± 3%) 172 2.4 (± 7%) 176

16 1 530 000 11 250 1 14.2 (± 2%) 360 4.4 (± 5%) 377

E
X

P
O

R
T-

A
LL

32 3 162 000 23 250 1 24.0 (± 3%) 732 8.3 (± 4%) 778

2 114 000 7 500 5 6.2 (± 5%) 248 1.9 (± 8%) 30
4 342 000 22 500 9 14.9 (± 3%) 720 4.6 (± 4%) 89
8 798 000 52 500 13 24.8 (± 3%) 1 652 9.4 (± 5%) 208

16 1 710 000 112 500 17 44.4 (± 5%) 3 540 17.7 (± 2%) 445SE
LE

C
T-

B
E

S
T

(ℓ
=

4
bi

t)

32 3 534 000 232 500 21 77.6 (± 8%) 7 293 34.0 (± 1%) 920

2 128 250 15 750 6 10.6 (± 4%) 504 2.3 (± 5%) 35
4 384 750 47 250 11 19.8 (± 4%) 1 492 5.3 (± 4%) 106
8 897 750 110 250 16 34.6 (± 6%) 3 469 10.3 (± 3%) 247

16 1 923 750 236 250 21 63.7 (± 9%) 7 409 19.3 (± 3%) 528SE
LE

C
T-

B
E

S
T

(ℓ
=

8
bi

t)

32 3 975 750 488 250 26 122.4 (± 8%) 15 286 35.9 (± 1%) 1 091

Memory Consumption We also measure the memory consumption of our MPC implemen-
tation. Even when processing larger inputs of 32 routes and 2 000 members, the memory
consumption of the dispatching operation, which is consumed only during a route dispatch,
remains below 15 MiB. We determined that memory consumption grows sub-linearly with
increasing parameters, which shows that our implementation will remain practical in the
future.

In summary, these performance numbers confirm our MPC implementation’s practicality.

SIXPACK Prototype Evaluation

To assess the feasibility of SIXPACK, we focus on evaluating its two main building blocks, i.e.,
EXPORT-ALL and SELECT-BEST, against a real-world trace of BGP updates collected from one
of the largest IXPs in the world. To assess SIXPACK’s scalability, we performed a stress test of
EXPORT-ALL and SELECT-BEST and considered edge case scenarios such as the connection of a
new member to the IXP network.

Experimental Setup We performed our experiments on three servers with 16 hyper-
threaded cores at 2.6 GHz with 128 GiB of RAM and Ubuntu Linux 14.04, each two connected
through 10 Gbps links. The average latency is 100µs, similar to co-location data centers.10

We use one server to replay the stream of BGP updates from our dataset and to handle the

10https://ams-ix.net/technical/statistics/real-time-stats

124

https://ams-ix.net/technical/statistics/real-time-stats

6 Privacy-Preserving Internet Routing

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Processing time [ms]

Fr
ac

ti
on

of
IP

pr
efi

xe
s

EXPORT-ALL

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Processing time [ms]

Fr
ac

ti
on

of
IP

pr
efi

xe
s

SELECT-BEST

MPC-input MPC-run worker handler

Figure 6.14: Processing time CDFs for EXPORT-ALL and SELECT-BEST components with 8
workers per RS instance.

receiving part of the SIXPACK mechanism. In each experiment, we load the full RS routing
table contained in our dataset into the two RS instances.

Each RS instance runs on a server and consists of a set of worker processes orchestrated by a
single handler process. The latter one (i) redistributes received BGP updates to the workers,
(ii) guarantees that the other RS instance also knows which worker must be used to process a
BGP update, (iii) synchronizes SIXPACK’s operations, (iv) redistributes the MPC outputs to the
members, and (v) guarantees that two BGP updates for the same IP prefix are not processed
simultaneously by two different workers. Each worker runs an instance of the MPC party
and computes its inputs.

Each BGP update can be either an announcement or a withdrawal of a set of IP prefix
destinations that share the same export policy. In order to evaluate SELECT-BEST, we assign
random local preferences among all the IXP members.

Performance Analysis on a Real-World BGP Trace For each BGP route announcement r,
we measure the amount of time required to create the input values for the MPC processing, the
time required to run the MPC computation, the amount of time the announcement is handled
by a worker process, and the total time between the reception of r and the transmission of
its output to the IXP members.

We plot the processing time of each IP prefix from our dataset in Fig. 6.14. We observe
similar trends in both EXPORT-ALL and SELECT-BEST (i.e., Step I and Step III of SIXPACK),
with the latter one being 2 times slower than the former one. In both graphs, we see a large
gap between worker and handler times. This is mostly due to the unoptimized utilization
of shared data structures in Python. Second, worker execution is dominated by the MPC
processing, with MPC input creation requiring only a negligible amount of computational
resources. We also measure the time required to encrypt and decrypt routing announcements,
finding AES operations to be a negligible amount of time compared to the handler.

125

6 Privacy-Preserving Internet Routing

2 4 8 16 32
1

10

100

1000

Number of available routes per prefix

Th
ro

ug
hp

ut
[m

sg
/s

ec
]

1 2 4 8 Workers

Figure 6.15: Throughput test of SIXPACK for different number of parallel workers.

To summarize, average processing times are 15.9 ms and 32.7 ms for EXPORT-ALL and SEL-
ECT-BEST, respectively, while the 99-th percentiles are 23.6 ms and 62.8 ms. These low
running time reflects the fact that most of the routes are announced by few members (see
Sect. 6.9.2). Currently the MPC part makes up the majority of the runtime, which could be
further optimized by precomputing the setup phase ahead of time.

We also measured the amount of communication required by SIXPACK during the experiment.
We found that for both EXPORT-ALL and SELECT-BEST the average bandwidth requirements
from an IXP member to the RSes are negligible (i.e., 20 kbps). The requirements are higher
for the communication between the two RSes. In the EXPORT-ALL component, the average
bandwidth requirement is less than 2.79 Mbps while in SELECT-BEST it is no more than
10.9 Mbps. These figures show that even a 1 Gbps link between the two RSes would be more
than sufficient for supporting SIXPACK.

Stress Test To assess the scalability of our system, we flooded SIXPACK with announce-
ments and counted the number of routes dispatched per second. Our evaluation plotted
in Fig. 6.15 follows two dimensions: number of routes announced for the same IP prefix (in-
cluding a dummy route) and number of parallel workers. We observed that SIXPACK processes
619.28 route announcements per second in the EXPORT-ALL component and 64.33 announce-
ments per second for IP prefixes announced through 8 routes. We observe that eight workers
in parallel provide limited improvements for computations of more than a single announced
route. We observed that sixteen parallel workers allow SIXPACK to process over 1 010 routes
per second with EXPORT-ALL (not shown in the graph) but do not improve performance
for routes announced by more than one member (i.e., in SELECT-BEST). The bandwidth
requirements at full-speed are always below 1.5 Gbps.

Connecting a NewMember: Comparing with Today’s RSes When a member M connects
to the RS, either because of a newly established connection or after recovering from a
failure, two operations are performed: (i) the RS propagates to the new member all the
best permissible routes towards the IP prefixes that were previously announced by the other

126

6 Privacy-Preserving Internet Routing

members and (ii) the RS recomputes and propagates to all the members the best route for
each IP prefix announced by M . As for operation (i), at large IXPs, ≈250 000 best-route
computations must be performed, one for each prefix known to the RS. While this may sound
problematic, as observed in Fig. 6.13(b), most of the IP prefixes are announced by a single
member, hence enabling us to consistently leverage the EXPORT-ALL component. Moreover,
each best route is computed only for one IXP member and not for all of them. This allows us
to considerably speed up the MPC execution. For instance, while executing the SELECT-BEST

component for 500 members with 32 routes takes on average 158 ms, the same computation
for a single member takes just 9 ms. We verified that operation (i) takes on average 92.8 s
with our dataset. As for operation (ii), in Fig. 6.13(b), we observed that most of the customers
do not announce more than 1 000 BGP routes. Our stress test shows that such operations
would not take more than a few seconds. For large customers announcing ≈250 000 prefixes,
we verified that the announcement operation takes roughly 11 minutes. In comparison,
today’s RSes report convergence times ranging between 3 and 10 minutes [AMS12; DEC16],
even without incorporating import policies, performance-driven information, and privacy
functionality.

6.9.3 GMW vs. Yao – Performance

We discusses in Sect. 3.3.5 why GMW is beneficial to Yao’s garbled circuits in some cases.
Here we provide performance numbers that show that an evaluation with Yao’s protocol
would perform much worse for our use case.

Communication Yao’s garbled circuits protocol, we will have higher bandwidth require-
ments, due to the missing vector ANDs and the fact, that even today’s most communication-
efficient method for garbled circuits [ZRE15] requires 2 · 128= 256 bit of communication
per AND gate. Looking at the neighbor relation algorithm (cf. Sect. 6.4.1) and assuming
an ideal Gigabit network connection the resulting runtime for communication alone will be
380 · 106 AND gates · 256 bit per AND gate / 1 Gbps≈ 100 s for the full topology and ≈ 35 s
without stubs (using values from Tab. 6.2). We emphasize that these ideal runtimes are
already higher than our combined setup and online time.

Computation The fastest available implementation for Yao’s garbled circuits, JustGar-
ble [BHKR13], requires 48.4 cycles for evaluating and 101.3 cycles for garbling gates in
“larger” circuits [BHKR13, Fig. 10]. Using a 3.5 GHz CPU, we need (380 · 106 AND gates+
797 · 106 XOR gates) · 101.3 cycles per gate / (3.5 · 109 cycles per second) ≈ 34 s for the
full topology and ≈ 12 s without stubs for circuit garbling of the neighbor relation algo-
rithm (cf. Sect. 6.4.1). The evaluation can be parallelized when using pipelining.

Overall, the runtime for Yao’s garbled circuits, even with the fastest available implementation,
most recent optimizations, and an ideal network, would be significantly slower than the
runtimes we achieve with the GMW protocol. Evaluating the full neighbor relation algorithm
using the CAIDA dataset from November 2016, we estimate at least ≈ 134 s using Yao’s
protocol, compared to less than 22 s in our GMW benchmarks.

127

6 Privacy-Preserving Internet Routing

We want to point out, however, that the Boolean circuit we designed for computing the
routing tree of BGP is independent of the underlying secure computation scheme. Hence, for
networks with high latency, one could easily use an implementation of Yao’s protocol [Yao86]
with pipelining [HEKM11] for evaluation instead of GMW.

6.10 Conclusion and Future Work

In this section, we provide an outlook into future work and summarize our results for privacy-
preserving BGP routing.

6.10.1 Input Consistency

The centralized evaluation gives us the powerful ability to check the ASes’ inputs for con-
sistency. Since our solutions aim at protecting AS relations and local preferences, the CPs
could have an overview of the announced prefixes and can detect malicious behavior such as
prefix hijacking or misconfigurations. One more specific attack that can be prevented, is the
following: AS a claims that AS b is its peer, while b claims that a is its provider. Clearly, one
of them is lying. To verify the symmetry of AS input relations (cf. Sect. 6.2.2), we require
only a single layer of AND gates that processes these inputs, adding negligible complexity
to the overall algorithm. This check has to be done only once whenever an AS changes its
inputs. Further, more complex sanity checks of encrypted data can be added at the expense
of longer runtimes.

When inconsistencies are detected, the CPs can discard these new and inconsistent inputs
and fall back to previous inputs. Involved ASes can be queried to re-send their inputs if we
suspect that the inconsistency happened erroneously or due to faulty transmission. If an AS is
detected as malicious or permanently faulty, the computational parties, can virtually remove
this AS from the public topology and ignore it until recovery. This has the effect that no route
will be sent via a faulty or malicious AS.

6.10.2 Handling Failures and Byzantine Behavior

Our approach preserves the privacy of interdomain route-computation against honest-but-
curious attackers. However, the MPC itself is a single point of failure, as the routing depends on
the availability and the honesty of two computational parties. We propose to add robustness
by running multiple, independent 2-party MPC sessions in parallel. Alternatively, one could
also use secure multi-party computation protocols based on t-out-of-n secret sharing that
work even if all but t out of the n computing parties fail. Identifying more efficient schemes
is an interesting direction for future research.

In Sect. 6.10.1 we showed that our approach can be adapted efficiently to the case of malicious
ASes, but where the computational parties are still semi-honest. Another future direction

128

6 Privacy-Preserving Internet Routing

is to protect against malicious computational parties, while keeping runtimes practical, at
least at country- or region-level scales. Another possible approach is to obtain security in
a slightly weaker adversarial model, which is the covert security model [AL07]. By small
adaptations of our protocol we can obtain a semi-honest version of GMW for the multi-party
case (instead of two-party as we considered). Assuming honest majority, such a protocol
can be transformed easily (and in a black-box way) to efficient protocols in the more robust
setting of covert adversaries [AL07], at the expense of just running the protocol several times
in parallel [DGN10]. In this setting, the corrupted party might not follow the protocol, and by
doing so it can also sometimes break the security of the protocol. Nevertheless, the security
guarantee is that any cheating attempt can be detected by the honest party with a fixed
probability (say, 50%). Furthermore, by some additional (cheap) adaptations of the protocol,
any cheating attempt can also be publicly verified [AO12; KM14], which enables the honest
party to persuade other third parties (e.g., a “judge”) about the cheating attempt. Since the
computational parties in our settings are reputed authorities such as IANA/NANOG/RIPE, etc.,
we believe that the fear of being caught, the public humiliation or even the legal consequences
are enough of a deterrent to prevent any cheating attempt.

6.10.3 MPC for Connectivity Marketplaces

We believe that future research should concentrate on extending the functionality of privacy-
preserving RS services under realistic runtimes. One very interesting research direction along
these lines could be designing a privacy-preserving marketplace, where networks dynamically
buy and sell connectivity without revealing confidential information.

6.10.4 Conclusion

In this chapter, we presented SIXPACK, a privacy-preserving IXP RS design with provable
guarantees. SIXPACK dispatches routes according to highly expressive members’ routing
policies and IXP performance-related information. We showed that an efficient realization of
SIXPACK with MPC can be attained through a careful redistribution of the route dispatching
responsibilities between the RS and IXP members. We devised optimized MPC circuits tailored
to RS computation. We built a SIXPACK prototype and assessed its practical feasibility with a
real-world trace of BGP updates collected from one of the largest world-wide IXPs.

We also showed that BGP route computation on Internet-scale is in principle possible in
a privacy-preserving way, when we centralize the computation and employ the right MPC
schemes to implement it. We achieve realistic performance numbers when our graph al-
gorithms are run on a smaller scale. We show implementation details and algorithmic
improvements that enabled us to achieve these results.

129

7 Privacy-Preserving Whole-GenomeMatching

Results published in:

[DHSS17] D. DEMMLER, K. HAMACHER, T. SCHNEIDER, S. STAMMLER. “Privacy-
Preserving Whole-Genome Variant Queries”. In: 16. International Con-
ference on Cryptology And Network Security (CANS’17). Vol. 11261. LNCS.
Springer, 2017, pp. 71–92. CORE Rank B.

7.1 Introduction

Genomic data holds the key to the understanding of many diseases and medical conditions.
Some genomic variations in individuals in particular might be crucial in the diagnosis of a
disease or a treatment regime. As a first step, a doctor or researcher might want to query
the world’s pool of sequenced genomes for such a variation in order to identify if it has been
encountered and studied before. For this purpose, the Beacon project was established by
the Global Alliance for Genomics & Health1 to evaluate the eagerness of institutions around
the globe to engage in a distributed variant query service. Participating institutions can be
queried for a variation and confirm or deny its existence in their database.

However, this form of collaboration raises privacy concerns about, e.g., the re-identification
risk [SB15]. Thus, it would be highly desirable to secure participants of such a variant
querying service, as well as individuals in their genome databases. Furthermore, it can be
assumed that many small institutions will not be comfortable in joining the Beacon scheme
in its current form, since re-identification risk impacts small databases even more severely.

We address these (genomic) privacy demands by developing a privacy-preserving federated
variant query service – eventually an extending the Beacon project – in which the count of
matches is learned, while hiding which institution contributed to what extent. Optionally,
our solution allows to only release match results if there are more matches than a threshold t.
This can mitigate the re-identification risk when querying for rare mutations.

Here, MPC gives us the powerful ability to run arbitrary computations on sensitive data, while
protecting the privacy of this data. In this work, we use two parties, called proxies, to achieve
high efficiency. We rely on MPC for secure outsourcing of genomic data from arbitrarily many

1http://genomicsandhealth.org/

130

http://genomicsandhealth.org/

7 Privacy-Preserving Whole-Genome Matching

sources to two proxies that enable clients to run private queries on the data. The proxies are
assumed to not collude and therefore learn nothing about the outsourced data or the client’s
query and its response. We focus on the use-case of privately querying a large, aggregated
genome database.

7.1.1 Our Contributions

In this chapter, we provide the following contributions:

We allow private queries to multi-center genome databases. We hide the query, which
elements it accesses, and what elements match the query (Sect. 7.3).

Our protocol allows to privately aggregate data from multiple data sources. Usually this
is prohibited by patient privacy laws, which aim at protecting sensitive medical data. We
retain privacy, while at the same time providing a larger search space that leads to more
expressive query results. Due to the generic nature of our protocol we can perform additional
multi-property queries that add only negligible overhead to the database lookup (Sect. 7.4).

We develop a custom format (Variant Query Format – VQF) for the lossy storage of genomic
variants that also allows similar variants to match. The widely used Variant Call Format
(VCF) can easily be compressed to VQF, providing a bridge to existing genomic variant
databases (Sect. 7.3.2).

We present a prototypical implementation of our protocol in C++ using ABY (cf. Chapt. 3)
and achieve practical runtimes for real-world inputs (Sect. 7.5 and Sect. 7.6).

7.2 Preliminaries

In this section we explain our deployment setting and provide an overview of related work.

7.2.1 Deployment Setting

We depict our setting in Fig. 7.1, which is set in the outsourcing scenario, cf. Sect. 2.4.2.
An arbitrary number of genomic database providers DB(i) act as input parties and privately
outsource their data to two non-colluding proxies P0 and P1, who simply aggregate the
received data as one large dataset. Privacy is achieved by using XOR-based secret sharing,
as described in more detail in Sect. 7.4. DB(i) can extend the database by simply sending
Boolean shares of their entries 〈DB(i)〉B0 and 〈DB(i)〉B1 to the proxies at any time. Updates of
existing entries require sending only the bitwise XOR of the updated entries to one of the
proxies.

A client C who wants to query entries from the aggregated databases sends an XOR-secret-
shared query to both proxies. Privacy-preserving computation is made possible by the protocol

131

7 Privacy-Preserving Whole-Genome Matching

of Goldreich, Micali and Wigderson [GMW87], which enables efficient computation on secret-
shared data. Optionally, we allow results to be t-threshold released, i.e., the client receives a
query response only if more than t database entries overall match the query criteria.

As a special case, our setting can also be used by a client that runs private queries on a single
genomic database held by a server without involving additional parties. For this, the client
runs C and P0, and the server runs DB(1) and P1.

P0

P1

MPC

MPC proxies
Client C ,
querying
databases

DB(1)

DB(2)

· · ·

DB(n)

Independent
database
providers

〈DB(1)〉B0
〈DB(1)〉B1

〈DB(n)〉B0
〈DB(n)〉B1

· · ·

Figure 7.1: Deployment setting overview. The plus sign denotes the federation of genomic
databases and the grey lock symbol marks secret-shared data. The client only
interacts with the MPC proxies, which hold XOR secret-shared copies of the
genetic variant data.

7.2.2 RelatedWork in Genomic Privacy

There exists a long line of work in genomic privacy, starting with [HHT14]. In the subsequent
section we provide an overview of recent work related to our solution. We compare the key
aspects of related work with our proposal in Tab. 7.1.

In [HMM17], count queries on fixed-indexed single-nucleotide polymorphisms (SNPs)
databases are performed. They convert the database into an index tree structure and perform
an encrypted tree traversal using Paillier’s additively homomorphic encryption scheme [Pai99]
and Yao’s garbled circuits [Yao86] for comparison. The queried SNP indices are leaked and
the index tree needs to be built by a single and trusted certified institution that must know
all the data in plaintext (coming from possibly multiple data sources as in our setup).

In the field of privacy-preserving genomic testing many approaches securely calculate the edit
distance (ED) with protected genetic databases. ED is a way of measuring the closeness of
two strings by calculating the minimum number of operations to transform between the two.
Most of the time, the Levensthein distance is meant by ED and it is defined as the minimum
amount of substitutions, insertions and deletions to transmute between the strings. It is

132

7 Privacy-Preserving Whole-Genome Matching

an important measure in genomics to estimate the closeness of two genomes, and it finds
application in similar patient querying (SPQ).

The authors of [AHMA16] implemented a form of secure count and ranked similar patient
queries, running in seconds. However, their setup is quite different from ours since the query
is known in plaintext to each data center, and the output is learned by a central server (CS).
The aggregation/sorting is done on the CS and only individual contributions are hidden from
the CS and querier.

In [JKS08], the authors developed a privacy-preserving ED algorithm leveraging Yao’s garbled
circuits. While their technique calculates the exact edit distance, it is computationally
infeasible on a whole-genome scale. Their implementation takes several minutes to calculate
the ED of just a few hundred-character long strings. [HEKM11] improved those results by up
to a factor of 29.

In the whole-genome context it is often more sensible to only approximate the ED, taking
advantage of the fact that the human genome is mostly preserved (> 99% of genomic
positions) and most variations are simple substitutions. Two important works leveraging
these factors are [WHZ+15] and [AHLR18].

The authors of [WHZ+15] test their distributed query system GENSETS over, 250 simulated
distributed hospitals, each holding 4 000 genome sequences of around 75 million nucleotides
each It took their system 200 minutes to search through one million cancer patients.

In [AHLR18], the authors partition the sequences into smaller blocks and then precompute
the ED within the blocks Since the human genome shows high preservation, this greatly
reduces the number of distinct blocks E.g., for a realistic data set of 10 000 genome snippets
of length about 3 500 from a region of high divergence, after partitioning them into 15-letter
blocks, for each group of blocks they observed at most 40 unique blocks, instead of the
theoretic maximum of 10 000 Still, they could determine the t best matching sequences
against a query sequence with high success.

In [KBS14], an attack by Goodrich [Goo09] on genome matching queries was investi-
gated They developed a detection technique against such inference attacks employing zero-
knowledge proofs to ensure querier honesty.

The authors of [DFT13] developed a novel method for secure genomic testing with size- and
position-hiding private substring matching (SPH-PSM) In their setup, a testing facility holds
a DNA substring (e.g., a marker) and a patient possesses their full genome sequence The
patient sends their homomorphically encrypted genome and public key to the facility, which
computes an accumulator applying their substring The still encrypted accumulator is sent
back to the patient, who decrypts it to learn the binary answer — whether the substring is
included in her genome In the process, the facility doesn’t learn anything and the patient
doesn’t learn the substring or its position in their genome.

The work [ZCD16] presents an innovative and efficient approach to outsourced pattern
matching employing a new outsourced discrete Fourier transform protocol called OFFT. It

133

7 Privacy-Preserving Whole-Genome Matching

solves a similar problem to the aforementioned method [DFT13] and scales logarithmically
in the string to be matched.

In [SLH+17], a genomic cloud storage and query solution is presented VCF data is sym-
metrically encrypted and sent to a cloud storage. Using a custom method based on private
information retrieval (PIR, see also Sect. 2.5), the data owner, or an authorized entity, can
query the cloud storage for a specific variant (utilizing a homomorphically encrypted 0–1–
array mask). This solution cannot be generalized to multiple patients as the querier would
need access to all VCFs’ symmetric keys. A generalization of this work [FES+17] allows
computations that are similar to ours and offers strong security guarantees. However, in this
case, the runtime depends on the size of the response and thus reveals meta information
about the query, which we specifically intend to hide in our work. Padding could solve this
issue, but would increase the runtime drastically.

The protocol [BBD+11, Sect. 4.2] uses Authorized Private Set Intersection [CT10] to allow
for authorized queries of a list of specific SNPs (a SNP profile, e.g., of SNPs relevant for drug
selection and dosage): The querier first submits the SNP profile to a certified institution, which
sends back an authorization. The querier can then use this authorization to query for his
SNP profile in a patient’s genome, learning the matching SNPs. The query is hidden from the
patient/database. The protocol [PC17] extends this idea and uses additively homomorphic
Elliptic Curve-based El-Gamal [Gam85] to calculate a weighted sum over a set of SNPs, where
the weights are authorized by a certified institution.

In conclusion, several solutions have addressed the problem of secure genome queries
(see Tab. 7.1), but most of them work directly on the sequence instead of called variants
and none grant the easy extensibility that our solution provides and at the same time deliver
whole-genome scale protection for all included parties.

7.3 Genetic Variant Queries on Distributed Databases

We consider a federation of databases storing genomic variants in our custom Variant Query
Format (VQF, see Sect. 7.3.2). They jointly offer a privacy-preserving Beacon Service: individual
privacy is guaranteed in the sense that it is not learned which dataset from which data-center
contributed to which extent to the final count. Optionally, privacy can be strengthened by
enforcing a threshold criterion on the query: the actual count will only be returned if it is
larger than a predefined threshold parameter t.

7.3.1 Beacon Network and Potential Extensions

The term Beacon stems from the Beacon Network Project, which is “a global search engine for
genetic mutations”. It was instantiated by the Global Alliance for Genomics & Health to “test
the willingness of international sites to share genetic data”. The joint service answers queries

134

7 Privacy-Preserving Whole-Genome Matching

Table 7.1: Comparison of features and limitations of related work to our solution.

[HMM17] [AHMA16] [JKS08;
HEKM11]

[WHZ+15;
AHLR18]

[DFT13;
ZCD16;
BBD+11;
PC17]

[SLH+17] [FES+17] Our
work

Variants(V)/
Sequences(S)/
Both(*)

S S S S S V * V

Single trusted
party eliminated

✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Query protected ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Top similar
patient query

✗ ✓ n.a. ✓ n.a. ✗ ✗ (✓)2

Whole-genome
scale

✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Easy extensibility ✗ (✓) ✗ ✗ ✗ ✗ ✗ ✓

Output count

count
&

sim
ilar

patients

exact
ED

sim
ilar

patients

substr.m
atch?

(Y/N
)
/

m
atching

SN
Ps
/

w
eighted

average
overSN

Ps

variant
present?

(Y/N
)

count
&

sum
3

(thresh.)
count/m

atches 4

2not implemented
3optionally with differential privacy
4for an arbitrary (aggregation) function f

of the form “Do you have any genomes with an ‘A’ at position 100 735 on chromosome 3?”
and participants each give a simple Yes/No answer.

Privacy Concerns It has been shown in [SB15] that in its original form, Beacon queries are
susceptible to re-identification attacks. The authors showed that with 5 000 queries, a person
can be re-identified from a Beacon holding 1 000 genomes. Our proposed framework lowers
this risk twofold: Firstly, the querier doesn’t learn immediately which database contributes to
the count. Only in a follow-up consultation can the databases and querier reveal a match
should they mutually agree to do so. And secondly, because of an optional t-threshold check
in the final step, it is harder for the querier to craft individual-identifying queries. While
recent changes to the project’s architecture address some privacy concerns by access-control
checks5, those solutions cannot withstand a malicious man-in-the-middle or potential exploits

5https://www.elixir-europe.org/services/compute/aai

135

https://www.elixir-europe.org/services/compute/aai

7 Privacy-Preserving Whole-Genome Matching

of access-control vulnerabilities. That is, the project doesn’t offer privacy by design since
queries are sent in clear to the beacons and the central web-interface, which also learns all
beacons’ answers during aggregation of the results.

7.3.2 Genomic Variant Representation Format

We developed a machine-friendly and simple format for storing and comparing genetic
variants in the context of variant querying that also makes it possible for similar variations to
match. We call this new format Variant Query Format (VQF). It captures the core features of
the commonly used Variant Call Format (VCF) [DAA+11], while abstracting from specifics
that are unlikely to match across individual genomes. The VQF incorporates domain-specific
knowledge, which makes it very compact and allows us to achieve small sizes and high
performance.

The VQF stores a fixed-size dictionary with ψ = 16 bit variations at φ = 32 bit addresses,
aligned to a known reference genome. A more detailed explanation of the VQF and its
encoding is provided in our paper [DHSS17].

7.3.3 Queries

The queries that we support are of the form

SELECT f(*) FROM Variants

WHERE ((locus1, var1), ..., (locusm, varm)) IN Genome

AND cancertype = X AND ... AND agemin ≤ age ≤ agemax ...

when expressed in SQL for illustration purposes. Here, m is the number of variant equalities
to check, while the remaining auxiliary queries can be more versatile and include ranges,
besides equalities. f(*) is an optional aggregation or threshold function. For most of our
benchmarks, we choose m= 5.

There are typically two ways to analyze a person’s genetic variation. The first option is to
store the full genetic variation, which leads to around N = 3 million entries. The second, and
more viable option is to only process a person’s exome, consisting of N = 100 000 variations,
which contain the most relevant regions for research and disease testing. In our database
model, a person’s full genetic variation is mapped to N entries of size φ+ψ = 48 bit. Besides
this information on genetic variation, the databases can also hold auxiliary data like sex,
age, weight and health data like blood pressure or disease indicators. For those fields, our
protocol allows for range or threshold conditions in the queries, where desired.

The querier specifies the values for the highlighted parts of the query. These values are
secret-shared and remain private, such that the proxies do not learn them. The structure
of f cannot be chosen by the querier and is fixed a priori. However, since we use the ABY
framework, cf. Chapt. 3, the function f can generally be an arbitrary (aggregation) function

136

7 Privacy-Preserving Whole-Genome Matching

on the bit string of matching genomes, like the identity (simple output of matches) or the
count (Hamming weight).

Technically, any query prompts the two proxies to generate a secret-shared bit string repre-
senting the matching genomes. As can later be seen in Sect. 7.6.1, this task causes the bulk
computation and communication cost. Next, the proxies apply function f to this bit string
and output it to the querier (or any other predefined party).

Query Scenario For our experiments, we choose a scenario in which the querier receives
the count of matches, together with a random query ID. Each database with at least one match
receives the corresponding sub-bit mask of the genomes only in their own database together
with the same query ID. This way, the database doesn’t learn the query which matched their
genomes but can contact the querier for a follow-up discussion of the matched patients.

Optionally, we can substitute the simple count by a t-threshold count, which returns the
count only if it is larger than t. This would mitigate the re-identification risk as presented
in [SB15]. However, since Beacon queries are often used to query for rare mutations, this
extension brings its own problems. Our solution can easily realize both options and due to
the generic nature of MPC it can also be adapted for additional requirements.

7.4 Our Protocol for Private Genome Variant Queries

Our protocol ensures the privacy of both, the query to a genomic database and its response.
At the same time, the entire database is hidden from the two proxies. This matches closely the
cloud computing paradigm where computation and data storage is outsourced to a powerful
set of machines that are maintained by an external party. In Fig. 7.1 on page 132, we depict
our setting where multiple databases DB(1), . . . ,DB(n) outsource their data to two proxies P0
and P1 that run the MPC protocol and are assumed to not collude. A client C queries the
combined data from all databases for the counts of entries that a) match the query criteria
and optionally b) fulfill a pre-defined t-threshold level.

We achieve privacy by using XOR-based secret sharing between the MPC parties, as used in
Boolean sharing in the GMW protocol, described in Sect. 2.4.4. More precisely, for every
plaintext bit p, we choose a random masking bit r. We send r to P0 and s = p⊕ r to P1. The
values r and s are called shares of the plaintext value p. For bit strings of length ℓ we apply
this technique ℓ times in parallel. To further improve communication, we could send to P0 a
single seed for a pseudo-random generator instead of the values r.

We use the protocol of Goldreich, Micali and Wigderson (GMW) [GMW87] to privately
evaluate a Boolean circuit that corresponds to our functionality, i.e., querying a genome
database. GMW operates directly on XOR-secret-shared values. We use the GMW protocol in
the offline/online computation model, i.e., an offline phase that is preprocessed at any time
before the actual private inputs are known. The data from the offline phase is then used in
the efficient online phase to compute the function on the private data.

137

7 Privacy-Preserving Whole-Genome Matching

7.4.1 Protocol Description

In this section, we describe the phases of our overall protocol and depict it graphically
in Fig. 7.2. Optionally, before the protocol, the database providers and proxies agree on
a privacy threshold t that defines the minimum amount of matching records that a query
response must contain. If a query matches ≤ t records, the query response will be the empty
set ;, i.e., the same as if no record matched the query.

Protocol Phase Overview

DBs MPC Proxies Client

0) Precompute
Offline Phase

1) DB

2) Query

3) MPC
Online Phase

4a) Bit Mask 4b) Match Count

Figure 7.2: Protocol phases. Note that all communication with the MPC proxies happens
secret-shared, such that the proxies never gain access to any plaintext.

Phase 0) MPC Offline Phase At any point before the MPC online phase in step 3, P0 and
P1 precompute the MPC offline phase, which is independent of the actual inputs from other
parties.

Phase 1) Database Outsourcing Each database provider DBi is assumed to hold their data
in the VQF format (see Sect. 7.3.2). The provider then generates a random mask of the size
of its database and sends the random mask to proxy P0 and the XOR of the mask and its
database to P1. The proxies concatenate the shares they receive from all database providers
and keep track of the mapping of shares to DB providers. Note that this phase needs to be
performed only once. The secret-shared database can be queried multiple times. Databases
need only send new entries or updates to existing entries if they have changed.

Phase 2) Client Query Client C secret-shares its query between P0 and P1 and sends in
plain text the type of auxiliary queries it wants to run. Note that we only reveal the operation
of the auxiliary queries and not the values that are compared with the datasets. As described
in Sect. 7.5.2 Private Function Evaluation (PFE) could be used to also hide the query structure
at extra cost.

138

7 Privacy-Preserving Whole-Genome Matching

Phase 3) MPC Online Phase The proxies P0 and P1 run the MPC protocol on the databases
and the query they received. Due to memory constraints, the client query is run on a single
patient dataset, consisting of up to 3 million variants at a time. Multiple patients’ datasets can
be evaluated in separate MPC instances, which can be run sequentially or in parallel. Given
enough hardware, this step can be ideally parallelized. The individual outcomes (match / no
match) are stored in a bit mask, still secret-shared and thus unknown to the proxies.

In our scenario, after the query was run against all patients’ datasets, the resulting bit mask
is processed by a final circuit that counts the number of matches, i.e., the Hamming weight,
optionally compared to a threshold.

Phase4)OutputReconstruction Both proxies P0 and P1 hold the output of the computation
in secret-shared form and send their output shares to C , who computes the XOR and thereby
receives the plaintext output. If the optional threshold t privacy is enforced, C will only
receive the count if there are more than t matches. Each database also receives the two
shares of its sub-bit mask of matches, together with a random query ID for potential follow-up.
Reconstruction will reveal the matching genomes, if any, or an all-zero bit string otherwise.

7.4.2 Security Considerations

We discuss the security of our scheme and the attacker model in this section.

The goal of our protocol is to ensure the privacy of the queries clients send to the service, as
well as the corresponding responses they receive. At the same time, our protocol ensures the
privacy of the genomic databases that outsource their data to our service. We achieve these
properties by directly relying on the proven security of the GMW protocol [GMW87; Gol04],
which allows to privately evaluate any computable function that is represented as a Boolean
circuit. GMW uses XOR-based secret sharing as underlying primitive, which protects private
values. In its original form secret sharing offers information-theoretic security since plaintexts
are masked with randomness of the same length. The security of outsourcing the computation
from multiple parties to two computational proxies was shown in [KMR11]. We use a PRG
to expand a short seed to the length of the plaintext, thus reducing information-theoretic
security to computational security of the PRG. In our implementation we rely on AES as
PRG.

We make the assumption that adversaries behave semi-honestly and corrupt at most one
of the two proxies at the same time. The latter corresponds to a non-collusion assumption
between the two proxies. Given the semi-honest non-collusion assumptions we can proof
that our protocol is secure, since the transcript of every party can be simulated given their
respective inputs and outputs. We consider the following cases of semi-honest corrupt parties,
malicious clients or external adversaries:

139

7 Privacy-Preserving Whole-Genome Matching

Corrupt Semi-Honest Client /Corrupt Database A corrupt client or corrupt database with
input query Q and response R can be simulated by a simulator playing the role of the two
proxies, running the GMW protocol. This implies that a corrupt client or database learns no
additional information from the protocol execution.

Corrupt Semi-Honest Proxy For a set of databases and a single client query each separate
proxy’s view consists of a share of the client’s query and a share of each database. In all
cases XOR secret sharing is used, which makes the corresponding strings appear uniformly
distributed and leaks no information about the content. Each proxy’s view also contains the
other proxy’s inputs for the GMW protocol. These are proven not to leak information about
private inputs in [Gol04].

Malicious Clients Since the proxies and the client interactively agree on the query structure
beforehand, a malicious client can only influence values within the boundaries of the query,
i.e., the client can only send an input bit string of the pre-defined length. Malicious clients
can send bogus queries with the correct length, which will be processed by the proxies. This
leads to corrupt outputs that leak no more information than valid queries. The number of
queries a client can send can be controlled by using rate-limiting.

External Adversaries Data in transit is protected from external adversaries by using state-
of-the-art secure channels, e.g., TLS, to ensure confidentiality, integrity and authenticity
between all communicating parties.

7.5 Implementation

In this section, we describe our implementation decisions and the software design of our
application, as well as its limitations. We implemented our protocols within ABY, cf. Chapt. 3.
More specifically, we rely on the included Boolean sharing, which is an implementation of
the GMW protocol Sect. 2.4.4, based on XOR secret sharing and thus is well-suited for our
outsourcing scenario.

7.5.1 Boolean Circuit Design

The GMW protocol operates on Boolean circuits. Our protocol contains two circuit designs that
we optimized for a low multiplicative depth in order to minimize the number of communication
rounds between the proxies. The biggest circuit is the query circuit that checks if a user query
matches the genome of a patient. It consists of an equality gate that compares every patient
variant with a query variant. On the circuit level, this is done in parallel on a person’s entire
variants and all query variants. From this we get 1 bit per patient variant, which is fed into
an OR tree that returns 1 if at any position the query matched with a patient’s variant. For
all query variants the results from the OR trees are fed into an AND tree that returns 1 if all
query variants are in the patient’s variants. These gate trees are the reason for the circuit

140

7 Privacy-Preserving Whole-Genome Matching

depth logarithmic in the number of compared variants. The circuit also checks for auxiliary
patient properties, which are implemented as single equality or comparison gates.

The circuit’s output is a single bit that indicates if all query variants are in the person’s variant
dataset and if all auxiliary queries matched. The circuit output for each patient record is
stored (still secret-shared). As soon as all patient queries have been run, the previously stored
result shares are fed into a smaller (threshold-)counting circuit, that optionally checks that
the count is larger than the threshold t. It consists of a Hamming weight circuit that counts
the number of 1-bits, and a comparison gate that controls if a multiplexer gate outputs the
string of matches or an all-zero bitstring. Its output is a bit string with one bit per patient.
Bits are set to one at the indices where the query matched. If it contains more than t ones, it
is output, otherwise an all-zero bit string is output, in case threshold t counting is applied.
For N variants, query length Q, A auxilliary queries with bit length ℓ, and entries of length
φ +ψ bit, our circuit depth is max

�

⌈log2(φ +ψ)⌉+ ⌈log2 N⌉, ⌈log2 ℓ⌉
�

+ 1+ ⌈log2 A⌉, while
there are in total Q · N · (φ +ψ) + (Q+ A) · (3ℓ− log2(ℓ)− 1) AND gates.

7.5.2 Limitations of our Approach

While we only ran queries where all conditions must be met, i.e., all conditions are connected
with AND (∧) expressions, the ABY framework would easily allow for more complex or nested
queries, such as A∨

�

(B ∧ C)∨ D
�

. The performance impact would be minimal and would
only depend on the size of the formula. PFE built from Universal circuits [Val76; KS08a;
KS16; LMS16; GKS17] could be used to also hide the structure of the formula at extra cost.

The translation of variants into 16 bit strings (see Sect. 7.3.2) certainly is a limitation and
cannot reflect the full spectrum of possible variations. However, as elaborated before, we
used this compression as a way to match similar variations while only using strict equality
queries.

7.6 Benchmarks

In this section we provide benchmark results of our implementation. We performed runtime
benchmarks of our MPC implementation on two identical desktop computers with 16 GiB
RAM and a 3.6 GHz Intel Core i7-4790 CPU, connected via a local 1 Gbps network. For
all measurements we instantiate the parameters to achieve a symmetric security level of
κ = 128 bits. All results are averaged over 25 iterations. The provided communication
numbers are the sum of sent and received data of one MPC proxy. In the following section
we use the term offline phase to refer to step 0) from Fig. 7.2, while online phase refers
to step 3). We did not measure the time for steps 1), 2), and 4), i.e., the conversion and
transmission of databases and query/response, as these are simple and efficient plaintext
operations and data transmissions over a TLS connection that scale linearly with the size and
available bandwidth.

141

7 Privacy-Preserving Whole-Genome Matching

7.6.1 Variant Query Performance

In this section we measure the performance of running a query with a certain length against a
person’s dataset with a given number of variants. As default parameters we use N = 100 000
variants, query length = 5, and φ +ψ= 48 bit, which corresponds to a query on a person’s
exome. This data point is marked with a gray circle in each figure on page 143. In Fig. 7.3 we
show the runtimes of the offline and the online phase for varying number of patient variants
with queries of length 5. In Fig. 7.4 we fix the number of a patient’s variants to N = 100 000
entries and show how the runtimes scale for varying query length. Fig. 7.5 shows how a
varying entry bitlen (φ +ψ) influences the protocol runtimes. We provide the corresponding
detailed numbers in Tables 7.2, 7.3, and 7.4.

In all cases the offline and online runtime and circuit size (number of AND gates) increase
linearly with the database size, query length, and entry bitlength. The circuit depth, i.e., the
number of communication rounds between the two proxies, scales only with the logarithm of
the input sizes.

Regarding the auxiliary queries, we fixed five different equality and range queries, which
didn’t have any noticeable performance impact. They are thus omitted in the following
discussions.

For querying a patient’s exome variants (N = 100 000), assuming a query of length 5 and our
proposed entry format with key length φ = 32 bit, and value length ψ= 16 bit, we achieve
an offline runtime of 3.4 s and an online runtime of 178 ms. In this case we need to transfer
733 MiB in the offline phase and the online phase requires 28 communication rounds with
a total transmission of 11 MiB. The circuit for these parameters consists of 24 million AND
gates. Using the same parameters to query a patient’s full genome (N = 3 000 000) requires
an offline and online runtime of 99.5 s and 4.6 s, respectively.

Our performance is comparable to the single-variant query in [SLH+17], which takes 2.4 –
4.3 s online runtime for 5 million variants. However, their query is not extensible and can only
answer whether a single variant is present, without the option for further privacy-preserving
aggregation.

7.6.2 Count Performance

The circuit (f in Sect. 7.3.3) that determines the total number of matches and compares this
to the privacy threshold t is very small. We are computing the Hamming weight using a
Boyar-Peralta counter [BP06] with logarithmic depth. For processing the results of 100 000
patient records, the t-threshold count circuit consists of 100 040 AND gates and has a depth
of 22. It requires 75 ms (55 ms) runtime and 439 KiB (2 124 KiB) communication in the online
(offline) phase. Communication, runtime, and circuit size scale linearly with the input size,
while circuit depth grows logarithmically. Since these numbers are negligible for the total
runtime, we omit a more detailed analysis at this point.

142

7 Privacy-Preserving Whole-Genome Matching

102 103 104 105 106
100

101

102

103

104

105

Number of Variants

R
un

ti
m

e
[m

s]

Offline Phase Runtime

102 103 104 105 106
100

101

102

103

104

105

Number of Variants

Online Phase Runtime

Figure 7.3: Offline and online runtime in ms for varying number of variants per patient
and fixed key length φ = 32 bit, value length ψ = 16 bit, and a query with 5
components.

1 2 5 25 125
100

101

102

103

104

105

Query length

R
un

ti
m

e
[m

s]

Offline Phase Runtime

1 2 5 25 125
100

101

102

103

104

105

Query length

Online Phase Runtime

Figure 7.4: Offline and online runtime in ms for varying query length and fixed key length
φ = 32 bit, value length ψ= 16 bit, and variant count of N = 100 000 entries.

24 32 48 64 96 128
100

101

102

103

104

105

Bit Length φ +ψ

R
un

ti
m

e
[m

s]

Offline Phase Runtime

24 32 48 64 96 128
100

101

102

103

104

105

Bit Length φ +ψ

Online Phase Runtime

Figure 7.5: Offline and online runtime in ms for varying total element size φ +ψ at a fixed
variant count of N = 100000 entries and query length of 5.

143

7 Privacy-Preserving Whole-Genome Matching

Table 7.2: Benchmark results and circuit properties for varying variant count at fixed key
length φ = 32 bit, value length ψ= 16 bit, and query length 5.

Variants Query φ +ψ #AND Circuit Offline Phase Online Phase
N Length [bit] Gates Depth [ms] [MiB] [ms] [MiB]

100 5 48 2.4 · 104 18 9 1 2.4 0
1 000 5 48 2.4 · 105 21 38 7 4.5 0

10000 5 48 2.4 · 106 25 335 73 20.2 1
100000 5 48 2.4 · 107 28 3 420 733 177.9 11

1000 000 5 48 2.4 · 108 31 34 297 7325 1756.2 114
3000 000 5 48 7.2 · 108 33 99 507 21975 4567.7 343

Table 7.3: Benchmark results and circuit properties for varying query length at fixed key
length φ = 32 bit, value length ψ= 16 bit, and variant count N = 100 000.

Variants Query φ +ψ #AND Circuit Offline Phase Online Phase
N Length [bit] Gates Depth [ms] [MiB] [ms] [MiB]

100000 1 48 4.8 · 106 27 669 146 83.2 2
100000 2 48 9.6 · 106 27 1 327 293 111.5 5
100000 5 48 2.4 · 107 28 3 420 733 177.9 11
100 000 25 48 1.2 · 108 29 16 629 3662 687.5 57
100000 125 48 6.0 · 108 32 83 141 18312 3096.9 286

Table 7.4: Benchmark results and circuit properties for varying total element size φ +ψ at
fixed query length of 5 and variant count N = 100000.

Variants Query φ +ψ #AND Circuit Offline Phase Online Phase
N Length [bit] Gates Depth [ms] [MiB] [ms] [MiB]

100 000 5 24 1.2 · 107 27 1 662 366 133.2 6
100 000 5 32 1.6 · 107 27 2 241 488 147.9 8
100 000 5 48 2.4 · 107 28 3 420 733 177.9 11
100 000 5 64 3.2 · 107 28 4 409 977 205.6 15
100 000 5 96 4.8 · 107 29 6 640 1465 269.6 23
100 000 5 128 6.4 · 107 29 8 860 1 953 321.3 31

144

7 Privacy-Preserving Whole-Genome Matching

7.6.3 Conclusions from the Benchmarks

We consider our solution practical for typical private genome queries. While the computation
of responses for databases with thousands of patients still do not answer instantaneously, we
can run these private queries over night or increase throughput by running them in parallel
on dedicated hardware and faster networks. As we can see from our performance evaluation,
both runtime and communication complexity scale linearly with the input size. Our circuit
constructions are optimized for use with the GMW protocol and their depth grows only
logarithmically with increasing input size. Network traffic and memory requirements are
well within the limits of modern hardware.

The generation of the bit string representing the matching genomes takes the bulk com-
putation and communication cost, while the cost for evaluating the auxiliary conditions,
aggregation, and threshold comparison is negligible. Therefore, possibly complex and versa-
tile post-processing functions can be applied to the matches thanks to the use of generic MPC
techniques. This ability sets our system apart from related works in this field.

7.7 Conclusion

In this chapter we have presented a new, privacy-preserving protocol to allow multi-center
variant queries on genomic databases. The achieved performance renders this approach
applicable in real-world scenarios with some dozens of centers. Full genome studies are
supported based on the state-of-the-art VCF format. Our approach leverages the custom VQF,
which can be built from existing VCF data. Variants must be called against a pre-defined
reference genome, global for federated data analysis platform. An interesting and demanding
research question immediately arises: how would one use our (and many previously devel-
oped) genomic privacy techniques on genomic data while facing the problem of different
reference genomes? The simple answer is to regenerate the genomic data against the new
reference genome via the same pipeline. But this approach might not always be feasible or
possible, if the pipeline is not fully automated or recorded. Note that this applies to almost
all previous work where genomic data from different patients is compared, as is the case in
the Beacon project. This “transcription” to other reference genomes is beyond the scope of
the present work but will be addressed in the future.

Another open problem is how to effectively mitigate the re-identification risk as presented
in [SB15], while still handling queries of rare mutations in a sensible way. We described
two query types which our framework supports: a regular count, which is susceptible to the
aforementioned re-identification risk, even though to a lesser extent, since the querier doesn’t
learn in which databases the matches occurred, and a threshold-t-count, which only outputs
the count if it is larger than t. While the latter method provides more privacy, it may render
the system unusable for very rare mutations.

145

Part III

Private Information Retrieval
and Applications

146

8 Improving Multi-Server PIR for
Anonymous Communication

Results published in:

[DHS14] D. DEMMLER, A. HERZBERG, T. SCHNEIDER. “RAID-PIR: Practical Multi-
Server PIR”. In: 6. ACM Cloud Computing Security Workshop (CCSW’14).
Code: https://encrypto.de/code/RAID-PIR. ACM, 2014, pp. 45–56.

[DHS17] D. DEMMLER, M. HOLZ, T. SCHNEIDER. “OnionPIR: Effective Protection of
Sensitive Metadata in Online Communication Networks”. In: 15. Inter-
national Conference on Applied Cryptography and Network Security (ACNS’17).
Vol. 10355. LNCS. Code: https://encrypto.de/code/onionPIR. Springer,
2017, pp. 599–619. CORE Rank B.

8.1 Introduction

Nowadays, the need for confidential communication and privately retrieving data from the
Internet is bigger than ever. Data can be encrypted during transport, thus preventing a man-
in-the-middle attacker from getting access to the data. However, a content provider needs to
know what files a user requested, in order to deliver the content, and even if the contents
are encrypted, large amounts of metadata are collected. Therefore, the user must trust the
content provider to keep his request safe and to be protected against attacks. This trust
cannot easily be established, especially since today many websites are not directly hosted by
the content provider, but instead located in a CDN or on machines in the cloud. Furthermore,
even if content providers are trustworthy, they can be forced, e.g., by government agencies,
to reveal information about user queries.

It has been shown that there is a large demand for communication systems that protect
the anonymity of their users and that do not leak metadata [Lan15; MMM16]. This is of
special importance, e.g., for people in suppressive regimes, for whom trying to interact with
government-critical organizations can be a tremendous risk.

A solution to these problems is Private Information Retrieval (PIR), which allows to protect
the privacy of the users’ queries and their metadata. While PIR schemes with a single server
exist, today’s most efficient PIR schemes use multiple servers with the assumption that not all

147

https://encrypto.de/code/RAID-PIR
https://encrypto.de/code/onionPIR

8 Improving Multi-Server PIR for Anonymous Communication

of them collude. Multi-server PIR is particularly suited to distribute trust between multiple
parties, as these could be run on different machines operated by different cloud providers,
different administrators and/or in different regions or jurisdictions. Our schemes further
improve the efficiency of known multi-server PIR protocol.

8.1.1 Outline and Contributions

After introducing our preliminaries in Sect. 8.2, we present our main contribution in Sect. 8.3:
We present RAID-PIR, a family of multi-server PIR schemes that improve upon and generalize
Chor et al.’s linear summation PIR protocol [CGKS95] and have several desirable properties.
We use the name RAID-PIR, since our work shares ideas with RAID storage systems. Redundant
Array of Inexpensive Disks (RAID), introduced in [PGK88], is a method to virtualize data
storage that combines multiple disks into one logical unit. Our multi-server PIR scheme has
similar properties to RAID systems: the data is distributed to multiple servers (comparable to
disks in a RAID) for better performance, where each server stores only parts of the database.
The data from the different servers is combined in a simple, efficient operation. The use
of multi-server PIR implies that the entire system is trustworthy, even if some but not all
of the servers are corrupted. RAID-PIR has a balanced workload amongst all participating
servers, reduces the communication complexity, and uses only highly efficient cryptographic
primitives, namely a Pseudo-Random Generator (PRG). RAID-PIR has several parameters
that allow adaption to the specific deployment scenario and trust assumptions: the number
of available servers and the maximum number of servers that can collude. In RAID-PIR,
we reduce the storage requirements for the servers as each server is comparable to a disk
in a striped RAID that stores only a part of the database and computes only a part of the
answer to a user’s query. The user can even query multiple blocks of data in parallel for higher
efficiency. Communication and computation requirements are reduced – in particular the
upstream communication from the client to the servers. A detailed analysis of the properties
of our schemes is given in Sect. 8.4. We provide a publicly available open-source Python
implementation on GitHub1 that we describe in Sect. 8.5, and perform extensive performance
benchmarks and evaluation of our PIR schemes in Sect. 8.6.

Our PIR schemes can be implemented with low memory for the client. This makes them
well-suited for resource-limited devices, such as web browsers, smartphones, embedded
systems, or smartcards. For this, we instantiate the PRG with the AES block cipher in counter
mode and iteratively compute the queries. In Sect. 8.7, we discuss several deployment
aspects, including preserving privacy when reading multiple blocks concurrently, identifying
the necessary blocks for a given query/file, and ensuring object integrity and availability in
spite of server failures. Our approach of building such features on top of RAID-PIR allows
us to maintain a very simple and extremely efficient PIR design, while providing practical
solutions to failures, which other designs solve by non-trivial extensions and modifications to
the PIR scheme, e.g., [DGH12; OG11; Gol07].

1https://encrypto/code/RAID-PIR

148

https://encrypto/code/RAID-PIR

8 Improving Multi-Server PIR for Anonymous Communication

In Sect. 8.8 we propose an anonymous communication system called OnionPIR that builds
on PIR to privately distribute keys.

8.2 Preliminaries

In this section we explain our deployment scenario and introduce the used notations. More
detailed background informaton on PIR is provided in Sect. 2.5.

8.2.1 Notation

The public database is denoted as DB. We denote the content provider as CP, the k PIR servers
as Si, with 1 ≤ i ≤ k, and the client as C. DB consists of B blocks of size b bits each. The
block at position j is denoted as block j. We partition the B blocks into k so-called chunks,
each containing ⌈B/k⌉ blocks of the database.

The protocol makes operations over vectors of size B; in particular, for c ∈ [1, B], the (B-bits)
elementary vector ec has a single bit set to one at position c, and all other bits are set to zero.
For a given B-bit vector α, the notation α[i] refers to the i-th chunk of α, i.e., the ⌈B/k⌉ bits
beginning with (i − 1) · ⌈B/k⌉, as described in Sect. 8.3.1.

From Sect. 8.3.2 on, our PIR schemes also use a redundancy parameter r, with 2≤ r ≤ k,
such that the scheme is secure as long as the number of colluding servers is less than r.

Finally, in Sect. 8.3.3, we improve the performance using a pseudo-random generator PRG,
with symmetric security parameter κ. For simplicity, we use PRG(s, i) to denote the ith ‘block’
of ⌈B/k⌉ bits output by PRG for seed s ∈ {0,1}κ.

8.2.2 Deployment Scenario for RAID-PIR

A content provider CP holds a database DB and distributes it to k PIR servers Si with 1≤ i ≤ k.
This is common practice for distributing data over the Internet in a large scale for the purpose
of load balancing and scalability. The direct communication between clients and CP should
be kept to a minimum. A client C wants to retrieve data from CP and gets forwarded to
several servers that deliver the requested data to him. The PIR protocols we consider here,
are single-round protocols where C sends a query qi to server Si from whom he receives the
answer ai . An example setting with k = 3 servers is depicted in Fig. 8.1.

The properties that a PIR scheme must satisfy are that the client C can correctly recover his
desired data (correctness), but neither the content provider CP nor any combination of less
than r servers Si learns anything about the data the client is interested in from the client’s
queries or their corresponding responses (security).

149

8 Improving Multi-Server PIR for Anonymous Communication

CP

S1 S2 S3

C

q1

q2
q3a1

a2

a3

Manifest
File

Figure 8.1: Example PIR setting with k = 3 PIR servers S1,S2,S3. qi denotes a query to, ai
denotes a response from Si. Dashed lines represent communication in the PIR
setup phase (see Sect. 8.2.3).

8.2.3 PIR System Phases

RAID-PIR has two phases, a setup phase run between the content provider and the servers,
and a PIR phase run between the client and the servers as described next.

Setup Phase The content provider CP sets up the database DB of his files by partitioning
all available data into B blocks of size b. For this, CP creates a manifest file that maps every
file to one or multiple blocks, optionally using the method described in Sect. 8.3.6. Every
block has a unique index and its content can optionally be hashed with a secure hash function
in order to guarantee its integrity and thereby allowing to identify malicious servers. The
manifest file is static and identical for all clients and servers. The partitioning is done in a
compact way, such that files can start in the middle of a block, wasting no storage space.
The files to be distributed and the manifest file are sent to all PIR servers. The PIR servers
can individually apply precomputation, as explained in Sect. 8.3.5. The client C requests the
manifest file either the content provider directly or from some delegated content povider,
that could also be a PIR server.

PIR Phase With the manifest, C determines what data is available and for creating queries
to the servers. With the manifest file, C identifies the desired blocks and runs the PIR protocol
with the servers (cf. Sect. 8.3), which consists of sending a message to and receiving a
response from each PIR server. All received responses are combined with an XOR operation
in our scheme to reconstruct the plaintext block(s).

8.3 RAID-PIR

In this section, we present RAID-PIR and the optimizations that we introduce in order improve
the efficiency of Chor et al.’s protocol [CGKS95]. First, we introduce the protocol changes
and notation in Sect. 8.3.1. We then show how to reduce the server storage and workload

150

8 Improving Multi-Server PIR for Anonymous Communication

in Sect. 8.3.2. In Sect. 8.3.3, we improve the query size and in Sect. 8.3.4 we allow to request
multiple blocks in a single query. We speed up the generation of the PIR responses at the
server-side by using precomputations as shown in Sect. 8.3.5, while the final optimzation
in Sect. 8.3.6 achieves a significant speedup when querying multiple blocks in parallel by
using a database layout where blocks are uniformly distributed.

8.3.1 Protocol Overview

Our work is based on Chor et al.’s linear summation PIR for multiple servers [CGKS95],
which we denote as CGKS in the following. A detailed description of CGKS can be found
in Sect. 2.5.2. Following earlier work, e.g., [Cap13], we query blocks of data instead of single
bits to improve efficiency. The overall goal is to allow privacy-preserving retrieval of data and
outsourcing of workload from CP to the PIR servers Si . After introducing a slightly modified
variant of the original CGKS scheme, we present our improved PIR schemes.

Initialization of RAID-PIR

Before clients can privately retrieve data, the content provider CP has to setup the database DB
of his files and distribute it to the PIR servers. This is realized by partitioning all available
data into B blocks of size b bits and sending them to the PIR servers. The mapping of actual
files to blocks is discussed in Sect. 8.7.2.

A Variant of CGKS [CGKS95]

In the following, we describe a slightly modified variant of the original CGKS scheme that has
the same properties in terms of complexity, but with the structure of our improved protocols
presented in the following sections. For completeness, we provide a description of the original
CGKS protocol in Sect. 2.5.2.

As in [CGKS95], client C is interested in privately querying blockc at index c and represents
this plaintext query as the elementary vector ec (i.e., a vector of B bits where the c-th bit
is set to one and all other bits are zero). The queries received by each PIR server appear
random; only the XOR of all queries equals to the plaintext query ec. However, differently
from [CGKS95], in our variant all servers and queries are ‘symmetrical’, as follows.

As shown in Fig. 8.2, we partition each query into k so-called chunks, where k is the number
of servers. A chunk in a query, i.e., a column in Fig. 8.2, corresponds to ⌈B/k⌉ adjacent blocks
in the DB and thus contains ⌈B/k⌉ bits. The query sent to Si contains random bits rndi[x]
for all the chunks x ̸= i. Chunk i is denoted flipi, and is computed to cancel out all other
(randomly chosen) chunks rnd j[i] sent to other servers j ∈ {1, . . . , k}\ i, leaving exactly ec[i],
i.e.,

flipi ← ec[i]⊕
⨁︂

j∈{1,...,k}\i
rnd j[i],

where ec[i] is the i-th chunk of elementary vector ec .

151

8 Improving Multi-Server PIR for Anonymous Communication

flip1 rnd1[2] rnd1[3] rnd1[4]

flip2 rnd2[3] rnd2[4]rnd2[1]

flip3 rnd3[4]rnd3[1] rnd3[2]

flip4rnd4[1] rnd4[2] rnd4[3]

00100 00000 00000 00000

q1

q2

q3

q4
⊕

e3 =
k
=

4
qu

er
ie

s

Figure 8.2: CGKS: The queries qi sent by the client to servers Si and their XOR. In this
example we use k = 4 servers and B = 20 blocks. The block that the client is
interested in has index 3, as e3 the third bit set to 1.

Each request qi that C sends to server Si for i ∈ {1, . . . , k} contains one flip chunk and k− 1
randomly chosen rnd chunks, and hence has a total length of B bits, as in the original CGKS
scheme. The idea of distributing the flip chunks to multiple queries can be seen as analogous
to RAID-5 (Rotating Parity), where parity information is distributed over all disks (see our
paper [DHS14] for a background on RAID levels).

As in [CGKS95], the servers’ responses have a length of b bits each, and are the XOR of all
blocks that the user requested in his query, i.e., if the bit at index j was set in the client’s
query, the server XORs block j into his response. When the client has received the replies
from all k servers he calculates the XOR of all responses and gets blockc , as all other blocks
are contained an even number of times and cancel out due to the XOR.

8.3.2 Redundancy Parameter r

As our first optimization of Chor et al.’s protocol we introduce the redundancy parameter r
with 2 ≤ r ≤ k, which sets the minimum number of servers that need to collude in order
to recover the block that is queried. In our protocol, depicted in Fig. 8.3, the redundancy
parameter specifies the number of chunks in each query and how often the chunks overlap
throughout all queries, thus setting the storage requirements of the servers and the security of
our scheme. Each of the k servers stores only (r/k) · B blocks of the DB, and each query now
consists of r chunks, with a length of ⌈B/k⌉ bits each. A small r parameter allows to reduce
the percentage of the DB each server has to store and the length of each query to a fraction
of r/k, but also reduces the protection against colluding servers. Hence, the redundancy
parameter r allows a trade-off between storage/communication and security and can be
chosen in accordance with the deployment scenario and trust assumptions. For r = k we
obtain exactly the variant of the original CGKS scheme described in Sect. 8.3.1; for better
performance, we can use more servers (with a fixed r).

Our idea stems from the striping technique used in RAID systems, where data is distributed
over multiple disks in order to improve efficiency. However, to achieve security we have to
also rely on mirroring, in order to protect against colluding servers. Our partially overlapping
structure of chunks is comparable to a hybrid of RAID-0 (Striping) and RAID-1 (Mirroring).

152

8 Improving Multi-Server PIR for Anonymous Communication

Such a hybrid RAID construction allows to trade-off protection against data loss in case of a
disk failure and performance. An example of the partitioning into chunks and the use of the
redundancy parameter r is depicted in Fig. 8.3.

flip1 rnd1[2] rnd1[3]

flip2 rnd2[3] rnd2[4]

flip3 rnd3[4]rnd3[1]

flip4rnd4[1] rnd4[2]

00100 00000 00000 00000

q1

q2

q3

q4
⊕

e3 =

r = 3 chunks

r
=

3
ch

un
ks

k
=

4
qu

er
ie

s

Figure 8.3: PIR with Redundancy Parameter r: Queries qi sent by the client to server Si and
their XOR. In this example we use k = 4 servers, redundancy parameter r = 3,
and B = 20 blocks. The block that the client is interested in has index 3, as e3
the third bit set to 1.

8.3.3 SB: Single Block Queries with Seed Expansion

For the next optimization we use a pseudo random generator (PRG) to further improve the
communication complexity by reducing the query size. The flip chunk in each query is chosen
as before and sent as a bit string, while the remaining r − 1 rnd chunks are generated from a
PRG and expanded from a seed s of length κ bits, where κ is the symmetric security parameter
(set to 128 bit in our implementation). The seed expansion is depicted in Fig. 8.4.

This technique reduces the communication complexity, as soon as the symmetric security
parameter κ is smaller than B (r − 1)/k, at the cost of the evaluation of few symmetric
cryptographic operations, and is very effective for large databases with a high number of
blocks B. The efficiency of the PIR scheme is improved, since typically an end user’s upstream
is significantly slower than his downstream. Therefore, reducing the amount of data a user
has to send to the servers will reduce the overall protocol runtime. We argue that, for
large number of blocks B, the additional costs of evaluating a small number of symmetric
cryptographic operations, e.g., by instantiating the PRG with AES, are very low compared to
the bandwidth savings, especially due to the massive increase of computational power and
the availability of the AES-NI instruction set in today’s CPUs. See performance evaluation
results in Sect. 8.6.

The servers’ replies are identical to the ones in the original protocol. The trick is to flip the
bit at the beginning of the query, in the flip chunk that is not generated by a PRG. All queries
start with such a flip chunk, and therefore all servers are equally likely to receive the query
with the flipped bit.

153

8 Improving Multi-Server PIR for Anonymous Communication

We can combine this technique with the redundancy parameter to further increase efficiency.
We refer to the scheme that uses chunks, the redundancy parameter r, and the seed expansion
as single block scheme SB. A formal description of SB is given in Algorithm 8.1 (variant SB).

From Sect. 8.3.3 on, our schemes use a symmetric security parameter κ.

flipi si

flipi rndi[i mod k+ 1] rndi[i + r − 2 mod k+ 1]. . .

PRG(si)

q′i

qi

r − 1 chunks

Figure 8.4: SB: Query expansion from seed si .

Fixed Session Seeds Instead of including one seed to every query message that is sent from
the client to the servers, a more effective strategy is to choose a fixed seed per server for one
session, comparable to the master secret of a TLS connection. This reduces the amount of
data sent from C to S and can also improve the runtime of the PRG if AES is used, since the
key schedule has to be done only once. Additionally, the server can precompute a certain
amount of PRG outputs to further reduce the online runtime, however, in order to protect
forward secrecy of our protocol, a seed should only be used in one session and not be fixed
per client-server pair for a longer period of time.

8.3.4 MB: Multiple Block Queries

Finally, we extend the protocol to allow C to request multiple blocks with a single query.
For this, the servers reply with one block per query chunk and calculate the XOR of each
response block only within each chunk. The size of the reply from each server to C is increased
from b bits to r · b bits. This approach has the limitation, that the requested blocks must be
located in different locations of the DB, as they must be queried in different chunks. Every
chunk can contain at most one block of data, comparable to the original scheme, where every
block has to be queried separately. However, we argue that the assumptions of blocks being
located in different chunks is practical, especially for requests of a large amount of data. An
optimization that targets this is proposed in Sect. 8.3.6. An example of the parallel query is
depicted in Fig. 8.5 (variant MB).

We refer to the scheme, that incorporates all of our optimizations and that allows to query up
to k blocks with one query as multi block scheme MB. A formal description of MB is given in
Algorithm 8.1.

This optimization is again inspired by RAID, since blocks can be read from multiple disks in
parallel. However, similar to RAID-5 (Rotating Parity) and RAID-0 (Striping), blocks can only
be queried in parallel if they are located on different disks.

154

8 Improving Multi-Server PIR for Anonymous Communication

Input: (SB) single block blockc or (MB) k blocks blockc[i] for i ∈ {1, . . . , k}

1. C randomly picks the seeds si ∈R {0,1}κ for i ∈ {1, . . . , k}.

2. C expands each seed si to generate the r − 1 chunks rndi[j]← PRG(si , j) for j ∈
{(i mod k) + 1, . . . , (i + r − 2 mod k) + 1}.

3. For each i, C sets the chunk flipi as the XOR of the r−1 chunks rnd j[i] in column i:
flipi ←
⨁︁

j rnd j[i] with j = (i − 1 mod k) + 1, (i − 2 mod k) + 1,

4. (SB) C identifies the flip chunk that contains blockc (the block C is interested in)
and flips the bit at the corresponding position.

(MB) C identifies all flip chunks that contain a blockc[i] he is interested in and flips
the bit at the corresponding positions.

5. C sends the queries q′i consisting of one flip chunk and one seed si to the servers Si .

6. Si expands his seed si to generate r − 1 random chunks rndi[j] = PRG(si , j)
for j ∈ {(i mod k) + 1, . . . , (i + r − 2 mod k) + 1} and gets his full query qi, as
depicted in Fig. 8.4.

7. (SB) Si calculates his answer ai ←
⨁︁

x∈qi
blockx and sends answer ai to C.

(MB) For each of the r chunks j, Si calculates ai[j]←
⨁︁

x∈qi[j] blockx and sends
all ai[j] blocks to C.

8. (SB) C calculates the plaintext block by XORing the k answers: blockc ←
⨁︁

1≤i≤k ai .

(MB) For each chunk j, C calculates the plaintext block by XORing the r answers
in column j :
blockc[j]←
⨁︁

i ai[j] with i = (j − 1 mod k) + 1, (j − 2 mod k) + 1,

Algorithm 8.1: Description of our PIR schemes for retrieving a single block (SB, cf. Sect. 8.3.3)
or multiple blocks in parallel (MB, cf. Sect. 8.3.4). See Sect. 8.2.1 for notation.

155

8 Improving Multi-Server PIR for Anonymous Communication

flip1 rnd1[2] rnd1[3]

flip2 rnd2[3] rnd2[4]

flip3 rnd3[4]rnd3[1]

flip4rnd4[1] rnd4[2]

00100 00010 00010 10000

q1

q2

q3

q4
⊕

e3|e9|e14|e16 =

r = 3 chunks

k
=

4
qu

er
ie

s

Figure 8.5: MB: The queries qi sent by the client to server Si and their XOR. In this example
we use k = 4 servers, redundancy parameter r = 3, and B = 20 blocks. The
client queries for the blocks 3, 9, 14, and 16 in parallel.

8.3.5 Precomputation using the Method of four Russians

The so called Method of four Russians [ADKF70], is a precomputation technique for efficient
matrix multiplication. This method can be used to reduce the computation time of the PIR
servers since RAID-PIR uses these multiplications to compute PIR query responses. This yields
lower latency and higher throughput at the (low) cost of a preprocessing phase for the servers
and increased memory requirements. The precomputation has to run only once in the setup
phase (cf. Sect. 8.2.3) before the queries can benefit from it.

In the following, we assume the matrix multiplication Z= X · Y, done in the field with two
elements F2 with the goal to speed up the computation by precomputing Z, or parts thereof.
Applied to PIR, X would be a set of queries, Y is DB and Z are the query responses. While
there are in total 2n possible combinations of rows in Y, we can precompute them all with
just n XOR operations, when using a Gray code to reorder them such that two consecutive
combinations only differ by a single bit. For each of the 2n combinations, it is now sufficient
to XOR the last precomputed result with the row of Y that changed in the Gray code. The
binary Gray code g of a number m can be calculated as g = (m⊕ (m≫ 1)). In Fig. 8.6 we
depict the calculation of LUT entries for a given example matrix Y∗.

Instead of precomputing a LUT for the full matrix Y, it is divided into smaller groups of
t ∈ N rows each. The precomputation is done within these n/t groups using the Gray code
as described above, resulting in a computational complexity of O

�

2t · n2/t
�

. If t = log2(n)
the complexity simplifies to O

�

n3/ log2(n)
�

, resulting in a speedup of factor t, compared to
traditional matrix multiplication.

Y is divided into groups horizontally, while the matrix X has to be divided into vertical groups
of t columns. To multiply the two n× n matrices, X is now traversed column-wise, processing
a group of t columns at a time. For each group, the corresponding LUT can now be created
for t rows of Y and later a lookup can be performed for all t-bit parts of the n rows of X in
this group. This procedure is depicted in Fig. 8.7. We note that this optimization is generic

156

8 Improving Multi-Server PIR for Anonymous Communication

Y∗ =

⎡

⎢

⎣

0 1 1 1

1 1 0 0

1 0 0 1

1 0 1 1

⎤

⎥

⎦

Gray Code Changed Bit Result

0000 0 0000

0001 4 1011 = 0000 ⊕ Y∗[4, :]
0011 3 0010 = 1011 ⊕ Y∗[3, :]
0010 4 1001 = 0010 ⊕ Y∗[4, :]
0110 2 0101 = 1001 ⊕ Y∗[2, :]

...

Figure 8.6: Example LUT precomputation for matrix Y∗. Y∗[i, :] denotes the i-th row of
matrix Y∗. The previous result gets XORed with the row in Y∗ corresponding to
the changed bit in the Gray code.

and could potentially be used in any PIR scheme in which queries can be expressed as matrix
multiplication, e.g., [CGKS95; LG15; Hen16], as well as in PIR-PSI, cf. Chapt. 9.

0000 000 000. . .
0001 110 100. . .
0011 001 100. . .
0010 111 000. . .
0110 100 110. . .
0111 010 010. . .
.

0
1
1
0

110 100 101 011 010. . .
111 000 101 011 010. . .
011 110 101 011 010. . .
001 010 101 011 010. . .

LUT for group 1
PIR DatabaseQuery

...
...

2
t

en
tr

ie
s

B
bl

oc
ks

block size b-bit
G

ro
up

1
w

it
h

t
=

4
bl

oc
ks

Figure 8.7: Precomputation example in the PIR database for t = 4. A query vector is one
row in the matrix X. The first 4 bits of the query vector represent the index in the
LUT for the first group of Y (the PIR database).

Implementation: An implementation of the Method of four Russians is provided in [ABH10].
However, since it only offers full matrix-matrix multiplications and uses different data struc-
tures than RAID-PIR, we implemented our own version that we integrated into RAID-PIR
to make use of memory locality. While the traditional Method of four Russians assumes the
multiplication of two full matrices, this is not the case in RAID-PIR. Often, only a single PIR
request has to be answered, making X effectively a vector. However, several PIR queries could
be batched to create matrix X at the cost of increased latency of the individual queries, similar
to [LG15].

In our implementation we do the LUT precomputation once while loading the database and
store the LUTs in main memory. For every query we achieve a theoretical speedup of t. The

157

8 Improving Multi-Server PIR for Anonymous Communication

downside of this approach is the increased memory requirement. Without loss of generality,
we now assume that Y is a RAID-PIR database of size B × b, i.e., B blocks of b bits each.
While a larger t decreases the computation time for the generation of response vectors,
it also excessively increases the memory needed to store the LUTs. When t blocks of the
PIR database are put in a group, only B/t XOR operations have to be performed per query,
resulting in a speedup of factor t. On the other hand, each of the B/t LUTs requires 2t · b bits
of memory, where b is the database block size. The choice of t = 4 gives a good trade-off
between theoretical speedup and memory requirements for larger databases (see Tab. 8.1)
and is used in our implementation.

Table 8.1: Comparison of speedup and memory for the Method of four Russians.

t (speedup) 2 3 4 5 6 8
1
t · 2

t (memory overhead) 2.00 2.67 4.00 6.40 10.67 32.00

We implemented these optimizations in C. The precomputation only affects the calculation of
the XOR responses by the PIR servers and is completely transparent to the PIR clients. This
means that clients do not have to be aware of the changes and can send the same queries as
before. Furthermore, different PIR server operators could decide independently whether they
want to support the precomputation or not, or pick a t that suits their available resources.

In [LG15] a related approach to speedup server computation, based on the Strassen algorithm
for matrix multiplication is introduced. This comes at the expense of higher latency for each
individual query, as multiple queries have to be collected and processed together. Furthermore,
their approach only introduces a speedup of q/q0.80735 = q0.19265, where q is the number
of queries that are processed together, which is less efficient than our approach (constant
speedup t) when q is small (e.g., for q < 1334 and t = 4).

8.3.6 Uniform Distribution of Blocks in the Database

In the following we present an optimization specific to multi-block (MB) queries from Sect. 8.3.4,
that enable a client to privately request more than one block in a single query. When database
entries are larger than the block size b, they occupy multiple blocks. Naïvely, large entries
could simply be placed adjacent to each other, usually residing within a single DB chunk.
However, MB queries only allow to query at most one block per chunk. Therefore, in order to
make use of the benefits of MB queries, it is desirable to spread large entries over the whole
DB, such that they are equally spread over all chunks.

To improve the performance of MB for files larger than block size b, we change the layout of
the database. Instead of placing files in adjacent blocks, they are now uniformly distributed
over the whole database, as shown in Fig. 8.8 on the bottom. For each file, the required
number of blocks n is calculated. The file is then placed with a mapping algorithm, such
that between two of its blocks B/n− 1 blocks are used for other files, where B is the total
number of blocks in DB. If a chosen block is already fully filled with another file, the next

158

8 Improving Multi-Server PIR for Anonymous Communication

A1 A2 A3 A4 B1 C1 C2 C3 C4 C5 D1 D2
Adjacent

Blocks

A1 C2 D1 A2 C3 D2 A3 C4 C5 A4 B1 C1
Uniformly

Distributed
Blocks

Chunk 1 Chunk 2 Chunk 3

Figure 8.8: Uniform distribution of the four logical data entries {A,B,C,D} in the PIR database
with 3 chunks, containing 4 blocks each. While entry A (green) was placed only
in the first chunk in the original adjacent RAID-PIR database layout (top), it is
now uniformly distributed over the whole database (bottom).

possible free block in DB is used instead. We also ensure a compact database layout, i.e., if
the mapping algorithm encounters a partially occupied block, it is filled up to its full size.

8.3.7 Proxied Block Download

As proposed in [BCKP01], an additional download proxy (which can even be one of the PIR
servers itself) can collect the responses from all servers, XOR them and send them to the
client to reduce the download size by a factor of k. To ensure confidentiality, i.e., prevent
the download proxy from reconstructing the plaintext response block, all responses have to
be masked and blinded with an additional XOR operation that can efficiently be undone by
the client. The blinding value can be generated from the PRG in a similar fashion as the rnd
chunks, as described in Sect. 8.3.3. We do not implement this optimization in RAID-PIR. A
related idea is introduced as designated output PIR in Sect. 9.3.1.

8.4 Analysis

In the following we analyze the complexity, correctness, and security of our PIR schemes.

8.4.1 Complexity

The complexities of the PIR schemes described in Sect. 8.3 are summarized in Tab. 8.2.

Our improved PIR protocols are well-suited for cloud-based applications where customers
are charged for server computation and communication to/from the cloud. In contrast to
the original Chor protocol [CGKS95], where multiple servers are used only to increase the
security of the protocol, our protocols can use multiple servers for better efficiency, similar to
the properties of a RAID system: for k servers, the upload communication from the client
to each server is only about 1/k-th of the original communication, and each server has to
process only (rB)/(2k) blocks in the database, since on average only every second block has

159

8 Improving Multi-Server PIR for Anonymous Communication

Table 8.2: Comparison of complexity and efficiency of the original CGKS scheme with our
optimizations from Sect. 8.3. k: #servers, r: redundancy parameter (2 ≤ r ≤
k), B: #blocks, b: block size, κ: symmetric security parameter, t: 4 Russian
precomputation parameter. Values in square brackets (‘[]’) only apply when
4 Russian precomputation is used.

[CGKS95] Sect. 8.3.2 SB Sect. 8.3.3 MB Sect. 8.3.4

Query size |qi | [bit] B (r/k) · B (1/k) · B + κ (1/k) · B + κ
Answer size |ai | [bit] b b b r · b
S Precomp. [#blocks to XOR] [2t · B/t] [2t · B/t] [2t · B/t] [2t · B/t]
S Comp. [#blocks to XOR] B/2[·1/t] (r/k) · B/2[·1/t] (r/k) · B/2[·1/t] (r/k) · B/2[·1/t]
S Storage [#blocks] B[·2t/t] (r/k) · B[·2t/t] (r/k) · B[·2t/t] (r/k) · B[·2t/t]
C Comp. [pseudorandom bits] (k− 1) · B (r − 1) · B (r − 1) · B (r − 1) · B

Result blocks per query 1 1 1 k
Max. #colluding servers k− 1 r − 1 r − 1 r − 1
Communication efficiency b/(kB + kb) b/(rB + kb) b/(B + kκ+ kb) b/(B/k+ κ+ r b)

to be processed due to the uniformly random queries. When using redundancy parameter
r = 2, each server loads and processes only about 1/k-th of the blocks in the DB.

We note that queries are sent to the servers concurrently with responses sent back from the
servers; hence, the communication delay is essentially the maximum, rather than the sum, of
the upload (query) and download (response) times.

8.4.2 Correctness

Our proposed PIR schemes are adaptations of the original CGKS scheme. The main difference
is that we do not compute the XOR over the entire database, but over smaller chunks (column-
wise). Therefore, correctness carries over from [CGKS95].

8.4.3 Security

The security of the schemes of Sect. 8.3.1, and Sect. 8.3.2 follows naturally using the same
proof as of the original scheme in [CGKS95]. Intuitively, for each column i, the flipi chunk
is the XOR of r − 1 random (rnd) values. Therefore, these flip chunks can be seen as an
r-out-of-r XOR-based secret sharing of either the zero-vector or an elementary vector with
the single bit set to one in which the client is interested. From the security of the secret
sharing scheme follows that a collusion of up to r − 1 servers cannot gain any information
about the block the client is interested in.

The security of the SB scheme of Sect. 8.3.3 follows by standard reduction to the security
of the PRG used. Namely, if the SB scheme leaks information, then we can distinguish
between the output of the PRG and truly random strings of the same length, by running

160

8 Improving Multi-Server PIR for Anonymous Communication

the protocol with the given bits and checking if the attacker can learn information (which
is proven impossible using truly random bits, see above and in [CGKS95]). However, while
the original CGKS scheme achieves information-theoretic security, RAID-PIR reduces this to
computational security in the symmetric security parameter of the PRG.

The security of the MB scheme of Sect. 8.3.4 also follows by a simple reduction argument,
this time reducing to the SB scheme. Namely, assume an attacker can leak information from
the MB scheme (but not from the SB scheme); for simplicity, assume this holds for the case
shown in Fig. 8.5. Then the attacker runs four queries against the SB scheme, each time for
a block from a different chunk, and then XORs the views received by the corrupt servers;
this is equivalent to a single run of the MB algorithm, so we can use the attack on MB to leak
information – which contradicts the security of the SB scheme. Note that for convenience, we
ignored the fact that both SB and MB use pseudorandom strings (which can be easily dealt
with as explained in the previous paragraph).

Note that to additionally achieve security against external man-in-the-middle attackers, the
client can connect to the servers via secure channels, e.g., TLS.

8.5 Implementation

We base our implementation of RAID-PIR on the publicly available code of upPIR [Cap13]
which implements the original CGKS protocol [CGKS95]. We modified and extended the
existing Python code and implemented our improved PIR protocols described in Sect. 8.3:
support for redundancy parameter r (Sect. 8.3.2), smaller upload by using a PRG for the
queries (SB – Sect. 8.3.3), enabling parallel requests (MB – Sect. 8.3.4), 4 Russians pre-
computation (Sect. 8.3.5), and uniform distribution of DB entries (Sect. 8.3.6). We set the
symmetric security parameter to κ= 128 and instantiate the PRG with AES128-CTR.

Implementation Optimizations Python is used for the implementation of the control flow,
while the bit operations are implemented in C for efficiency. We introduced several imple-
mentation improvements in RAID-PIR, that are included in all measurements in Sect. 8.6.
We pipelined the communication on the client side and decoupled the sending of queries
and reception of answers. All queries are sent out immediately and answers are processed
as they arrive. Furthermore, only a single seed is sent from the client to the servers during
a session and a state is kept while the connection is alive. We also used SSE2 intrinsics on
very wide data types in our C code. This feature is available in almost all x86 CPUs since
several years and leads to a more efficient bit-wise XOR computation, which is one of the
most crucial operations in RAID-PIR for both clients and PIR servers.

161

8 Improving Multi-Server PIR for Anonymous Communication

8.6 Benchmarks

In this section we evaluate the performance of RAID-PIR and show how the optimizations
from Sect. 8.3 influence the overall performance. We compare the performance of our
different variants to that of linear summation PIR [CGKS95]. In Sect. 8.6.7 we compare to
the PIR system of [Gol07], using the implementation from [GDL+14].

8.6.1 Benchmark System

We benchmark our PIR schemes for different parameters and deployment scenarios. We
deploy the k PIR servers as Amazon EC2 r3.xlarge instances with 30.5 GiB RAM, an Intel
Xeon E5-2670 v2 processor and 1 Gbps Ethernet. The client is a consumer notebook with
an Intel Core i7-4600U CPU with up to 3.3 GHz and 12 GiB RAM. We use two different
network settings between the client and EC2: a consumer grade DSL connection (1 MBit/s
upstream and 16 MBit/s downstream) and a WAN connection (350 MBit/s for both up- and
downstream). The latency averaged to 30 ms for both network settings.

As DB we use a release of Ubuntu security updates, containing 964 updates adding up to a
total size of 3.8 GiB. The average file size of the DB is 4 MiB, while the median file size is only
267 kiB, as many small patches are contained. We run each experiment 5 times and list the
average runtimes.

8.6.2 PIR Server Startup Time

Loading the database DB into the PIR servers’ RAM took ≈ 45 s for our benchmark database
of 3.8 GiB and is mostly independent of the chosen block size. This time includes reading
from disk, storing it into main memory and precomputing the lookup tables introduced by
the Method of four Russians. The four Russians precomputation took ≈ 7 s.

For a group size of t = 4 and a total number of B blocks in the database, only 4 · B XOR oper-
ations have to be performed during the precomputation phase, which is equivalent to the
generation of 4 single-block responses. Note, that in this case, in contrast to the generation
of PIR responses, data has to be written to main memory.

Loading the PIR database from disk into RAM is mostly bounded by the disk speed and
therefore increases linearly with the database size, as depicted in Fig. 8.9. Since the number
of operations needed for the four Russian precomputation is also proportional to the database
size, the total startup time scales linearly.

162

8 Improving Multi-Server PIR for Anonymous Communication

0.5 GiB 1 GiB 2 GiB 4 GiB 8 GiB
0.5

2

5
10

30
60
90

Database Size

R
un

ti
m

e
[s
]

Total Startup Time
Precomputation

Figure 8.9: Time to load the PIR database from disk to RAM and doing the precomputation
for varying database sizes. Block size b = 256 kiB, four Russians size t = 4.

8.6.3 Query Time for Varying Block Size

We show the influence of block size b on the query runtime for a given database DB in
Fig. 8.10 and Fig. 8.11. We use k = 3 servers and a redundancy parameter of r = 2. The
block size b is varied from 16 kiB to 4 MiB and the total runtime for the different PIR schemes
is shown: CGKS (Sect. 8.3.1), r = 2 (Sect. 8.3.2), SB (Sect. 8.3.3), and MB (Sect. 8.3.4).

Our results indicate, that our improved PIR protocols result in larger runtime improvements
when the upload bandwidth of the network connection is limited as the client sends less
data (cf. Upload in Tab. 8.2). Our results also confirm that our multi-block PIR scheme
MB described in Sect. 8.3.4 is beneficial when querying for multiple files distributed across
multiple chunks.

The computation improvements for the servers cannot be seen clearly in these experiments
as for parameters r = 2 and k = 3 the servers have in our protocols only 2/3 of the workload
of the original Chor PIR scheme (cf. Server Computation in Tab. 8.2). Therefore, we also
vary the number of servers k in later experiments. We compare performance of our schemes
with further optimizations on and off.

Small File Query via WAN The performance results for querying 10 small files with a total
size of 2.9 MiB in a WAN setup are depicted in Fig. 8.10 on the left. Single-block queries are
denoted as SB, multi-block queries as MB, the Method of four Russians as 4R and the uniform
distribution of the data entries as UD. In this network, the MB queries are significantly faster
than MB queries even without further optimizations since the requested files are already
distributed among the database. Therefore, uniformly distributing them does not improve
the overall performance. Four Russians precomputation improves the runtimes by factor 2.
For a block size of b = 16 kiB, runtime decreases from 6.8 s for the originally best performing
multi-block queries to 3.4 s with all optimizations applied. Best performance is achieved for
b = 256 kiB where 7 queries are performed to retrieve 18 blocks in 0.5 s.

163

8 Improving Multi-Server PIR for Anonymous Communication

16 64 256 1024 4096
0.1

1

10

0.1

0.5

1

2

5

10

20

Blocksize b [kiB]

To
ta

lQ
ue

ry
R

un
ti

m
e
[s
]

10 small files (2.9 MiB)

16 64 256 1024 4096

1

10

0.26

0.5

1

2

5

10

20

40

80

Blocksize b [kiB]

To
ta

lQ
ue

ry
R

un
ti

m
e
[s
]

1 large file (8.5 MiB)

CGKS SB SB +4R MB
MB +4R MB +UD MB +4R+UD wget (no PIR)

Figure 8.10: WAN Benchmarks: Runtimes for varying block size b with k = 3 servers, and
redundancy parameter r = 2 for 10 small files (2.9 MiB, left) and a large file
(8.5 MiB, right). CGKS: [CGKS95], SB: Single-Block scheme, MB: Multi-Block
scheme, 4R: Four Russians precomputation, UD: Uniform distribution of data
entries. DB size is 3.8 GiB.

Large File Query viaWAN We query one large 8.5 MiB file and show the corresponding time
on the right side of Fig. 8.10 Single-block and multi-block queries take similar time when
querying one large file in a WAN network, that is typically not the sole bottleneck. The four
Russians precomputation causes a significant speedup and effectively improves the runtime
in most test cases by factor ≈ 2. When the CPU cache cannot hold precomputed LUTs and
interim results for large block sizes, the Method of four Russians’ speedup decreases, and
disappears for blocks of size b ≥ 4 MiB.

Uniformly distributing the data entries results in an even greater speedup and improves the
overall runtime by approximately a factor of 3 in comparison to the unoptimized multi-block
queries for small block sizes. In a DB layout where blocks are stored adjacent to each other,
they most likely end up in the same chunk and have to be queried separately. Now it is
possible to retrieve 3 blocks from 3 different chunks in one multi-block query in parallel.

When both optimizations are combined, the runtime decreases from 46 s (or 83 s for the
original CGKS scheme) to 6.8 s for block size b = 16 kiB and reaches its minimum for b = 1 MiB
where the runtime decreases from 1.3 s for the originally best performing single-block queries
to 0.66 s for multi-block queries using both optimizations.

Large File Query via DSL In Fig. 8.11, we show the results for querying one large file
(8.5 MiB, as in the first test case) over a consumer-grade DSL connection. The first observation
is that the results for single- and multi-block queries with a block size of b = 16kiB do not
differ significantly, due to the slow upload speed of the DSL connection. For small block

164

8 Improving Multi-Server PIR for Anonymous Communication

16 64 256 1024 4096

10

100

5.2

15
20

30

50

blocksize b [kiB]

To
ta

lQ
ue

ry
R

un
ti

m
e
[s
]

MB (+4R)
SB (+4R)
MB (+4R)+UD
wget (no PIR)

Figure 8.11: Large File, DSL: Runtimes for varying block sizes b with k = 3 servers, and
redundancy parameter r = 2 for one large file (8.5 MiB). CGKS: original PIR
scheme [CGKS95], SB: Single-Block scheme, MB: Multi-Block scheme, 4R: Four
Russians precomputation, UD: Uniform distribution of data entries. DB size is
3.8 GiB.

sizes, the required upstream bandwidth, which depends on the number of blocks, has a larger
impact than the downstream bandwidth, which mostly depends on the block size. To query a
DB with B = 246 360 blocks, independent of the block size b, B/3 bits have to be transferred
to each server (plus additional 16 Bytes for the PRG seeds) resulting in a total transmission
time of 3 · (B/3bit+ 16 Byte)/(1 Mbit/s)≈ 247ms solely for sending every query.

Due to this high communication overhead of the PIR queries, the server-side four Russians
precomputation has almost no effect on the overall runtime. As in the first test case, SB queries
provide better performance than MB queries without the uniform distribution. However,
when the data entries are distributed uniformly, a large speedup for MB queries can be seen,
since the number of requests is reduced by about factor 3, even outperforming SB queries.

For r = 2, the client needs to download approximately twice the size of the raw data.
Retrieving the file without PIR, using wget over an unencrypted HTTP connection takes 5.0 s
and is only 2.1 times faster, indicating that the runtime of 10.7 s for the PIR approach almost
reached the theoretical optimum for the DSL connection. Our results show, that when the
network is the bottleneck, computation has only a small influence on total query time. Our
results also indicate that the previously assumed optimal block size of b = B =

p

|DB| does
not necessarily yield good performance, especially in a DSL setting with asymmetric up- and
downstream. For a DB size of 3.8 GiB that would be ≈ 22 kiB block size, which our results
show to be far worse than larger block sizes, and the results we achieved for,e.g., b = 1 MiB.

8.6.4 Query Time for Varying Number of Servers

In the following, we analyze the effect of the number of servers on the total runtime of
the PIR protocol, including network communication. From the results depicted in Fig. 8.12
we observe that increasing k only improves the total runtime if the network bandwidth is

165

8 Improving Multi-Server PIR for Anonymous Communication

high enough. For the DSL scenario the higher communication complexity, caused by the
downstream from each server, also increases the overall runtime. For the WAN scenario the
performance increase is clearly visible, but limited due to the increased communication and
computation requirements for the client. The runtime for CGKS increases slightly, because
the client has to wait for all k servers to respond and latency in the cloud typically varies.

3 4 6 8

10

20

30

10

30

Number of Servers k

R
un

ti
m

e
[s
]

(a) DSL

3 4 6 8
0

5

10

15

20

Number of Servers k
R

un
ti

m
e
[s
]

(b) WAN
CGKS, 1 Large File SB, 1 Large File CGKS, 10 Small Files SB, 10 Small Files MB, 10 Small Files

Figure 8.12: Total Runtimes [s] for varying number of servers k, redundancy parameter
r = 2, and block size b = 128 kiB.

8.6.5 Server Computation Workload

Next, we measure the total time that one server needs to respond to a client’s query for either
the large consecutive file or the 10 small files that are distributed throughout the DB. This
server computation time includes expanding the seed (for SB and MB), reading the blocks,
and calculating their XOR. The results are depicted in Fig. 8.13. Our schemes benefit from an
increasing number of servers k as the computation time for each server decreases, whereas the
original CGKS scheme has a constant server workload that is independent of k. The runtimes
for r = 2 and SB are almost identical (for a single consecutive file and 10 files, respectively),
showing that the seed expansion with a PRG has negligible computation overhead.

8.6.6 Query Time for Varying Database Size

To demonstrate how the size of the database influences the query runtime, we perform the
same queries as in Sect. 8.6.3 using multi block queries with four Russians precomputation
and uniformly distributed database blocks. We varied the size of the database and depict our
results in Fig. 8.14. The time that the clients needs to generate the queries to the servers is
almost constant and always ≈ 50 ms. The communication varies due to queries being sent
over a public Internet connection and also remains mostly constant around 200 ms. This is
due to the fact, that even though the database and thus the number of blocks increases, the

166

8 Improving Multi-Server PIR for Anonymous Communication

3 4 6 8
0

5

10

Number of Servers k

C
om

pu
ta

ti
on

Ti
m

e
[s
]

CGKS, 1 Large File SB, 1 Large File
CGKS, 10 Small Files SB, 10 Small Files
MB, 10 Small Files r=2, 1 Large Files
r=2, 10 Small Files

Figure 8.13: Server computation time [s] for varying number of servers k, redundancy
parameter r = 2, and block size b = 128 kiB.

query size only grows from 250 Bytes to 4 kiB, which is negligible compared to the block size
of b = 256 kiB, that the client receives. Server computation time and thus total time increase
linearly with the database size.

0.5 GiB 1 GiB 2 GiB 4 GiB 8 GiB

50

100

200

500

1000

2000

Database Size

R
un

ti
m

e
[m

s] Total Query Time
Communication
Server Computation
Query Generation

Figure 8.14: Varying DB size: Runtimes for varying database size, k = 3 servers, redundancy
parameter r = 2 for querying one large file (8.5 MiB) and block size b = 256 kiB.
All queries are multi-block (MB) queries using four Russians precomputation
and uniformly distributed database blocks. Y-axis in logarithmic scale.

8.6.7 Comparison with [Gol07]

We evaluate the recent implementation of [GDL+14; Gol07] on the same machines and data
that we used to benchmark our code and depict the results in Fig. 8.15. All results are for a
WAN network connection, therefore the results in Fig. 8.15b and Fig. 8.10 are comparable. We
also plot our RAID-PIR query time for SB and MB in Fig. 8.15b, as well as the plain download
time using wget. We show performance results for their implementation of CGKS, which are
comparable to our CGKS implementation. We compare it with a version of their protocol
that allows to query one block per query sequentially and a version that allows to query
k − 1 blocks per query in parallel. The resulting runtimes are slower than the plain CGKS

167

8 Improving Multi-Server PIR for Anonymous Communication

3 4 6 8

20

40

60

10

30

50

Number of Servers k

R
un

ti
m

e
[s
]

(a) Runtimes for varying numbers of k, block size
b = 128 kiB and the query of 10 random files.

16 64 256 1 024 4 096

0.1

1

10

100

Blocksize b

R
un

ti
m

e
[s
]

(b) Runtimes for different Blocksizes b for k = 3
servers and the query of 10 random files.

CGKS [GDL+14], 1 Large File Sequential [GDL+14] Parallel [GDL+14]
SB, 1 Large File MB, 1 Large File wget (no PIR), 1 Large File

Figure 8.15: Runtimes for the scheme of [Gol07] as implemented in [GDL+14] for varying
number of servers k and block sizes b.

protocol for k = 3 servers. The implementation of [GDL+14] scales very well with increasing
k, and for a large number of servers, may be competitive with ours. However, as shown
in Fig. 8.15a, for a relatively low number of servers, our schemes are more efficient. More
significantly, [Gol07] ensure robustness against malicious servers, which we only address by
the higher-layer mechanisms described in Sect. 8.7.3.

8.7 Applying RAID-PIR

PIR can be used for different applications and scenarios, where clients wish to hide the storage
locations they are reading. However, the applications may have additional requirements,
beyond those provided by basic PIR schemes. Some of these may require significant extensions
to existing PIR schemes, or a new scheme; for example, several works study PIR schemes
which are robust to benign and/or byzantine failures [Gol07; DGH12; DG14]. Addition of
such properties to RAID-PIR is subject for further research.

However, as we show below, some requirements can be achieved quite easily, by extending
RAID-PIR or adding a layer on top of it. In the following, we discuss private retrieval of multi-
block objects, PIR lookup mechanisms (identifying the block(s) belonging to a query/object),
and finally object integrity, availability and accountability.

168

8 Improving Multi-Server PIR for Anonymous Communication

8.7.1 Private Multi-Block Object Retrieval

While PIR hides from a database which specific objects were queried, the amount of blocks
a client requests in one session might give away information about possible corresponding
objects. In this case, using a block size equal to the object size involves significant commu-
nication and computation overhead. To reduce this overhead, we would normally use a
smaller block size, s.t. retrieving a large object would imply retrieval of all the blocks in the
objects. However, when using such a scheme, the number of blocks retrieved may allow the
attacker to identify the object (if it has a unique number of blocks) or to know that the object
is within the limited set of objects with the same number of blocks. To mitigate this problem,
clients may always retrieve a fixed number of blocks, including dummy blocks they are not
interested in, possibly using the parallel block query (Sect. 8.3.4) to reduce the overhead. By
using a smaller block size, this design is less wasteful in storage, although it has the same
communication cost as the use of blocks of the same total size. Hence, these solutions fix the
privacy concern, at the cost of more communication.

In many scenarios, an alternative would be to address the privacy concern by increasing
the latency. Specifically, if a system has some known distribution of requests, say in rate of
β blocks per second (taking into account the total number of blocks in requested objects),
then a possible way to hide the identity of the requested objects would be to request objects
at fixed rate of β blocks per second (or a bit higher, to avoid excessive latency), delaying
requests if necessary and adding ‘dummy’ requests if none are present. Again, this combines
well with the parallel block query (Sect. 8.3.4), allowing to retrieve k blocks with each request,
improving request (upstream) bandwidth and processing overhead. Further optimizations
may be possible, especially when the distribution of requests and of object-sizes is known or
has certain properties.

8.7.2 PIR Lookup Mechanisms

PIR schemes allow clients to retrieve a block by specifying the block number, without exposing
the block number to eavesdroppers or to the PIR servers. However, in many applications,
clients do not necessarily know in advance the block number containing the information they
need. Instead, they have some higher-layer identifier such as a URL or file name. How can
clients learn the block number(s) corresponding to the object identifier without exposing
their interest in a particular object?

One solution is used in upPIR [Cap13]: the content provider maintains a manifest file, mapping
all object identifiers to the corresponding block numbers. Clients always retrieve the entire
manifest file (from the origin or any PIR server, or even from another location). The manifest
file can also allow to ensure integrity by including a collision-resistant hash of each object,
and the origin signs the manifest file itself.

This use of such a manifest file is fine, as long as its size is reasonable; it may be less
appropriate to ensure privacy for queries to a huge collection of many (smaller) items, such

169

8 Improving Multi-Server PIR for Anonymous Communication

as the Domain Name System, as proposed, e.g., in [ZHS07]. In such cases, the distribution of
such a file may cause significant overhead, especially if it has to be updated periodically.

In such cases, where distributing a manifest file causes significant overhead, it may be better
to use other approaches. A simple approach is to store an object with identifier (URL) i, in
block h(i) where h is a hash function; this has obvious limitations, in particular, no control
over placement. More elaborate schemes for object lookup in PIR based on keywords or
identifiers were studied, e.g., in [CGN98].

Another approach can be built from searchable encryption, where clients send a lookup into
an encrypted dictionary of locations and thereby privately retrieve the indices of the blocks
that they are interested in.

8.7.3 Object Integrity, Availability and Accountability

PIR schemes do not necessarily ensure integrity. Namely, a benign or malicious (byzantine)
failure in one or more of the servers, may result in clients receiving corrupt data. Some
PIR schemes are robust, i.e., designed to handle benign failures (e.g., transmission errors,
or disk failures), or even byzantine failures (e.g., active attacks), e.g., [DG14; DGH12].
Our RAID-PIR constructions, however, are not robust to server failures; it is an interesting
challenge to adopt them to achieve robustness (with comparable performance). However, we
note that clients may easily recover from failure of few servers, by using only the operative
servers in the protocol. We now show how to take advantage of this and use RAID-PIR to
ensure integrity, availability and accountability.

We first explain how to ensure object integrity: one natural solution is for the origin to sign
every object in the DB, and to provide the signature as part of the object. Alternatively,
when a manifest file is used, the origin can only sign the manifest file, and include therein a
collision-resistant hash value for each object (cf. [Cap13]). In some applications, the content
‘belongs’ to a specific customer of the origin; in this case, the origin may use a Message
Authentication Code (MAC) for higher efficiency.

The above mechanisms only detects corrupted objects, which still allows malicious servers to
deny service to the clients. However, we can efficiently deal with this threat, as follows: First,
we assume that all the communication between client and each server is authenticated. This
allows the client to ignore servers to which there are repeated communication failures. We
therefore focus on server corruptions and assume that all messages are received correctly as
sent. Second, we assume that the client uses some of the mechanisms above, e.g., signed
objects, to detect corrupted objects. It remains to explain how we deal with this case, i.e.,
client receiving corrupted objects due to a server failure. In this case, the client proceeds with
a resolution protocol, which identifies the corrupted server, as follows: (A) The client simply
re-sends the same query to the servers; however, this time it indicates that the responses
should be signed. If the client detects that the server failed, by not returning the same response
as before (or not returning a valid signature), then the client marks this server as ‘bad’ and
continues the protocol with the remaining servers. The signature is over both the request

170

8 Improving Multi-Server PIR for Anonymous Communication

received by the server and over the response. (B) Once the client receives the signatures
from all the (operative) servers, then it selects one or more of the servers, and sends the
corresponding signed responses from these servers to the content origin or a trusted third
party. The origin can validate the responses and blacklist servers in case of failure so that all
clients will stop using it.

If clients wish to preserve query privacy from the origin, then they should send less than r of
the responses from the servers to the origin (each containing the corresponding request that
the client sent to that server). However, surely, after few such interferences, a faulty server
would certainly be detected.

8.8 OnionPIR: A System for Anonymous Communication

As an application that utilizes RAID-PIR and our previously presented improvements, we
introduce a private communication system called OnionPIR for anonymous communication.
We use RAID-PIR with our optimizations as a building block for public key distribution, and
onion routing to get a system efficient enough for practical use.

8.8.1 Motivation

In order to achieve anonymous communication, two parties could attempt to register under
pseudonymous identities to a classical messaging service and connect to the service by using
Tor [DMS04]. However, a malicious server can link those two pseudonyms by building a
social graph isomorphic to the one built from information from other sources. By comparing
these two graphs, sensitive information about users can be revealed. Therefore, Tor alone
is not enough to provide protection against metadata leakage. Additionally, in practice it
is technically difficult for users to establish a shared secret. In order to provide practical
anonymity, a system to establish private communication channels based on already existing
contact information such as phone numbers or email addresses is needed.

8.8.2 RelatedWork in Anonymous Communication

Nowadays, end-to-end encryption is available and deployed at large scale. In the past,
these technologies were not accessible to a large user base because they required expert
knowledge or were just inconvenient, and thus only used by enthusiasts. For example, in
OpenPGP [CDF+07] users have to manually build a web of trust and should be familiar
with public key cryptography, while S/MIME [Ram99] requires certificate management.
When the Signal Protocol was integrated into popular messaging services like WhatsApp2

or Facebook Messenger3 in 2016, private messaging became available to an extremely large

2https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
3https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf

171

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf

8 Improving Multi-Server PIR for Anonymous Communication

user base. However, protecting not only communication content but also its metadata is still
under active research. OnionPIR currently relies on RAID-PIR for public key distribution, but
could also employ different PIR schemes, e.g.,[DG14; Hen16; ABFK16] or the DPF-based PIR
from Sect. 9.2.1. Similarly, we rely on Tor to provide anonymity, which can also be achieved
by using alternative techniques such as mix networks [Cha81].

Next, we present systems that are related to OnionPIR. Redphone was one of the first applica-
tions that tackled metadata leakage using Bloom filters [Blo70] for private contact discovery.
Redphone’s encrypted call features were integrated into Textsecure/Signal, however, without
anonymity due to scalability [Ope14]. With DP5 [BDG15] users can anonymously exchange
online presence information based on PIR. DP5 divides time in long-term and short-term
epochs which are in the order of days and minutes respectively, which makes it impractical
for real-time communication. Users must share symmetric keys before the protocol run,
which can be hard to achieve in practice. AnNotify [PHG+17] is a service for efficient and
private online notifications that combines several techniques. Recently, Alpenhorn [LZ16]
was proposed, which is based on identity-based encryption (IBE) for key distribution, a
mix network [CDJ+17; Cha81] for privacy and a so called keywheel construct for forward
secrecy. Alpenhorn was integrated into the messaging system Vuvuzela [HLZZ15], which
supports 10 Mio. users using three Alpenhorn servers with an average dial latency of 150 s
and a client bandwidth overhead of 3.7 KiB/s. Riposte [CBM15] enables a large user base to
privately post public messages to a message board. Its security is based on distributed point
functions that are evaluated by a set of non-colluding servers. Time is divided into epochs,
in which all users who post messages form an anonymity set. Ricochet4 is a decentralized
private messaging service based on Tor hidden services, whose addresses must be exchanged
out-of-band to establish connections. Recent research showed that HSDirs are used to track
Tor users [SN16], which might be problematic for Ricochet’s privacy. Riffle [KLDF16] provides
scalable low-latency and low-bandwidth communication through mix networks [Cha81]
using verifiable shuffles [BG12] for sender anonymity and PIR for receiver anonymity. In
Riffle, time is divided into epochs and each client sends and receives messages even if they do
not communicate. The Pynchon Gate [SCM05] is an anonymous mail system that guarantees
only receiver anonymity by using PIR.

8.8.3 SystemModel and Goals

There is a number of privacy-preserving communication systems available, but in many cases,
these do not scale well for large numbers of users or require the out-of-band exchange of a
shared secret, which is error-prone and leads to usability issues most users have problems
with. The success of the popular messaging app Signal5 and the adaption of its protocol in
WhatsApp and Facebook Messenger are founded on the combination of strong security and
seamless usability. Since most users do not have a background in cryptography, it is necessary

4https://ricochet.im
5downloaded by more than 5 Million users via the Google Play Store, https://play.google.com/store/
apps/details?id=org.thoughtcrime.securesms

172

https://ricochet.im
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms

8 Improving Multi-Server PIR for Anonymous Communication

to build technologies that provide privacy and usability by design and to set reasonable
defaults for its users.

In this work, we combine the strong privacy guarantees of PIR protocols with the efficiency
of established onion routing protocols, such as Tor [DMS04]. The interaction with the server
is divided into two phases: an initialization phase where the communication channels are
established and keys are exchanged via PIR and a communication phase where the actual
message exchanges take place through Tor.

In the initialization phase, PIR is used to privately exchange information between the two
parties that want to communicate securely, such that no external entity will find out that the
communication between the parties happened. This procedure could theoretically be used to
exchange all kinds of data. However, when it comes to practical applicability, querying large
amounts of information via PIR does not scale well for a large number of users. Hence, in
the communication phase no PIR techniques will be used.

Instead, the information retrieved via PIR is used to place messages, encrypted using
Authenticated Encryption with Associated Data (AEAD), in an anonymous inbox, called
“dead drop”. This dead drop is read and written at the OnionPIR control server in the commu-
nication phase by clients that know its long and unpredictable identifier. We employ onion
routing to hide the identity of the communication partners, such that the server is unable to
determine who sent and received messages. For real-time communication, the users could
establish direct connections using TCP streams or web sockets [FM11] through the server.

Client A Client B

PIR Server 1PIR Server 0 PIR Server 2

OnionPIR Control ServerRegistration

De
ad

Drop Access

Figure 8.16: OnionPIR sytem. The OnionPIR control server handles user registrations, dis-
tributes users’ public keys to the PIR servers and holds the dead drops. Clients
perform PIR queries to privately receive other users’ public keys from the PIR
servers. Clients connect to the OnionPIR control server directly or via Tor
(dotted lines).

The OnionPIR system, depicted in Fig. 8.16, serves clients who want to communicate with
each other and two types of servers. All honest clients form the anonymity set among which
a user is anonymous. That means that a potential adversary cannot determine which users
within this set communicate with each other. The central OnionPIR control server handles
user registration and serves as a content provider for the PIR servers. It also acts as a database
for the “dead drops” in the communication phase. The PIR servers are used only in the
initialization phase to privately distribute the public keys of clients.

173

8 Improving Multi-Server PIR for Anonymous Communication

8.8.4 Protocol Description

In this section we describe the OnionPIR protocol. An overview is depicted in Fig. 8.17.

Client A OnionPIR Client B
store pkA

authenticated access

store pkB

authenticated access

query pkA

via PIR
query pkB

via PIR
derive I DA→B derive I DA→B. communication phase .

write to dead drop I DA→B

via Tor read dead drop I DA→B

via Tor

Figure 8.17: Simplified OnionPIR protocol. The registration, dead drop and PIR servers were
abstracted into one server. Key renewal and the answer of client B are not
shown.

When a client A registers for the service, it first runs through an account verification process
and sends its public key to the OnionPIR control server which will later distribute it to the
PIR servers (see Sect. 8.6.2 for precomputation performance). Another client B, that has
an address book entry for A (e.g., a mobile number or e-mail address), will later privately
query A’s public key via PIR. In addition, each user periodically queries for his or her own
public key to make sure the OnionPIR control server does not distribute bad keys to the PIR
servers (see Sect. 8.8.5 for details). B will then use his own private key and the received
public key to generate a shared secret KAB between A and B by performing an Elliptic Curve
Diffie-Hellman (ECDH) key agreement. Since no communication with the server is required
to derive the shared secret, this type of key agreement protocols is often also called private
key agreement. In the same way, A is also able to derive the shared secret KAB using her own
private key and the public key of B.

Symmetric Keys The shared secret KAB and both parties’ public keys are used to derive
identifiers of the dead drops and keys used to exchange messages. Client A generates two
different symmetric keys derived from the initial shared secret KAB and the respective public
keys by a keyed-hash message authentication code (HMAC): KA→B = HMACKAB

(pkB) for
sending messages to B and KB→A = HMACKAB

(pkA) for receiving messages from B. These
secrets constantly get replaced by new ones, transmitted alongside every message to provide
forward secrecy.

Dead Drop IDs The identifier of the dead drop for sending from A to B is built by computing
an HMAC with the key KA→B of a nonce NA→B that increases after a given time period. Hence,
the identifier I DA→B = HMACKA→B

(NA→B) changes in a fixed interval, even if no messages
were exchanged at all. This prevents the server from identifying clients that disconnect for
several days and would otherwise reconnect using the same identifiers. However, a fixed

174

8 Improving Multi-Server PIR for Anonymous Communication

point in time at which the nonce changes (e.g., a unix timestamp rounded to the current day)
is not a good choice. Assuming synchronized clocks is often error-prone.6 If all clients would
update their identifiers at a given point in time, e.g., at midnight, the server could detect a
correlation between all identifiers of a user whose clock is out of sync. Thus, the nonces will
be handled per contact and the secret key KA→B is used to generate a point in time at which
the nonce NA→B will be increased. This leads to a different update time for all identifiers of
dead drops.

SendingMessages When a client A wants to send a message m to B, it encrypts the message
using AEAD using KA→B so that only B can read it. Note, that the ciphertext of message m
does not reveal any information about the sender or the receiver as explained in [Ber09,
Sect. 9]. A then stores the encrypted message in the dead drop I DA→B via Tor. B can now
fetch and decrypt A’s message from this dead drop. The shared secret will only be replaced
by a new one transmitted alongside a message when B acknowledges the retrieval of the new
secret in a dead drop derived from the existing shared secret. A will retransmit messages until
B sends an acknowledgment. This procedure guarantees that messages are not lost. Note,
that I DA→B can still change over time because of the used nonce NA→B which is known by
both parties.

Querying for new public keys using PIR is done in a fixed interval, e.g., once a day, to discover
new users of the system. It is mandatory not to write to the dead drop specified by the
shared secret immediately after receiving a new public key. This would allow an adversary
to correlate a PIR request of a given user with (multiple) new requests to the dead drop
database, even if the server does not know which public keys were queried. Instead, the first
access to the dead drop database for new identifiers is delayed until a random point in time
between the current query and the next one derived from the shared key KA→B. This ensures
that the server cannot correlate the dead drop access to the PIR request because it could also
have been initiated by any other clients that did a PIR request in the fixed interval. Note, that
this delay is only necessary when a new contact is discovered. New users joining the service
will therefore also have to delay their first interaction with other users.

Initial Contact If B wants to contact A without A knowing about that (and thus not checking
the associated dead drop at I DB→A), an anonymous signaling mechanism is required. We
propose a per-user fixed and public dead drop that all other users write to, to establish
contact. The fixed dead drop ID is I DA = HMAC0(pkA). Messages into this dead drop are
encrypted using hybrid encryption, similar to PGP, where A’s public key pkA is used to encrypt
an ephemeral symmetric key, which encrypts the request message. This reveals how many
contact requests A receives, which we consider as non-critical. However, this number could
be obscured by sending dummy requests.

6The need for secure time synchronization protocols lead to a number of secure time synchronization con-
cepts such as ANTP [DSZ16], NTS (https://tools.ietf.org/html/draft-ietf-ntp-network-time-
security-14) or Roughtime (https://roughtime.googlesource.com/roughtime).

175

https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-14
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-14
https://roughtime.googlesource.com/roughtime

8 Improving Multi-Server PIR for Anonymous Communication

8.8.5 Analysis

Correctness Correctness of RAID-PIR is shown in Sect. 8.4.2, correctness of Tor is explained
in [DMS04] and has already been well-proven in practice. Messages are acknowledged
and retransmitted if identifiers change and the message has not been read yet. Therefore
message delivery can be ensured. Correctness of the ECDH key exchange is shown in [Ber09].
All operations involved in the private establishment of identifiers for the dead drops are
deterministic and therefore result in the same identifiers for both parties.

Security OnionPIR’s security is based on the security guarantees of the underlying protocols
and their assumptions. First, we assume that RAID-PIR is secure and does not leak any
metadata. A security argumentation for this is given in Sect. 8.4.3. In particular, it is
important that PIR servers are run by different non-colluding operators. Note, that security
still holds if less than r servers collude, where r is the redundancy parameter. A good choice
for the PIR server operators could be NGOs located in different legal territories. The different
PIR servers must also not be in control of the same data center operator.

Next, we assume that Tor provides anonymity for the users that tunnel their connections
through this anonymity network. This assumption implies that there is no global passive
adversary which is able to monitor and analyze user traffic and colludes with the operator of
the PIR servers or gains unauthorized access to them. Note, that it is necessary to at least
de-anonymize two specific Tor connections in order to learn if two users are communicating
with each other. Therefore, an attacker would have to be able to de-anonymize all users of
the service to gain the full social graph of a given user. However, as shown in [DS18], tagging
attacks are preventable. OnionPIR does not hide the fact that a user is using the service.

Anonymity is guaranteed among all honest users. A malicious user revealing its list of dead
drop requests, would effectively remove himself from the anonymity set. Note, that no user
can gain information about communication channels it is not participating in or prove that
communication took place because the AEAD guarantees repudiability.

OnionPIR uses a Trust On First Use (TOFU) strategy to lessen the burden of manually
exchanging keys. For detecting the distribution of faulty keys, a client queries not only its
contacts’ public keys, but also its own key. This query can be performed at nearly no cost when
querying together with other contacts using RAID-PIR’s multi-block query MB, cf. Sect. 8.3.4.
Since the PIR servers cannot determine which keys are being requested, they are not able to
manipulate the resulting response in a meaningful way. Of course, additional security can be
achieved by adding out-of-band key verification, e.g., by announcing public keys on personal
websites. Another option are plausibility checks for the updates of the PIR database.

Access to the dead drops is not protected against manipulation since identifiers are only
known to the involved parties. An adversary interested in deleting the messages for a specific
client would have to brute-force the dead drop identifier. Protection against a server deleting
messages or blocking access to the system is out of scope of this work and would require a
federated or decentralized system.

176

8 Improving Multi-Server PIR for Anonymous Communication

Protection against attackers flooding the dead drops with large amounts of data could be
achieved by using blind signatures [Cha83]. A client could encrypt a number of random
tokens and authenticate against the server who then blindly signs them. The tokens are then
decrypted by the client and sent along with each write access. While the server can verify the
signature of these tokens, it cannot identify which client generated them. Since a server only
signs a small number of tokens per client, this approach rate-limits DB write requests.

Complexity and Efficiency OnionPIR aims at providing efficient anonymous communica-
tion. Many existing systems (see Sect. 8.8.2) require a high communication overhead or
high computational costs. The dead drop database is therefore combined with scalable onion
routing and can be implemented as simple key-value storage. The servers needed in the
communication phase can be deployed with low operating costs, comparable to traditional
communication services.

The initialization phase in which the PIR requests are performed is crucial for the scalability
of the system. As shown in Sect. 8.6, RAID-PIR with our optimizations is a valid choice that
offers reasonable performance and allows users to detect malicious actions of the servers,
cf. Sect. 8.7.3. The 3.8 GiB PIR database used for the benchmarks in Sect. 8.6 is sufficient to
store public keys of 127 Mio. users, using 256 bit elliptic curve public keys.

The DB size and the servers’ computation grows linearly with the number of users. The PIR
servers’ ingress traffic for PIR queries depends on the number of blocks B in the DB and
therefore also scales linearly. Thanks to the PRG used in RAID-PIR (see Sect. 8.3.3), the size
of a PIR query is ⌈B/8⌉ Bytes for all servers combined (excluding PRG seeds and overhead
for lower level transport protocols). The egress bandwidth is constant since the response size
only depends on the block size b (and the number of chunks for multi-block queries).

8.8.6 Implementation

We implemented a desktop application for private messaging with metadata protection, called
OnionPIR. Our implementation is written in Python and C, building on top of RAID-PIR,
the Networking and Cryptography library (NaCl) [BLS12] for cryptographic operations,
and Stem7 as controller library for Tor. The system is divided into a client, the OnionPIR
control server and PIR servers. The client can use the messenger through a GUI as depicted
in Fig. 8.18. Our open-source implementation is publicly available on GitHub8.

The clients’ user interface is built using web technologies, while the OnionPIR client itself is
written in Python. We designed the client and the OnionPIR protocol with usability in mind,
such that the user will not see any cryptographic keys or other technical details. In order to
increase reusability of the code, major functionalities, e.g., sending/receiving messages, or
the registration process, were bundled in the OnionPIR client library.

7https://stem.torproject.org/
8https://github.com/encryptogroup/onionPIR

177

https://stem.torproject.org/
https://github.com/encryptogroup/onionPIR

8 Improving Multi-Server PIR for Anonymous Communication

Figure 8.18: Screenshot of the OnionPIR client GUI.

The OnionPIR control server handles user registrations and acts as content provider for RAID-
PIR, that provides the DB of public keys, while the PIR servers answer PIR requests. The client
runs at the user’s end system. The control server is operated by the service provider while the
PIR servers should be operated by a number of independent, non-colluding third-parties, e.g.,
NGOs. Currently, email addresses are used as an identifier for contacts, since they are unique
and easily verifiable. Identifiers are hashed before they are used to determine the location
inside the PIR database at which the user’s public key is stored. We could also allow arbitrary
user names with a first-come-first-serve policy, or phone numbers with SMS verification.

Our current implementation is intended for testing and demonstration only. A minimalistic
end-to-end encrypted chat protocol is implemented in the client, which offers repudiability.

8.9 Conclusion and Future Work

In this chapter, we presented and evaluated RAID-PIR, a family of simple and practical
multi-server PIR schemes, which are efficient in computation, storage and communication,
and especially upload from clients. Due to its simplicity and efficiency, RAID-PIR can be
used by practical systems. Built on top of RAID-PIR, we presented OnionPIR, a practical
anonymous communication system that combines private key distribution via PIR with private
communication through an onion routing system like Tor.

RAID-PIR does currently not provide robustness against faulty servers, however, we show
(in Sect. 8.7.3) how to efficiently use it to handle erroneous or malicious servers. It would be
an interesting challenge, to find another RAID-PIR mode, that will provide fault-tolerance,
which may also help speed up results by not waiting for response from the slowest server. Of
course, the challenge is to maintain the RAID-like simplicity and efficiency. A more recent
scheme that is more efficient for large databases and two servers is PIR based on DPFs, as
presented in Sect. 9.2.1.

178

9 PIR-PSI: Scaling Private Contact Disvocery

Results published in:

[DRRT18] D. DEMMLER, P. RINDAL, M. ROSULEK, N. TRIEU. “PIR-PSI: Scaling Pri-
vate Contact Discovery”. In: Proceedings on Privacy Enhancing Technologies
(PoPETs) 2018.4 (2018). Code: https://github.com/osu-crypto/libPSI.
CORE Rank B.

9.1 Introduction

With the widespread use of smartphones in the last decade, social networks and their con-
nected instant messaging services are on the rise. Services like Facebook Messenger or
WhatsApp connect more than a billion users worldwide.1

Contact discovery happens when a client initially joins a social network and intends to find
out which of its existing contacts are also on this network. Even after this initial client join,
it is also run periodically (e.g., daily) in order to capture a client’s contacts that join the
network later on. A trivial approach for contact discovery is to send the client’s entire address
book to the service provider, who replies with the intersection of the client’s contacts and the
provider’s customers. This obviously leaks sensitive client data to the service provider. In
fact, a German court has recently ruled that such trivial contact discovery in the WhatsApp
messaging service violates that country’s privacy regulations.2 Specifically, users cannot send
her contact list to the WhatsApp servers for contact discovery, without written consent of all
of their contacts.

A slightly better approach (often called “naïve hashing”) has the client hash its contact list
before sending it to the server. However, this solution is insecure, since it is prone to offline
brute force attacks if the input domain is small (e.g., telephone numbers). Nonetheless, naïve
hashing is used internally by Facebook and was previously used for contact discovery by the
Signal messaging app. The significance of a truly private and efficient contact discovery was
highlighted by the creators of Signal already in 2014.3

1https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
2http://www.huffingtonpost.de/2017/06/27/whatsapp-abmahnung-anwalt-medien-gericht-nutzer_

n_17302734.html
3https://whispersystems.org/blog/contact-discovery/

179

https://github.com/osu-crypto/libPSI
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
http://www.huffingtonpost.de/2017/06/27/whatsapp-abmahnung-anwalt-medien-gericht-nutzer_n_17302734.html
http://www.huffingtonpost.de/2017/06/27/whatsapp-abmahnung-anwalt-medien-gericht-nutzer_n_17302734.html
https://whispersystems.org/blog/contact-discovery/

9 PIR-PSI: Scaling Private Contact Disvocery

9.1.1 State of the Art and Challenges

Contact discovery is fundamentally about identifying the intersection of two sets. There is a
vast amount of literature on the problem of Private Set Intersection (PSI), in which parties
compute the intersection of their sets without revealing anything else about the sets (except
possibly their size). A complete survey is beyond the scope of this work, but we refer the
reader to Pinkas et al. [PSZ18], who give a comprehensive comparison among the major
protocol paradigms for PSI.

In contact discovery, the two parties have sets of vastly different sizes. The server may have
10s or 100s of millions of users in its input set, while a typical client has less than 1 000.4

However, most research on PSI is optimized for the case where two parties have sets of similar
size. As a result, many PSI protocols have communication and computation costs that scale
with the size of the larger set. For contact discovery, it is imperative that the client’s effort
(especially communication cost) scales sublinearly with the server’s set size. Concretely, when
the client is a mobile device, we aim for communication of at most a few megabytes. A small
handful of works [CLR17; KLS+17; RA18; PSZ18] focus on PSI for asymmetric set sizes. We
compare these works to ours in Sect. 9.1.3 and Sect. 9.7.

Even after solving the problems related to the client’s effort, the server’s computational cost
can also be prohibitive. For example, the server might have to perform expensive exponentia-
tions for each item in its set. Unfortunately no known technique allows the server to have
computational cost sublinear in the size of its (large) input set. The best we can reasonably
hope for (which we achieve) is for the server’s computation to consist almost entirely of fast
symmetric-key operations, which have hardware support in modern processors.

If contact discovery were a one-time step only for new users of a service, then the difference
between a few seconds in performance would not be a significant concern. Yet, existing users
must also perform contact discovery to maintain an up-to-date view. Consider a service with
100 million users, each of which performs maintenance contact discovery once a week. This is
only possible if the marginal cost of a contact discovery instance costs less than 6 milliseconds
for the service provider (one week is roughly 600 million milliseconds)! To be truly realistic
and practical, private contact discovery should be as fast as possible.

9.1.2 Overview of Results and Contributions

We propose a new approach for private contact discovery that is practical for realistic set
sizes. We refer to our paradigm as PIR-PSI, as it combines ideas from private information
retrieval (PIR) and standard 2-party PSI.

4A 2014 survey by Pew Research found that the average number of Facebook friends is 338 [Smi14].

180

9 PIR-PSI: Scaling Private Contact Disvocery

Techniques (Sect. 9.3) Importantly, we split the service provider’s role into two to four
non-colluding servers. With 2 servers, each one holds a copy of the user database. When a
third server is used, 2 of the servers can hold secret shares of the user database rather than
hold it in the clear. With 4 servers, all servers can hold secret shares. By using a computational
PIR scheme, a single-server solution is possible. Most of our presentation focuses on our main
contribution, the simpler 2-server version, but in Sect. 9.8 we discuss the other variants in
detail. Note that multiple non-colluding servers is the traditional setting for PIR, and is what
allows our approach to have sublinear cost (in the large server set size) for the client while
still hiding its input set.

Roughly speaking, we combine highly efficient state-of-the-art techniques from 2-server PIR
and 2-party private set intersection. The servers store their sets in a Cuckoo table so that a
client with n items needs to probe only O(n) positions of the server’s database to compute the
intersection. Using the state-of-the-art PIR scheme of Boyle et al. [BGI15; BGI16], each such
query requires O(κ log N) bits of communication, where N is the size of the server’s data,
and κ is the symmetric security parameter. In standard PIR, the client learns the positions of
the server’s data in the clear. To protect the servers’ privacy, we modify the PIR scheme so
that one of the servers learns the PIR output, but blinded by masks known to the client. This
server and the client can then perform a standard 2-party PSI on masked values. For this we
use the efficient PSI scheme of [KKRT16].

Within this general paradigm, we identify several protocol-level and systems-level optimiza-
tions that improve performance over a naïve implementation by several orders of magnitude.
For example, the fact that the client probes randomly distributed positions in the server’s
database (a consequence of Cuckoo hashing with random hash functions) leads to an opti-
mization that reduces cost by approximately 500×.

As a contribution of independent interest, we performed an extensive series of experiments
(almost a trillion hashing instances) to develop a predictive formula for computing ideal
parameters for Cuckoo hashing. This allows our protocol to use very tight hashing parameters,
which can also yield similar improvements in all other Cuckoo hashing based PSI protocols.
A more detailed description can be found in Section 9.3.2.

Privacy/Security For The Client (Sect. 9.4) If a corrupt server does not collude with the
other server, then it learns nothing about the client’s input set except its size. In the case
where the two servers collude, even if they are malicious (i.e., deviating arbitrarily from the
protocol) they learn no more than the client’s hashed input set. In other words, the failure
mode for PIR-PSI is to reveal no more than the naïve-hashing approach. Since naïve-hashing is
the status quo for contact discovery in practice, PIR-PSI is a strict privacy improvement.

Furthermore, the non-collusion guarantee is forward-secure. Compromising both servers
leaks nothing about contact-discovery interactions that happened previously (when at most
one server was compromised).

In PIR-PSI, malicious servers can use a different input set for each client instance (e.g., pretend
that Alice is in their database when performing contact discovery with Bob, but not with

181

9 PIR-PSI: Scaling Private Contact Disvocery

Carol). That is, the servers’ effective data set is not anchored to some public root of trust
(e.g., a signature or hash of the “correct” data set).

Privacy/Security For The Server (Sect. 9.4) A semi-honest client (i.e., one that follows the
protocol) learns no more than the intersection of its set with the servers’ set, except its size. A
malicious client can learn different information, but still no more than O(n) bits of information
about the servers’ set (n is the purported set size of the client). We can characterize precisely
what kinds of information a malicious client can learn.

Performance (Sect. 9.6) Let n be the size of the client’s set, let N the size of the server’s
set (n≪ N), and let κ be the computational security parameter. The total communication
for contact discovery is O

�

κn log(N log n/κn)
�

. The computational cost for the client is
O
�

n log(N log n/κn)
�

AES evaluations, O(n) hash evaluations, and κ exponentiations. The
exponentiations can be done once-and-for all in an initialization phase and re-used for
subsequent contact discovery events between the same parties.

Each server performs O
�

(N log n)/κ
�

AES evaluations, O(n) hash evaluations, and κ
(initialization-time) exponentiations. While this is indeed a large number of AES calls,
hardware acceleration (i.e., AES-NI instructions and SIMD vectorization) can easily allow
processing of a billion items per second per thread on typical server hardware. Furthermore,
the server’s computational effort in PIR-PSI is highly parallelizable, and we explore the effect
of parallelization on our protocol.

Other Features (Sect. 9.8) In PIR-PSI the servers store their data-set in a standard Cuckoo
hashing table. Hence, the storage overhead is constant and updates take constant time.

PIR-PSI can be easily extended so that the client privately learns associated data for each item
in the intersection. In the case of a secure messaging app, the server may hold a mapping of
email addresses to public keys. A client may wish to obtain the public keys of any users in its
own address book.

As mentioned previously, PIR-PSI can be extended to a 3-server or 4-server variant where
some of the servers hold only secret shares of DB, with security holding if no two servers
collude (cf. Sect. 9.8.2). This setting may be a better fit for practical deployments of contact
discovery, since a service provider can recruit the help of other independent organizations,
neither of which need to know the provider’s user database. Holding the user database in
secret shared form reduces the amount of data that the service provider retains about its
users5 and gives stronger defense against data exfiltration.

5https://www.reuters.com/article/us-usa-cyber-signal/signal-messaging-app-turns-over-
minimal-data-in-first-subpoena-idUSKCN1241JM

182

https://www.reuters.com/article/us-usa-cyber-signal/signal-messaging-app-turns-over-minimal-data-in-first-subpoena-idUSKCN1241JM
https://www.reuters.com/article/us-usa-cyber-signal/signal-messaging-app-turns-over-minimal-data-in-first-subpoena-idUSKCN1241JM

9 PIR-PSI: Scaling Private Contact Disvocery

9.1.3 RelatedWork and Comparison

PSI with Asymmetric Set Sizes As discussed in the previous section, many protocols for
PSI are not well-suited when the two parties have input sets of very different sizes. For
example, [KKRT16] is one of the fastest PSI protocols for large sets of similar size, but
requires communication of at least O

�

σ(N + n)
�

where σ is a statistical security parameter.
This cost makes these approaches prohibitive for contact discovery, where N is very large.

Only a handful of works specifically consider the case of asymmetric set sizes. Chen et
al. (CLR) [CLR17] use somewhat-homomorphic encryption to reduce communication to
logarithmic in the large set size N . This work was recently extended in [CHLR18] to also
support associated data. [PSZ18] compares several approaches. Building on top of that,
Kiss et al. (KLSAP) [KLS+17] describe an approach that defers O(N) communication to a
pre-processing phase, in which the server sends a large Bloom filter containing AES(k, x) for
each of its items x . To perform contact discovery, the parties use Yao’s protocol to obliviously
evaluate AES on each of the client’s items, so the client can then probe the Bloom filter for
membership. Resende and Aranha (RA) [RA18] describe a similar approach in which the
server sends a large message during the preprocessing phase. In this case, the large message
is a more space-efficient Cuckoo filter.

In Sect. 9.7 we provide a detailed comparison between CLR, KLSAP, RA, and PIR-PSI. The
main qualitative difference is the security model. The protocols listed above are in a two-
party setting involving a single server, whereas PIR-PSI involves several non-colluding servers.
We discuss the consequences of this security model more thoroughly in Sect. 9.4. Besides
this difference, the KLSAP and RA protocols require significant offline communication and
persistent storage for the client.

Keyword PIR Chor, et al. [CGN98] defined a variant of PIR called keyword PIR, in which
the client has an item x , the server has a set S, and the client learns whether x ∈ S. Our
construction can be viewed as a kind of multi-query keyword PIR with symmetric privacy
guarantee for the server (the client learns only whether x ∈ S). In [BGI16, Appendix A] a
similar method is proposed that could be used to implement private contact discovery.

The keyword-PIR method would have computation cost of O(Nnℓ) AES invocations, where
the items in the parties’ sets come from the set {0,1}ℓ. By contrast, our protocol has server
computation cost O(N log n). We can imagine all parties first hashing their inputs down to a
small ℓ-bit fingerprint before performing contact discovery. But with N items in the server’s
set, we must have ℓ ≥ s + 2 log N to limit the probability of a collision to 2−s. In practice
ℓ > 60 is typical, hence nℓ is much larger than log n.

Signal’s Private Contact Discovery In late 2017 the Signal messaging service announced
a solution for private contact discovery based on Intel SGX, which they plan to deploy.6 The
idea is for the client to send their input set directly into an SGX enclave on the server, where

6https://signal.org/blog/private-contact-discovery/

183

https://signal.org/blog/private-contact-discovery/

9 PIR-PSI: Scaling Private Contact Disvocery

it is privately compared to the server’s set. The enclave can use remote attestation to prove
the authenticity of the server software.

The security model for this approach is incomparable to ours and others, as it relies on a trusted
hardware assumption. Standard two-party PSI protocols rely on standard cryptographic
hardness assumptions. Our PIR-PSI protocol relies on cryptographic assumptions as well
as an assumption of non-collusion between two servers. There are several disadvantages
of SGX, which we address in Sect. 2.6.3.

9.2 Preliminaries

In this section we introduce the preliminaries and the notation used in this chapter. Back-
ground information on PIR is provided in Sect. 2.5. In this work, we are specifically interested
in 2-server PIR schemes.

Throughout this chapter we use the following notation, which we summarize in Tab. 9.1:
The large server set has N items, while the small client set has n items. The length of each
item is ℓ bits. In our implementation we use ℓ = 128 bits. We write [m] = {1, . . . , m}. The
computational and statistical security parameters are denoted by κ,σ, respectively. In our
implementation we use κ= 128 and σ = 40.

Table 9.1: Notation: Parameters and symbols used.

Parameter Symbol

symmetric security paramter [bits] κ = 128 bits
statistical security paramter [bits] σ = 40 bits
element length [bits] ℓ = 128 bits
client set size [elements] n
server set size [elements] N
Cuckoo table expansion (Sect. 9.3.2) e
Cuckoo table size [elements] (Sect. 9.3.2) m= e · N
DPF bins (Sect. 9.3.4) β

DPF bin size [elements] (Sect. 9.3.4) µ

PIR block size (Sect. 9.3.5) b
scaling factor (Sect. 9.5.4) c
server database DB
server Cuckoo hash table CT
the number of Cuckoo hash functions k

184

9 PIR-PSI: Scaling Private Contact Disvocery

9.2.1 Distributed Point Functions

Gilboa and Ishai [GI14] proposed the notion of a distributed point function (DPF). For our
purposes, a DPF with domain size N consists of the following algorithms:

• DPF.Gen: a randomized algorithm that takes index i ∈ [N] as input and outputs two
(short) keys k1, k2.

• DPF.Expand: takes a short key k as input and outputs a long expanded key K ∈ {0, 1}N .7

The correctness property of a DPF is that, if (k1, k2)← DPF.Gen(i) then DPF.Expand(k1)⊕
DPF.Expand(k2) is a string with all zeros except for a 1 in the i-th bit.

A DPF’s security property is that the marginal distribution of k1 alone (resp. k2 alone) leaks no
information about i. More formally, the distribution of k1 induced by (k1, k2)← DPF.Gen(i)
is computationally indistinguishable from that induced by (k1, k2) ← DPF.Gen(i′), for all
i, i′ ∈ [N].

PIR from DPF Distributed point functions can be used for 2-party PIR in a natural way.
Suppose the servers hold a database DB of N strings. The client wishes to read item DB[i]
without revealing i. Using a DPF with domain size N , the client can compute (k1, k2) ←
DPF.Gen(i), and send one kb to each server. Server 1 can expand k1 as K1 = DPF.Expand(k1)
and compute the inner product:

K1 ·DB
def
=
⨁︁N

j=1 K1[j] ·DB[j].

Server 2 computes an analogous inner product. The client can then reconstruct as:

(K1 ·DB)⊕ (K2 ·DB) = (K1 ⊕ K2) ·DB= DB[i]

since K1 ⊕ K2 is zero everywhere except in position i.

This scheme works analogous to Chor et al.’s linear summation PIR (CGKS), described
in Sect. 2.5.2. The DPF keys ki are the corresponding queries qi in CGKS.

BGI construction Boyle et al. [BGI15; BGI16] describe an efficient DPF construction in
which the size of the (unexpanded) keys is roughly κ(log N − logκ) bits, where κ is the
symmetric security parameter.

Their construction works by considering a full binary tree with N leaves. To expand the
key, the DPF.Expand algorithm performs a PRF evaluation for each node in this tree. The
(unexpanded) keys contain a PRF block for each level of the tree.

As described, this gives unexpanded keys that contain κ bits for each level of a tree of
height .log N . To achieve κ(log N − logκ) bits total, BGI suggest the following “early termi-
nation optimization”: Treat the expanded key as a string of N/κ characters over the alphabet

7The original DPF definition also requires efficient random access to this long expanded key. Our usage of DPF
does not require this feature.

185

9 PIR-PSI: Scaling Private Contact Disvocery

PARAMETERS: Set sizes m and n; Two parties: sender S and receiver R
FUNCTIONALITY:

• Wait for an input X = {x1, x2, . . . , xn} ⊆ {0,1}∗ from sender S and an input
Y = {y1, y2, . . . , ym} ⊆ {0, 1}∗ from receiver R

• Give output X ∩ Y to the receiver R.

Figure 9.1: Private Set Intersection Functionality Fm,n
psi

{0,1}κ. This leads to a tree of height log(N/κ) = log N − logκ. An extra κ-bit value is
required to deal with the longer characters at the leaves, but overall the total size of the
unexpanded keys is roughly κ(log N − logκ) bits. In practice, we use hardware-accelerated
AES-NI as the underlying PRF, with κ= 128.

The major difference between this scheme and CGKS-based schemes is the size of the queries:
in CGKS and RAID-PIR, the queries qi scale linearly with the size of the database, while in
the newer DPF-based PIR the queries ki scale logarithmic in the database size. Currently PIR
from DPFs can only efficiently be built for two servers and the extension to more than two
servers requires much more expensive computation [BGI15].

9.2.2 Private Set Intersection (PSI)

Private Set Intersection (PSI) is an application of secure computation that allows parties,
each holding a set of private items, to compute the intersection of their sets without revealing
anything except for the intersection itself. We describe the ideal functionality for PSI in Fig. 9.1.
Based on oblivious polynomial evaluation, the first PSI protocol was formally introduced in
2004 by [FNP04]. However, this protocol requires a quadratic number of expensive public
key operations. Over the last decade, many PSI protocols [DKT10; DT10; DCW13; PSZ14;
PSSZ15; KKRT16; PSZ18; OOS17; RR17; CLR17; KLS+17; RA18] were proposed with linear
(or even sub-linear) communication and computation complexity, which made PSI become
practical for many applications. These PSI protocols can be classified into two different
settings based on the size of party’s input set: (1) symmetric, where the sets size have
approximately the same size; (2) asymmetric, where one of the sets is severely smaller than
the other.

The most efficient PSI approaches [KKRT16; PSZ18] for symmetric sets are based on efficient
Oblivious Transfer (OT) extension, cf. Sect. 2.3.

186

9 PIR-PSI: Scaling Private Contact Disvocery

9.3 Our Construction: PIR-PSI

We make use of the previously described techniques to achieve a practical solution for privacy-
preserving contact discovery, called PIR-PSI. We assume that the service provider’s large user
database is held on 2 separate servers. To perform private contact discovery, a client interacts
with both servers simultaneously. The protocol’s best security properties hold when these
two servers do not collude. Variants of our construction for 3 and 4 servers are described
in Sect. 9.8.2, in which some of the servers hold only secret shares of the user database.
We develop the protocol step-by-step in the following sections. The full protocol is shown
in Prot. 9.1 on p. 194.

9.3.1 Warmup: PIR-PEQ

At the center of our construction is a technique for combining a Private Equality Test (PEQ) –
a special case of PSI when the parties have one item each) [PSZ14] with a PIR query. Suppose
a client holds private input i, x and wants to learn whether DB[i] = x , where the database DB
is the private input of the servers.

First recall the linear summation PIR scheme from Sect. 2.5. This PIR scheme has linear
reconstruction in the following sense: the client’s output DB[i] is equal to the XOR of the
responses from the two servers.

Suppose a PIR scheme with linear reconstruction is modified as follows: the client sends
an additional mask r to server #1. Server #1 computes its PIR response v1 and instead of
sending it to the client, sends v1⊕ r to server #2. Then server #2 computes its PIR response v2
and can reconstruct the masked result v2⊕ (v1⊕ r) = DB[i]⊕ r. We refer to this modification
as designated-output PIR, as the client designates server #2 to learn the (masked) output.

The client can now perform a standard 2-party secure computation with server #2. In
particular, they perform a PEQ with input x ⊕ r from the client and DB[i]⊕ r from the server.
As long as the PEQ is secure, and the two servers do not collude, the servers learn nothing
about the client’s input. If the two servers collude, they can learn i but not x .

This warm-up problem is not yet sufficient for computing private set intersection between a
set X and DB, since the client may not know which location in DB to test against. Next we
will address this by structuring the database as a Cuckoo hash table.

9.3.2 Cuckoo Hashing

Cuckoo hashing has seen extensive use in Private Set Intersection protocols [PSZ14; PSSZ15;
KKRT16; PSZ18; OOS17] and in related areas such as privacy preserving genomics [CCL+17].
This hashing technique uses an array with m entries and k hash functions h1, . . . , hk : {0, 1}∗→
[m]. The guarantee is that an item x will be stored in a hash table at one of the locations
indexed by h1(x), ..., hk(x). Furthermore, only a single item will be assigned to each entry.

187

9 PIR-PSI: Scaling Private Contact Disvocery

Typically, k is quite small (we use k = 3). When inserting x into the hash table, a random
index i ∈ [k] is selected and x is inserted at location hi(x). If an item y currently occupies
that location, it is evicted and y is re-inserted using the same technique. This process is
repeated until all items are inserted or some upper bound on the number of trials has been
reached. In that latter case, the procedure can either abort or place the item in a special
location called the stash. We choose Cuckoo hashing parameters such that this happens with
sufficiently low probability (see Sect. 9.5.2 and Sect. 9.5.3), i.e., no stash is required.

In our setting the server encodes its set DB into a Cuckoo hash table CT of size m = e · N ,
where e > 1 is an expansion factor. That way, the client (with much smaller set X) must
probe only k|X | positions of the Cuckoo table to compute the intersection. Using the PIR-PEQ
technique just described makes the communication linear in |X | but only logarithmic in |DB|,
due to the complexity of the DPF-PIR queries.

9.3.3 Hiding the Cuckoo Locations

There is a subtle issue if one applies the PIR-PEQ idea naïvely. When the client learns that
y ∈ (DB ∩ X), he/she will in fact learn whether y is placed in position h1(y) or h2(y) or
h3(y) of the Cuckoo table. But this leaks more than the intersection DB∩ X , in the sense that
it cannot be simulated given just the intersection! The placement of y in the Cuckoo table CT
depends indirectly on all the items in DB.8 Note that this is not a problem for other PSI
protocols, since there the party who processes their input with Cuckoo hashing receives the
output from the PEQs. For contact discovery, we require these to be different parties.

To overcome this leakage, we design an efficient oblivious shuffling procedure that obscures
the Cuckoo location of an item. First, let us start with a simple case with two hash functions
h1, h2, where the client holds a single item x . This generalizes in a natural way to k = 3 hash
functions. Full details, and the extension to multiple items are provided in our paper [DRRT18,
Appendix].

The client will generate and send two PIR queries, for positions h1(x) and h2(x) in CT. The
client also sends two masks r1 and r2 to server #1 which serve as masks for the designated-
output PIR. Server #1 randomly chooses whether to swap these two masks. That is, it chooses
a random permutation σ : {1,2} → {1,2} and masks the first PIR query with rσ(1) and
the second with rσ(2). Server #2 then reconstructs the designated PIR output, obtaining
CT[h1(x)]⊕ rσ(1),CT[h2(x)]⊕ rσ(2). The client now knows that if x ∈ DB, then server #2
must hold either x ⊕ r1 or x ⊕ r2.

Now instead of performing a private equality test, the client and server #2 can perform a
standard 2-party PSI with inputs {x ⊕ r1, x ⊕ r2} from the client and the designated PIR

8For instance, say the client holds set X and (somehow) knows the server has set DB = X ∪ {z} for some
unknown z. It happens that for many x ∈ X and i ∈ [k], hi(x) equals some location ρ. Then with good
probability some x ∈ X will occupy location ρ. However, after testing location ρ the client learns no x ∈ X
occupies this location. Then the client has learned some information about z (namely, that hi(z) = ρ is likely
for some i ∈ [k]), even though z is not in the intersection.

188

9 PIR-PSI: Scaling Private Contact Disvocery

values {CT[h1(x)]⊕ rσ(1),CT[h2(x)]⊕ rσ(2)} from server #2. This technique perfectly hides
whether x was found at h1(x) or h2(x). While it is possible to perform a separate 2-item
PSI for each PIR query, it is actually more efficient (when using the 2-party PSI protocol of
[KKRT16]) to combine all of the PIR queries into a single PSI with 2n elements each.

Because of the random masks, this approach may introduce a false positive, where CT[j] ̸= x
but CT[j]⊕r = x⊕r ′ (for some masks r and r ′), leading to a PSI match. In our implementation
we only consider items of length 128, so the false positive probability taken over all client
items is only 2−128+log2((2n)2), by a standard union bound.

9.3.4 Optimization: Binning Queries

The client probes the servers’ database in positions determined by the Cuckoo hash functions.
Under the reasonable assumptions that (1) the client’s input items are chosen independently
of the Cuckoo hash functions and (2) the Cuckoo hash functions are random functions, the
client probes the Cuckoo table CT in uniformly distributed positions.

Knowing that the client’s queries are randomly distributed in the database, we can take
advantage of the fact that the queries are “well-spread-out” in some sense. Consider dividing
the server’s CT (m = N · e entries) into β bins of equal size. The client will query the database
in nk random positions, so the distribution of these queries into the β bins can be modeled as
a standard balls and bins problem. We can choose a number β of bins and a maximum load µ
so that Pr[there exists a bin with ≥ µ balls] is below some threshold (say, 2−40 in practice).
With such parameters, the protocol can be optimized as follows.

The parties agree to divide CT into β regions of equal size. The client computes the positions
of CT that he/she wishes to query, and collects them according to their region. The client
adds dummy PIR queries until there are exactly µ queries to each region. The dummy items
are necessary because revealing the number of (non-dummy) queries to each region would
leak information about the client’s input to the server. For each region, the server treats the
relevant m/β items as a sub-database, and the client makes exactly µ PIR queries to that
sub-database.

This change leads to the client making more PIR queries than before (because of the dummy
queries), but each query is made to a much smaller PIR instance. Looking at specific parame-
ters reveals that binning can give significant performance improvements.

It is well-known that with β = O
�

nk/ log(nk)
�

bins, the maximum number of balls in any
bin is µ = O
�

log(nk)
�

with very high probability. The total number of PIR queries (including
dummy ones) is βµ = Θ(nk). That is, the binning optimization with these parameters
increases the number of PIR queries by a constant factor. At the same time, the PIR database
instances are all smaller by a large factor of β = O

�

nk/ log(nk)
�

. The main bottleneck in
PIR-PSI is the computational cost of the server in answering PIR queries, which scales linearly
with the size of the PIR database. Reducing the size of all effective PIR databases by a factor

189

9 PIR-PSI: Scaling Private Contact Disvocery

of β has a significant performance impact. In general, tuning the constant factors in β (and
corresponding µ) gives a wide trade-off between communication and computation.

9.3.5 Optimization: Larger PIR Blocks

So far we have assumed a one-to-one correspondence between the entries in the server’s
Cuckoo table and the server’s database for purposes of PIR. That is, we invoke PIR with an
v-item database corresponding to a region of the Cuckoo table with v entries.

Suppose instead that we use PIR for an v/2-item database, where each item in the PIR
database consists of a block of 2 Cuckoo table entries. The client now queries for a single
item, but the PIR returns a block of 2 Cuckoo table entries. The server will feed both entries
into the 2-party PSI, so that these extra neighboring items are not leaked to the client.

This change affects the various costs in the following ways: (1) It reduces the number of
cryptographic operations needed for the server to answer each PIR query by half; (2) It does
not affect the computational cost of the final inner product between the expanded DPF key
and PIR database entries, since this is over the same amount of data; (3) It reduces the
communication cost of each PIR query by a small amount (κ bits); (4) It doubles all costs of
the 2-party PSI, since the server’s PSI input size is doubled.

Of course, this approach can be generalized to use a PIR blocks of size b, so that a PIR
database of size v/b is used for v Cuckoo table entries. This presents a trade-off between
communication and computation, discussed further in Sect. 9.5.

9.3.6 Asymptotic Performance

With these optimizations the computational complexity for the client is the generation of
βµ = O(n) PIR queries of size O(log(N/κβ)). As such they perform O(n log(N/κβ)) =
O(n log(N log n/κn)) calls to a PRF and send O(κn log(N/(κn log n))) bits. The servers
must expand each of these queries to a length of O(N/β) bits which requires O(Nµ/κ) =
O(N log n/κ) calls to a PRF.

9.4 Security

9.4.1 Semi-Honest Security

The most basic and preferred setting for PIR-PSI is when at most one of the parties is passively
corrupt (a.k.a. semi-honest). This means that the corrupt party does not deviate from the
protocol. Note that restricting to a single corrupt party means that we assume non-collusion
between the two PIR servers.

190

9 PIR-PSI: Scaling Private Contact Disvocery

Theorem 2. Semi-Honest Security: The FPIR-PSI protocol (Prot. 9.1) is a realization of Fn,N
psi

secure against a semi-honest adversary corrupting at most one party in the Fnk,βµ
psi hybrid model.

Proof. In the semi-honest non-colluding setting it is sufficient to show that the transcript of
each party can be simulated given their input and output. That is, we consider three cases
where each one of the parties is individually corrupt.

Corrupt Client: Consider a corrupt client with input X and output Z = X ∩ DB. We show
a simulator that can simulate the view of the client given just X and Z . First observe that
the simulator playing the role of both servers knows the permutation π= π2 ◦π1 and the
vector of masks r. As such, response v can be computed as follows. For x ∈ Z the simulator
randomly samples one of k masks ri1 , . . . , rik ∈ r which the client will use to mask x and
add x ⊕ ri j

to v. Pad v with random values not contained in union u to size βµ and forward

v to the ideal Fnk,βµ
PSI . Conditioned on no spurious collisions between v and u in the real

interaction (which happen with negligible probability, following the discussion in Sect. 9.3.3)
this ideal interaction perfectly simulates the real interaction.

One additional piece of information learned by the client is that Cuckoo hashing on the set
DB with hash function h1, ...,hk succeeded. However, by the choice of Cuckoo parameter, this
happens with overwhelming probability and therefore the simulator can ignore the case of
Cuckoo hashing failure.

Corrupt Server: Each server’s view consists of:

• PIR queries (DPF keys) from the client; since a single DPF key leaks nothing about the
client’s query index, these can be simulated as dummy DPF keys.

• Messages in the oblivious masking step, which are uniformly distributed as discussed
in Sect. 9.3.3.

• In the case of server #2, masked PIR responses from server #1, which are uniformly
distributed since they are masked by the r⃗ values.

9.4.2 Colluding Servers

If the two servers collude, they will learn both DPF keys for every PIR query, and hence
learn the locations of all client’s queries into the Cuckoo table. These locations indeed
leak information about the client’s set, although the exact utility of this leakage is hard to
characterize. The servers still learn nothing from the PSI subprotocol by colluding since only
one of the servers is involved.

It is worth providing some context for private contact discovery. The state-of-the-art for
contact discovery is a naïve (insecure) hashing protocol, where both parties simply hash
each item of their set, the client sends its hashed set to the server, who then computes the

191

9 PIR-PSI: Scaling Private Contact Disvocery

intersection. This protocol is insecure because the server can perform a dictionary attack on
the client’s inputs.

However, any PSI protocol (including ours) can be used in the following way. First, the parties
hash all their items, and then use the hashed values as inputs to the PSI. We follow this
approach in PIR-PSI. As long as the hash function does not introduce collisions, pre-hashing
the inputs preserves the correctness of the PSI protocol.

A side effect of pre-hashing inputs is that the parties never use their “true” inputs to the PSI
protocol. Therefore, the PSI protocol cannot leak more than the hashed inputs — identical
to what the status quo naïve hashing protocol leaks. Again, this observation is true for any
PSI protocol. In the specific case of PIR-PSI, if parties pre-hash their inputs, then even if the
two servers collude (even if they are malicious), the overall protocol can never leak more
about the client’s inputs than naïve hashing. Relative to existing solutions implemented in
current applications, that use naïve hashing, there is no extra security risk for the client to
use PIR-PSI.

9.4.3 Malicious Client

Service providers may be concerned about malicious behavior (i.e., protocol deviation) by
clients during contact discovery. Since servers get no output from PIR-PSI, there is no concern
over a malicious client inducing inconsistent output for the servers. The only issue is therefore
what unauthorized information a malicious client can learn about DB.

Overall the only information the client receives in PIR-PSI is from the PSI subprotocol. We first
observe that the PSI subprotocol we use ([KKRT16]) is naturally secure against a malicious
client, when it is instantiated with an appropriate OT extension protocol. This fact has been
observed in [Lam16; OOS17]. Hence, in the presence of a malicious client we can treat
the PSI subprotocol as an ideal PSI functionality. The malicious client can provide at most
nk inputs to the PSI protocol — the functionality of PSI implies that the client therefore learns
no more than nk bits of information about DB. This leakage is comparable to what an honest
client would learn by having an input set of nk items.

Modifications for More Precise Leakage Characterization In DPF-based PIR clients can
make malformed PIR queries to the server, by sending k1, k2 so that DPF.Expand(k1) ⊕
DPF.Expand(k2) has more than one bit set to 1. The result of such a query will be the XOR of
several DB positions.

However, Boyle et al. [BGI16] describe a method by which the servers can ensure that the
client’s PIR queries (DPF shares) are well-formed. The technique increases the cost for the
servers by a factor of roughly 3× (but adds no cost to the client). The servers agree on a
pseudorandom vector w⃗ of the same length as DB. The entries of w⃗ are elements in some field
with large characteristic. Let w⃗2 denote the result of squaring every component in w⃗. Each
server computes inner products K · w⃗ and K · w⃗2, where K is its expanded DPF share. If the
DPF query was well-formed, then (K1 ⊕ K2) · w⃗ will consist of a single element, whose square

192

9 PIR-PSI: Scaling Private Contact Disvocery

is equal to (K1 ⊕ K2) · w⃗2. If the DPF query is malformed, then (K1 ⊕ K2) · w⃗ will be a sum of
more than one entry of w⃗, whose square will in general not be equal to the corresponding
sum of squares from (K1 ⊕ K2) · w⃗2. Hence the servers simply check whether:

�

[K1 · w⃗]⊕ [K2 ⊕ w⃗]
�2 ?
= [K1 · w⃗2]⊕ [K2 ⊕ w⃗2].

Note that each bracketed term is just a single field element. The servers can use a small secure
computation to test this expression, since revealing the result of (K1 ⊕ K2) · w⃗ would reveal
an honest client’s query location. Note that we currently do not implement this additional
feature in PIR-PSI.

The client may also send malformed values in the oblivious masking phase. But since the
servers use those values independently of DB, a simulator (who sees the client’s oblivious
masking messages to both servers) can simulate what masks will be applied to the PIR queries.
Overall, if the servers ensure validity of the client’s PIR values, we know that server #1’s
input to PSI will consist of a collection of nk individual positions from DB, each masked with
values that can be simulated.

When deployed in practice, service providers can additionally use rate-limiting mechanisms
that ensure that a certain account or IP-address cannot query more than a given threshold of
contacts in a given time frame.

9.5 Implementation

We implemented a prototype of our FPIR-PSI protocol described in Prot. 9.1. Our implementa-
tion uses AES as the underlying PRF (for the distributed point function of [BGI16]) and relies
on the PSI implementation of [KKRT16] and the oblivious transfer in libOTe9 with security
against passive adversaries. OTs with security against malicious clients [OOS17] could be
added at small additional overhead. Our implementation is publicly available on GitHub10.

9.5.1 System-level Optimizations

We highlight here system-level optimizations that contribute to the high performance of our
implementation. We analyze their impact on performance in Sect. 9.6.3.

Optimized DPF Full-domain Evaluation Recall that the DPF construction of [BGI16] can
be thought of as a large binary tree of PRF evaluations. Expanding the short DPF key
corresponds to computing this entire tree in order to learn the values at the leaves. The
process of computing the values of all the leaves is called “full-domain evaluation” in [BGI16],
and is the major computational overhead for the servers in our protocol. To limit its impact
our implementation takes full advantage of instruction vectorization (SIMD). Most modern

9https://github.com/osu-crypto/libOTe
10https://github.com/osu-crypto/libPSI

193

https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libPSI

9 PIR-PSI: Scaling Private Contact Disvocery

Parameters: X is the client’s set, DB is the set held by server #1 and #2, where X ,DB ⊆ {0,1}ℓ.
n= |X |, N = |DB|, k is the number of Cuckoo hash functions. The protocol uses an instance of FPSI

with input length ℓ. σ,κ are the statistical and computational security parameter.

1. Cuckoo Hashing: Both servers agree on the same k random hash functions h1, ..., hk : {0, 1}ℓ→
[m] and Cuckoo table size m = |CT| such that inserting N items into Cuckoo hash table CT
succeeds with probability ≥ 1− 2−σ.

The servers compute Cuckoo table CT such that for all y ∈ DB, CT[hi(y)] = y for some i ∈ k.

2. Query: Upon the client receiving their set X ,

a) Send n= |X | to the servers. All parties agree on the number of bins β = O(n/ log n), and
their size µ= O(log n) (see Sect. 9.5.4). Define the region DBi as all locations j ∈ [m] of
CT such that (i − 1)m

β < j ≤ i m
β .

b) For x ∈ X , h ∈ {h1, ..., hk}, let h(x) index the j-th location in bin i. The client adds (x , j) to
bin B[i].

c) For bin B[i],
i. Pad B[i] to size µ with the pair (⊥, 0).

ii. For (x , j) ∈ B[i] in a random order, the client constructs the keys k1, k2 = DPF.Gen(j).
Send ks to server #s.

iii. Server #s expands their key Ks = DPF.Expand(ks) and compute vs[ρ] = DBi ·Ks where
ks is the ρ-th DPF key received.

3. Shuffle: Observe that, (v1 ⊕ v2)[ρ] = CT[jρ], where jρ is the ρ-th PIR location.

a) The client samples a permutation π of βµ items such that for the i-th x ∈ X , and j ∈ [k] it
holds that the π

�

(i − 1)k+ j
�

-th DPF key corresponds to the query of x at location h j(x).
b) The client samples w1, w2 ← {0,1}κ and sends w1 to server #1, and w2 to server #2.

Define shared terms t = PRG(w2), (r||s||π1) = PRG(w1) where r, s, t are random vectors of
the same size as vi and π1 is a random permutation of βµ items. The client sends π2 to
server #2 such that π2 ◦π1 = π and sends p0 = t ⊕π(s) to server #1.

c) Server #1 samples a random permutation σ of βµ items such that for all i ∈ [βµ/k] it
holds that σ(j) ∈ Si where j ∈ Si = (i−1)k+ {1, ..., k}. Server #1 sends p1 = π1

�

σ(r)⊕ s
�

and p2 = p0 ⊕ v1 to server #2.

d) Server #2 computes v = v2 ⊕π2(p1)⊕ t ⊕ p2.

4. PSI: The client then computes the masked versions of the x i ∈ X as x ′i = {x i⊕ rπ((i−1)k+1), ..., x i⊕
rπ(ik)} and computes u as the union of all these sets. The client and server #2 respectively send

u, v to Fnk,βµ
psi such that the client receives z = u∩ v. The client outputs {x i : x ′i ∩ z ̸= ;}.

Protocol 9.1: Our 2-server PIR-PSI protocol FPIR-PSI.

processors are capable of performing the same instruction on multiple (e.g., 8) pieces of data.
However, to fully utilize this feature, special care has to be taken to ensure that the data being
operated on is in cache and contiguous. To meet these requirements, our implementation
first evaluates the top 3 levels of the DPF binary tree, resulting in 8 remaining independent
subtrees. We then perform SIMD vectorization to traverse all 8 subtrees simultaneously.

194

9 PIR-PSI: Scaling Private Contact Disvocery

Combining this technique with others, such as the removal of if statements in favor of array
indexing, our final implementation is roughly 20× faster then a straight-forward (but not
careless) sequential implementation and can perform full-domain DPF evaluation at a rate of
2.6 billion bits/s on a single core.

Single-pass Processing With the high raw throughput of DPF evaluation, it may not be
surprising that it was no longer the main performance bottleneck. Instead, performing many
passes over the dataset (once for each PIR query) became the primary bottleneck by an order
of magnitude. To address this issue we further modify the workflow to evaluate all DPFs (PIR
queries) for a single bin in parallel using vectorization.

That is, for all µ DPF evaluations in a given bin, we evaluate the binary trees in parallel, and
traverse the leaves in parallel. The values at the leaves are used to take an inner product with
the database items, and the parallel traversal ensures that a given database item only needs
to be loaded from main memory (or disk) once. This improves (up to 5×) the performance of
the PIR protocol on large datasets, compared to the straightforward approach of performing
multiple sequential passes of the dataset.

This technique could be combined with more efficient efficient matrix multiplication
from [LG15] or the four Russians precomputation in Sect. 8.3.5.

Parallelization Beyond the optimizations listed above, we observe that our protocol simply
is very amenable to parallelization. In particular, our algorithm can be parallelized both
within the DPF evaluation using different subtrees and by distributing the PIR protocols
for different bins between several cores/machines. In the setting where thousands of these
protocols are being executed a day on a fixed dataset, distributing bin evaluations between
different machines can be extremely attractive due to the fact that several protocol instances
can be batched together to gain even greater benefits of vectorization and data locality. The
degree of parallelism that our protocol allows can be contrasted with more traditional PSI
protocols which require several global operations, such as a single large shuffle of the server’s
encoded set (as in [PSZ14; PSSZ15; KKRT16; PSZ18; OOS17]).

9.5.2 Cuckoo Hashing Parameters

For optimal performance it is crucial to minimize the Cuckoo table size and the number of
hash functions. The table size affects how much work the servers have to perform, while
the number of hash functions k affects the number of client queries. We wish to minimize
both parameters while ensuring Cuckoo hashing failures are unlikely, as this leaks a single
bit about DB. Several works [FMM09; DGM+10] have analyzed Cuckoo hashing from an
asymptotic perspective and show that the failure probability decreases exponentially with
increasing table size. However, the exact relationship between the number of hash functions,
stash size, table size and security parameter is unclear from such an analysis.

195

9 PIR-PSI: Scaling Private Contact Disvocery

2 4 8 16 32 64
0

20

40

Cuckoo Expansion Factor e = |Cuckoo|/N = m/N

Se
cu

ri
ty

Pa
ra

m
et

er
σ

26 28 210

212 216 220

224 228

Server Set Size N

Figure 9.2: Empirical (marks) and interpolated (dashed/dotted lines) Cuckoo success proba-
bility for k = 2 hash functions and different set sizes N .

We solve this problem by providing an accurate relationship between these parameters
through extensive experimental analysis of failure probabilities. That is, we ran Cuckoo-
hashing instances totalling nearly 1 trillion items hashed, over two weeks for a variety
of parameters. As a result our bounds are significantly more accurate and general than
previous experiments [PSZ18; CLR17]. We analyzed the resulting distribution to derive
highly predictive equations for the failure probability. We find that k = 2 and k ≥ 3 behave
significantly different and therefore derive separate equations for each.

Our extrapolations are graphed in Figs. 9.2 and 9.3, and the specifics of the formulas are
given in Sect. 9.5.3.

9.5.3 Cuckoo Hashing Failure Probability Formula

Let e > 1 be the expansion factor denoting that N items are inserted into a Cuckoo table
of size m= eN . Fig. 9.2 shows the security parameter (i.e., σ, such that the probability of
hashing failure is 2−σ) of Cuckoo hashing with k = 2 hash functions. As N becomes larger, σ
scales linearly with log2 N and with the stash size s, which matches the results of [DGM+10].
For e ≥ 8 and k = 2, we interpolate the relationship as the linear equation

σ =
�

1+ 0.65s
��

3.3 log2(e) + log2(N)− 0.8
�

(9.1)

For smaller values of e, we observe that σ quickly converges to 1 at e = 2. We approximate
this behavior by subtracting

�

5 log2(N) + 14
�

e−2.5 from Eq. (9.1). We note that these exact
interpolated parameters are specific to our implementation which uses a specific eviction
policy (linear walk) and re-insert bound (100). However, we observed similar bounds for
other parameters and evictions strategies (e.g., random walks or 200 re-insert bound).

We also consider the case k = 3, shown in Fig. 9.3 and find that it scales significantly better
than k = 2. For instance, at e = 2 we find σ ≈ 100 for interesting set sizes while the same
value of e applied to k = 2 results in σ ≈ 1. As before we find that σ grows linearly with

196

9 PIR-PSI: Scaling Private Contact Disvocery

the expansion factor e. Unlike in the case of k = 2, we observe that increasing N has a slight
negative effect on σ. Namely, doubling N roughly decreases σ by 2. However, the slope at
which σ increases for k = 3 is much larger than k = 2 and therefore this dependence on
log N has little impact on σ. We summarize these findings for k = 3 as the linear equation

σ = aN e+ bN (9.2)

where aN ≈ 123.5 and bN ≈ −130 − log2 N . Here we use an approximation to hide an
effect that happens for small N ≤ 512. In this regime we find that the security level quickly
falls. In particular, the slope aN and intercept bN go to zero roughly following the normal
distribution CDF. By individually interpolating these variable we obtain accurate predictions of
σ for N ≥ 4. Our interpolations show that aN = 123.5 ·CDFNORMAL(x = N ,µ= 6.3,σ = 2.3)
and bN = −130 ·CDFNORMAL(x = N ,µ= 6.45,σ = 2.18)− log2 N .

For k = 3 we do not consider a stash due to our experiments showing it having a much
smaller impact as compared to k = 2. Additionally, we do not compute exact parameters for
k > 3 due to the diminishing returns. In particular, k = 4 follows the same regime as k = 3
but only marginally improves the failure probability.

1.15 1.2 1.25 1.3 1.35 1.4
0

10

20

30

Cuckoo Expansion Factor e = |Cuckoo|/N = m/N

Se
cu

ri
ty

Pa
ra

m
et

er
σ

212 214 216

218 220 222

Server Set Size N

Figure 9.3: Empirical (marks) and interpolated (dashed/dotted lines) Cuckoo success proba-
bility for k = 3 hash functions and different set sizes N .

9.5.4 Parameter Selection for Cuckoo Hashing and Binning

Traditional use of Cuckoo hashing instructs the parties to sample new hash functions for
each protocol invocation. In our setting however it can make sense to instruct the servers,
which hold a somewhat static dataset, to perform Cuckoo hashing once and for all. Updates
to the dataset can then be handled by periodically rebuilding the Cuckoo table once it has
reached capacity. This leaves the question of what the Cuckoo hashing success probability
should be. It is standard practice to set statistical failure events like this to happen with
probability 2−40. However, since the servers perform Cuckoo hashing only occasionally (and
since hashing failure applies only to initialization, not future queries), we choose to use more
efficient parameters with a security level of σ = 20 bits, i.e., Pr[Cuckoo failure] = 2−20. We

197

9 PIR-PSI: Scaling Private Contact Disvocery

emphasize that once the items are successfully placed into the hash table, all future lookups
(e.g., contact discovery instances) are error-free, unlike, say, in a Bloom filter.

We also must choose the number of hash functions to use.11 Through experimental testing
we find that overall the protocol performs best with k = 3 hash functions. The parameters
used can be computed by solving for e ≈ 1.4 in Eq. (9.2) given that σ = 20.

To see why this configuration was chosen, we must also consider another important parameter:
the number of bins β . Due to binning being performed for each protocol invocation by the
client, we must ensure that it succeeds with very high probability and thus we use σ = 40 to
choose binning parameters. An asymptotic analysis shows that the best configuration is to
use β = O(n/ log n) bins, each of size µ= O(log n). However, this hides the exact constants
which give optimal performance. Upon further investigation we find that the choice of these
parameters result in a communication/computation trade-off.

For the free variable c, we set the number of bins to β = cn/ log2 n and solve for the required
bin size µ. As depicted in Fig. 9.4, the use of k = 3 and scaling factor c = 4 result in the
best running time at the expense of a relatively high communication of 11 MiB. However, at
the other end of the spectrum k = 2 and c = 1/16 results in the smallest communication of
2.4 MiB. The reason k = 2 achieves smaller communication for any fixed c is that the client
sends k = 2 PIR queries per item instead of three. However, k = 2 requires that the Cuckoo
table is three times larger than for k = 3 and therefore the computation is slower.

Varying c affects the number of bins β . Having fewer bins reduces the communication due to
the bins being larger and thereby having a better real/dummy query ratio. However, larger
bins also increases the overall work, since the work is proportional to the bin size µ times N .
We aim to minimize both the communication and running time. We therefore decided on
choosing k = 3 and c = 1/4 as our default configuration, the circled data-point in Fig. 9.4.
However, we note that in specific settings it may be desirable to adjust c further.

The PIR block size b also results in a computation/communication trade-off. Having a large
block size gives shorter PIR keys and therefore less work to expand the DPF. However, this
also results the server having a larger input set to the subsequent PSI which makes that phase
require more communication and computation. Due to the complicated nature of how all
these parameters interact with each other, we empirically optimized the parameters to find
that a PIR block size between 1 and 32 gives the best trade-off.

9.6 Performance

In this section we analyze the performance of PIR-PSI. We ran all experiments on a single
benchmark machine which has two 18-core Intel Xeon E5-2699 2.30 GHz CPUs and 256 GB
RAM. Specifically, we ran all parties on the same machine, communicating via localhost

11Although the oblivious shuffling procedure of Sect. 9.3.3 can be extended in a natural way to include a stash,
we use a stash-free variant of Cuckoo hashing.

198

9 PIR-PSI: Scaling Private Contact Disvocery

2 4 8 16

512

1024

2048

Communication (MiB)

R
un

ni
ng

ti
m

e
(m

s)

k = 3
k = 2

Figure 9.4: Communication and computation trade-off for n = 210, N = 224, T = 16
threads, k Cuckoo hash function, no stash, with the use of β = cn/ log2 n bins
where c ∈ {2−5, 2−4, . . . , 23} and are listed left to right as seen above. The
configuration (k = 2, c = 2−5) did not fit on the plot. The highlighted point
(k = 3, c = 1/4) is the default parameter choice that is used.

network, and simulated a network using the Linux tc command: a LAN setting with 0.02 ms
round-trip latency, 10 Gbps network bandwidth, and a WAN setting with a 80 ms round-trip
latency, 100 Mbps network bandwidth. We process elements of size ℓ= 128 bits.

Our protocol can be separated into two phases: the server’s init phase when database is stored
in the Cuckoo table, and the contact discovery phase where client and server perform the
private intersection.

9.6.1 PIR-PSI Performance Results

In our contact discovery phase, the client and server first perform the pre-processing of PSI
between n and 3n items which is independent of the parties’ inputs. We refer to this step as
pre-processing phase which specifically includes base OTs, and O(n) PRFs. The online phase
consists of protocol steps that depend on the parties’ inputs. To understand the scalability
of our protocol, we evaluate it on the range of server set size N ∈ {220, 224, 226, 228} and
client set size n ∈ {1, 4, 28, 210}. The small values of n ∈ {1, 4} simulate the performance of
incremental updates to a client’s set. Tab. 9.2 presents the communication cost and total
contact discovery time with online time for both single- and multi-threaded execution with
T ∈ {1, 4,16} threads.

As discussed in Section 9.5.4, there is a communication and computation trade-off on choosing
the different value c and b which effects the number of bins and how many items are selected
per PIR query. The interplay between these two variable is somewhat complex and offers a
variety of communication computation trade-offs. For smaller n ∈ {1,4}, we set b = 32 to
drastically reduce the cost of the PIR computation at the cost of larger PSI. For larger n, we

199

9 PIR-PSI: Scaling Private Contact Disvocery

Table 9.2: Our protocol’s total contact discovery communication cost and running time using
T threads, and β = cn/ log2 n bins and PIR block size of b. LAN: 10 Gbps, 0.02 ms
latency.

Param. Comm. Running time [seconds]
N n c b [MiB] T = 1 T = 4 T = 16

4 16 28.3 4.07 1.60 0.81
210

0.25 1 4.93 33.02 13.22 5.54

28 3 16 7.10 3.61 1.30 0.65
1 1 2.20 14.81 6.92 3.40

4 1 32 0.06 1.93 – –

228

1 1 32 0.03 1.21 – –

2 8 12.7 1.61 0.72 0.41
210

0.25 1 4.28 7.22 3.65 1.36

28 6 16 10.3 0.98 0.51 0.26
0.25 4 1.36 4.36 1.90 0.97

4 1 32 0.06 0.56 – –

226

1 1 32 0.03 0.48 – –

1 8 8.61 0.67 0.36 0.22
210

0.25 1 3.85 2.28 0.94 0.50

28 4 8 4.81 0.49 0.22 0.18
1 1 1.68 1.26 0.57 0.36

4 1 32 0.05 0.19 – –

224

1 1 32 0.03 0.16 – –

0.5 4 2.10 0.22 0.10 0.06
210

0.25 1 2.98 0.32 0.21 0.16

28 2 4 1.95 0.20 0.09 0.06
0.25 4 1.13 0.24 0.18 0.15

4 1 32 0.05 0.14 – –

220

1 1 32 0.03 0.13 – –

consider parameters which optimize running time and communication separately, and show
both in Tab. 9.2.

Our experiments show that our PIR-PSI is highly scalable. For a database of N = 228 elements
and client set of n = 210 elements, we obtain a running time of 33.02 s and only 4.93 MiB
bits of communications for the contact discovery using a single thread. Alternatively, running
time can be reduced to just 4 s for the cost of 28 MiB communication. Increasing the number
of threads from 1 to 16, our protocol shows a factor of 5× improvement, due to the fact that
it parallelizes well. When considering the smallest server set of N = 220 with 16 threads, our
protocol requires only 1.1 MiB of communication and 0.24 s of contact discovery time.

We point out that the computational workload for the client is small and consists only of DPF
key generation, sampling random values and the classical PSI protocol with complexity linear
in the size of the client set. This corresponds to 10% of the overall running time (e.g., 0.3 s
of the total 3.6 s for N = 228 and n = 28). Despite our experiments being run on a somewhat

200

9 PIR-PSI: Scaling Private Contact Disvocery

powerful server, the overwhelming bottleneck for performance is the computational cost
for the server. Furthermore, after parameter agreement, the PIR step adds just a single
round of communication between the client device and the servers before the PSI starts.
Hence, our reported performance is also representative of a scenario in which the client is a
computationally weaker device connected via a mobile network. Detailed numbers on the
performance impact of the optimizations from Sect. 9.5.1 are provided in Sect. 9.6.3.

9.6.2 Updating the Client and Server Sets

In addition to performing PIR-PSI on sets of size n and N , the contact discovery application
requires periodically adding items to these sets. In case the client adds a single item x to
their set X , only the new item x needs to be compared with the servers’ set. Our protocol
can naturally handle this case by simply having the client use X ′ = {x} as their input to the
protocol. However, a shortcoming of this approach is that we cannot use binning and the PIR
query spans the whole Cuckoo table.

For a database of size N = 224, our protocol requires only 0.16 s and 0.19 s to update 1 and
4 items, respectively. When increasing the size to N = 228, we need 1.9 s to update one
item. Our update queries are cheap in terms of communication, roughly 30–50 kiB, and
can be parallelized well since DPF.Gen and DPF.Expand can each be processed in a divide
and conquer manner. Also, several update queries from different users can be batched
together to offer very high throughput. However, our current implementation only supports
parallelization at the level of bins/regions, and not for a single DPF query.

The case when a new item is added to the servers’ set can easily be handled by performing
a traditional PSI between one of the servers and the client, where the server only inputs
the new item. One could also consider batching several server updates together, and then
performing a larger PSI or applying our protocol to the batched server set.

9.6.3 Effect of the Optimizations

In this section, we discuss the effect of our optimizations on the performance. By far the most
important optimization employed is the use of binning. Observe in Tab. 9.3 that the running
time with all optimizations enabled is 1.0 s while the removal of binning results in a running
time of 1 906 s. This can be explained by the overall reduction of asymptotic complexity to
O(N log n) with binning as opposed to O(Nn) without binning.

Another important optimization is the use of PIR blocks which consist of more than one
Cuckoo table item. This blocking technique allows for a better balance between the cost of
the PIR compared to the cost of the subsequent PSI. Increasing the block size logarithmically
decreases the cost of the PIR while linearly increasing the cost of the PSI. Since the PIR
computation is so much larger than the PSI (assuming n ≪ N) setting the block size to
be greater than 1 gave significant performance improvements. In practice we found that

201

9 PIR-PSI: Scaling Private Contact Disvocery

setting b to be within 1 and 32 gave the best results. Tab. 9.3 shows that setting b to optimize
running time gives a 3.7× improvement.

Table 9.3: Online running time in seconds of the protocol with all optimizations enabled
compared with the various optimizations of Section 9.5.1 individually disabled.

N n
All Opt. No No No No
Enabled Batching Blocking Vectorization Binning

224 212 1.0 2.1 3.7 40.1 1 906

We also consider the effect that our highly optimized DPF implementation has on the overall
running time. Vectorization refers to an implementation of the DPF with the full-domain
optimization implemented similar as described by [BGI16, Figure 4]. We then improve on
their basic construction to take full advantage of CPU vectorization and fixed-key AES. The
result is a 40× difference in overall running-time.

The final optimization is to improve memory locality of our implementation by carefully
accessing the Cuckoo table. Instead of computing each PIR query individually, which would
require loading the large Cuckoo table from memory many times, our batching optimization
runs all DPF evaluations for a given database location at the same time. This significantly
reduces the amount of data that has to be fetched from main memory. For a dataset of size
N = 224 we observe that this optimization yields 2.1× improvement, and an even bigger 5×
improvement when applied to a larger dataset of N = 228 along with using T = 16 threads.

9.7 Comparison with Prior Work

In this section we give a thorough qualitative and quantitative comparison between our
protocol and those of CLR [CLR17], KLSAP [KLS+17], and RA [RA18]. We obtained the
implementations of CLR and KLSAP from the respective authors, but the implementation
of RA is not publicly available. Because of that, we performed a comparison on inputs of
size N ∈ {216, 220, 224} and n ∈ {5535,11041} to match the parameters used in [RA18,
Tables 1 and 2]. While the experiments of RA were performed on an Intel Haswell i7-4770K
quadcore CPU with 3.4 GHz and 16 GB RAM, we ran the KLSAP and CLR protocols on our
own hardware, described in Sect. 9.6. We remark that RA’s benchmark machine has 3.4 GHz,
which is 1.48× faster than our machine. The number of cores and RAM available on our
hardware does not influence the results of the single-threaded benchmarks (T = 1). Results
of the comparison are summarized in Tab. 9.4.

202

9 PIR-PSI: Scaling Private Contact Disvocery

Table 9.4: Comparison of PIR-PSI to CLR, KLSAP, and RA with T ∈ {1,4} threads. LAN:
10 Gbps, 0.02 ms latency. WAN: 100 Mbps, 80 ms latency. Best results marked in
bold. Online communication in parentheses. Cells with "–" denote that the setting
is not supported, due to limitations in the respective implementation. Cells with
"*" indicate that the numbers are scaled for a fair comparison of error probability.
CLR and RA use ℓ= 32 bit items, while PIR-PSI and KLSAP process 128 bit items.

Protocol
Parameters Communication Running time [seconds] Client Server Init.

N n Size [MiB] LAN (10 Gbps) WAN (100 Mbps) Storage [seconds]
T = 1 T = 4 T = 1 T = 4 [MiB] T = 1 T = 4

224 11 041 21.1 38.6 19.7 41.0 22.1 76.8 20.6
5 535 12.5 34.0 16.3 36.0 18.2 71.2 18.5

220 11 041 11.5 3.7 3.2 4.9 4.4 9.1 2.5
5 535 5.6 3.5 1.9 4.1 2.5 5.1 1.4

216 11 041 4.1/4.4 1.8 1.4 2.2 1.8 1.2 0.3

CLR
[CLR17]

5 535 2.6 0.9 0.6 1.1 0.9

0

0.9 0.3

224 11 041 2 049 (43.3) 90.4 – 265.1 – 1 941
8.32 –5 535 1 070 (21.7) 52.3 – 128.3 – 1 016

220 11 041 1 968 (43.3) 82.1 – 259.9 – 1 860
0.58 –5 535 989 (21.7) 44.8 – 124.7 – 935

216 11 041 1 963 (43.3) 81.8 – 259.6 – 1 855
0.04 –

KLSAP
[KLS+17]

5 535 984 (21.7) 44.0 – 121.4 – 930

224 11 041 171.67 (0.67)* 1.08* – 18.39* – 171.00*
333.62 –5 535 168.34 (0.34)* 0.75* – 17.61* – 168.00*

220 11 041 11.36 (0.67)* 0.67* – 3.41* – 10.69*
20.78 –5 535 10.84 (0.34)* 0.34* – 2.89* – 10.50*

216 11 041 1.34 (0.67)* 0.66* – 1.33* – 0.67*
1.30 –

RA
[RA18]

5 535 1.00 (0.34)* 0.33* – 0.85* – 0.66*

224 11 041 32.46 2.18 1.65 5.63 5.13
2.690 –5 535 21.45 1.34 1.11 3.72 2.77

220 11 041 22.86 0.37 0.31 3.70 3.59
0.089 –5 535 11.67 0.29 0.24 2.50 2.29

216 11 041 12.83 0.28 0.29 2.55 2.55
0.004 –

Ours

5 535 7.66 0.21 0.20 1.85 1.85

0

9.7.1 The CLR protocol

The high level idea of the protocol of Chen et al. [CLR17] is to have the client encrypt each
element in their dataset under a homomorphic encryption scheme, and send the result to the
server. The server evaluates the intersection circuit on encrypted data, and sends back the
result for the receiver to decrypt.

The CLR protocol has communication complexity O(ℓn log(N)), where the items are ℓ bits
long. Ours has communication complexity O(κn log(N/(κn log n))), with no dependence
on ℓ since the underlying PSI protocol [KKRT16] has no such dependence. For small items
(e.g., ℓ= 32 as reflected in Tab. 9.4), CLR uses less communication than our protocol, e.g.,
20 MiB as opposed to 37 MiB. However, their protocol scales very poorly for string length of
128 bits as it would require significantly less efficient FHE parameters. Furthermore, CLR

203

9 PIR-PSI: Scaling Private Contact Disvocery

can not take advantage of the fact that most contact lists have significantly fewer than 5 535
entries. That is, the cost for n= 1 and n= 5535 is roughly equivalent, because of the way
FHE optimizations like batching are used. The main computational bottleneck in CLR is
the server performing O(n) homomorphic evaluations on large circuits of size O(N/n). The
comparable bottleneck in our protocol is performing DPF.Expand and computing the large
inner products. Since these operations take advantage of hardware-accelerated AES, PIR-PSI
is significantly faster than CLR, e.g., 20× for N = 224.

The server’s initialization in CLR involves hashing the N items into an appropriate data
structure (as in PIR-PSI), but also involves precomputing the many coefficients of polynomials.
Hence our initialization phase is much faster than CLR, e.g., 40× for N = 224. The CLR
protocol does not provide a full analysis of security against malicious clients. Like our protocol,
the leakage allowed with a malicious client is likely to be minimal.

9.7.2 The KLSAP protocol

In the KLSAP protocol [KLS+17], the server sends a Bloom filter of size O(σN) to the client in
an offline phase, for statistical security parameterσ and server set size N . During later contact
discovery phases, the client refers to this Bloom filter, whose size is significant: nearly 2 GiB
for N = 224 server items. This data, which must be stored by the client, may be prohibitively
large for mobile client applications. By contrast, our protocol (and CLR) requires no long-term
storage by the client.

While there are also other implementations in [KLS+17], we focused on the Yao-variant, as it
offered the best performance. In the contact discovery phase, KLSAP runs Yao’s protocol to
obliviously evaluate an AES circuit for each of the client’s items. Not even counting the bloom
filter, this requires slightly more communication than our approach (1.5×). Additionally,
it requires more computation by the (weak) client: evaluating many AES garbled circuits
(thousands of AES calls per item) vs. running many instances of DPF.Gen (log N AES calls
per item) followed by a specialized PSI protocol (constant number of hash/AES calls per
item). Even though the server in our protocol must perform O(N) computation during contact
discovery, our optimizations result in a much faster discovery phase (40× for N = 224).

When the server makes changes to its set in KLSAP, it must either re-key its AES function
(which results in re-sending the huge Bloom filter), or send incremental updates to the Bloom
filter (which breaks forward secrecy, as a client can query its items in both the old and new
versions of the Bloom filter).

KLSAP is easily adapted to secure against a malicious client. This stems from the fact that the
contact discovery phase uses Yao’s protocol with the client as evaluator. Hence it is naturally
secure against a malicious client (provided malicious-secure OTs are used).

204

9 PIR-PSI: Scaling Private Contact Disvocery

Subtleties about Hashing Errors The way that KLSAP uses a Bloom filter also leads to
qualitative differences in the error probabilities compared to PIR-PSI. In KLSAP the server
publishes a Bloom filter for all clients, who later query it for membership. The false-positive
rate (FPR) of the Bloom filter is the probability that a single item not in the server’s set is
mistakenly classified as being in the intersection. Importantly, the FPR for this global Bloom
filter is per client item. In KLSAP this FPR is set to 2−30, which means after processing a
combined 1 million client items the probability of some client receiving a false positive may
be as high as 2−10!

By contrast, the PIR-PSI server places its items in a Cuckoo table once-and-for all (with
hashing error probability 2−20). As long as this one-time event is successful, all subsequent
probes to this data structure are error-free (we store the entire ℓ = 128 bit item in the Cuckoo
table, not just a short fingerprint as in [RA18]). If the hashing is unsuccessful, the server
simply tries again with different hash functions. As this process happens offline, before any
client queries are answered, no information about the server set is leaked. All of our other
failure events (e.g., probability of a bad event within our 2-party PSI protocol) are calibrated
for error probability 2−40 per contact discovery instance, not per item! To have a comparable
guarantee, the Bloom filter FPR of KLSAP would have to be scaled by a factor of log2(n).

9.7.3 The RA Protocol

The RA [RA18] protocol uses a similar approach to KLSAP, in that it uses a relatively large
representation of the server’s set, which is sent in an offline phase and stored by the client.
The downsides of this architecture discussed above for KLSAP also apply to RA (client storage,
more client computation, false-positive rate issues, forward secrecy).

RA’s implementation uses a Cuckoo filter that stores for each item a 16-bit fingerprint. This
choice leads to a relatively high false-positive rate of 2−13.4. To achieve the failure events with
error probability 2−40 per contact discovery instance (in line with our protocol), the Cuckoo
filter FPR of RA would be 2−(40+log2(n)). Therefore, their protocol would have to be modified
to use 56-bit and 57-bit fingerprints for n= 5 535 and n= 11 041, respectively. This change
increases the communication cost, transmission time, and offline storage requirements 3.44−
3.5×, relative to the numbers reported in [RA18, Table 1]. In Tab. 9.4 we report the scaled
communication costs, the scaled online running time, and the scaled client’s storage, but
refrain from trying to scale the server’s initialization times. As can be seen our protocol
running time is 1.2− 3.2× faster than RA for sufficiently large N . We also have a 100× more
efficient server initialization phase and achieve communication complexity of O(n log N) as
compared to O(N) of RA. This difference can easily be seen by how the communication of
RA significantly increases for larger N .

In RA, the persistent client storage is not a Bloom filter but a more compact Cuckoo filter. This
reduces the client storage, but it still remains linear in N . For N = 228 the storage requirement
is 2.57 GiB to achieve an error probability of 2−40 per contact discovery instance.

The RA protocol does not provide any analysis of security against malicious clients.

205

9 PIR-PSI: Scaling Private Contact Disvocery

9.8 Extensions and Deployment

Although this work mainly focuses on the setting of pure contact discovery with two servers,
our protocol can be modified for other settings, which we discuss in this section. We also
briefly go into the possibility of deploying PIR-PSI in practice.

9.8.1 PSI with Associated Data (PSI+AD)

PSI with Associated Data (PSI+AD) refers to a scenario where the client has a set A of keys
and the server has a set B of key-value pairs, and the client wishes to learn {(k, v) | (k, v) ∈
B and k ∈ A}. In the context of an encrypted messaging service, the keys may be phone
numbers or email addresses, and the values may be the user’s public key within the service.

PIR-PSI can be modified to support associated data in a natural way. The server’s Cuckoo
hash table simply holds key-value pairs, and the 2-party PSI protocol is replaced by a 2-party
PSI+AD protocol. The client will then learn masked values for each item in the intersection,
which it can unmask. The PSI protocol of [KKRT16] that we use is easily modified to allow
associated data.

9.8.2 3- and 4-Server Variant

We described PIR-PSI in the context of two non-colluding servers, who store identical copies of
the service provider’s user database. Since both servers hold copies of this sensitive database,
they are presumably both operated by the service provider, so the promise of non-collusion
may be questionable. Using a folklore observation from the PIR literature, we can allow
servers to hold only secret shares of the user database, at the cost of adding more servers.

Consider the case of 3 servers. The service provider can recruit two independent entities to
assist with private contact discovery, without entrusting them with the sensitive user database.
The main idea is to let servers #2 and #3 hold additive secret shares of the database and
jointly simulate the effect of a single server that holds the database in the clear.

Recall the 2-party DPF-PIR scheme of [BGI16], that we use. The client sends DPF shares
k1, k2 to the servers, who expand the keys to K1, K2 and performs an inner product with
the database. The client XORs the two responses to obtain result (K1 · DB) ⊕ (K2 · DB) =
(K1 ⊕ K2) ·DB= DB[i].

In our 3-server case, we have server #1 holding DB, and servers #2 and #3 holding DB2,DB3
respectively, where DB = DB2 ⊕DB3. We simply let the client send DPF share k1 to server #1,
and send k2 to both of the other servers. All servers expand their DPF share and perform

206

9 PIR-PSI: Scaling Private Contact Disvocery

an inner product with their database/share. The client will receive K1 ·DB from server #1,
K2 ·DB2 from server #2, and K2 ·DB3 from server #3. The XOR of all responses is indeed

(K1 ·DB)⊕ (K2 ·DB2)⊕ (K2 ·DB3)

= (K1 ·DB)⊕ K2 · (DB2 ⊕DB3)

= K1 ·DB⊕ K2 ·DB= (K1 ⊕ K2) ·DB= DB[i].

Now the entire PIR-PSI protocol can be implemented with this 3-server PIR protocol as its
basis. The computational cost of each server is identical to the 2-server PIR-PSI, and is
performed in parallel by the independent servers. Hence, the total time is minimally affected.
The client’s total communication is unaffected since server #2 can forward k2 to server #3.
The protocol security is the same, except that the non-collusion properties hold now only if
server #1 doesn’t collude with any of the other servers. If servers #2 and #3 collude, then
they clearly learn DB, but as far as the client’s privacy is concerned, the situation simply
collapses to 2-server PIR-PSI.

Similarly, server #1 can also be replaced by a pair of servers, each with secret shares (and
this sharing of DB can be independent of the other sharing of DB). This results in a 4-server
architecture with security for the client as long as neither of servers #1 and #2 collude with
one of the servers #3 and #4, and where no single server holds DB in the clear.

9.8.3 2-Server with OPRF Variant

An alternative to the 3-server variant above is to leverage a pre-processing phase. Similar
to [RA18], the idea is to have server #1 apply an oblivious PRF to their items instead of a hash
function, which will ensure that the database is pseudorandom in the view of server #2, who
does not know the PRF key. In particular, let server #1 sample a key k for the oblivious PRF F
used in [RA18] and update the database as DB′i := Fk(DBi), which is then sent to server #2.
When a client wishes to compute the intersection of its set X with DB, they first perform an
oblivious PRF protocol with server #1 to learn X ′ = {Fk(x) | x ∈ X }. Note that this protocol
ensures that the client does not learn k. The client can now engage in our standard two-server
PIR-PSI protocol to compute Z ′ = X ′ ∩DB′ and thereby infer Z = X ∩DB.

The advantage of this approach is that server #2 does not learn any information about the
plaintext database DB since the PRF was applied to each record. Moreover, this holds even if
server #2 colludes with one of the clients. The added performance cost of this variant has
two components. First, server #1 must update its database by applying the PRF to it. As
shown by [RA18], a single CPU core can process roughly 50 000 records per second, which
is sufficiently fast given that this is a one-time cost. The second overhead is performing the
oblivious PRF protocol with the clients. This requires three exponentiations per item in X ,
which represents an acceptable overhead given that |X | is small.

207

9 PIR-PSI: Scaling Private Contact Disvocery

9.8.4 Single-Server Variant

We also note that PIR-PSI could potentially be extended to the single-server setting. Several
single-server PIR protocols [AS16; ACLS18; ABFK16], based on homomorphic encryption
have shown to offer good performance, while at the same time removing the two-server
requirement. With some modifications to our architecture, we observe that such PIR protocols
can be used. The main challenge to overcome is how to secret share and shuffle the PIR
results before being forwarded to the PSI protocol. First, a PIR protocol which allows the
result to be secret shared is required. We observer that typical PIR protocols can support
such a functionality by adding a random share to the result ciphertext. Given this, a two
party variant of step 3 of Prot. 9.1 can be implemented using standard two-party shuffling
protocols. We leave the optimization and exact specification of such a single-server PIR-PSI
protocol to future work, but note its feasibility.

9.8.5 Practical Deployment

We now turn our attention to practical questions surrounding the real-world deployment of
our multi-server PIR-PSI protocol. As briefly discussed in the previous section, the requirement
that a single organization has two non-colluding servers may be hard to realize. However,
we argue that the 3-server or 2-server with an OPRF variants make deployment significantly
simpler. Effectively, these variants reduce the problem to finding one or two external semi-
honest parties that will not collude with the service provider (server #1). A natural solution
to this problem is to leverage existing cloud providers such as Microsoft Azure or Amazon
EC2. Given that these companies have a significant interest to maintain their reputation, they
would have a large incentive to not collude. Indeed, Microsoft has informally proposed such
a setting [GLL+16] where secure computation services are provided under a non-collusion
assumption. Alternatively, privacy-conscious organization such as the Electronic Frontier
Foundation (EFF) could serve as the second server.

208

10 Conclusion

In this chapter we conclude the thesis with a summary of the included topics and provide an
outlook into possible future directions of research.

It is often assumed that security and privacy are fundamentally different goals from perfor-
mance and usability. This binary distinction of these goals is not only false, but also dangerous,
as it puts private data at risk by suggesting that practical privacy simply cannot be realized.
Furthermore, it diminishes the immense amount of work and the outstanding results that the
security and privacy research community has achieved. At the same time, suggesting that
users have to decide between either privacy or utility completely ignores the tremendous
technical progress that has been made, which is now a key factor in enabling practical privacy
solutions. This dissertation searches to find a practical combination of all goals and aims to
show measures that result in efficient and privacy-preserving digital systems.

10.1 Summary

The research question that was asked in this thesis was:

Can privacy-preserving techniques like MPC and PIR be applied to real-world
applications and use-cases in order to protect the privacy of the data they process,
while at the same time achieving efficiency that makes them usable in practice?

To answer this question we described the MPC tools that we have developed in Part I. With
these tools we intend to provide a usable and efficient base for developers and researchers
that want to implement and evaluate MPC protocols and applications. In Chapt. 3, we
presented the ABY framework that serves as foundation of many of our projects. ABY has
proven to be a solid foundation for many projects and is actively used by many developers
and researchers worldwide. In Chapt. 4 we showed results that include optimized building
blocks generated from modified hardware synthesis tools and the ability to directly compile
program descriptions in a hardware definition language into MPC protocols in ABY. With
the help of these features we increased the applicability of MPC in practice and made first
steps towards compilation of MPC protocols from a high-level language. The HyCC compiler,
presented in Chapt. 5 builds on top of ABY and CBMC-GC [HFKV12] to enable fully automated
compilation of ANSI C code into hybrid MPC protocols. Especially HyCC is a crucial and
important step that will help to disseminate the use of MPC in practice, as it overcomes

209

10 Conclusion

the requirement of having fundamental background knowledge in the complex and fast-
changing research field of MPC and eliminates the burden of learning a new domain specific
language.

On the foundation of these tools, we built MPC applications, which we presented in Part II.
These applications are relevant real-world use cases, where it was initially unclear if the
performance of the underlying MPC implementation would suffice to be practical. Chapt. 6
contains two results that show that BGP-based route computation on the Internet, and route
dispatch at IXPs is possible in a privacy-preserving way, when built upon MPC. With privacy-
preserving Internet routing we protect sensitive business information that influence routing
decisions while at the same time allowing improved performance and greater usability
compared to the status quo. In Chapt. 7, we presented a solution for private queries to
outsourced, federated genome databases, which is a very crucial topic, as genomic information
is highly sensitive and unchangeably connected to every individual.

Finally, in Part III, we presented improvements to existing PIR protocols and applications
thereof. Chapt. 8 summarizes optimizations and the generalization of the multi-server PIR
scheme of Chor et al. and an anonymous messenger as application thereof. Our results
move PIR closer to practicality and might be of independent interest for similar schemes.
With OnionPIR as anonymous messenger we target the protection of metadata, which is an
important privacy feature. PIR-PSI, an approach for scalable private contact discovery, was
presented in Chapt. 9. Contact discovery is a crucial component of modern messengers and
runs frequently on every user’s system, potentially exposing their social graph. Our result is
also generally applicable as asymmetric PSI, where the two sets are of vastly different sizes.

Overall, from our results presented here, as well as from the large body of work in the field,
one can see that MPC protocols and techniques like PIR are steadily improving and moving
closer to practicality, and are thus key ingredients to practical privacy protection. Therefore,
this thesis could answer the initial research question positively and contributed a small share
to the important task of protecting users’ privacy in a modern digital world. In the final
section, I’d like to give an outlook on possible future works towards answering further aspects
of the initial research question.

10.2 Future Work

This thesis has presented several techniques and systems, but there is always plenty of room
for improvement and opportunities for further research. In this section we provide points
that might be interesting to look at in future work, and ideas that could extend and improve
the existing results. While some of these points are more important and fundamental than
others, we believe that all of them will contribute to the distribution and relevance of MPC in
practice, and thus benefit the protection of sensitive data.

210

10 Conclusion

10.2.1 From Passive to Active Security

Most of the results that we presented in this thesis are secure in the presence of semi-honest
adversaries (cf. Sect. 2.2). This is an important first step to showcase practicality of our
solutions and provides sufficient security in some scenarios, where the involved actors are
assumed to be somewhat trustworthy, but for many real-world systems stronger adversary
models must be considered. There are existing solutions that could extend our results. For the
GMW protocol, there are approaches like TinyOT [NNOB12; NST17; HOSS18] that guarantee
security against active adversaries, and implementations that show their feasibility [MOR16].
Arithmetic circuits can be evaluated with the SPDZ protocol with security against malicious
adversaries [DPSZ12; DKL+13; KOS16]. Both approaches use information-theoretic MACs to
achieve malicious security and work in the precomputation model. For Yao’s garbled circuits
there are two techniques that achieve malicious security. When using dual execution [MF06;
RR16], the work is doubled and every party plays both the roles of the garbler and evaluator.
In cut-and-choose [LP07; Lin13], the garbler creates multiple versions of the same circuit
and the evaluator selects a subset that are opened and verified, in order to gain trust that no
manipulation has happened. This technique has also been improved with several optimizations
like batching [LR14; LR15] in mind. Many of these issues regarding active security, including
conversion between the protocols have been approached in [MR18] for the 3-party setting.

Attestation is an important area of research that goes in the same direction. It is especially
important in outsourcing scenarios, in order to ensure that computational parties actually
run the code that they are supposed to. For this, hardware-based solutions can be used and
efficient instantiations for an MPC use case should be found.

10.2.2 From Two-Party to Multi-Party

The use cases presented in this theses focus on the two-party case where the computation
happens directly between two involved parties. This can be utilized in an outsourcing scenario,
where computation on sensitive data is outsourced to two parties that must not collude to
guarantee privacy. In practice there might be scenarios where more than 2 parties want to
directly run a MPC protocol among themselves. Similarly, for outsourcing scenarios, there
might be cases where non-collusion of only 2 parties might be too weak and more parties are
desirable. To fulfill these demands, the existing solutions need to be improved and extended.
While this extension can happen naturally for the GMW protocol, it is more complex to realize
a version with more than 2 parties for Yao’s garbled circuits. Nonetheless, there are results in
that direction [MR18] that focus on a 3-party setting and we expect more to follow.

10.2.3 Implementations

It is crucial that protocols are available as implementations. While prototypical code shows the
general feasibility of a concept, it often lacks the quality required for actual user data. Writing
production-ready code demands careful software engineering and testing, which is often not

211

10 Conclusion

possible to the fullest extent in research. For the practical acceptance of privacy-preserving
techniques, it would be desirable if code was more robust, documented, and tested.

We are steadily working on extending and improving our code base and especially fundamental
tools like the ABY framework (cf. Chapt. 3) are under constant development. This includes
incorporation of the most recent optimizations and the inclusion of interfaces to other
implementations. For the future we are planning to extend the exchange formats that allow
import and export of circuits to and from ABY. We believe that this in an important contribution
towards exchange of ideas and the connection of diverse implementations.

Another work that goes in this direction is the MATRIX framework [BHKL18], that aims to
unify performance evaluation of several heterogeneous MPC implementations, to enable fair
comparison. We are currently integrating our ABY implementation into MATRIX.

212

Bibliography

[ABB+17] J. B. ALMEIDA, M. BARBOSA, G. BARTHE, F. DUPRESSOIR, B. GRÉGOIRE, V. LAPORTE,
V. PEREIRA. “A Fast and Verified Software Stack for Secure Function Evaluation”.
In: CCS’17. ACM, 2017, pp. 1989–2006.

[ABFK16] C. AGUILAR-MELCHOR, J. BARRIER, L. FOUSSE, M.-O. KILLIJIAN. “XPIR: Private In-
formation Retrieval for Everyone”. In: Privacy Enhancing Technologies Symposium
(PETS’16) 2016.2 (2016), pp. 155–174.

[ABH10] M. ALBRECHT, G. BARD, W. HART. “Algorithm 898: Efficient Multiplication of Dense
Matrices over GF(2)”. In: ACM Transactions on Mathematical Software 37.1 (2010),
9:1–9:14.

[ABL+04] M. J. ATALLAH, M. BYKOVA, J. LI, K. B. FRIKKEN, M. TOPKARA. “Private collaborative
forecasting and benchmarking”. In: Workshop on Privacy in the Electronic Society
(WPES’04). ACM, 2004, pp. 103–114.

[ABL+18] D. W. ARCHER, D. BOGDANOV, Y. LINDELL, L. KAMM, K. NIELSEN, J. I. PAGTER, N. P. SMART,
R. N. WRIGHT. “From Keys to Databases – Real-World Applications of Secure
Multi-Party Computation”. Cryptology ePrint Archive, Report 2018/450. https:
//ia.cr/2018/450. 2018.

[ABZS13] M. ALIASGARI, M. BLANTON, Y. ZHANG, A. STEELE. “Secure Computation on Floating
Point Numbers”. In: NDSS’13. The Internet Society, 2013.

[ACF+12] B. AGER, N. CHATZIS, A. FELDMANN, N. SARRAR, S. UHLIG, W. WILLINGER. “Anatomy
of a Large European IXP”. In: SIGCOMM’12. ACM, 2012.

[ACLS18] S. ANGEL, H. CHEN, K. LAINE, S. SETTY. “PIR with compressed queries and amortized
query processing”. In: Symposium on Security and Privacy (S&P’18). IEEE Computer
Society, 2018.

[ACM+13] A. ALY, E. CUVELIER, S. MAWET, O. PEREIRA, M. V. VYVE. “Securely Solving Sim-
ple Combinatorial Graph Problems”. In: Financial Cryptography and Data Security
(FC’13). Vol. 7859. LNCS. Springer, 2013, pp. 239–257.

[ACN+17] G. ASHAROV, T.-H. H. CHAN, K. NAYAK, R. PASS, L. REN, E. SHI. “Oblivious Computation
with Data Locality”. Cryptology ePrint Archive, Report 2017/772. https://ia.cr/
2017/772. 2017.

[ADKF70] V. ARLAZAROV, E. DINIC, M. KRONROD, I. FARADZEV. “On economical construction
of the transitive closure of a directed graph”. In: USSR Academy of Sciences 134
(1970).

[ADS+17] G. ASHAROV, D. DEMMLER, M. SCHAPIRA, T. SCHNEIDER, G. SEGEV, S. SHENKER,
M. ZOHNER. “Privacy-Preserving Interdomain Routing at Internet Scale”. In:
Proceedings on Privacy Enhancing Technologies (PoPETs) 2017.3 (2017). Full version:
https://ia.cr/2017/393, pp. 143–163.

213

https://ia.cr/2018/450
https://ia.cr/2018/450
https://ia.cr/2017/772
https://ia.cr/2017/772
https://ia.cr/2017/393

Bibliography

[AFL+16] T. ARAKI, J. FURUKAWA, Y. LINDELL, A. NOF, K. OHARA. “High-Throughput Semi-
Honest Secure Three-Party Computation with an Honest Majority”. In: CCS’16.
ACM, 2016, pp. 805–817.

[AHHK18] U. M. AÏVODJI, K. HUGUENIN, M.-J. HUGUET, M.-O. KILLIJIAN. “SRide: A Privacy-
Preserving Ridesharing System”. In: WiSec’18. ACM, 2018, pp. 40–50.

[AHLR18] G. ASHAROV, S. HALEVI, Y. LINDELL, T. RABIN. “Privacy-Preserving Search of Similar
Patients in Genomic Data”. In: Privacy Enhancing Technologies Symposium (PETS’18)
2018.4 (2018), pp. 104–124.

[AHMA16] M. M. AL AZIZ, M. Z. HASAN, N. MOHAMMED, D. ALHADIDI. “Secure and Efficient Mul-
tiparty Computation on Genomic Data”. In: 20. International Database Engineering
& Applications Symposium (IDEAS’16). ACM, 2016, pp. 278–283.

[AL07] Y. AUMANN, Y. LINDELL. “Security Against Covert Adversaries: Efficient Protocols
for Realistic Adversaries”. In: TCC’07. Vol. 4392. LNCS. Springer, 2007, pp. 137–
156.

[ALSZ13] G. ASHAROV, Y. LINDELL, T. SCHNEIDER, M. ZOHNER. “More Efficient Oblivious Trans-
fer and Extensions for Faster Secure Computation”. In: CCS’13. Full version:
https://ia.cr/2013/552. Code: https://encrypto.de/code/OTExtension. ACM,
2013, pp. 535–548.

[AMS12] “Follow up: AMS-IX Route-Server Performance Test Euro-IX 20th”. https://
ripe64.ripe.net/presentations/49-Follow_Up_AMS-IX_route-server_test_

Euro-IX_20th_RIPE64.pdf. 2012.

[AMS16] AMSTERDAM INTERNET EXCHANGE. “AMS-IX: Megaport and AMS-IX Partner to Pro-
vide Global SDN-Enabled Elastic Interconnection and Internet Exchange Service”.
https://ams-ix.net/newsitems/233. 2016.

[AO12] G. ASHAROV, C. ORLANDI. “Calling Out Cheaters: Covert Security with Public Veri-
fiability”. In: ASIACRYPT’12. Vol. 7658. LNCS. Springer, 2012, pp. 681–698.

[AS16] S. ANGEL, S. SETTY. “Unobservable Communication over Fully Untrusted Infras-
tructure”. In: Symposium on Operating Systems Design and Implementation, (OSDI’16).
USENIX, 2016, pp. 551–569.

[BBD+11] P. BALDI, R. BARONIO, E. DE CRISTOFARO, P. GASTI, G. TSUDIK. “Countering GATTACA:
Efficient and Secure Testing of Fully-sequenced Human Genomes”. In: CCS’11.
ACM, 2011, pp. 691–702.

[BCD+09] P. BOGETOFT, D. L. CHRISTENSEN, I. DAMGÅRD, M. GEISLER, T. JAKOBSEN, M. KRØIGAARD,
J. D. NIELSEN, J. B. NIELSEN, K. NIELSEN, J. PAGTER, M. SCHWARTZBACH, T. TOFT.
“Secure Multiparty Computation Goes Live”. In: FC’09. Vol. 5628. LNCS. Springer,
2009, pp. 325–343.

[BCF+14] J. BRINGER, H. CHABANNE, M. FAVRE, A. PATEY, T. SCHNEIDER, M. ZOHNER. “GSHADE:
Faster Privacy-Preserving Distance Computation and Biometric Identification”.
In: 2. ACM Workshop on Information Hiding and Multimedia Security (IH&MMSEC’14).
Code: https://encrypto.de/code/GSHADE. ACM, 2014, pp. 187–198.

[BCKP01] O. BERTHOLD, S. CLAUSS, S. KÖPSELL, A. PFITZMANN. “Efficiency Improvements of
the Private Message Service”. In: Information Hiding (IH’01). Vol. 2137. LNCS.
Springer, 2001, pp. 112–125.

214

https://ia.cr/2013/552
https://encrypto.de/code/OTExtension
https://ripe64.ripe.net/presentations/49-Follow_Up_AMS-IX_route-server_test_Euro-IX_20th_RIPE64.pdf
https://ripe64.ripe.net/presentations/49-Follow_Up_AMS-IX_route-server_test_Euro-IX_20th_RIPE64.pdf
https://ripe64.ripe.net/presentations/49-Follow_Up_AMS-IX_route-server_test_Euro-IX_20th_RIPE64.pdf
https://ams-ix.net/newsitems/233
https://encrypto.de/code/GSHADE

Bibliography

[BCP+17] D. BARRERA, L. CHUAT, A. PERRIG, R. M. REISCHUK, P. SZALACHOWSKI. “The SCION
Internet Architecture”. In: Communications of the ACM 60.6 (2017), pp. 56–65.

[BDG15] N. BORISOV, G. DANEZIS, I. GOLDBERG. “DP5: A Private Presence Service”. In: Privacy
Enhancing Technologies Symposium (PETS’15) 2015.2 (2015), pp. 4–24.

[BDK+18] N. BÜSCHER, D. DEMMLER, S. KATZENBEISSER, D. KRETZMER, T. SCHNEIDER. “HyCC:
Compilation of Hybrid Protocols for Practical Secure Computation”. In: CCS’18.
ACM, 2018, pp. 847–861.

[Bea91] D. BEAVER. “Efficient Multiparty Protocols Using Circuit Randomization”. In:
CRYPTO’91. Vol. 576. LNCS. Springer, 1991, pp. 420–432.

[Bea95] D. BEAVER. “Precomputing Oblivious Transfer”. In: CRYPTO’95. Vol. 963. LNCS.
Springer, 1995, pp. 97–109.

[Bea96] D. BEAVER. “Correlated Pseudorandomness and the Complexity of Private Com-
putations”. In: STOC’96. ACM, 1996, pp. 479–488.

[Ber] BERKELEY LOGIC SYNTHESIS. “ABC: a system for sequential synthesis and verifica-
tion, release 70930”. http://www.eecs.berkeley.edu/~alanmi/abc/.

[Ber09] D. J. BERNSTEIN. “Cryptography in NaCl”. Online: https://cr.yp.to/highspeed/
naclcrypto-20090310.pdf. 2009.

[BFH+17] N. BÜSCHER, M. FRANZ, A. HOLZER, H. VEITH, S. KATZENBEISSER. “On compiling
Boolean circuits optimized for secure multi-party computation”. In: Formal Meth-
ods in System Design 51.2 (2017), pp. 308–331.

[BFK+09] M. BARNI, P. FAILLA, V. KOLESNIKOV, R. LAZZERETTI, A.-R. SADEGHI, T. SCHNEIDER.
“Secure Evaluation of Private Linear Branching Programs with Medical Applica-
tions”. In: 14. European Symposium on Research in Computer Security (ESORICS’09).
Vol. 5789. LNCS. Full version: https://ia.cr/2009/195. Springer, 2009, pp. 424–
439.

[BFL+11] M. BARNI, P. FAILLA, R. LAZZERETTI, A.-R. SADEGHI, T. SCHNEIDER. “Privacy-Preserving
ECG Classification With Branching Programs and Neural Networks”. In: IEEE TIFS
6.2 (2011), pp. 452–468.

[BFMR10] K. R. B. BUTLER, T. R. FARLEY, P. MCDANIEL, J. REXFORD. “A Survey of BGP Security
Issues and Solutions”. In: Proceedings of the IEEE 98.1 (2010), pp. 100–122.

[BG11] M. BLANTON, P. GASTI. “Secure and Efficient Protocols for Iris and Fingerprint
Identification”. In: ESORICS’11. Vol. 6879. LNCS. Springer, 2011, pp. 190–209.

[BG12] S. BAYER, J. GROTH. “Efficient zero-knowledge argument for correctness of a
shuffle”. In: EUROCRYPT’12. 2012, pp. 263–280.

[BGI15] E. BOYLE, N. GILBOA, Y. ISHAI. “Function Secret Sharing”. In: EUROCRYPT’15.
Vol. 9057. LNCS. Springer, 2015, pp. 337–367.

[BGI16] E. BOYLE, N. GILBOA, Y. ISHAI. “Function Secret Sharing: Improvements and Exten-
sions”. In: CCS’16. ACM, 2016, pp. 1292–1303.

[BGW88] M. BEN-OR, S. GOLDWASSER, A. WIGDERSON. “Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation”. In: STOC’88. ACM, 1988,
pp. 1–10.

[BHKL18] A. BARAK, M. HIRT, L. KOSKAS, Y. LINDELL. “An End-to-End System for Large
Scale P2P MPC-as-a-Service and Low-Bandwidth MPC for Weak Participants”. In:
CCS’18. ACM, 2018, pp. 695–712.

215

http://www.eecs.berkeley.edu/~alanmi/abc/
https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://ia.cr/2009/195

Bibliography

[BHKR13] M. BELLARE, V. HOANG, S. KEELVEEDHI, P. ROGAWAY. “Efficient Garbling From a
Fixed-Key Blockcipher”. In: Symposium on Security and Privacy (S&P’13). IEEE, 2013,
pp. 478–492.

[BHS+17] R. BUSH, J. HAAS, J. SCUDDER, A. NIPPER, C. DIETZEL. “Making Route Servers Aware
of Data Link Failures at IXPs”. https://tools.ietf.org/html/draft-ietf-idr-
rs-bfd-05. 2017.

[BHWK16] N. BÜSCHER, A. HOLZER, A. WEBER, S. KATZENBEISSER. “Compiling Low Depth
Circuits for Practical Secure Computation”. In: ESORICS 2016. Vol. 9879. LNCS.
Springer, 2016, pp. 80–98.

[BJSV15] D. BOGDANOV, M. JÕEMETS, S. SIIM, M. VAHT. “How the Estonian Tax and Customs
Board Evaluated a Tax Fraud Detection System Based on Secure Multi-party Com-
putation”. In: Financial Cryptography and Data Security (FC’15). Vol. 8975. LNCS.
Springer, 2015, pp. 227–234.

[BK15] N. BÜSCHER, S. KATZENBEISSER. “Faster Secure Computation through Automatic
Parallelization”. In: USENIX Security’15. USENIX, 2015, pp. 531–546.

[BKJK16] N. BÜSCHER, D. KRETZMER, A. JINDAL, S. KATZENBEISSER. “Scalable secure compu-
tation from ANSI-C”. In: IEEE International Workshop on Information Forensics and
Security (WIFS’16). IEEE, 2016, pp. 1–6.

[BKOS07] D. BONEH, E. KUSHILEVITZ, R. OSTROVSKY, W. E. SKEITH, III. “Public Key Encryption
That Allows PIR Queries”. In: CRYPTO’07. Vol. 4622. LNCS. Springer, 2007, pp. 50–
67.

[BLO16] A. BEN-EFRAIM, Y. LINDELL, E. OMRI. “Optimizing Semi-Honest Secure Multiparty
Computation for the Internet”. In: CCS’16. ACM, 2016, pp. 578–590.

[Blo70] B. H. BLOOM. “Space/Time Trade-offs in Hash Coding with Allowable Errors”. In:
Communications of the ACM 13.7 (1970), pp. 422–426.

[BLR13] D. BOGDANOV, P. LAUD, J. RANDMETS. “Domain-polymorphic language for privacy-
preserving applications”. In: PETShop at CCS’13. ACM, 2013, pp. 23–26.

[BLR14] D. BOGDANOV, P. LAUD, J. RANDMETS. “Domain-Polymorphic Programming of
Privacy-Preserving Applications”. In: Workshop on Programming Languages and
Analysis for Security, PLAS@ECOOP’14. 2014, p. 53.

[BLS12] D. J. BERNSTEIN, T. LANGE, P. SCHWABE. “The Security Impact of a New Crypto-
graphic Library”. In: Progress in Cryptology – LATINCRYPT’12. Code: https://nacl.
cr.yp.to. 2012, pp. 159–176.

[BLW08] D. BOGDANOV, S. LAUR, J. WILLEMSON. “Sharemind: A Framework for Fast Privacy-
Preserving Computations”. In: ESORICS’08. Vol. 5283. LNCS. Springer, 2008,
pp. 192–206.

[BMD+17] F. BRASSER, U. MÜLLER, A. DMITRIENKO, K. KOSTIAINEN, S. CAPKUN, A. SADEGHI. “Soft-
ware Grand Exposure: SGX Cache Attacks Are Practical”. In: CoRR abs/1702.07521
(2017).

[BMR90] D. BEAVER, S. MICALI, P. ROGAWAY. “The Round Complexity of Secure Protocols
(Extended Abstract)”. In: 22nd ACM STOC. ACM, 1990, pp. 503–513.

[BMW+18] J. V. BULCK, M. MINKIN, O. WEISSE, D. GENKIN, B. KASIKCI, F. PIESSENS, M. SILBERSTEIN,
T. F. WENISCH, Y. YAROM, R. STRACKX. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution”. In: USENIX Security’18.
USENIX, 2018, 991–1008.

216

https://tools.ietf.org/html/draft-ietf-idr-rs-bfd-05
https://tools.ietf.org/html/draft-ietf-idr-rs-bfd-05
https://nacl.cr.yp.to
https://nacl.cr.yp.to

Bibliography

[BNP08] A. BEN-DAVID, N. NISAN, B. PINKAS. “FairplayMP: a system for secure multi-party
computation”. In: CCS’08. ACM, 2008, pp. 257–266.

[BNTW12] D. BOGDANOV, M. NIITSOO, T. TOFT, J. WILLEMSON. “High-performance secure multi-
party computation for data mining applications”. In: Int. J. Inf. Sec. 11.6 (2012),
pp. 403–418.

[BP06] J. BOYAR, R. PERALTA. “Concrete Multiplicative Complexity of Symmetric Func-
tions”. In: Mathematical Foundations of Computer Science (MFCS’06). Vol. 4162. LNCS.
Springer, 2006, pp. 179–189.

[BPP00] J. BOYAR, R. PERALTA, D. POCHUEV. “On the multiplicative complexity of Boolean
functions over the basis (∧,⊕, 1)”. In: Theoretical Computer Science 235.1 (2000),
pp. 43–57.

[BPSW07] J. BRICKELL, D. E. PORTER, V. SHMATIKOV, E. WITCHEL. “Privacy-preserving remote
diagnostics”. In: CCS’07. ACM, 2007, pp. 498–507.

[BS05] J. BRICKELL, V. SHMATIKOV. “Privacy-Preserving Graph Algorithms in the Semi-
honest Model”. In: ASIACRYPT’05. Vol. 3788. LNCS. Springer, 2005, pp. 236–
252.

[BSA13] M. BLANTON, A. STEELE, M. ALISAGARI. “Data-oblivious Graph Algorithms for Secure
Computation and Outsourcing”. In: ASIACCS’13. ACM, 2013, pp. 207–218.

[BSMD10] M. BURKHART, M. STRASSER, D. MANY, X. A. DIMITROPOULOS. “SEPIA: Privacy-
Preserving Aggregation of Multi-Domain Network Events and Statistics”. In:
USENIX Security’10. USENIX, 2010, pp. 223–240.

[BTW12] D. BOGDANOV, R. TALVISTE, J. WILLEMSON. “Deploying Secure Multi-Party Compu-
tation for Financial Data Analysis - (Short Paper)”. In: Financial Cryptography and
Data Security (FC’12). Vol. 7397. LNCS. Springer, 2012, pp. 57–64.

[BV14] J. BUDURUSHI, M. VOLKAMER. “Feasibility analysis of various electronic voting
systems for complex elections”. In: International Conference for E-Democracy and
Open Government 2014. 2014.

[CAI16] CAIDA. “The CAIDA AS Relationships Dataset, 20161101”. http://www.caida.
org/data/as-relationships/. 2016.

[Cap13] J. CAPPOS. “Avoiding Theoretical Optimality to Efficiently and Privately Retrieve
Security Updates”. In: Financial Cryptography and Data Security (FC’13). Vol. 7859.
LNCS. Code: https://uppir.poly.edu. Springer, 2013, pp. 386–394.

[CB09] D. R. CHOFFNES, F. E. BUSTAMANTE. “On the Effectiveness of Measurement Reuse
for Performance-Based Detouring”. In: IEEE INFOCOM. 2009, pp. 693–701.

[CBM15] H. CORRIGAN-GIBBS, D. BONEH, D. MAZIÈRES. “Riposte: An anonymous messaging
system handling millions of users”. In: IEEE Symposium on Security and Privacy
(S&P’15). 2015, pp. 321–338.

[CCD88] D. CHAUM, C. CRÉPEAU, I. DAMGÅRD. “Multiparty Unconditionally Secure Protocols
(Extended Abstract)”. In: STOC’88. ACM, 1988, pp. 11–19.

[CCL+17] G. S. CETIN, H. CHEN, K. LAINE, K. E. LAUTER, P. RINDAL, Y. XIA. “Private Queries
on Encrypted Genomic Data”. Cryptology ePrint Archive, Report 2017/207. https:
//ia.cr/2017/207. 2017.

[CD16] V. COSTAN, S. DEVADAS. “Intel SGX Explained”. Cryptology ePrint Archive, Report
2016/086. https://ia.cr/2016/086. 2016.

217

http://www.caida.org/data/as-relationships/
http://www.caida.org/data/as-relationships/
https://uppir.poly.edu
https://ia.cr/2017/207
https://ia.cr/2017/207
https://ia.cr/2016/086

Bibliography

[CDC+17a] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “Internet Routing
Privacy Survey”. http://bit.ly/2rjT7Nj. 2017.

[CDC+17b] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “SIXPACK: Secur-
ing Internet eXchange Points Against Curious onlooKers”. In: 13. International
Conference on emerging Networking EXperiments and Technologies (CoNEXT’17). ACM,
2017, pp. 120–133.

[CDE+10] L. CITTADINI, G. DI BATTISTA, T. ERLEBACH, M. PATRIGNANI, M. RIMONDINI. “Assigning
AS relationships to satisfy the Gao-Rexford conditions”. In: International Conference
on Network Protocols (ICNP). 2010, pp. 113–123.

[CDF+07] J. CALLAS, L. DONNERHACKE, H. FINNEY, D. SHAW, R. THAYER. “OpenPGP Message
Format”. RFC 4880. RFC Editor, 2007.

[CDJ+17] D. CHAUM, D. DAS, F. JAVANI, A. KATE, A. KRASNOVA, J. d. RUITER, A. T. SHERMAN.
“cMix: Mixing with Minimal Real-Time Asymmetric Cryptographic Operations”.
In: Applied Cryptography and Network Security (ACNS’17). 2017, pp. 557–578.

[CGKS95] B. CHOR, O. GOLDREICH, E. KUSHILEVITZ, M. SUDAN. “Private Information Retrieval”.
In: Foundations of Computer Science (FOCS’95). IEEE, 1995, pp. 41–50.

[CGN98] B. CHOR, N. GILBOA, M. NAOR. “Private Information Retrieval by Keywords”. Cryp-
tology ePrint Archive, Report 1998/003. https://ia.cr/1998/003. 1998.

[CGR+17] N. CHANDRAN, D. GUPTA, A. RASTOGI, R. SHARMA, S. TRIPATHI. “EzPC: Programmable,
Efficient, and Scalable Secure Two-Party Computation”. Cryptology ePrint Archive,
Report 2017/1109. https://ia.cr/2017/1109. 2017.

[CH10] O. CATRINA, S. HOOGH. “Improved Primitives for Secure Multiparty Integer Com-
putation”. In: Security and Cryptography for Networks (SCN’10). Vol. 6280. LNCS.
Springer, 2010, pp. 182–199.

[Cha81] D. L. CHAUM. “Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms”. In: Communications of the ACM 24 (2 1981), pp. 84–90.

[Cha83] D. L. CHAUM. “Blind Signature Systems”. In: CRYPTO’83. 1983, p. 153.

[CHK+12] S. G. CHOI, K.-W. HWANG, J. KATZ, T. MALKIN, D. RUBENSTEIN. “Secure Multi-Party
Computation of Boolean Circuits with Applications to Privacy in On-Line Market-
places”. In: CT-RSA’12. Vol. 7178. LNCS. Springer, 2012, pp. 416–432.

[CHLR18] H. CHEN, Z. HUANG, K. LAINE, P. RINDAL. “Labeled PSI from Fully Homomorphic
Encryption with Malicious Security”. In: CCS’18. ACM, 2018, pp. 1223–1237.

[Cis16] CISCO. “BGP Best Path Selection Algorithm”. https://www.cisco.com/c/en/us/
support/docs/ip/border-gateway-protocol-bgp/13753-25.html. 2016.

[CJV+11] M. CANINI, V. JOVANOVIĆ, D. VENZANO, G. KUMAR, D. NOVAKOVIĆ, D. KOSTIĆ. “Check-
ing for Insidious Faults in Deployed Federated and Heterogeneous Distributed
Systems”. Tech. rep. 164475. EPFL, 2011.

[CLM11] D. CROCE, E. LEONARDI, M. MELLIA. “Large-Scale Available Bandwidth Measure-
ments: Interference in Current Techniques”. In: IEEE Transactions on Network and
Service Management 8.4 (2011), pp. 361–374.

[CLR17] H. CHEN, K. LAINE, P. RINDAL. “Fast Private Set Intersection from Homomorphic
Encryption”. In: CCS’17. ACM, 2017, pp. 1243–1255.

218

http://bit.ly/2rjT7Nj
https://ia.cr/1998/003
https://ia.cr/2017/1109
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html

Bibliography

[CLT14] H. CARTER, C. LEVER, P. TRAYNOR. “Whitewash: Outsourcing Garbled Circuit Gen-
eration for Mobile Devices”. In: Annual Computer Security Applications Conference
(ACSAC’14). ACSAC’14. ACM, 2014, pp. 266–275.

[CML10] D. CROCE, M. MELLIA, E. LEONARDI. “The Quest for Bandwidth Estimation Tech-
niques for Large-scale Distributed Systems”. In: SIGMETRICS Performance Evalua-
tion Review 37.3 (2010), pp. 20–25.

[CMO00] G. D. CRESCENZO, T. MALKIN, R. OSTROVSKY. “Single Database Private Information
Retrieval Implies Oblivious Transfer”. In: EUROCRYPT’00. Vol. 1807. LNCS. Springer,
2000, pp. 122–138.

[CMS99] C. CACHIN, S. MICALI, M. STADLER. “Computationally Private Information Retrieval
with Polylogarithmic Communication”. In: EUROCRYPT’99. Vol. 1592. LNCS.
Springer, 1999, pp. 402–414.

[CMTB13] H. CARTER, B. MOOD, P. TRAYNOR, K. BUTLER. “Secure Outsourced Garbled Circuit
Evaluation for Mobile Devices”. In: USENIX Security’13. USENIX, 2013, pp. 289–304.

[CMTB16] H. CARTER, B. MOOD, P. TRAYNOR, K. BUTLER. “Outsourcing Secure Two-party Com-
putation As a Black Box”. In: Security and Communication Networks (SCN) 9.14
(2016), pp. 2261–2275.

[CS10] O. CATRINA, A. SAXENA. “Secure Computation with Fixed-Point Numbers”. In:
Financial Cryptography and Data Security (FC’10). Vol. 6052. LNCS. Springer, 2010,
pp. 35–50.

[CT10] E. D. CRISTOFARO, G. TSUDIK. “Practical Private Set Intersection Protocols with
Linear Complexity”. In: Financial Cryptography and Data Security (FC’10). Vol. 6052.
LNCS. Springer, 2010, pp. 143–159.

[DAA+11] P. DANECEK, A. AUTON, G. ABECASIS, C. A. ALBERS, E. BANKS, M. A. DEPRISTO,
R. E. HANDSAKER, G. LUNTER, G. T. MARTH, S. T. SHERRY, G. MCVEAN, R. DURBIN. “The
variant call format and VCFtools”. In: Bioinformatics 27.15 (2011), pp. 2156–2158.

[DCC18] A. DETHISE, M. CHIESA, M. CANINI. “Prelude: Ensuring Inter-Domain Loop-Freedom
in SDN-Enabled Networks”. In: APNet’18. ACM, 2018, pp. 50–56.

[DCW13] C. DONG, L. CHEN, Z. WEN. “When private set intersection meets big data: an
efficient and scalable protocol”. In: CCS’13. ACM, 2013, pp. 789–800.

[DDK+15] D. DEMMLER, G. DESSOUKY, F. KOUSHANFAR, A.-R. SADEGHI, T. SCHNEIDER, S. ZEITOUNI.
“Automated Synthesis of Optimized Circuits for Secure Computation”. In: CCS’15.
ACM, 2015, pp. 1504–1517.

[DEC16] “An IXP Route Server Test Framework”. https://www.de-cix.net/_Resources/
Persistent / fba89bc19381b6784df99d2a78d4a11ebb7583c2 / DE - CIX - route -
server-testframework.pdf. 2016.

[DFT13] E. DE CRISTOFARO, S. FABER, G. TSUDIK. “Secure Genomic Testing with Size- and
Position-hiding Private Substring Matching”. In: 12. ACM Workshop on Privacy in
the Electronic Society (WPES’13). ACM, 2013, pp. 107–118.

[DG14] C. DEVET, I. GOLDBERG. “The Best of Both Worlds: Combining Information-
Theoretic and Computational PIR for Communication Efficiency”. In: Privacy
Enhancing Technologies Symposium (PETS’14). Vol. 8555. LNCS. Springer, 2014,
pp. 63–82.

219

https://www.de-cix.net/_Resources/Persistent/fba89bc19381b6784df99d2a78d4a11ebb7583c2/DE-CIX-route-server-testframework.pdf
https://www.de-cix.net/_Resources/Persistent/fba89bc19381b6784df99d2a78d4a11ebb7583c2/DE-CIX-route-server-testframework.pdf
https://www.de-cix.net/_Resources/Persistent/fba89bc19381b6784df99d2a78d4a11ebb7583c2/DE-CIX-route-server-testframework.pdf

Bibliography

[DGH12] C. DEVET, I. GOLDBERG, N. HENINGER. “Optimally Robust Private Information Re-
trieval”. In: USENIX Security’12. USENIX, 2012, pp. 269–283.

[DGK08] I. DAMGÅRD, M. GEISLER, M. KRØIGAARD. “Homomorphic encryption and secure
comparison”. In: International Journal of Applied Cryptography 1.1 (2008), pp. 22–31.

[DGK09] I. DAMGÅRD, M. GEISLER, M. KRØIGAARD. “A correction to ’Efficient and secure
comparison for on-line auctions’”. In: International Journal of Applied Cryptography
1.4 (2009), pp. 323–324.

[DGKN09] I. DAMGÅRD, M. GEISLER, M. KRØIGAARD, J. B. NIELSEN. “Asynchronous Multiparty
Computation: theory and implementation”. In: PKC’09. Vol. 5443. LNCS. Springer,
2009, pp. 160–179.

[DGM+10] M. DIETZFELBINGER, A. GOERDT, M. MITZENMACHER, A. MONTANARI, R. PAGH, M. RINK.
“Tight thresholds for Cuckoo hashing via XORSAT”. In: International Colloquium
on Automata, Languages, and Programming. Springer. 2010, pp. 213–225.

[DGN10] I. DAMGÅRD, M. GEISLER, J. B. NIELSEN. “From Passive to Covert Security at Low
Cost”. In: TCC’10. Vol. 5978. LNCS. Springer, 2010, pp. 128–145.

[DHC04] W. DU, Y. S. HAN, S. CHEN. “Privacy-Preserving Multivariate Statistical Analysis:
Linear Regression and Classification”. In: SIAM’04. 2004, pp. 222–233.

[DHS14] D. DEMMLER, A. HERZBERG, T. SCHNEIDER. “RAID-PIR: Practical Multi-Server PIR”.
In: 6. ACM Cloud Computing Security Workshop (CCSW’14). Code: https://encrypto.
de/code/RAID-PIR. ACM, 2014, pp. 45–56.

[DHS17] D. DEMMLER, M. HOLZ, T. SCHNEIDER. “OnionPIR: Effective Protection of Sensitive
Metadata in Online Communication Networks”. In: 15. International Conference
on Applied Cryptography and Network Security (ACNS’17). Vol. 10355. LNCS. Code:
https://encrypto.de/code/onionPIR. Springer, 2017, pp. 599–619.

[DHSS17] D. DEMMLER, K. HAMACHER, T. SCHNEIDER, S. STAMMLER. “Privacy-Preserving Whole-
Genome Variant Queries”. In: 16. International Conference on Cryptology And Network
Security (CANS’17). Vol. 11261. LNCS. Springer, 2017, pp. 71–92.

[DJ01] I. DAMGÅRD, M. JURIK. “A Generalisation, a Simplification and some Applications
of Paillier’s Probabilistic Public-Key System”. In: PKC’01. Vol. 1992. LNCS. Springer,
2001, pp. 119–136.

[DJN10] I. DAMGÅRD, M. JURIK, J. B. NIELSEN. “A generalization of Paillier’s public-key sys-
tem with applications to electronic voting”. In: International Journal of Information
Security 9.6 (2010), pp. 371–385.

[DKF+07] X. DIMITROPOULOS, D. KRIOUKOV, M. FOMENKOV, B. HUFFAKER, Y. HYUN, K. CLAFFY,
G. RILEY. “AS Relationships: Inference and Validation”. In: Computer Communica-
tion Review 37.1 (2007), pp. 29–40.

[DKL+13] I. DAMGÅRD, M. KELLER, E. LARRAIA, V. PASTRO, P. SCHOLL, N. P. SMART. “Practical
Covertly Secure MPC for Dishonest Majority - Or: breaking the SPDZ Limits”. In:
ESORICS’13. Vol. 8134. LNCS. Springer, 2013, pp. 1–18.

[DKS+17] G. DESSOUKY, F. KOUSHANFAR, A.-R. SADEGHI, T. SCHNEIDER, S. ZEITOUNI, M. ZOHNER.
“Pushing the Communication Barrier in Secure Computation using Lookup Ta-
bles”. In: 24. Annual Network and Distributed System Security Symposium (NDSS’17).
Full version: https://ia.cr/2018/486. Internet Society, 2017.

220

https://encrypto.de/code/RAID-PIR
https://encrypto.de/code/RAID-PIR
https://encrypto.de/code/onionPIR
https://ia.cr/2018/486

Bibliography

[DKT10] E. DE CRISTOFARO, J. KIM, G. TSUDIK. “Linear-Complexity Private Set Intersection
Protocols Secure in Malicious Model”. In: ASIACRYPT 2010. Vol. 6477. LNCS.
Springer, 2010, pp. 213–231.

[DMS04] R. DINGLEDINE, N. MATHEWSON, P. SYVERSON. “Tor: The Second-generation Onion
Router”. In: USENIX Security’04. USENIX, 2004, pp. 21–21.

[DPSZ12] I. DAMGÅRD, V. PASTRO, N. P. SMART, S. ZAKARIAS. “Multiparty Computation from
Somewhat Homomorphic Encryption”. In: CRYPTO’12. Vol. 7417. LNCS. Springer,
2012, pp. 643–662.

[DRRT18] D. DEMMLER, P. RINDAL, M. ROSULEK, N. TRIEU. “PIR-PSI: Scaling Private Contact
Discovery”. In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2018.4 (2018).
Code: https://github.com/osu-crypto/libPSI.

[DS18] J. P. DEGABRIELE, M. STAM. “Untagging Tor: A Formal Treatment of Onion Encryp-
tion”. In: EUROCRYPT’18. Vol. 10822. LNCS. Springer, 2018, pp. 259–293.

[DSS14] J. DAUTRICH, E. STEFANOV, E. SHI. “Burst ORAM: Minimizing ORAM Response
Times for Bursty Access Patterns”. In: USENIX Security’14. USENIX, 2014.

[DSZ14] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “Ad-Hoc Secure Two-Party Computation
on Mobile Devices using Hardware Tokens”. In: USENIX Security’14. Full version:
https://ia.cr/2014/467. USENIX, 2014, pp. 893–908.

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY – A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation”. In: 22. Annual Network and Distributed
System Security Symposium (NDSS’15). Code: https://encrypto.de/code/ABY.
Internet Society, 2015.

[DSZ16] B. DOWLING, D. STEBILA, G. ZAVERUCHA. “Authenticated Network Time Synchro-
nization”. In: USENIX Security’16. USENIX, 2016, pp. 823–840.

[DT10] E. DE CRISTOFARO, G. TSUDIK. “Practical Private Set Intersection Protocols with
Linear Complexity”. In: Financial Cryptography and Data Security (FC’10). Vol. 6052.
LNCS. Springer, 2010, pp. 143–159.

[DYDW10] X. DING, Y. YANG, R. H. DENG, S. WANG. “A new hardware-assisted PIR with O(n)
shuffle cost”. In: International Journal of Information Security 9.4 (2010), pp. 237–
252.

[EGL85] S. EVEN, O. GOLDREICH, A. LEMPEL. “A randomized protocol for signing contracts”.
In: Communications of the ACM. ACM 28.6 (1985), pp. 637–647.

[END15] ENDEAVOUR. “Project ENDEAVOUR”. https://www.de-cix.net/en/about-de-
cix/research-and-development/endeavour. 2015.

[EU16] “Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing Direc-
tive 95/46/EC (General Data Protection Regulation)”. In: Official Journal of the
European Union L119 (2016), pp. 1–88.

[FDH+13] M. FRANZ, B. DEISEROTH, K. HAMACHER, S. JHA, S. KATZENBEISSER, H. SCHRÖDER. “Se-
cure computations on non-integer values with applications to privacy-preserving
sequence analysis”. In: Information Security Technical Report 17.3 (2013), pp. 117–
128.

221

https://github.com/osu-crypto/libPSI
https://ia.cr/2014/467
https://encrypto.de/code/ABY
https://www.de-cix.net/en/about-de-cix/research-and-development/endeavour
https://www.de-cix.net/en/about-de-cix/research-and-development/endeavour

Bibliography

[FES+17] D. FROELICHER, P. EGGER, J. S. SOUSA, J. L. RAISARO, Z. HUANG, C. MOUCHET, B. FORD,
J.-P. HUBAUX. “UnLynx: A Decentralized System for Privacy-Conscious Data Shar-
ing”. In: Privacy Enhancing Technologies Symposium (PETS’17). Vol. 4. 2017, pp. 152–
170.

[FK11] M. FRANZ, S. KATZENBEISSER. “Processing Encrypted Floating Point Signals”. In:
ACM Multimedia and Security (MM&Sec’11). ACM, 2011, pp. 103–108.

[FLNW17] J. FURUKAWA, Y. LINDELL, A. NOF, O. WEINSTEIN. “High-Throughput Secure Three-
Party Computation for Malicious Adversaries and an Honest Majority”. In: EURO-
CRYPT’17. Vol. 10211. LNCS. Springer, 2017, pp. 225–255.

[FM11] I. FETTE, A. MELNIKOV. “The WebSocket Protocol”. RFC 6455. RFC Editor, 2011.

[FMM09] A. FRIEZE, P. MELSTED, M. MITZENMACHER. “An analysis of random-walk Cuckoo
hashing”. In: Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques. Springer, 2009, pp. 490–503.

[FN13] T. K. FREDERIKSEN, J. B. NIELSEN. “Fast and Maliciously Secure Two-Party Compu-
tation Using the GPU”. In: Applied Cryptography and Network Security (ACNS’13).
Vol. 7954. LNCS. Springer, 2013, pp. 339–356.

[FNP04] M. J. FREEDMAN, K. NISSIM, B. PINKAS. “Efficient Private Matching and Set Inter-
section”. In: EUROCRYPT’04. Vol. 3027. LNCS. Springer, 2004, pp. 1–19.

[FPRS04] J. FEIGENBAUM, B. PINKAS, R. S. RYGER, F. SAINT-JEAN. “Secure computation of
surveys”. In: EU Workshop on Secure Multiparty Protocols. ECRYPT, 2004.

[FPS+11] M. FISCHLIN, B. PINKAS, A.-R. SADEGHI, T. SCHNEIDER, I. VISCONTI. “Secure Set
Intersection with Untrusted Hardware Tokens”. In: 11. Cryptographers’ Track at the
RSA Conference (CT-RSA’11). Vol. 6558. LNCS. Springer, 2011, pp. 1–16.

[FSR11] A. FABRIKANT, U. SYED, J. REXFORD. “There’s something about MRAI: Timing di-
versity can exponentially worsen BGP convergence”. In: INFOCOM’11. IEEE, 2011,
pp. 2975–2983.

[Gam85] T. E. GAMAL. “A public key cryptosystem and a signature scheme based on discrete
logarithms”. In: IEEE Transactions on Information Theory 31.4 (1985), pp. 469–472.

[Gao01] L. GAO. “On Inferring Autonomous System Relationships in the Internet”. In:
IEEE/ACM Transactions on Networking 9.6 (2001), pp. 733–745.

[GDL+14] I. GOLDBERG, C. DEVET, W. LUEKS, A. YANG, P. HENDRY, R. HENRY. “Percy++ project
on SourceForge”. http://percy.sourceforge.net. Version 1.0.0. 2014.

[GDL+16] R. GILAD-BACHRACH, N. DOWLIN, K. LAINE, K. E. LAUTER, M. NAEHRIG, J. WERNSING.
“CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput
and Accuracy”. In: ICML’16. 2016, pp. 201–210.

[Gei10] M. GEISLER. “Cryptographic Protocols: Theory and Implementation”. PhD thesis.
Aarhus University, 2010.

[Gen09] C. GENTRY. “Fully Homomorphic Encryption Using Ideal Lattices”. In: STOC’09.
ACM, 2009, pp. 169–178.

[GGH+13] S. GARG, C. GENTRY, S. HALEVI, M. RAYKOVA, A. SAHAI, B. WATERS. “Candidate
Indistinguishability Obfuscation and Functional Encryption for All Circuits”. In:
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2013, pp. 40–49.

222

http://percy.sourceforge.net

Bibliography

[GHS12] C. GENTRY, S. HALEVI, N. P. SMART. “Homomorphic evaluation of the AES circuit”.
In: CRYPTO. Vol. 7417. LNCS. Springer, 2012, pp. 850–867.

[GHSG16] Y. GILAD, A. HERZBERG, M. SUDKOVITCH, M. GOBERMAN. “CDN-on-Demand: An
Affordable DDoS Defense via Untrusted Clouds”. In: Network and Distributed System
Security (NDSS’16). The Internet Society, 2016.

[GI14] N. GILBOA, Y. ISHAI. “Distributed Point Functions and Their Applications”. In:
EUROCRYPT’14. Vol. 8441. LNCS. Springer, 2014, pp. 640–658.

[Gil99] N. GILBOA. “Two Party RSA Key Generation”. In: CRYPTO’99. Vol. 1666. LNCS.
Springer, 1999, pp. 116–129.

[GKL10] J. GROTH, A. KIAYIAS, H. LIPMAA. “Multi-query Computationally-Private Informa-
tion Retrieval with Constant Communication Rate”. In: PKC’10. Vol. 6056. LNCS.
Springer, 2010, pp. 107–123.

[GKP+13] S. GOLDWASSER, Y. KALAI, R. A. POPA, V. VAIKUNTANATHAN, N. ZELDOVICH. “Reusable
Garbled Circuits and Succinct Functional Encryption”. In: Symposium on Theory of
Computing (STOC). ACM, 2013, pp. 555–564.

[GKS17] D. GÜNTHER, Á. KISS, T. SCHNEIDER. “More Efficient Universal Circuit Construc-
tions”. In: ASIACRYPT’17. Vol. 10625. LNCS. Full version: https://ia.cr/2017/798.
Springer, 2017, pp. 443–470.

[GLL+16] R. GILAD-BACHRACH, K. LAINE, K. LAUTER, P. RINDAL, M. ROSULEK. “Secure Data
Exchange: A Marketplace in the Cloud”. Cryptology ePrint Archive, Report 2016/620.
https://ia.cr/. 2016.

[GMB+16] A. GUPTA, R. MACDAVID, R. BIRKNER, M. CANINI, N. FEAMSTER, J. REXFORD, L. VANBEVER.
“An Industrial-Scale Software Defined Internet Exchange Point”. In: USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’16). USENIX, 2016,
pp. 1–14.

[GMF+16] D. GUPTA, B. MOOD, J. FEIGENBAUM, K. BUTLER, P. TRAYNOR. “Using Intel Software
Guard Extensions for Efficient Two-Party Secure Function Evaluation”. In: 4. Work-
shop on Encrypted Computing and Applied Homomorphic Cryptography (WAHC’16).
Vol. 9604. LNCS. Springer, 2016, pp. 302–318.

[GMW87] O. GOLDREICH, S. MICALI, A. WIGDERSON. “How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority”. In: STOC’87. ACM,
1987, pp. 218–229.

[GO96] O. GOLDREICH, R. OSTROVSKY. “Software Protection and Simulation on Oblivious
RAMs”. In: Journal of the ACM (JACM’96) 43.3 (1996), pp. 431–473.

[Gol04] O. GOLDREICH. “The Foundations of Cryptography - Volume 2, Basic Applications”.
Cambridge University Press, 2004.

[Gol07] I. GOLDBERG. “Improving the Robustness of Private Information Retrieval”. In:
IEEE Symposium on Security and Privacy (S&P’07). IEEE, 2007, pp. 131–148.

[Goo09] M. T. GOODRICH. “The mastermind attack on genomic data”. In: 30. IEEE Symposium
on Security and Privacy (S&P’09). IEEE, 2009, pp. 204–218.

[GR01] L. GAO, J. REXFORD. “Stable Internet routing without global coordination”. In:
IEEE/ACM Transactions on Networking 9.6 (2001), pp. 681–692.

[GSG11] P. GILL, M. SCHAPIRA, S. GOLDBERG. “Let the market drive deployment: a strategy
for transitioning to BGP security”. In: SIGCOMM’11. ACM, 2011, pp. 14–25.

223

https://ia.cr/2017/798
https://ia.cr/

Bibliography

[GSG12] P. GILL, M. SCHAPIRA, S. GOLDBERG. “Modeling on quicksand: dealing with the
scarcity of ground truth in interdomain routing data”. In: Computer Communication
Review 42.1 (2012), pp. 40–46.

[GSG14] P. GILL, M. SCHAPIRA, S. GOLDBERG. “A Survey of Interdomain Routing Policies”.
In: Computer Communication Review 44.1 (2014), pp. 28–34.

[GSHR10] S. GOLDBERG, M. SCHAPIRA, P. HUMMON, J. REXFORD. “How secure are secure inter-
domain routing protocols”. In: SIGCOMM’10. ACM, 2010, pp. 87–98.

[GSP+12] D. GUPTA, A. SEGAL, A. PANDA, G. SEGEV, M. SCHAPIRA, J. FEIGENBAUM, J. REXFORD,
S. SHENKER. “A new approach to interdomain routing based on secure multi-party
computation”. In: Workshop on Hot Topics in Networks (HotNets’12). ACM, 2012,
pp. 37–42.

[GSV07] J. GARAY, B. SCHOENMAKERS, J. VILLEGAS. “Practical and Secure Solutions for
Integer Comparison”. In: PKC’07. Vol. 4450. LNCS. Springer, 2007, pp. 330–342.

[GSW02] T. GRIFFIN, F. SHEPHERD, G. WILFONG. “The stable paths problem and interdomain
routing”. In: IEEE/ACM Transactions on Networking 10.2 (2002), pp. 232–243.

[GVS+14] A. GUPTA, L. VANBEVER, M. SHAHBAZ, S. P. DONOVAN, B. SCHLINKER, N. FEAMSTER,
J. REXFORD, S. SHENKER, R. CLARK, E. KATZ-BASSETT. “SDX: A Software Defined
Internet Exchange”. In: SIGCOMM’14. ACM, 2014, pp. 551–562.

[GZ11] V. GIOTSAS, S. ZHOU. “Inferring AS Relationships from BGP Attributes”. In: CoRR
abs/1106.2417 (2011).

[HCE11] Y. HUANG, P. CHAPMAN, D. EVANS. “Privacy-preserving Applications on Smart-
phones”. In: USENIX Conference on Hot Topics in Security. HotSec’11. USENIX
Association, 2011, pp. 4–4.

[HEK12] Y. HUANG, D. EVANS, J. KATZ. “Private Set Intersection: Are Garbled Circuits Better
than Custom Protocols?” In: NDSS’12. The Internet Society, 2012.

[HEKM11] Y. HUANG, D. EVANS, J. KATZ, L. MALKA. “Faster Secure Two-Party Computation
Using Garbled Circuits”. In: USENIX Security’11. USENIX, 2011, pp. 539–554.

[Hen16] R. HENRY. “Polynomial Batch Codes for Efficient IT-PIR”. In: Privacy Enhancing
Technologies Symposium (PETS’16) 2016 (4 2016), pp. 202–218.

[HFKV12] A. HOLZER, M. FRANZ, S. KATZENBEISSER, H. VEITH. “Secure two-party computations
in ANSI C”. In: CCS’12. ACM, 2012, pp. 772–783.

[HHG13] R. HENRY, Y. HUANG, I. GOLDBERG. “One (Block) Size Fits All: PIR and SPIR with
Variable-Length Records via Multi-Block Queries”. In: Network and Distributed
System Security (NDSS’13). The Internet Society, 2013.

[HHT14] K. HAMACHER, J. P. HUBAUX, G. TSUDIK. “Genomic Privacy (Dagstuhl Seminar
13412)”. In: Dagstuhl Reports 3.10 (2014), pp. 25–35.

[HKS+10] W. HENECKA, S. KÖGL, A.-R. SADEGHI, T. SCHNEIDER, I. WEHRENBERG. “TASTY: Tool
for Automating Secure Two-partY computations”. In: CCS’10. Full version: https:
//ia.cr/2010/365. Code: https://encrypto.de/code/TASTY. ACM, 2010, pp. 451–
462.

[HL10] C. HAZAY, Y. LINDELL. “Efficient Secure Two-Party Protocols: Techniques and Con-
structions”. 1st. Springer, 2010.

224

https://ia.cr/2010/365
https://ia.cr/2010/365
https://encrypto.de/code/TASTY

Bibliography

[HLZZ15] J. v. d. HOOFF, D. LAZAR, M. ZAHARIA, N. ZELDOVICH. “Vuvuzela: Scalable private
messaging resistant to traffic analysis”. In: Symposium on Operating Systems Princi-
ples (SOSP’15). 2015, pp. 137–152.

[HMEK11] Y. HUANG, L. MALKA, D. EVANS, J. KATZ. “Efficient Privacy-Preserving Biometric
Identification”. In: NDSS’11. The Internet Society, 2011.

[HMM17] M. Z. HASAN, M. S. R. MAHDI, N. MOHAMMED. “Secure Count Query on Encrypted
Genomic Data”. In: International Workshop on Genome Privacy and Security (Geno-
Pri’16). 2017.

[HOSS18] C. HAZAY, E. ORSINI, P. SCHOLL, E. SORIA-VAZQUEZ. “Concretely Efficient Large-Scale
MPC with Active Security (or, TinyKeys for TinyOT)”. In: ASIACRYPT’18. LNCS.
Springer, 2018.

[HR13] W. HENECKA, M. ROUGHAN. “STRIP: Privacy-preserving vector-based routing”. In:
International Conference on Network Protocols (ICNP’13). IEEE, 2013, pp. 1–10.

[HRA11] G. HUSTON, M. ROSSI, G. ARMITAGE. “Securing BGP – A Literature Survey”. In:
Communications Surveys Tutorials, IEEE 13.2 (2011), pp. 199–222.

[HS13] W. HENECKA, T. SCHNEIDER. “Faster Secure Two-Party Computation with Less Mem-
ory”. In: ASIACCS’13. Code: https://encrypto.de/code/me-sfe. ACM, 2013,
pp. 437–446.

[HSS17] C. HAZAY, P. SCHOLL, E. SORIA-VAZQUEZ. “Low Cost Constant Round MPC Combining
BMR and Oblivious Transfer”. In: ASIACRYPT 2017. Vol. 10624. LNCS. Springer,
2017, pp. 598–628.

[IAR14] IARPA. “Security and Privacy Assurance Research-Multiparty Computation (SPAR-
MPC) Program”. Solicitation Number: IARPA-RFI-14-03. Intelligence Advanced Re-
search Projects Activity (IARPA). 2014.

[IEE08] IEEE. “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (2008),
pp. 1–70.

[IKNP03] Y. ISHAI, J. KILIAN, K. NISSIM, E. PETRANK. “Extending Oblivious Transfers Effi-
ciently”. In: CRYPTO’03. Vol. 2729. LNCS. Springer, 2003, pp. 145–161.

[IR89] R. IMPAGLIAZZO, S. RUDICH. “Limits on the Provable Consequences of One-Way
Permutations”. In: 21st ACM STOC. ACM, 1989, pp. 44–61.

[JCC+13] U. JAVED, I. CUNHA, D. R. CHOFFNES, E. KATZ-BASSETT, T. E. ANDERSON, A. KRISH-
NAMURTHY. “PoiRoot: investigating the root cause of interdomain path changes”.
In: SIGCOMM’13. ACM, 2013, pp. 183–194.

[JD08] M. JAIN, C. DOVROLIS. “Path Selection Using Available Bandwidth Estimation in
Overlay-Based Video Streaming”. In: Computer Networks 52.12 (2008), pp. 2411–
2418.

[JDS+16] P. JAIN, S. J. DESAI, M. SHIH, T. KIM, S. M. KIM, J. LEE, C. CHOI, Y. SHIN, B. B. KANG,
D. HAN. “OpenSGX: An Open Platform for SGX Research”. In: The Network and
Distributed System Security Symposium (NDSS). 2016.

[JKS08] S. JHA, L. KRUGER, V. SHMATIKOV. “Towards Practical Privacy for Genomic Com-
putation”. In: Symposium on Security and Privacy (S&P’08). IEEE, 2008, pp. 216–
230.

225

https://encrypto.de/code/me-sfe

Bibliography

[JKSS10] K. JÄRVINEN, V. KOLESNIKOV, A.-R. SADEGHI, T. SCHNEIDER. “Embedded SFE: Offload-
ing Server and Network using Hardware Tokens”. In: 14. International Conference
on Financial Cryptography and Data Security (FC’10). Vol. 6052. LNCS. Full version:
https://ia.cr/2009/591. Springer, 2010, pp. 207–221.

[JW05] G. JAGANNATHAN, R. N. WRIGHT. “Privacy-preserving distributed k-means cluster-
ing over arbitrarily partitioned data”. In: SIGKDD’05. ACM, 2005, pp. 593–599.

[KA99] Y.-K. KWOK, I. AHMAD. “Static scheduling algorithms for allocating directed task
graphs to multiprocessors”. In: ACM Computing Surveys (CSUR) 31.4 (1999), pp. 406–
471.

[KBS14] F. KERSCHBAUM, M. BECK, D. SCHÖNFELD. “Inference Control for Privacy-Preserving
Genome Matching”. In: CoRR abs/1405.0205 (2014).

[Kel15] M. KELLER. “The Oblivious Machine – or: How to Put the C into MPC”. Cryptology
ePrint Archive, Report 2015/467. https://ia.cr/2015/467. 2015.

[KHH+17] S. M. KIM, J. HAN, J. HA, T. KIM, D. HAN. “Enhancing Security and Privacy of Tor’s
Ecosystem by Using Trusted Execution Environments”. In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI’17). USENIX, 2017, pp. 145–161.

[KKK07] N. KUSHMAN, S. KANDULA, D. KATABI. “Can You Hear Me Now?!: It Must Be BGP”.
In: SIGCOMM’07 37.2 (2007), pp. 75–84.

[KKRT16] V. KOLESNIKOV, R. KUMARESAN, M. ROSULEK, N. TRIEU. “Efficient Batched Oblivious
PRF with Applications to Private Set Intersection”. In: CCS’16. ACM, 2016, pp. 818–
829.

[KLDF16] A. KWON, D. LAZAR, S. DEVADAS, B. FORD. “Riffle: An Efficient Communication
System With Strong Anonymity”. In: Privacy Enhancing Technologies Symposium
(PETS’16) 2016 (2 2016), pp. 115–134.

[KLS+17] Á. KISS, J. LIU, T. SCHNEIDER, N. ASOKAN, B. PINKAS. “Private Set Intersection for
Unequal Set Sizes with Mobile Applications”. In: Proceedings on Privacy Enhancing
Technologies (PoPETs) 2017.4 (2017). Full version: https://ia.cr/2017/670. Code:
https://encrypto.de/code/MobilePSI, pp. 177–197.

[KM14] V. KOLESNIKOV, A. J. MALOZEMOFF. “Public Verifiability in the Covert Model (Almost)
for Free”. In: ASIACRYPT’14. Vol. 9453. LNCS. Springer, 2014, pp. 210–235.

[KMR11] S. KAMARA, P. MOHASSEL, M. RAYKOVA. “Outsourcing Multi-Party Computation”.
Cryptology ePrint Archive, Report 2011/272. https://ia.cr/2011/272. 2011.

[KNR+17] S. KRÜGER, S. NADI, M. REIF, K. ALI, M. MEZINI, E. BODDEN, F. GÖPFERT, F. GÜNTHER,
C. WEINERT, D. DEMMLER, R. KAMATH. “CogniCrypt: Supporting Developers in Using
Cryptography”. In: 32nd International Conference on Automated Software Engineering
(ASE’17). IEEE, 2017, pp. 931–936.

[KO62] A. A. KARATSUBA, Y. OFMAN. “Multiplication of Many-Digital Numbers by Automatic
Computers”. In: SSSR Academy of Sciences 145 (1962), pp. 293–294.

[KO97] E. KUSHILEVITZ, R. OSTROVSKY. “Replication is Not Needed: Single Database,
Computationally-private Information Retrieval”. In: Foundations of Computer Sci-
ence (FOCS’97). IEEE, 1997, pp. 364–373.

[KOS16] M. KELLER, E. ORSINI, P. SCHOLL. “MASCOT: Faster Malicious Arithmetic Secure
Computation with Oblivious Transfer”. In: CCS’16. ACM, 2016, pp. 830–842.

226

https://ia.cr/2009/591
https://ia.cr/2015/467
https://ia.cr/2017/670
https://encrypto.de/code/MobilePSI
https://ia.cr/2011/272

Bibliography

[KPR+15] P. KOEBERL, V. PHEGADE, A. RAJAN, T. SCHNEIDER, S. SCHULZ, M. ZHDANOVA. “Time to
Rethink: Trust Brokerage Using Trusted Execution Environments”. In: Trust and
Trustworthy Computing (TRUST). Vol. 9229. LNCS. Springer, 2015, pp. 181–190.

[KRG+16] R. KLOETI, M. ROST, P. GEORGOPOULOS, B. AGER, S. SCHMID, D. X. “Stitching Inter-
Domain Paths over IXPs”. In: ACM SIGCOMM Symposium on SDN Research (SOSR’16).
2016.

[KS08a] V. KOLESNIKOV, T. SCHNEIDER. “A Practical Universal Circuit Construction and
Secure Evaluation of Private Functions”. In: 12. International Conference on Financial
Cryptography and Data Security (FC’08). Vol. 5143. LNCS. Code: https://encrypto.
de/code/FairplayPF. Springer, 2008, pp. 83–97.

[KS08b] V. KOLESNIKOV, T. SCHNEIDER. “Improved Garbled Circuit: Free XOR Gates and Ap-
plications”. In: 35. International Colloquium on Automata, Languages and Programming
(ICALP’08). Vol. 5126. LNCS. Springer, 2008, pp. 486–498.

[KS16] Á. KISS, T. SCHNEIDER. “Valiant’s Universal Circuit is Practical”. In: 35. Advances in
Cryptology – EUROCRYPT 2016. Vol. 9665. LNCS. Full version: https://ia.cr/2016/
093. Code: https://encrypto.de/code/UC. Springer, 2016, pp. 699–728.

[KSH+15] S. KIM, Y. SHIN, J. HA, T. KIM, D. HAN. “A First Step Towards Leveraging Commodity
Trusted Execution Environments for Network Applications”. In: ACM Workshop on
Hot Topics in Networks (HotNets. 2015.

[KSMB13] B. KREUTER, A. SHELAT, B. MOOD, K. R. B. BUTLER. “PCF: A Portable Circuit Format
for Scalable Two-Party Secure Computation”. In: USENIX Security’13. USENIX,
2013, pp. 321–336.

[KSS09] V. KOLESNIKOV, A.-R. SADEGHI, T. SCHNEIDER. “Improved Garbled Circuit Building
Blocks and Applications to Auctions and Computing Minima”. In: 8. International
Conference on Cryptology And Network Security (CANS’09). Vol. 5888. LNCS. Full
version: https://ia.cr/2009/411. Springer, 2009, pp. 1–20.

[KSS12] B. KREUTER, A. SHELAT, C. SHEN. “Billion-Gate Secure Computation with Malicious
Adversaries”. In: USENIX Security’12. USENIX, 2012, pp. 285–300.

[KSS13a] M. KELLER, P. SCHOLL, N. P. SMART. “An architecture for practical actively secure
MPC with dishonest majority”. In: CCS’13. ACM, 2013, pp. 549–560.

[KSS13b] V. KOLESNIKOV, A.-R. SADEGHI, T. SCHNEIDER. “A Systematic Approach to Practically
Efficient General Two-Party Secure Function Evaluation Protocols and their Mod-
ular Design”. In: Journal of Computer Security (JCS) 21.2 (2013). Preliminary version:
https://ia.cr/2010/079, pp. 283–315.

[KSS14] F. KERSCHBAUM, T. SCHNEIDER, A. SCHRÖPFER. “Automatic Protocol Selection in
Secure Two-Party Computations”. In: 12. International Conference on Applied Cryp-
tography and Network Security (ACNS’14). Vol. 8479. LNCS. Full version: https:
//ia.cr/2014/200. Springer, 2014, pp. 566–584.

[KW14] L. KAMM, J. WILLEMSON. “Secure floating point arithmetic and private satellite
collision analysis”. In: International Journal of Information Security (2014), pp. 1–18.

[LABJ00] C. LABOVITZ, A. AHUJA, A. BOSE, F. JAHANIAN. “Delayed Internet Routing Conver-
gence”. In: SIGCOMM’00 30.4 (2000), pp. 175–187.

[Lam16] M. LAMBÆK. “Breaking and Fixing Private Set Intersection Protocols”. https:
//ia.cr/2016/665. MA thesis. Aarhus University, 2016.

227

https://encrypto.de/code/FairplayPF
https://encrypto.de/code/FairplayPF
https://ia.cr/2016/093
https://ia.cr/2016/093
https://encrypto.de/code/UC
https://ia.cr/2009/411
https://ia.cr/2010/079
https://ia.cr/2014/200
https://ia.cr/2014/200
https://ia.cr/2016/665
https://ia.cr/2016/665

Bibliography

[Lan15] S. LANDAU. “Mining the Metadata: And Its Consequences”. In: International Con-
ference on Software Engineering (ICSE’15). 2015, pp. 4–5.

[LF80] R. E. LADNER, M. J. FISCHER. “Parallel Prefix Computation”. In: Journal of the ACM
27.4 (1980), pp. 831–838.

[LG15] W. LUEKS, I. GOLDBERG. “Sublinear Scaling for Multi-Client Private Information
Retrieval”. In: Financial Cryptography and Data Security (FC’15). LNCS. Springer,
2015, pp. 168–186.

[LHS+14] C. LIU, Y. HUANG, E. SHI, M. HICKS, J. KATZ. “Automating Efficient RAM-Model
Secure Computation”. In: S&P’14. IEEE, 2014.

[Lig15] LIGHTREADING. “Pica8 Powers French TOUIX SDN-Driven Internet Exchange”.
http://www.lightreading.com/white-box/white-box-systems/pica8-powers-
french-touix-sdn-driven-internet-exchange/d/d-id/716667. 2015.

[Lin13] Y. LINDELL. “Fast Cut-and-Choose Based Protocols for Malicious and Covert Ad-
versaries”. In: CRYPTO’13 (2). Vol. 8043. LNCS. Springer, 2013, pp. 1–17.

[LJLA17] J. LIU, M. JUUTI, Y. LU, N. ASOKAN. “Oblivious Neural Network Predictions via
MiniONN Transformations”. In: CCS’17. ACM, 2017, pp. 619–631.

[LMS16] H. LIPMAA, P. MOHASSEL, S. S. SADEGHIAN. “Valiant’s Universal Circuit: Improve-
ments, Implementation, and Applications”. Cryptology ePrint Archive, Report
2016/017. https://ia.cr/2016/017. 2016.

[LN17] Y. LINDELL, A. NOF. “A Framework for Constructing Fast MPC over Arithmetic
Circuits with Malicious Adversaries and an Honest-Majority”. In: CCS’17. ACM,
2017, pp. 259–276.

[LOS14] E. LARRAIA, E. ORSINI, N. P. SMART. “Dishonest Majority Multi-Party Computation
for Binary Circuits”. In: CRYPTO’14 (2). Vol. 8617. LNCS. Springer, 2014, pp. 495–
512.

[LP07] Y. LINDELL, B. PINKAS. “An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries”. In: EUROCRYPT’07. Springer, 2007,
pp. 52–78.

[LP09] Y. LINDELL, B. PINKAS. “A Proof of Security of Yao’s Protocol for Two-Party Com-
putation”. In: Journal of Cryptology 22.2 (2009), pp. 161–188.

[LPB+16] T. LEE, C. PAPPAS, D. BARRERA, P. SZALACHOWSKI, A. PERRIG. “Source Accountability
with Domain-brokered Privacy”. In: International Conference on emerging Networking
EXperiments and Technologies (CoNEXT). 2016, pp. 345–358.

[LR14] Y. LINDELL, B. RIVA. “Cut-and-Choose Yao-Based Secure Computation in the On-
line/Offline and Batch Settings”. In: CRYPTO 2014. Springer, 2014, pp. 476–494.

[LR15] Y. LINDELL, B. RIVA. “Blazing Fast 2PC in the Offline/Online Setting with Security
for Malicious Adversaries”. In: CCS’15. ACM, 2015, pp. 579–590.

[LWN+15] C. LIU, X. S. WANG, K. NAYAK, Y. HUANG, E. SHI. “ObliVM: A Programming Framework
for Secure Computation”. In: 2015 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 2015, pp. 359–376.

[LZ16] D. LAZAR, N. ZELDOVICH. “Alpenhorn: Bootstrapping Secure Communication with-
out Leaking Metadata”. In: Symposium on Operating Systems Design and Implementa-
tion, (OSDI’16). USENIX, 2016, pp. 571–586.

228

http://www.lightreading.com/white-box/white-box-systems/pica8-powers-french-touix-sdn-driven-internet-exchange/d/d-id/716667
http://www.lightreading.com/white-box/white-box-systems/pica8-powers-french-touix-sdn-driven-internet-exchange/d/d-id/716667
https://ia.cr/2016/017

Bibliography

[Mak10] M. X. MAKKES. “Efficient Implementation of Homomorphic Cryptosystems”. MA
thesis. Technische Universiteit Eindhoven, 2010.

[Mal11] L. MALKA. “VMCrypt - Modular Software Architecture for Scalable Secure Com-
putation”. In: CCS’11. ACM, 2011, pp. 715–724.

[MBC13] T. MAYBERRY, E.-O. BLASS, A. H. CHAN. “PIRMAP: Efficient Private Information
Retrieval for MapReduce”. In: Financial Cryptography and Data Security (FC’13).
Vol. 7859. LNCS. Springer, 2013, pp. 371–385.

[MBC14] T. MAYBERRY, E.-o. BLASS, A. H. CHAN. “Efficient Private File Retrieval by Combining
ORAM and PIR”. In: Network and Distributed System Security (NDSS’14). The Internet
Society, 2014.

[MBGR03] Z. M. MAO, R. BUSH, T. GRIFFIN, M. ROUGHAN. “BGP Beacons”. In: SIGCOMM’03.
ACM, 2003, pp. 1–14.

[MCA06] M. F. MOKBEL, C.-Y. CHOW, W. G. AREF. “The New Casper: Query Processing for
Location Services Without Compromising Privacy”. In: International Conference on
Very Large Data Bases (VLDB’06). 2006, pp. 763–774.

[MDL+17] M. R. DI LALLO, G. LOSPOTO, H. MOSTAFAEI, M. RIMONDINI, G. DI BATTISTA. “PrIXP: Pre-
serving the Privacy of Routing Policies at Internet eXchange Points”. In: IFIP/IEEE
International Symposium on Integrated Network Management, IM. 2017.

[MF06] P. MOHASSEL, M. FRANKLIN. “Efficiency Tradeoffs for Malicious Two-Party Compu-
tation”. In: PKC’06. Springer, 2006, pp. 458–473.

[MG08] C. A. MELCHOR, P. GABORIT. “A fast private information retrieval protocol”. In: IEEE
International Symposium on Information Theory (ISIT’08). IEEE, 2008, pp. 1848–1852.

[MGC+16] B. MOOD, D. GUPTA, H. CARTER, K. R. B. BUTLER, P. TRAYNOR. “Frigate: A Validated,
Extensible, and Efficient Compiler and Interpreter for Secure Computation”. In:
IEEE European Symposium on Security and Privacy (EuroS&P’16). IEEE, 2016, pp. 112–
127.

[MK04a] S. MACHIRAJU, R. H. KATZ. “Reconciling Cooperation with Confidentiality in Multi-
Provider Distributed Systems”. Tech. rep. UCB/CSD-04-1345. EECS Department,
University of California, Berkeley, 2004.

[MK04b] S. MACHIRAJU, R. H. KATZ. “Verifying Global Invariants in Multi-Provider Dis-
tributed Systems”. In: ACM Workshop on Hot Topics in Networks (HotNets. 2004.

[MK06] S. MACHIRAJU, R. H. KATZ. “Leveraging BGP Dynamics to Reverse-Engineer Routing
Policies”. Tech. rep. UCB/EECS-2006-61. EECS Department, University of California,
Berkeley, 2006.

[MKA+09] H. V. MADHYASTHA, E. KATZ-BASSETT, T. ANDERSON, A. KRISHNAMURTHY, A. VENKATARA-
MANI. “iPlane Nano: Path Prediction for Peer-to-peer Applications”. In: USENIX
Symposium on Networked Systems Design and Implementation (NSDI’09). USENIX, 2009,
pp. 137–152.

[MLB12] B. MOOD, L. LETAW, K. BUTLER. “Memory-Efficient Garbled Circuit Generation for
Mobile Devices”. In: Financial Cryptography and Data Security (FC’12). Vol. 7397.
LNCS. Springer, 2012, pp. 254–268.

[MMM16] J. MAYER, P. MUTCHLER, J. C. MITCHELL. “Evaluating the privacy properties of
telephone metadata”. In: National Academy of Sciences 113.20 (2016), pp. 5536–
5541.

229

Bibliography

[MNPS04] D. MALKHI, N. NISAN, B. PINKAS, Y. SELLA. “Fairplay – A Secure Two-Party Compu-
tation System”. In: USENIX Security’04. USENIX, 2004, pp. 287–302.

[MOR16] P. MOHASSEL, O. OROBETS, B. RIVA. “Efficient Server-Aided 2PC for Mobile Phones”.
In: Privacy Enhancing Technologies Symposium (PETS’16) 2016.2 (2016), pp. 82–99.

[MOT+11] P. MITTAL, F. G. OLUMOFIN, C. TRONCOSO, N. BORISOV, I. GOLDBERG. “PIR-Tor: Scalable
Anonymous Communication Using Private Information Retrieval”. In: USENIX
Security’11. USENIX, 2011, pp. 31–31.

[MR18] P. MOHASSEL, P. RINDAL. “ABY 3: A Mixed Protocol Framework for Machine Learn-
ing”. In: CCS’18. ACM, 2018, pp. 35–52.

[MS13] P. MOHASSEL, S. S. SADEGHIAN. “How to Hide Circuits in MPC an Efficient Frame-
work for Private Function Evaluation”. In: EUROCRYPT’13. Vol. 7881. LNCS.
Springer, 2013, pp. 557–574.

[NIS12] NIST. “NIST Special Publication 800-57, Recommendation for Key Management
Part 1: General (Rev. 3)”. National Institute of Standards and Technology (NIST).
2012.

[NIW+13] V. NIKOLAENKO, S. IOANNIDIS, U. WEINSBERG, M. JOYE, N. TAFT, D. BONEH. “Privacy-
preserving matrix factorization”. In: CCS’13. ACM, 2013, pp. 801–812.

[NNOB12] J. B. NIELSEN, P. S. NORDHOLT, C. ORLANDI, S. S. BURRA. “A New Approach to
Practical Active-Secure Two-Party Computation”. In: CRYPTO’12. Vol. 7417. LNCS.
Springer, 2012, pp. 681–700.

[NP01] M. NAOR, B. PINKAS. “Efficient oblivious transfer protocols”. In: Symposium on
Discrete Algorithms (SODA’01). Society for Industrial and Applied Mathematics, 2001,
pp. 448–457.

[NPS99] M. NAOR, B. PINKAS, R. SUMNER. “Privacy Preserving Auctions and Mechanism
Design”. In: Electronic Commerce (EC’99). ACM, 1999, pp. 129–139.

[NST17] J. B. NIELSEN, T. SCHNEIDER, R. TRIFILETTI. “Constant Round Maliciously Secure 2PC
with Function-independent Preprocessing using LEGO”. In: 24. Annual Network
and Distributed System Security Symposium (NDSS’17). Internet Society, 2017.

[NWI+13] V. NIKOLAENKO, U. WEINSBERG, S. IOANNIDIS, M. JOYE, D. BONEH, N. TAFT. “Privacy-
Preserving Ridge Regression on Hundreds of Millions of Records”. In: Symposium
on Security and Privacy (S&P’13). IEEE, 2013, pp. 334–348.

[OG11] F. G. OLUMOFIN, I. GOLDBERG. “Revisiting the Computational Practicality of Pri-
vate Information Retrieval”. In: Financial Cryptography and Data Security (FC’11).
Vol. 7035. LNCS. Springer, 2011, pp. 158–172.

[OOS17] M. ORRÙ, E. ORSINI, P. SCHOLL. “Actively Secure 1-out-of-N OT Extension with
Application to Private Set Intersection”. In: Topics in Cryptology – CT-RSA 2017: The
Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA, USA, February
14–17, 2017, Proceedings. Springer International Publishing, 2017, pp. 381–396.

[Ope14] OPEN WHISPER SYSTEMS. “The Difficulty Of Private Contact Discovery”. https:
//whispersystems.org/blog/contact-discovery/. 2014.

[OS07] R. OSTROVSKY, W. E. SKEITH, III. “A Survey of Single-Database Private Information
Retrieval: Techniques and Applications”. In: PKC’07. Vol. 4450. LNCS. Springer,
2007, pp. 393–411.

230

https://whispersystems.org/blog/contact-discovery/
https://whispersystems.org/blog/contact-discovery/

Bibliography

[OZPZ09] R. OLIVEIRA, B. ZHANG, D. PEI, L. ZHANG. “Quantifying Path Exploration in the
Internet”. In: IEEE/ACM Transactions on Networking 17.2 (2009), pp. 445–458.

[Pai99] P. PAILLIER. “Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes”. In: EUROCRYPT’99. Vol. 1592. LNCS. Springer, 1999, pp. 223–238.

[PBS12] P. PULLONEN, D. BOGDANOV, T. SCHNEIDER. “The design and implementation of a
two-party protocol suite for SHAREMIND 3”. Tech. rep. T-4-17. CYBERNETICA
Institute of Information Security, 2012.

[PC17] A. M. PERILLO, E. D. CRISTOFARO. “PAPEETE: Private, Authorized, and Fast Personal
Genomic Testing”. Tech. rep. 770. 2017.

[PGK88] D. A. PATTERSON, G. A. GIBSON, R. H. KATZ. “A Case for Redundant Arrays of
Inexpensive Disks (RAID)”. In: ACM International Conference on Management of Data
(SIGMOD’88). ACM, 1988, pp. 109–116.

[PH78] S. C. POHLIG, M. E. HELLMAN. “An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance (Corresp.)” In: IEEE Transactions on
Information Theory 24.1 (1978), pp. 106–110.

[PHG+17] A. M. PIOTROWSKA, J. HAYES, N. GELERNTER, G. DANEZIS, A. HERZBERG. “AnNotify: A
Private Notification Service”. In: WPES’17. ACM, 2017, pp. 5–15.

[PKUM16] E. PATTUK, M. KANTARCIOGLU, H. ULUSOY, B. MALIN. “CheapSMC: A Framework
to Minimize Secure Multiparty Computation Cost in the Cloud”. In: Data and
Applications Security and Privacy (DBSec’16). Vol. 9766. LNCS. Springer, 2016,
pp. 285–294.

[PMH09] P. PAPAGEORGE, J. MCCANN, M. HICKS. “Passive Aggressive Measurement with
MGRP”. In: 39.4 (2009), pp. 279–290.

[PSSW09] B. PINKAS, T. SCHNEIDER, N. P. SMART, S. C. WILLIAMS. “Secure Two-Party Com-
putation is Practical”. In: ASIACRYPT’09. Vol. 5912. LNCS. Full version: https:
//ia.cr/2009/314. Springer, 2009, pp. 250–267.

[PSSZ15] B. PINKAS, T. SCHNEIDER, G. SEGEV, M. ZOHNER. “Phasing: Private Set Intersection
Using Permutation-based Hashing”. In: USENIX Security’15. USENIX, 2015, pp. 515–
530.

[PSZ14] B. PINKAS, T. SCHNEIDER, M. ZOHNER. “Faster Private Set Intersection based on OT
Extension”. In: USENIX Security’14. Full version: https://ia.cr/2014/447. Code:
https://encrypto.de/code/PSI. USENIX, 2014, pp. 797–812.

[PSZ18] B. PINKAS, T. SCHNEIDER, M. ZOHNER. “Scalable Private Set Intersection Based on
OT Extension”. In: ACM Transactions on Privacy and Security (TOPS) 21.2 (2018).
Preliminary version: https://ia.cr/2016/930. Code: https://encrypto.de/code/
JournalPSI, 7:1–7:35.

[PTH16] A. K. PAUL, A. TACHIBANA, T. HASEGAWA. “An Enhanced Available Bandwidth Es-
timation Technique for an End-to-End Network Path”. In: IEEE Transactions on
Network and Service Management 13.4 (2016), pp. 768–781.

[Pul13] P. PULLONEN. “Actively Secure Two-Party Computation: Efficient Beaver Triple
Generation”. MA thesis. University of Tartu, 2013.

[RA18] A. C. D. RESENDE, D. F. ARANHA. “Faster Unbalanced Private Set Intersection”. In:
Financial Cryptography and Data Security (FC’18). LNCS. Springer, 2018.

231

https://ia.cr/2009/314
https://ia.cr/2009/314
https://ia.cr/2014/447
https://encrypto.de/code/PSI
https://ia.cr/2016/930
https://encrypto.de/code/JournalPSI
https://encrypto.de/code/JournalPSI

Bibliography

[Rab81] M. O. RABIN. “How to exchange secrets with oblivious transfer”. Tech. rep. Aiken
Computation Lab, Harvard University, https://ia.cr/2005/187. 1981.

[Ram99] B. RAMSDELL. “S/MIME Version 3 Message Specification”. RFC 2633. RFC Editor,
1999.

[RB89] T. RABIN, M. BEN-OR. “Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority (Extended Abstract)”. In: STOC’89. ACM, 1989, pp. 73–85.

[RHH14] A. RASTOGI, M. A. HAMMER, M. HICKS. “Wysteria: A Programming Language for
Generic, Mixed-Mode Multiparty Computations”. In: Symposium on Security and
Privacy (S&P’14). IEEE, 2014, pp. 655–670.

[RR16] P. RINDAL, M. ROSULEK. “Faster Malicious 2-Party Secure Computation with On-
line/Offline Dual Execution”. In: USENIX Security’16. USENIX, 2016, pp. 297–
314.

[RR17] P. RINDAL, M. ROSULEK. “Improved Private Set Intersection Against Malicious
Adversaries”. In: EUROCRYPT’17. Vol. 10210. LNCS. Springer, 2017, pp. 235–259.

[RSF+14] P. RICHTER, G. SMARAGDAKIS, A. FELDMANN, N. CHATZIS, J. BOETTGER, W. WILLINGER.
“Peering at Peerings: On the Role of IXP Route Servers”. In: Internet Measurement
Conference (IMC). 2014.

[RWM+11] M. ROUGHAN, W. WILLINGER, O. MAENNEL, D. PEROULI, R. BUSH. “10 Lessons from 10
Years of Measuring and Modeling the Internet’s Autonomous Systems”. In: IEEE
Journal on Selected Areas in Communications 29.9 (2011), pp. 1810–1821.

[RWT+18] M. S. RIAZI, C. WEINERT, O. TKACHENKO, E. M. SONGHORI, T. SCHNEIDER, F. KOUSHAN-
FAR. “Chameleon: A Hybrid Secure Computation Framework for Machine Learn-
ing Applications”. In: ASIACCS’18. Preliminary version: https://ia.cr/2017/1164.
ACM, 2018, pp. 707–721.

[RZ06] M. ROUGHAN, Y. ZHANG. “Privacy-Preserving Performance Measurements”. In:
Workshop on Mining Network Data (MineNet). ACM, 2006, pp. 329–334.

[Sav97] J. E. SAVAGE. “Models of Computation: Exploring the Power of Computing”. 1st.
Addison-Wesley Pub, 1997.

[SB15] S. S. SHRINGARPURE, C. D. BUSTAMANTE. “Privacy Risks from Genomic Data-Sharing
Beacons”. In: The American Journal of Human Genetics 97.5 (2015), pp. 631–646.

[SBS08] R. SHERWOOD, A. BENDER, N. SPRING. “Discarte: a disjunctive internet cartogra-
pher”. In: SIGCOMM’08. ACM, 2008.

[SC07] R. SION, B. CARBUNAR. “On the Practicality of Private Information Retrieval”. In:
Network and Distributed System Security (NDSS’07). The Internet Society, 2007.

[SCM05] L. SASSAMAN, B. COHEN, N. MATHEWSON. “The Pynchon Gate: A Secure Method
of Pseudonymous Mail Retrieval”. In: Workshop on Privacy in the Electronic Society
(WPES’05). ACM, 2005, pp. 1–9.

[SDS+13] E. STEFANOV, M. v. DIJK, E. SHI, C. W. FLETCHER, L. REN, X. YU, S. DEVADAS. “Path
ORAM: an extremely simple oblivious RAM protocol”. In: CCS’13. ACM, 2013,
pp. 299–310.

[SFLR13] J. STRINGER, Q. FU, C. LORIER, C. E. ROTHENBERG. “Cardigan: Deploying a Dis-
tributed Routing Fabric”. In: SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN’13). ACM, 2013, pp. 169–170.

232

https://ia.cr/2005/187
https://ia.cr/2017/1164

Bibliography

[ŠG14] J. ŠEDĚNKA, P. GASTI. “Privacy-preserving distance computation and proximity
testing on earth, done right”. In: ASIACCS’14. ACM, 2014, pp. 99–110.

[SHS+15] E. M. SONGHORI, S. U. HUSSAIN, A.-R. SADEGHI, T. SCHNEIDER, F. KOUSHANFAR. “Tiny-
Garble: Highly Compressed and Scalable Sequential Garbled Circuits”. In: 36.
IEEE Symposium on Security and Privacy (IEEE S&P’15). IEEE, 2015, pp. 411–428.

[SK11] A. SCHRÖPFER, F. KERSCHBAUM. “Forecasting Run-Times of Secure Two-Party Com-
putation”. In: Quantitative Evaluation of Systems (QEST’11). IEEE, 2011, pp. 181–
190.

[SKM11] A. SCHRÖPFER, F. KERSCHBAUM, G. MÜLLER. “L1 - An Intermediate Language for
Mixed-Protocol Secure Computation”. In: IEEE Computer Software and Applications
Conference (COMPSAC’11). IEEE, 2011, pp. 298–307.

[SLH+17] J. S. SOUSA, C. LEFEBVRE, Z. HUANG, J. L. RAISARO, C. AGUILAR-MELCHOR, M.-O. KIL-
LIJIAN, J.-P. HUBAUX. “Efficient and secure outsourcing of genomic data storage”.
In: BMC Medical Genomics 10.2 (2017), p. 46.

[Smi14] A. SMITH. “6 new facts about Facebook”. Pew Research Center Fact Tank. http://
www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/.
2014.

[SN16] A. SANATINIA, G. NOUBIR. “HOnions: Towards Detection and Identification of
Misbehaving Tor HSDirs”. In: Hot Topics in Privacy Enhancing Technologies Symposium
(HotPETS’16). 2016.

[SOA+15] A. SINGH, J. ONG, A. AGARWAL, G. ANDERSON, A. ARMISTEAD, R. BANNON, S. BOVING,
G. DESAI, B. FELDERMAN, P. GERMANO, A. KANAGALA, J. PROVOST, J. SIMMONS, E. TANDA,
J. WANDERER, U. HÖLZLE, S. STUART, A. VAHDAT. “Jupiter Rising: A Decade of
Clos Topologies and Centralized Control in Google’s Datacenter Network”. In:
Computer Communication Review 45.5 (2015), pp. 183–197.

[SS13] A. SHELAT, C.-H. SHEN. “Fast two-party secure computation with minimal assump-
tions”. In: CCS’13. ACM, 2013, pp. 523–534.

[ST] N. SMART, S. TILLICH. “Circuits of Basic Functions Suitable For MPC and FHE”.
https://homes.esat.kuleuven.be/~nsmart/MPC/.

[Syn10] SYNOPSYS INC. “Design Compiler”. https : / / www . synopsys . com / support /
training/rtl-synthesis/design-compiler-rtl-synthesis.html. 2010.

[Syn15] SYNOPSYS INC. “DesignWare Library - Datapath and Building Block IP”. https:
//www.synopsys.com/dw/buildingblock.php. 2015.

[SZ13] T. SCHNEIDER, M. ZOHNER. “GMW vs. Yao? Efficient Secure Two-Party Computation
with Low Depth Circuits”. In: 17. International Conference on Financial Cryptography
and Data Security (FC’13). Vol. 7859. LNCS. Springer, 2013, pp. 275–292.

[TG04] S. TAO, R. GUÉRIN. “On-line Estimation of Internet Path Performance: An Applica-
tion Perspective”. In: IEEE INFOCOM. 2004, pp. 1774–1785.

[TLP+16] S. TAMRAKAR, J. LIU, A. PAVERD, J. EKBERG, B. PINKAS, N. ASOKAN. “The Circle
Game: Scalable Private Membership Test Using Trusted Hardware”. In: CoRR
abs/1606.01655 (2016).

[UN48] UNITED NATIONS. “Universal Declaration of Human Rights”. United Nations, 1948.

[Vah17] A. VAHDAT. “Cloud Native Networking”. 2017. URL: https://www.youtube.com/
watch?v=1xBZ5DGZZmQ.

233

http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html
https://www.synopsys.com/dw/buildingblock.php
https://www.synopsys.com/dw/buildingblock.php
https://www.youtube.com/watch?v=1xBZ5DGZZmQ
https://www.youtube.com/watch?v=1xBZ5DGZZmQ

Bibliography

[Val76] L. G. VALIANT. “Universal Circuits (Preliminary Report)”. In: 8. ACM Symposium on
Theory of Computing (STOC’76). ACM, 1976, pp. 196–203.

[VC03] J. VAIDYA, C. CLIFTON. “Privacy-preserving k-means clustering over vertically par-
titioned data”. In: SIGKDD’03. 2003, pp. 206–215.

[Wak68] A. WAKSMAN. “A Permutation Network”. In: Journal of the ACM 15.1 (1968), pp. 159–
163.

[WDDB06] S. WANG, X. DING, R. H. DENG, F. BAO. “Private Information Retrieval Using Trusted
Hardware”. In: European Symposium on Research in Computer Security (ESORICS’06).
Vol. 4189. LNCS. Springer, 2006, pp. 49–64.

[WG03] F. WANG, L. GAO. “On Inferring and Characterizing Internet Routing Policies”. In:
Internet Measurement Conference (IMC). ACM, 2003, pp. 15–26.

[WHZ+15] X. S. WANG, Y. HUANG, Y. ZHAO, H. TANG, X. WANG, D. BU. “Efficient Genome-Wide,
Privacy-Preserving Similar Patient Query Based on Private Edit Distance”. In:
CCS’15. ACM, 2015, pp. 492–503.

[WLL+14] H. WANG, K. S. LEE, E. LI, C. L. LIM, A. TANG, H. WEATHERSPOON. “Timing is Every-
thing: Accurate, Minimum Overhead, Available Bandwidth Estimation in High-
speed Wired Networks”. In: Internet Measurement Conference (IMC). 2014, pp. 407–
420.

[Wol] C. WOLF. “Yosys Open SYnthesis Suite”. http://www.clifford.at/yosys/.

[WR04] X. WANG, M. K. REITER. “Mitigating Bandwidth-Exhaustion Attacks Using Conges-
tion Puzzles”. In: Computer and Communications Security (CCS). 2004, pp. 257–
267.

[WRCS16] D. WALTON, A. RETANA, E. CHEN, J. SCUDDER. “Advertisement of Multiple Paths in
BGP”. RFC 7911 (Proposed Standard). RFC Editor, 2016.

[WRK17] X. WANG, S. RANELLUCCI, J. KATZ. “Global-Scale Secure Multiparty Computation”.
In: CCS’17. ACM, 2017, pp. 39–56.

[XYC09] C. XING, L. YANG, M. CHEN. “Estimating Internet Path Properties for Distributed
Applications”. In: WiCOM. 2009, pp. 4179–4182.

[Yao86] A. C.-C. YAO. “How to Generate and Exchange Secrets”. In: FOCS’86. IEEE, 1986,
pp. 162–167.

[YDDB08] Y. YANG, X. DING, R. H. DENG, F. BAO. “An Efficient PIR Construction Using Trusted
Hardware”. In: Information Security Conference (ISC’08). Vol. 5222. LNCS. Springer,
2008, pp. 64–79.

[ZCD16] J. ZHOU, Z. CAO, X. DONG. “PPOPM: More Efficient Privacy Preserving Outsourced
Pattern Matching”. In: 21. European Symposium on Research in Computer Security
(ESORICS’16). Vol. 9878. LNCS. Springer, 2016, pp. 135–153.

[ZE15] S. ZAHUR, D. EVANS. “Obliv-C: A Language for Extensible Data-Oblivious Compu-
tation”. Cryptology ePrint Archive, Report 2015/1153. https://ia.cr/2015/1153.
2015.

[ZHS07] F. ZHAO, Y. HORI, K. SAKURAI. “Two-servers PIR based DNS query scheme with
privacy-preserving”. In: Intelligent Pervasive Computing, 2007. (IPC’07). IEEE. 2007,
pp. 299–302.

234

http://www.clifford.at/yosys/
https://ia.cr/2015/1153

Bibliography

[ZMZ04] B. ZHANG, D. MASSEY, L. ZHANG. “Destination reachability and BGP convergence
time [border gateway routing protocol]”. In: GLOBECOM’04. Vol. 3. IEEE, 2004,
pp. 1383–1389.

[ZRE15] S. ZAHUR, M. ROSULEK, D. EVANS. “Two Halves Make a Whole: Reducing Data
Transfer in Garbled Circuits using Half Gates”. In: EUROCRYPT’15. Vol. 9057.
LNCS. Springer, 2015, pp. 220–250.

[ZS14] L. F. ZHANG, R. SAFAVI-NAINI. “Verifiable Multi-server Private Information Re-
trieval”. In: Applied Cryptography and Network Security (ACNS’14). Vol. 8479. LNCS.
Springer, 2014, pp. 62–79.

[ZSB13] Y. ZHANG, A. STEELE, M. BLANTON. “PICCO: a general-purpose compiler for private
distributed computation”. In: CCS’13. ACM, 2013, pp. 813–826.

[ZZG+16] M. ZHAO, W. ZHOU, A. J. T. GURNEY, A. HAEBERLEN, M. SHERR, B. T. LOO. “Private
and Verifiable Interdomain Routing Decisions”. In: IEEE/ACM Transactions on Net-
working 24.2 (2016), pp. 1011–1024.

235

List of Figures

2.1 Example MPC Outsourcing Setting . 9
2.2 CGKS Example Query . 14

3.1 ABY Sharing Conversion Overview . 20
3.2 ABY Total Time Benchmark . 31

4.1 Architecture Overview . 38
4.2 High-level Description of the Hamming, Euclidean and Manhattan Distances 42

5.1 HyCC Compilation Architecture Overview . 55
5.2 Comparison of Measured and Estimated Runtimes 62
5.3 Runtime of the Protocol Selection Algorithm for Different Graph Widths w . 63

6.1 Privacy-Preserving Interdomain Routing Example Setting 73
6.2 SIXPACK Overview . 77
6.3 Node Degree Distribution . 83
6.4 CAIDA Historic Network Statistics . 84
6.5 CDF of RS Usage at a Large IXP . 85
6.6 Circuit Structure Overview. 95
6.7 SIXPACK’s 3-step Route Dispatching Process . 97
6.8 Export Policy Secret Sharing . 100
6.9 The EXPORT-ALL Component . 101
6.10 The SELECT-BEST Component . 104
6.11 Median Runtimes for CAIDA Topology . 117
6.12 Median Runtimes for RIR Topologies . 118
6.13 IP Prefix CDFs . 123
6.14 Processing Time CDFs . 125
6.15 SIXPACK Throughput Test for Different Number of Parallel Workers 126

7.1 Whole-Genome Matching Deployment Setting 132
7.2 Whole-Genome Matching Protocol Phases . 138
7.3 Benchmarks for Varying Number of Variants . 143
7.4 Benchmarks for Varying Query Length . 143
7.5 Benchmarks for Varying Total Element Size . 143

8.1 RAID-PIR Example Setting . 150
8.2 [CGKS95] Linear Summation PIR . 152

236

8.3 PIR with Redundancy Parameter r . 153
8.4 SB: Query Expansion from Seed si . 154
8.5 Multi-Block PIR Queries MB . 156
8.6 Example LUT Precomputation . 157
8.7 PIR Database Precomputation Example . 157
8.8 Uniform Entry Distribution in PIR Database . 159
8.9 RAID-PIR Database Initialization Time . 163
8.10 RAID-PIR WAN Benchmarks . 164
8.11 RAID-PIR DSL Benchmark . 165
8.12 RAID-PIR Runtime for Varying Number of Servers 166
8.13 RAID-PIR Server Computation for Varying Block Size 167
8.14 RAID-PIR Varying DB Size Benchmark . 167
8.15 RAID-PIR Benchmark Comparison with [Gol07] 168
8.16 OnionPIR System Overview . 173
8.17 Simplified OnionPIR Protocol . 174
8.18 Screenshot of the OnionPIR Client GUI . 178

9.1 Private Set Intersection Functionality Fm,n
psi . 186

9.2 Cuckoo Hashing Success Probability for k = 2 196
9.3 Cuckoo Hashing Success Probability for k = 3 197
9.4 PIR-PSI Communication and Computation Trade-off 199

List of Tables

2.1 Notation: Symbols and Default Values . 5

3.1 Multiplication Triple Generation Complexity 29
3.2 ABY Multiplication Triple Initialization Cost . 30
3.3 Asymptotic Operation Complexity Sharing Comparison 32

4.1 Functionality Synthesis Results . 47
4.2 Integer Division Benchmarks . 48
4.3 Dot Product Benchmarks . 49
4.4 Floating-Point Benchmarks . 50
4.5 Floating-Point Benchmarks . 51
4.6 Fixpoint Benchmarks . 51
4.7 Privacy-Preserving Proximity Testing Benchmarks 53

237

5.1 Biometric Matching Modules Sizes . 64
5.2 HyCC Minimum Euclidean Distance Benchmarks 66
5.3 HyCC Machine Learning Benchmarks . 67
5.4 HyCC Gaussian Elimination Benchmarks . 67
5.5 HyCC Database Operation Benchmarks . 68

6.1 Average International Round Trip Times . 110
6.2 Circuit Complexity and Benchmarks for CAIDA Dataset 119
6.3 Circuit Complexity and Benchmarks for RIR Dataset 120
6.4 AND Complexity for Subroutines . 121
6.5 AND Gate Complexity and Optimizations . 121
6.6 Sub-Circuit AND Gate Count . 121
6.7 SIXPACK MPC Micro Benchmarks . 124

7.1 Comparison of Features and Limitations of Related Work 135
7.2 Benchmark Results and Circuit Properties for Varying Variant Count 144
7.3 Benchmark Results and Circuit Properties for Varying Query Length 144
7.4 Benchmark Results and Circuit Properties for Varying Total Element Size . . 144

8.1 Comparison of Speedup and Memory for the Method of four Russians 158
8.2 RAID-PIR Complexity . 160

9.1 Notation: Parameters and Symbols Used . 184
9.2 PIR-PSI Performance Results . 200
9.3 PIR-PSI Optimization Speedup . 202
9.4 Comparison of PIR-PSI with Related Work . 203

List of Protocols

3.1 Generating Arithmetic MTs via HE . 24

6.1 The EXPORT-ALL Protocol . 103
6.2 Secret Sharing of the Member Preferences prefs in the SELECT-BEST Protocol 106
6.3 The SELECT-BEST Protocol . 107

9.1 Our 2-server PIR-PSI Protocol FPIR-PSI . 194

238

List of Algorithms

6.1 Neighbor Relation Routing [GSG11] . 91
6.2 Neighbor Preference Routing [GSP+12] . 92

8.1 SB and MB PIR . 155

List of Circuits

6.1 Neighbor Relation Routing Circuit . 94
6.2 The EXPORT-ALL Circuit . 102
6.3 The SELECT-BEST Circuit . 105
6.4 Selection Function customer . 113
6.5 Selection Function peer / provider . 114

239

List of Abbreviations

AEAD Authenticated Encryption with Associated Data
AS Autonomous System
ASIC Application Specific Integrated Circuit
BGP Border Gateway Protocol
CDN Content Delivery Network
DAG Directed Acyclic Graph
DPF Distributed Point Function
DSL Domain Specific Language
FPGA Field Programmable Gate Array
GDPR General Data Protection Regulation
HDL Hardware Definition Language
HE Homomorphic Encryption
IXP Internet Exchange Point
LUT Look-up Table
MPC Secure Multi-Party Computation
ORAM Oblivious Random Access Memory
OT Oblivious Transfer
PAL Programmable Array Logic
PEQ Private Equality Test
PIR Private Information Retrieval
PFE Private Function Evaluation
PRG Pseudo-Random Generator
PSI Private Set Intersection
RAID Redundant Array of Inexpensive Disks
RPKI Resource Public Key Infrastructure
SDN Software Defined Networking
SIMD Single Instruction Multiple Data
SGX Software Guard Extensions
VCF Variant Call Format
VQF Variant Query Format

240

List of Own Publications

Peer-reviewed Conference andWorkshop Publications

[ADS+17] G. ASHAROV, D. DEMMLER, M. SCHAPIRA, T. SCHNEIDER, G. SEGEV, S. SHENKER,
M. ZOHNER. “Privacy-Preserving Interdomain Routing at Internet Scale”.
In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2017.3 (2017). Full
version: https://ia.cr/2017/393, pp. 143–163. CORE Rank B. Part of this
thesis.

[BDK+18] N. BÜSCHER, D. DEMMLER, S. KATZENBEISSER, D. KRETZMER, T. SCHNEIDER.
“HyCC: Compilation of Hybrid Protocols for Practical Secure Computa-
tion”. In: 25. ACM Conference on Computer and Communications Security
(CCS’18). ACM, 2018, pp. 847–861. CORE Rank A*. Part of this thesis.

[CDC+16] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “Towards
Securing Internet eXchange Points Against Curious onlooKers (Short Pa-
per)”. In: 1. ACM, IRTF & ISOC Applied Networking Research Workshop
(ANRW’16). ACM, 2016, pp. 32–34. Part of this thesis.

[CDC+17] M. CHIESA, D. DEMMLER, M. CANINI, M. SCHAPIRA, T. SCHNEIDER. “SIXPACK:
Securing Internet eXchange Points Against Curious onlooKers”. In: 13.
International Conference on emerging Networking EXperiments and Technologies
(CoNEXT’17). ACM, 2017, pp. 120–133. CORE Rank A. Part of this thesis.

[DDK+15] D. DEMMLER, G. DESSOUKY, F. KOUSHANFAR, A.-R. SADEGHI, T. SCHNEIDER,
S. ZEITOUNI. “Automated Synthesis of Optimized Circuits for Secure Com-
putation”. In: 22. ACM Conference on Computer and Communications Security
(CCS’15). ACM, 2015, pp. 1504–1517. CORE Rank A*. Part of this thesis.

[DHS14] D. DEMMLER, A. HERZBERG, T. SCHNEIDER. “RAID-PIR: Practical Multi-Server
PIR”. In: 6. ACM Cloud Computing Security Workshop (CCSW’14). Code:
https://encrypto.de/code/RAID-PIR. ACM, 2014, pp. 45–56. Part of this
thesis.

[DHS17] D. DEMMLER, M. HOLZ, T. SCHNEIDER. “OnionPIR: Effective Protection of
Sensitive Metadata in Online Communication Networks”. In: 15. Interna-
tional Conference on Applied Cryptography and Network Security (ACNS’17).
Vol. 10355. LNCS. Code: https://encrypto.de/code/onionPIR. Springer,
2017, pp. 599–619. CORE Rank B. Part of this thesis.

241

https://ia.cr/2017/393
https://encrypto.de/code/RAID-PIR
https://encrypto.de/code/onionPIR

List of Own Publications

[DHSS17] D. DEMMLER, K. HAMACHER, T. SCHNEIDER, S. STAMMLER. “Privacy-Preserving
Whole-Genome Variant Queries”. In: 16. International Conference on Cryp-
tology And Network Security (CANS’17). Vol. 11261. LNCS. Springer, 2017,
pp. 71–92. CORE Rank B. Part of this thesis.

[DRRT18] D. DEMMLER, P. RINDAL, M. ROSULEK, N. TRIEU. “PIR-PSI: Scaling Pri-
vate Contact Discovery”. In: Proceedings on Privacy Enhancing Technologies
(PoPETs) 2018.4 (2018). Code: https://github.com/osu-crypto/libPSI.
CORE Rank B. Part of this thesis.

[DSZ14] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “Ad-Hoc Secure Two-Party Compu-
tation on Mobile Devices using Hardware Tokens”. In: 23. USENIX Security
Symposium (USENIX Security’14). Full version: https://ia.cr/2014/467.
USENIX, 2014, pp. 893–908. CORE Rank A*.

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY – A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation”. In: 22. Annual Network and
Distributed System Security Symposium (NDSS’15). Code: https://encrypto.
de/code/ABY. Internet Society, 2015. CORE Rank A*. Part of this thesis.

[KNR+17] S. KRÜGER, S. NADI, M. REIF, K. ALI, M. MEZINI, E. BODDEN, F. GÖPFERT, F. GÜN-
THER, C. WEINERT, D. DEMMLER, R. KAMATH. “CogniCrypt: Supporting De-
velopers in Using Cryptography”. In: International Conference on Automated
Software Engineering (ASE). ASE 2017. IEEE Press, 2017, pp. 931–936.

242

https://github.com/osu-crypto/libPSI
https://ia.cr/2014/467
https://encrypto.de/code/ABY
https://encrypto.de/code/ABY

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Thesis Outline

	Preliminaries
	Notation and Security Parameters
	Adversary Models
	Oblivious Transfer
	Secure Multi-Party Computation (MPC)
	Private Information Retrieval (PIR)
	Alternative Privacy-Preserving Techniques

	Tools for Efficient and Usable MPC
	ABY: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation
	Introduction
	Sharing Types
	Implementation and Benchmarks

	Automated Synthesis of Optimized Circuits for MPC
	Introduction
	Preliminaries
	Our ToolChain
	Building Blocks Library
	Benchmarks and Evaluation
	Application: Privacy-Preserving Proximity Testing on Earth

	Automated Compilation of Hybrid Protocols for Practical Secure Computation
	Introduction
	The HyCC MPC Compiler
	Protocol Selection and Scheduling
	Benchmarks
	Conclusions and Future Work

	MPC Applications in the Outsourcing Scenario
	Privacy-Preserving Internet Routing
	Introduction
	Preliminaries
	Related Work
	Centralized BGP Route Computation
	SIXPACK Privacy-Preserving Route Server
	Security and Privacy
	Deployment
	Implementation
	Benchmarks and Evaluation
	Conclusion and Future Work

	Privacy-Preserving Whole-Genome Matching
	Introduction
	Preliminaries
	Genetic Variant Queries on Distributed Databases
	Our Protocol for Private Genome Variant Queries
	Implementation
	Benchmarks
	Conclusion

	Private Information Retrieval and Applications
	Improving Multi-Server PIR for Anonymous Communication
	Introduction
	Preliminaries
	RAID-PIR
	Analysis
	Implementation
	Benchmarks
	Applying RAID-PIR
	OnionPIR: A System for Anonymous Communication
	Conclusion and Future Work

	PIR-PSI: Scaling Private Contact Disvocery
	Introduction
	Preliminaries
	Our Construction: PIR-PSI
	Security
	Implementation
	Performance
	Comparison with Prior Work
	Extensions and Deployment

	Conclusion
	Summary
	Future Work

	Bibliography
	Lists

