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Abstract In this paper we present the Loop-of-stencil-reduce pattern as a
mean for simplifying the implementation of data parallel programs on het-
erogeneous multi-core platforms. Loop-of-stencil-reduce is general enough to
subsume map, reduce, map-reduce, stencil, stencil-reduce, and, crucially, their
usage in a loop in both data parallel and streaming applications, or a combi-
nation of both. The pattern makes it possible to deploy a single stencil com-
putation kernel on different GPUs. The paper discusses the implementation
of Loop-of-stencil-reduce within the FastFlow parallel framework, consider-
ing a set of iterative data-parallel kernels running on different heterogeneous
parallel systems.

Keywords parallel patterns, OpenCL, GPUs, heterogeneous multi-cores

1 Introduction

Data parallelism has played a paramount role in application design from the
dawn of parallel computing. Stencil kernels are the class of (usually itera-
tive) data parallel kernels which update array elements according to some
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2 Aldinucci et. al.

fixed access pattern. The stencil paradigm naturally models a wide class of
algorithms (e.g. convolutions, cellular automata, simulations) and it typically
requires only a fixed-size and compact data exchange among processing el-
ements, which might follow a weakly ordered execution model. The stencil
paradigm does not exhibit true data dependencies within a single iteration.
This ensures efficiency and scalability on a wide range of platforms ranging
from GPUs to clusters. GPUs are widely perceived as data-parallel computing
systems [16] so that GPU kernels are typically designed to employ the map-
reduce parallel paradigm. The reduce part is typically realised as a sequence
of partial GPU-side reduces, followed by a global host-side reduce. Thanks to
GPUs’ globally shared memory, a map computation can implement a stencil
as a data overlay with non-empty intersection, provided they are accessed in
read-only fashion to enforce deterministic behaviour. Often, this kind of kernel
is iteratively called in host code in a loop body up to a convergence criterion.

Data parallelism have been provided to application programmers by way of
different code artefacts (constructs, from now on) both in the shared-memory
and message-passing programming models (e.g. compiler directives, skeleton
frameworks, pattern libraries). Its implementation is well understood for a
broad class of platforms, including GPUs (see Sec. 2). In this setting, the
possibility to compose constructs certainly enhances expressivity but also the
complexity of the run-time system.

We advocate composition beyond the class of data parallel constructs. We
envisage parallelism exploited according to the two tier model [1]: stream and
data parallel. Constructs in each tier can be composed and data parallel con-
structs can be nested within stream parallel ones. The proposed approach
distinguishes itself from nesting of task and data parallelism, which has been
proposed (with various degrees of integration) as a way to integrate different
platforms examples include MPI+OpenMP, OmpSs+SkePU, MPI+CUDA.

In this setting, we propose the Loop-of-stencil-reduce pattern as an abstrac-
tion for tackling the complexity of implementing iterative data computations
on heterogeneous platforms. The Loop-of-stencil-reduce is designed as a Fast-
Flow [9] pattern, which can be nested in other stream parallel patterns, such
as farm and pipeline, and implemented in C++ and OpenCL. We advocate
Loop-of-stencil-reduce as a comprehensive pattern for programming GPUs in a
way that is general enough to express map, reduce, map-reduce, stencil, stencil-
reduce computations and, most of all, their usage in a loop.

The Loop-of-stencil-reduce simplifies GPU exploitation by taking care of
a number of low-level issues, such as: device detection, device memory al-
location, host-to-device (H2D) and device-to-host (D2H) memory copy and
synchronisation, reduce algorithm implementation, management of persistent
global memory in the device across successive iterations, and enforcing data
race avoidance due to stencil data access in iterative computations. Finally, it
can transparently exploit multiple GPUs on the same platform.

While this paper builds on previous results [4,2], it advances them in several
directions. The Loop-of-stencil-reduce pattern is an evolution of the stencil-
reduce pattern [4]. The Loop-of-stencil-reduce has been refined to explicitly
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A Parallel Pattern for Iterative Stencil + Reduce 3

include the iterative behaviour and the optimisations enabled by the aware-
ness of the iterative computation and the possible nesting into a streaming
network. Such optimizations are related to GPU persistent global memory us-
age, stencil and reduce pipelining, asynchronous D2H/H2D memory copies.
The Loop-of-stencil-reduce has been uniformly implemented in OpenCL and
CUDA, whereas stencil-reduce was dependent on CUDA-specific features not
supported in OpenCL, such as Unified Memory. Also, locally-synchronous com-
putations (by way of halo-swap) across multiple GPUs have been introduced,
whereas in previous works use of multiple GPUs was possible only on inde-
pendent kernel instances.

The paper itself extends [2] by introducing a complete formalisation of
the Loop-of-stencil-reduce pattern, and a brand new experimentation plan.
Specifically, the paper reports testing on three applications and three differ-
ent heterogeneous platforms. Two applications exploit both stream and data
parallelism. The set of platforms includes a multiple NVidia GPU Intel box
and a “Big-little” Samsung mobile platform with 2 different Arm multi-core
CPUs and 1 Arm GPU.

2 Related Work

Software engineers are often involved in solving recurring problems. Design
patterns have been introduced to provide effective solutions to these prob-
lems. Parametric parallelism-exploitation pattern, developed to incorporate
both functional and non-functional features in the pattern itself, are called al-
gorithmic skeletons [8]. Algorithmic skeletons have been used extensively since
the ’90s as a means to integrate scalability in the design phase while preserv-
ing flexibility. Some of them expose task parallelism, like task-farms, pipelines
and Divide&Conquer. Others, such as map, reduce and stencil, expose data
parallelism. Programs using skeletons are usually much easier to optimise and
to map to parallel heterogeneous architectures since the semantics of the al-
gorithm is decoupled from the implementation.

Most skeletal frameworks (or indeed, high-level parallel programming li-
braries) eventually exploit either low-level tools such as NVidia CUDA or
OpenCL to target hardware accelerators. CUDA is known to be more com-
pliant to C++ and often more efficient than OpenCL. On the other hand,
OpenCL is implemented by different hardware vendors such as Intel, AMD,
and NVIDIA, making it highly portable and allowing the code written in
OpenCL to be run on different GPUs.

Furthermore, several programming frameworks based on algorithmic skele-
tons have been recently extended to target heterogeneous architectures. In
Muesli [11] the programmer must explicitly indicate whether GPUs are to be
used for data parallel skeletons. StarPU [5] is focused on handling accelerators
such as GPUs. Graph tasks are scheduled by its run-time support on both
the CPU and various accelerators, provided the programmer has given a task
implementation for each architecture.
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4 Aldinucci et. al.

Among related works, the SkePU programming framework is the most
similar to the present work [10]. It provides programmers with GPU imple-
mentations of several data parallel skeletons (e.g. Map, Reduce, MapOverlap,
MapArray) and relies on StarPU for the execution of stream parallel skele-
tons (pipe and farm). The FastFlow stencil operation we introduce here
behaves similarly to the SkePU overlay skeleton (in some ways it was inspired
by SkePU). The main difference is that the SkePU overlay skeleton relies on a
SkePU-specific data type and, to the best of our knowledge, it is not specifically
optimised for use inside a sequential loop. Another similar work in terms of
programming multi-GPU systems is SkelCL, a high-level skeleton library built
on top of OpenCL code which uses container data types to automatically op-
timize data movement across GPUs. In [6], the authors introduce two new
SkelCL skeletons which specifically target stencil computations – MapOver-
lap skeleton for single-iteration stencil computations and Stencil skeleton, that
provides more complex stencil patterns and possibly iterative computations.
SkelCL provides data structures, called Containers, that are automatically
distributed among GPUs.

In this context, the FastFlow parallel programming environment has re-
cently been extended to support GPUs via CUDA [4] and OpenCL (as de-
scribed in the present work). FastFlow CPU implementations of patterns
are realised via non-blocking graphs of threads connected by way of lock-free
channels [3], while the GPU implementation is realised by way of the OpenCL
bindings and offloading techniques. Also, different patterns can be mapped
onto different sets of cores or accelerators and so, in principle, can use the full
available power of the heterogeneous platform.

Among compiler-based approaches, we recall OpenACC and OmpSs. Ope-
nACC [15] is a compiler-based, high-level, performance portable programming
model that allows programmers to create high-level host+accelerator programs
without the need to explicitly initialise the accelerator, manage data transfers
between the host and accelerator. It is based on compiler directives, such
as pragmas, that, for instance, allow execution of a loop on a GPU by just
adding the parallel loop. It also supports multi-GPU execution. The task-
based OmpSS [7] extends OpenMP with directives to support asynchronous
parallelism and heterogeneity, built on top of the Mercurium compiler and
Nanos++ runtime system. Asynchronous parallelism is enabled by the use of
data-dependencies between the different tasks of the program, and execution
on multi-GPU is also supported.

3 The Loop-of-stencil-reduce pattern in FastFlow

In this section the semantics and the FastFlow implementation of Loop-of-
stencil-reduce is introduced. The well-known Conway’s Game-of-life is used
as a simple but paradigmatic example of locally synchronous data-parallel
applications (running on multiple devices).
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A Parallel Pattern for Iterative Stencil + Reduce 5

3.1 Semantics of the Loop-of-stencil-reduce pattern

We assume that a is an n−dimensional array with sizes d1, . . . , dn and items
of type T . We define α(f) : a = b where b is an n−dimensional array of the
same size of a and items of type T ′ such that ∀i1 ∈ [0, d1 − 1]; . . . ;∀in ∈
[0, dn − 1] bi1,...,in = f(ai1,...,in) and /(⊕) : a = v where

v =
⊕
∀i1∈[0,d1−1];...;∀in∈[0,dn−1]

(ai1,...,in)

with f of type T → T ′ and ⊕ of type T × T → T , associative. Then we define
the generic n−dimensional stencil operator as follows:

σn
k : ai1,...,in = {a′j1,...,jn | ∀l jl ∈ [il − k, il + k]}

σn
k : ai1,...,in ∈ T (2k+1)n and

a′i1,...,in =

{
ai1,...,in iff ∀j ij ∈ [0, dj − 1]
⊥ otherwise

With these definitions, we proceed to characterise the stencil parallel pattern
functional semantics as follows1:

stencil(σk, f) : a = α(f) ◦ α(σk) : a

possibly computing in parallel all the σk(ai1,...,in) and f(σk(ai1,...,in)). We
remark that, in this formulation, f takes as input a neighbourhood of type
T (2k+1)n . Moreover, both f and ⊕ should take into account the possibility
that some of the input arguments are ⊥. At this point we may formally define
the Loop-of-stencil-reduce parallel pattern’s functional semantics as follows:

1: procedure loop-of-stencil-reduce((k, f,⊕, c, a))
2: repeat
3: a = stencil(σk, f) : a
4: until c(/⊕ : a)
5: end procedure

We consider this as the simplest pattern modelling iterative stencil+reduce
parallel computations. Small variants of this pattern are worth consideration,
however, to take into account slightly different computations with similar par-
allel behaviour. The first variant considered is that where the function applied
in the α(f) phase takes as an input the “index” of the element considered
(the centroid of the neighbourhood) in addition to all the items belonging to
the neighbourhood. We call this variant Loop-of-stencil-reduce-i and it can
be simply defined by the same algorithm as that of the Loop-of-stencil-reduce
with minor changes to the auxiliary functions f and ⊕:

– we consider a new function f with type T 2k+1 ×N2k+1 → T ′, and
– a new stencil operator σn

k computing

σn
k : ai1,...,in = {〈a′j1,...,jn , 〈j1, . . . , jn〉〉 | ∀l jl ∈ [il − k, il + k]}

1 We omit the dimension n in σn
k here, as we assume the dimension n is the same as that

of the array a: a single dimensional array will have n = 1, a 2D matrix n = 2, and so on.
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6 Aldinucci et. al.

With such definitions the loop-of-stencil-reduce-i is just a Loop-of-stencil-
reduce with different parameters, that is Loop-of-stencil-reduce(k, f,⊕, c, a).
The second variant of the Loop-of-stencil-reduce pattern we introduce changes
slightly the way in which the termination condition is computed and used,
to deal with those iterative computations where convergence of the reduced
values is of interest, rather than their absolute values. Again, this can be mod-
elled by the Loop-of-stencil-reduce pattern with suitable modification of the
component functions. We assume that:

– f returns both the original parameter and the new computed value, i.e.
if formerly we had f : ai1,...,in = bi1,...,in we will now have instead f ′ :
ai1,...,in = 〈bi1,...,in , ai1,...,in〉

– the ⊕ associative function is substituted by two functions:
– δ of type T × T → T , that is applied over all the items resulting from

the α(f) ◦ α(σk) step; and
– ⊕ of type T × T → T , that is used to reduce the items computed by δ

to a single value to be passed to termination condition c.

With these definitions, we may define the second Loop-of-stencil-reduce variant
as follows:

1: procedure loop-of-stencil-reduce-d((k, f, δ,⊕, c, a))
2: repeat
3: b = stencil(σk, f

′):a
4: d = α(δ) : b a = α(fst) : b . being fst : 〈a, b〉 = a
5: until c(/⊕ : d)
6: end procedure

It is clear that the loop-of-stencil-reduce-d may be easily extended to a
loop-of-stencil-reduce-d-i where the f and σk functions are used in place of
f and σk as we did to turn the Loop-of-stencil-reduce into Loop-of-stencil-
reduce-i . The third and last variant we present simply consists in considering
some kind of global “state” variable (such as the number of iterations) as a
parameter of the termination condition:

1: procedure loop-of-stencil-reduce-s((k, f,⊕, c, a))
2: s = init(. . .);
3: repeat
4: a = stencil(σk, f) : a; s = update(. . .);
5: until c(/⊕ : a,s)
6: end procedure

and again it may be included in both the −D and −I versions of the Loop-of-
stencil-reduce pattern.

With a similar methodology, we may define the functional semantics of
more classical data parallel patterns such as map and reduce as follows:

– The map pattern computes map(f) : a = α(f) : a possibly carrying all
the f(ai1,...,in) computations in parallel.

– The reduce pattern computes reduce(g) : a = /(g) : a possibly computing
the different applications of g at the same level of the resulting reduction
tree in parallel.
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A Parallel Pattern for Iterative Stencil + Reduce 7

We remark that, from a functional perspective, map and stencil patterns
are very similar, the only difference being the fact that the stencil elemen-
tal function f takes as input a set of atomic elements rather than a single
atomic element. Nevertheless, from a computational perspective the difference
is substantial, since the semantics of the map leads to in-place implemen-
tation, which is in general impossible for stencil. These parallel paradigms
have been proposed as patterns for both multi-core and distributed platforms,
GPUs, and heterogeneous platforms [14,10]. They are well-known examples
of data-parallel patterns, since as we stated above the elemental function of a
map/stencil can be applied to each input element independently of the oth-
ers, and also applications of the combinator to different pairs in the reduction
tree of a reduce can be done independently, thus naturally inducing a parallel
implementation. Finally, we remark the basic building block of Loop-of-stencil-
reduce (the repeat block at lines 3–4 of the loop-of-stencil-reduce pattern
above) is de-facto the stencil-reduce pattern previously presented in [4].

3.2 The FastFlow Loop-of-stencil-reduce API

In FastFlow, the Loop-of-stencil-reduce pattern implements the semantics
described in 3.1. In particular, it implements an instance of the semantics in
which the stencil-reduce computation is iteratively applied, using the output
of the stencil at the i-th iteration as the input of the (i+ 1)-th stencil-reduce
iteration. Moreover, it uses the output of the reduce computation at the i-
th iteration, together with the iteration number, as input of the iteration
condition, which decides whether to proceed to iteration i + 1 or stop the
computation.

The FastFlow implementation is aimed at supporting iterative data-
parallel computations both on CPU-only and CPU+GPU platforms. For CPU-
only platforms, the implementation is written in C++ and exploits the Fast-
Flow map pattern. On the other hand, when an instance of the Loop-of-
stencil-reduce pattern is deployed onto a GPU or another accelerator, the
implementation relies on the OpenCL framework features. The FastFlow
framework provides the user with constructors for building Loop-of-stencil-
reduce instances, i.e. a combination of parametrisable building blocks:

– the OpenCL code of the elemental function of the stencil;
– the C++ and OpenCL codes of the combinator function;
– the C++ code of the iteration condition.

The language for the kernel codes implementing the elemental function and
the combinator – which constitute the business code of the application – can
be device-specific or coded in a suitably specified C++ subset (e.g. REPARA
C++ open specification [12]). Functions are provided that take as input the
business code of a kernel function (elemental function or combinator) and
translate it into a fully defined OpenCL kernel, which will be offloaded to
target accelerator devices by the FastFlow runtime. Note that, from our
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8 Aldinucci et. al.

definition of elemental function (Sec. 3.1), it follows that the Loop-of-stencil-
reduce programming model is data-oriented rather than thread-oriented, since
indexes refer to the input elements rather than the work-items (i.e. threads)
space, which is in turn the native programming model in OpenCL.

In order to build a Loop-of-stencil-reduce instance, the user also has to
specify two additional parameters controlling parallelism: 1) the number of ac-
celerator devices to be used (e.g. number of GPUs in a multi-GPU platform)
and, 2) the maximum size of the neighbourhood accessed by the elemental
function when called on each element of the input. Note that the second pa-
rameter could be determined by a static analysis on the kernel code in most
cases of interest, i.e. ones exhibiting a static stencil (e.g. Game of Life [13]) or
dynamic stencil with reasonable static bounds (e.g. Adaptive Median Filter,
[4]). Once built, a Loop-of-stencil-reduce instance can process tasks by apply-
ing the iterative computation described in Sec. 3.1 to the input of the task, by
way of the user-defined building blocks. An instance can run either in one-shot
(i.e. single task) or streaming (i.e. multi-task) mode. In streaming mode, in-
dependent tasks can be offloaded to different GPUs, thus exploiting inter-task
parallelism. Moreover, intra-task parallelism can be employed by offloading a
single task to a Loop-of-stencil-reduce instance deployed onto different GPUs.
Although this poses some challenges at the FastFlow implementation level
(see Sec. 3.3), at the API level it requires almost negligible refactoring of user
code. That is, when defining the OpenCL code of the elemental function, the
user is provided with local indexes over the index space of the device-local
sub-input – to be used when accessing the input – along with global indexes
over the index space of the whole input – to be used to e.g. check the absolute
position with respect to input size.

Figure 1 illustrates a Game of Life implementation on top of the Loop-
of-stencil-reduce API in FastFlow. Source-to-source functions are used to
generate OpenCL kernels for both stencil elemental function (lines 1–12) and
reduce combinator (lines 14–15). The source codes are wrapped into fully de-
fined, efficient OpenCL kernels. The user, in order to enable exploitation of
intra-task parallelism, has to use local indexes i and j to access elements of
the input matrix. C++ codes for iteration condition and reduce combinator
are not reported, as they are trivial single-line C++ lambdas. The construc-
tor (lines 17–20) builds a Loop-of-stencil-reduce instance by taking the user-
parameterised building blocks as input, plus the identity element for the reduce
combinator (0 for the sum) and the parameters for controlling intra-task par-
allel behaviour, namely the number of devices to be used over a single-task
(NACC) and the 2D maximum sizes of the neighbourhood accessed by the
elemental function (Game of Life is based on 3-by-3 neighbourhoods). Finally,
the constructor is parameterised with a template type golTask which serves
as an interface for basic input-output between the application code and the
Loop-of-stencil-reduce instance.

FastFlow does not provide any automatic facility to convert C++ code
into OpenCL code. It does, however, facilitate this task via a number of fea-
tures including:
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A Parallel Pattern for Iterative Stencil + Reduce 9

1 std :: string stencilf = ff stencilKernel2D OCL(
2 ”unsigned char”, ”in”, //element type and input
3 ”N”, ”M”, //rows and columns
4 ”i”, ”j”, ” i ”, ”j ”, //row−column global and local indexes
5 std :: string(””) +
6 /∗ begin of the OpenCL kernel code ∗/
7 ”unsigned char n alive = 0;\n” +
8 ”n alive += i>0 && j>0 ? in[i −1][j −1] : 0;\n” +
9 ... +

10 ”n alive += i<N−1 && j<M−1 ? in[i +1][j +1] : 0;\n” +
11 ”return ( n alive == 3 || (in [ i ][ j ] && n alive == 2));”
12 /∗ end OpenCL code ∗/);
13
14 std :: string reducef = ff reduceKernel OCL(
15 ”unsigned char”, ”x”, ”y”, ”return x + y;”);
16
17 ff :: ff stencilReduceLoop2DOCL<golTask> golSRL(
18 stencilf , reducef, 0, iterf , // building blocks
19 N, N, NACC, // matrix size and no. of accelerators
20 3, 3); // halo size on the 2 dimensions

Fig. 1: Implementation of Game of Life [13] on top of the Loop-of-stencil-reduce
API in FastFlow.

1 while (cond) {
2 before (...) // [H] initialisation , possibly in parallel on CPU cores
3 prepare (...) // [H+D] swap I/O buffers, set kernel args, D2D−sync overlays
4 stencil<SUM kernel,MF kernel> (input, env) // [D] stencil and partial reduce
5 reduce op data // [H] final reduction
6 after (...) // [H] iteration finalisation , possibly in parallel on CPU cores
7 }
8 read(output) //[H+D] D2H−copy output

Fig. 2: Loop-of-stencil-reduce pattern general schema.

– Integration of the same pattern-based parallel programming model for both
CPUs and GPUs. Parallel activities running on CPUs can be either coded
in C++ or OpenCL.

– Setup of the OpenCL environment.
– Simplified data feeding to both software accelerators and hardware accel-

erators (with asynchronous H2D and D2H data movements).
– Orchestration of parallel activities and synchronisations within kernel code

(e.g. reduce tree), synchronisations among kernels (e.g. stencil and reduce
in a loop), management of data copies (e.g. halo-swap buffers management).

– Transparent usage of multiple GPUs on the same box (sharing the host
memory).
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3.3 The FastFlow implementation

The iterative nature of the Loop-of-stencil-reduce computation presents chal-
lenges for the management of the GPU’s global memory across multiple iter-
ations, i.e. across different kernel invocations.

The general schema of the Loop-of-stencil-reduce pattern is described in
Fig. 2. Its runtime is tailored to efficient loop-fashion execution. When a task
is submitted to be executed by the devices onto which the pattern is deployed,
the runtime takes care of allocating on-device global memory buffers and filling
them with input data via H2D copies. The näıve approach for supporting
iterative computations on a hardware accelerator device equipped with some
global memory (e.g. GPU) would consist in putting a global synchronisation
barrier after each iteration of the stencil, reading the result of the stencil back
from the device buffer (full size D2H copy), copying back the output to the
device input buffer (full size H2D copy) and proceeding to the next iteration.
FastFlow in turn employs device memory persistence on the GPU across
multiple kernel invocations, by just swapping on-device buffers. In the case of
multi-device intra-task parallelism (Sec. 3.2), small device-to-device copies are
required after each iteration, in order to keep halo borders aligned, since no
device-to-device copy mechanism is available (as of OpenCL 2.0 specification,
device-to-device transfers). Global memory persistence is quite common in
iterative applications because it drastically reduces the need for H2D and
D2H copies, which can severely limit the performance. This also motivates
the explicit inclusion of the iterative behaviour in the Loop-of-stencil-reduce
pattern design which is one of the differences with respect to solutions adopted
in other frameworks, such as SkePU [10].

As a further optimisation, FastFlow exploits OpenCL events to keep
Loop-of-stencil-reduce computation as asynchronous as possible. No depen-
dencies exist between stencil and reduce computations at different iterations.
Put another way, stencil and reduce computations can be pipelined (i.e. stencil
at iteration i+1 can run in parallel with reduce at iteration i). Moreover, in the
case of multi-GPU intra-task parallelism, sub-tasks running on different GPUs
at the same iteration are independent of each other, and so can run in paral-
lel. By exploiting the OpenCL events API, an almost arbitrary graph of task
dependencies can be implemented, thus fully exploiting all the available par-
allelism among operations composing a Loop-of-stencil-reduce computation.

4 Experiments

Here we present an assessment of the Loop-of-stencil-reduce FastFlow im-
plementation. For this aim, three applications are considered: the Helmholtz
equation solver based on iterative Jacobi method (Sec. 4.1), the Sobel edge de-
tector over image streams (Sec 4.2) and the two-phase video stream restoration
algorithm [4] (Sec. 4.3).
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Platform Rows CPU 1xGPU 2xGPUs

2 eight-core Xeon @2.2GHz,
2 Tesla M2090 GPUs

512 0.31 0.31 0.32
4096 16.99 10.84 5.88

16384 252.67 171.84 91.46

1 eight-core Xeon @2.6GHz,
Tesla K40 GPU

512 0.26 0.26 -
4096 25.00 7.42 -

16384 384.16 116.37 -

Cortex-A15 @2.0GHz +
Cortex-A7 @1.4 GHz,
Arm Mali-T628 GPU

512 3.51 6.91 -
2048 13.87 23.83 -
4096 64.61 92.51 -

Table 1: Execution time of the Helmholtz equation solver.

Each experiment was conducted on three different platforms: 1) an Intel
workstation with 2 eight-core (2-way hyper-threading) Xeon E5-2660 @2.2GHz,
20MB L3 shared cache, and 64 GBytes of main memory, equipped with two
NVidia Tesla M2090 GPUs; 2) an Intel workstation with one eight-core (2-way
hyper-threading) Xeon E5-2650 @2.6GHz, 20MB L3 shared cache, 64 GBytes
of main memory, equipped with a high-end NVidia Tesla K40 GPU; 3) a
small Samsung workstation with a eight-core Exynos-5422 CPU (Cortex-A15
@2.0GHz plus Cortex-A7 @1.4 GHz) equipped with a Arm Mali-T628 GPU.
All systems run Linux x86 64.

The general methodology we adopt is to derive a Loop-of-stencil-reduce
formulation of the considered problem, translate it into a FastFlow network
and compare different deployments of the Loop-of-stencil-reduce node. Namely,
we consider CPU, single-GPU and multi-GPU deployments. We remark, as we
discussed in Sec. 3.3, that the CPU node is a native multi-core implementation,
thus not relying on OpenCL as parallel runtime. Moreover, GPU deployments
are compared to the best-case scenarios from the CPU world, thus considering
the parallel configuration (e.g. thread allocation) of the FastFlow network
yielding best performance. Reported execution times are in seconds.

4.1 The Helmholtz equation solver

The first application we consider is an iterative solver for the Helmholtz partial
differential equation, which is applied in the study of several physical problems.
The solver is a paradigmatic case of iterative 2D-stencil computation, in which
each point of a read-only matrix (i.e. the input matrix) is combined with the
respective 3-by-3 neighbourhood of the partial solution matrix in order to
compute a new partial solution. The termination is based on a convergence
criterion, evaluated as a function of the difference between two partial solutions
at successive iterations, compared against a global threshold.

The implemented FastFlow network is a single Loop-of-stencil-reduce
node executing the procedure in one-shot fashion on different input matrices.
Table 1 shows the observed results. The general behaviour is an immediate
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improvement resulting from the GPU exploitation. A cross-platform excep-
tion is the small matrix case, on which the same execution times are observed
on CPU and GPU deployments. This is easily explained by Amdahl’s law,
since H2D/D2H copies to actual computation results in a non negligible ra-
tio. Speedups carried by the K40 and the M2090 GPUs mirror the different
computational capabilities of the two devices from one side and the different
parallelism available on the respective platforms from the other. Moreover, on
the first platform execution times on the two-GPU deployment scales almost
linearly with respect to the one-GPU deployment, showing that the runtime
does not induce any substantial overhead while managing data distribution
on multiple GPUs. The third platform in this case shows its inefficiency for
scientific applications. Since it is designed to be more suitable for low-energy
multimedia architectures such as smartphones, performance decrease when
more computational demand and floating point operations are needed.

4.2 The streaming Sobel edge detector

The second application we consider consists in basic and streaming variants of
a classical image processing filter, namely the Sobel edge detector. The basic
version is a simple convolution-like operator, which applies a 2D-stencil to each
(neighbourhood of the) pixel of the input image to produce a new image, in
which pixel values represent the likelihood for the pixel of belonging to an edge
in the original image. As with all the convolution-like image processing filters,
the Sobel detector is a paradigmatic case of non-iterative 2D-stencil computa-
tion. The streaming variant applies the Sobel filter to a series of independent
images, each read from a different file.

We implemented a Loop-of-stencil-reduce version of the Sobel filter, which
arises directly from its definition. We executed the filter in one-shot fashion to
three different square input images, with different sizes. Moreover, we included
a streaming version in order to both consider a more common use case and
show the approach of integrating a data-parallel node (the basic Sobel filter)
into a FastFlow network. The resulting FastFlow term is: pipe(read, sobel,
write), where sobel is a Loop-of-stencil-reduce node. We run the streaming
version on streams of 100 images, each built as random permutation of the
input set mentioned. The different deployments have been compared over the
same stream, kept constant by fixing the random seed. Because of the reduced
amount of GPU memory available on the third platform, we excluded the
largest image from tests.

Table 2 shows the observed results. We remark the single-iteration pattern
represents the worst-case scenario for GPU exploitation, since little compu-
tation is available to hide the latency of H2D/D2H memory copies. Indeed,
the CPU deployment on the first platform performs better than single-GPU
one, while two-GPU deployment still yields some improvement. Conversely,
the K40 GPU on the second platform is still able to improve the execution
time by an average of about 3× with respect to the CPU deployment. Finally,
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Platform Width (px) CPU 1xGPU 2xGPUs

2 eight-core Xeon @2.2GHz,
2 Tesla M2090 GPUs

512 0.33 ms 0.79 ms 1.33 ms
4096 0.02 0.02 0.01

16384 0.22 0.31 0.20
Stream 11.96 16.27 11.09

1 eight-core Xeon @2.6GHz,
Tesla K40 GPU

512 0.58 ms 0.68 ms -
4096 0.03 0.01 -

16384 0.53 0.17 -
Stream 27.89 8.97 -

Cortex-A15 @2.0GHz +
Cortex-A7 @1.4 GHz,
Arm Mali-T628 GPU

512 4.91 ms 7.02 ms -
4096 0.29 0.27 -

Stream 28.22 23.45 -

Table 2: Execution time of the Sobel filter on different platforms. For each
platform, the upper rows refer to the basic filter on different sizes of the input
image; the last row refers to the streaming variant on 100 random images.

small improvement is carried by the Mali GPU on the third platform, while
a more neat improvement is observable in the streaming variant, since in the
latter case the GPU-side allocation overhead is mitigated.

4.3 The two-phase video restoration algorithm

The third and most complex application is a two-phase parallel video restora-
tion filter. For each video frame, in the first step (i.e. the detection phase) a
traditional adaptive median filter is employed for detecting noisy pixels, while
in the second step (i.e. the restoration phase) a regularisation procedure is
iterated until the noisy pixels are replaced with values able to preserve image
edges and details. The restoration phase is based on a 2D-stencil regularisa-
tion procedure, which replaces each pixel with the value minimising a function
of the pixel neighbourhood. The termination is decided on a simple conver-
gence criterion, based on the average absolute difference between two partial
solutions at successive iterations, compared against a global threshold.

We implemented the application by modelling it with the FastFlow term:
pipe(read, detect, ofarm(restore), write), where ofarm is a First-In-First-Out
farm and restore is the Loop-of-stencil-reduce implementation of the restoration
procedure. Samples of 100 frames at VGA (640 × 480), 720p (1280 × 720)
and HDTV (2048 × 1080) resolutions are considered as input streams and
artificial noise is added to each stream, at 30% and 70% level. In order to
include an example of different integrations of a Loop-of-stencil-reduce node
into a FastFlow network, two different multi-GPU exploitation schemas are
compared on the first platform, exploiting parallelism both between and inside
stream items. The first case – referred as 2xGPU (b) in Table 3 – amounts at
instantiating a two-worker ofarm of restoration nodes, while the latter one is
the already considered two-GPU deployment of a single node.
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Platform Video CPU 1xGPU 2xGPUs 2xGPUs (b)

2 eight-core Xeon @2.2GHz,
2 Tesla M2090 GPUs

VGA, 30% 23.74 8.69 4.59 4.64
VGA, 70% 49.65 8.70 4.61 4.69
720p, 30% 67.78 25.23 13.12 13.16
720p, 70% 147.69 25.28 13.50 13.55
1080p, 30% 162.27 60.01 30.78 30.81
1080p, 70% 354.18 60.11 32.39 32.44

1 eight-core Xeon @2.6GHz,
Tesla K40 GPU

VGA, 30% 41.56 3.41 - -
VGA, 70% 87.32 4.39 - -
720p, 30% 118.99 9.72 - -
720p, 70% 259.54 12.71 - -
1080p, 30% 285.34 23.89 - -
1080p, 70% 623.20 29.99 - -

Cortex-A15 @2.0GHz +
Cortex-A7 @1.4 GHz,
Arm Mali-T628 GPU

VGA, 30% 373.63 144.57 - -
VGA, 70% 739.92 206.26 - -
720p, 30% 986.55 409.77 - -
720p, 70% 2125.89 601.42 - -
1080p, 30% 2730.52 974.87 - -
1080p, 70% 4644.86 1364.74 - -

Table 3: Execution time of the video restoration filter on different platforms,
over 100-frame samples, under different noise conditions. Different resolutions
are considered, ranging from VGA to HDTV. On the first platform, the inter-
frame (b) multi-GPU deployment is also considered.

Table 3 shows the observed results. As expected, the multi-iteration stream-
ing nature exhibited by this application is profitably captured by the Loop-of-
stencil-reduce pattern, yielding good performance on all considered scenarios.
In particular, execution times on the K40 GPU on the second platform show
speedups ranging from 12× to 20× with respect to the CPU deployment, de-
livering a throughput of about 30 frames per second for the low-noise case on
VGA resolution. Analogous performance are obtained from the two-GPU de-
ployment on the second platform, while a minimal degradation is introduced
by switching to the inter-frame version, due to the slightly higher amount of
synchronisations induced. The third platform provides considerable speedup
in this case, confirming it is well suited to target media-oriented applications,
which do not feature high numerical demand.

5 Conclusions

In this work we have presented the Loop-of-stencil-reduce, a parallel pattern
specifically targeting iterative data-parallel computations on heterogeneous
multi-cores. We first provided motivation for implementing a new pattern and
then we gave a clear and rigorous semantics of the pattern. Furthermore,
we showed that different iterative kernels can be easily and effectively paral-
lelized by using the Loop-of-stencil-reduce on the available GPUs exploiting
the OpenCL capabilities of the FastFlow parallel framework.
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As a future extension of this work, we plan to build on top of the current
implementation of the Loop-of-stencil-reduce a domain specific language (DSL)
specifically targeting data parallel computations in a streaming work-flow.
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