752 research outputs found

    Toward optimised skeletons for heterogeneous parallel architecture with performance cost model

    Get PDF
    High performance architectures are increasingly heterogeneous with shared and distributed memory components, and accelerators like GPUs. Programming such architectures is complicated and performance portability is a major issue as the architectures evolve. This thesis explores the potential for algorithmic skeletons integrating a dynamically parametrised static cost model, to deliver portable performance for mostly regular data parallel programs on heterogeneous archi- tectures. The rst contribution of this thesis is to address the challenges of program- ming heterogeneous architectures by providing two skeleton-based programming libraries: i.e. HWSkel for heterogeneous multicore clusters and GPU-HWSkel that enables GPUs to be exploited as general purpose multi-processor devices. Both libraries provide heterogeneous data parallel algorithmic skeletons including hMap, hMapAll, hReduce, hMapReduce, and hMapReduceAll. The second contribution is the development of cost models for workload dis- tribution. First, we construct an architectural cost model (CM1) to optimise overall processing time for HWSkel heterogeneous skeletons on a heterogeneous system composed of networks of arbitrary numbers of nodes, each with an ar- bitrary number of cores sharing arbitrary amounts of memory. The cost model characterises the components of the architecture by the number of cores, clock speed, and crucially the size of the L2 cache. Second, we extend the HWSkel cost model (CM1) to account for GPU performance. The extended cost model (CM2) is used in the GPU-HWSkel library to automatically nd a good distribution for both a single heterogeneous multicore/GPU node, and clusters of heteroge- neous multicore/GPU nodes. Experiments are carried out on three heterogeneous multicore clusters, four heterogeneous multicore/GPU clusters, and three single heterogeneous multicore/GPU nodes. The results of experimental evaluations for four data parallel benchmarks, i.e. sumEuler, Image matching, Fibonacci, and Matrix Multiplication, show that our combined heterogeneous skeletons and cost models can make good use of resources in heterogeneous systems. Moreover using cores together with a GPU in the same host can deliver good performance either on a single node or on multiple node architectures

    A Multi-GPU Programming Library for Real-Time Applications

    Full text link
    We present MGPU, a C++ programming library targeted at single-node multi-GPU systems. Such systems combine disproportionate floating point performance with high data locality and are thus well suited to implement real-time algorithms. We describe the library design, programming interface and implementation details in light of this specific problem domain. The core concepts of this work are a novel kind of container abstraction and MPI-like communication methods for intra-system communication. We further demonstrate how MGPU is used as a framework for porting existing GPU libraries to multi-device architectures. Putting our library to the test, we accelerate an iterative non-linear image reconstruction algorithm for real-time magnetic resonance imaging using multiple GPUs. We achieve a speed-up of about 1.7 using 2 GPUs and reach a final speed-up of 2.1 with 4 GPUs. These promising results lead us to conclude that multi-GPU systems are a viable solution for real-time MRI reconstruction as well as signal-processing applications in general.Comment: 15 pages, 10 figure

    Multi-GPU support on the marrow algorithmic skeleton framework

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaWith the proliferation of general purpose GPUs, workload parallelization and datatransfer optimization became an increasing concern. The natural evolution from using a single GPU, is multiplying the amount of available processors, presenting new challenges, as tuning the workload decompositions and load balancing, when dealing with heterogeneous systems. Higher-level programming is a very important asset in a multi-GPU environment, due to the complexity inherent to the currently used GPGPU APIs (OpenCL and CUDA), because of their low-level and code overhead. This can be obtained by introducing an abstraction layer, which has the advantage of enabling implicit optimizations and orchestrations such as transparent load balancing mechanism and reduced explicit code overhead. Algorithmic Skeletons, previously used in cluster environments, have recently been adapted to the GPGPU context. Skeletons abstract most sources of code overhead, by defining computation patterns of commonly used algorithms. The Marrow algorithmic skeleton library is one of these, taking advantage of the abstractions to automate the orchestration needed for an efficient GPU execution. This thesis proposes the extension of Marrow to leverage the use of algorithmic skeletons in the modular and efficient programming of multiple heterogeneous GPUs, within a single machine. We were able to achieve a good balance between simplicity of the programming model and performance, obtaining good scalability when using multiple GPUs, with an efficient load distribution, although at the price of some overhead when using a single-GPU.projects PTDC/EIA-EIA/102579/2008 and PTDC/EIA-EIA/111518/200

    Contract-Based General-Purpose GPU Programming

    Get PDF
    Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. An obstacle to widespread adoption, however, is the difficulty of programming them and the low-level control of the hardware required to achieve good performance. This paper suggests a programming library, SafeGPU, that aims at striking a balance between programmer productivity and performance, by making GPU data-parallel operations accessible from within a classical object-oriented programming language. The solution is integrated with the design-by-contract approach, which increases confidence in functional program correctness by embedding executable program specifications into the program text. We show that our library leads to modular and maintainable code that is accessible to GPGPU non-experts, while providing performance that is comparable with hand-written CUDA code. Furthermore, runtime contract checking turns out to be feasible, as the contracts can be executed on the GPU

    Geometry-Oblivious FMM for Compressing Dense SPD Matrices

    Full text link
    We present GOFMM (geometry-oblivious FMM), a novel method that creates a hierarchical low-rank approximation, "compression," of an arbitrary dense symmetric positive definite (SPD) matrix. For many applications, GOFMM enables an approximate matrix-vector multiplication in NlogNN \log N or even NN time, where NN is the matrix size. Compression requires NlogNN \log N storage and work. In general, our scheme belongs to the family of hierarchical matrix approximation methods. In particular, it generalizes the fast multipole method (FMM) to a purely algebraic setting by only requiring the ability to sample matrix entries. Neither geometric information (i.e., point coordinates) nor knowledge of how the matrix entries have been generated is required, thus the term "geometry-oblivious." Also, we introduce a shared-memory parallel scheme for hierarchical matrix computations that reduces synchronization barriers. We present results on the Intel Knights Landing and Haswell architectures, and on the NVIDIA Pascal architecture for a variety of matrices.Comment: 13 pages, accepted by SC'1
    corecore