1,049 research outputs found

    Your Smart Home Can't Keep a Secret: Towards Automated Fingerprinting of IoT Traffic with Neural Networks

    Get PDF
    The IoT (Internet of Things) technology has been widely adopted in recent years and has profoundly changed the people's daily lives. However, in the meantime, such a fast-growing technology has also introduced new privacy issues, which need to be better understood and measured. In this work, we look into how private information can be leaked from network traffic generated in the smart home network. Although researchers have proposed techniques to infer IoT device types or user behaviors under clean experiment setup, the effectiveness of such approaches become questionable in the complex but realistic network environment, where common techniques like Network Address and Port Translation (NAPT) and Virtual Private Network (VPN) are enabled. Traffic analysis using traditional methods (e.g., through classical machine-learning models) is much less effective under those settings, as the features picked manually are not distinctive any more. In this work, we propose a traffic analysis framework based on sequence-learning techniques like LSTM and leveraged the temporal relations between packets for the attack of device identification. We evaluated it under different environment settings (e.g., pure-IoT and noisy environment with multiple non-IoT devices). The results showed our framework was able to differentiate device types with a high accuracy. This result suggests IoT network communications pose prominent challenges to users' privacy, even when they are protected by encryption and morphed by the network gateway. As such, new privacy protection methods on IoT traffic need to be developed towards mitigating this new issue

    Smart aging : utilisation of machine learning and the Internet of Things for independent living

    Get PDF
    Smart aging utilises innovative approaches and technology to improve older adults’ quality of life, increasing their prospects of living independently. One of the major concerns the older adults to live independently is “serious fall”, as almost a third of people aged over 65 having a fall each year. Dementia, affecting nearly 9% of the same age group, poses another significant issue that needs to be identified as early as possible. Existing fall detection systems from the wearable sensors generate many false alarms; hence, a more accurate and secure system is necessary. Furthermore, there is a considerable gap to identify the onset of cognitive impairment using remote monitoring for self-assisted seniors living in their residences. Applying biometric security improves older adults’ confidence in using IoT and makes it easier for them to benefit from smart aging. Several publicly available datasets are pre-processed to extract distinctive features to address fall detection shortcomings, identify the onset of dementia system, and enable biometric security to wearable sensors. These key features are used with novel machine learning algorithms to train models for the fall detection system, identifying the onset of dementia system, and biometric authentication system. Applying a quantitative approach, these models are tested and analysed from the test dataset. The fall detection approach proposed in this work, in multimodal mode, can achieve an accuracy of 99% to detect a fall. Additionally, using 13 selected features, a system for detecting early signs of dementia is developed. This system has achieved an accuracy rate of 93% to identify a cognitive decline in the older adult, using only some selected aspects of their daily activities. Furthermore, the ML-based biometric authentication system uses physiological signals, such as ECG and Photoplethysmogram, in a fusion mode to identify and authenticate a person, resulting in enhancement of their privacy and security in a smart aging environment. The benefits offered by the fall detection system, early detection and identifying the signs of dementia, and the biometric authentication system, can improve the quality of life for the seniors who prefer to live independently or by themselves

    GHOST - safe-guarding home IoT environments with personalised real-time risk control

    Get PDF
    We present the European research project GHOST, (Safe-guarding home IoT environments with personalised real-time risk control), which challenges the traditional cyber security solutions for the IoT by proposing a novel reference architecture that is embedded in an adequately adapted smart home network gateway, and designed to be vendor-independent. GHOST proposes to lead a paradigm shift in consumer cyber security by coupling usable security with transparency and behavioural engineering

    Discovering human activities from binary data in smart homes

    Get PDF
    With the rapid development in sensing technology, data mining, and machine learning fields for human health monitoring, it became possible to enable monitoring of personal motion and vital signs in a manner that minimizes the disruption of an individual’s daily routine and assist individuals with difficulties to live independently at home. A primary difficulty that researchers confront is acquiring an adequate amount of labeled data for model training and validation purposes. Therefore, activity discovery handles the problem that activity labels are not available using approaches based on sequence mining and clustering. In this paper, we introduce an unsupervised method for discovering activities from a network of motion detectors in a smart home setting. First, we present an intra-day clustering algorithm to find frequent sequential patterns within a day. As a second step, we present an inter-day clustering algorithm to find the common frequent patterns between days. Furthermore, we refine the patterns to have more compressed and defined cluster characterizations. Finally, we track the occurrences of various regular routines to monitor the functional health in an individual’s patterns and lifestyle. We evaluate our methods on two public data sets captured in real-life settings from two apartments during seven-month and three-month periods

    Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study

    Get PDF
    Detecting anomalies in time series data is becoming mainstream in a wide variety of industrial applications in which sensors monitor expensive machinery. The complexity of this task increases when multiple heterogeneous sensors provide information of di_erent nature, scales and frequencies from the same machine. Traditionally, machine learning techniques require a separate data preprocessing before training, which tends to be very time-consuming and often requires domain knowledge. Recent deep learning approaches have shown to perform well on raw time series data, eliminating the need for pre-processing. In this work, we propose a deep learning based approach for supervised multitime series anomaly detection that combines a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN) in different ways. Unlike other approaches, we use independent CNNs, so-called convolutional heads, to deal with anomaly detection in multi-sensor systems. We address each sensor individually avoiding the need for data pre-processing and allowing for a more tailored architecture for each type of sensor. We refer to this architecture as Multi-head CNN-RNN. The proposed architecture is assessed against a real industrial case study, provided by an industrial partner, where a service elevator is monitored. Within this case study, three type of anomalies are considered: point, context-specific, and collective. The experimental results show that the proposed architecture is suitable for multi-time series anomaly detection as it obtained promising results on the real industrial scenario

    Human Activity Behavioural Pattern Recognition in Smarthome with Long-hour Data Collection

    Full text link
    The research on human activity recognition has provided novel solutions to many applications like healthcare, sports, and user profiling. Considering the complex nature of human activities, it is still challenging even after effective and efficient sensors are available. The existing works on human activity recognition using smartphone sensors focus on recognizing basic human activities like sitting, sleeping, standing, stair up and down and running. However, more than these basic activities is needed to analyze human behavioural pattern. The proposed framework recognizes basic human activities using deep learning models. Also, ambient sensors like PIR, pressure sensors, and smartphone-based sensors like accelerometers and gyroscopes are combined to make it hybrid-sensor-based human activity recognition. The hybrid approach helped derive more activities than the basic ones, which also helped derive human activity patterns or user profiling. User profiling provides sufficient information to identify daily living activity patterns and predict whether any anomaly exists. The framework provides the base for applications such as elderly monitoring when they are alone at home. The GRU model's accuracy of 95\% is observed to recognize the basic activities. Finally, Human activity patterns over time are recognized based on the duration and frequency of the activities. It is observed that human activity pattern, like, morning walking duration, varies depending on the day of the week

    Role of artificial intelligence in cloud computing, IoT and SDN: Reliability and scalability issues

    Get PDF
    Information technology fields are now more dominated by artificial intelligence, as it is playing a key role in terms of providing better services. The inherent strengths of artificial intelligence are driving the companies into a modern, decisive, secure, and insight-driven arena to address the current and future challenges. The key technologies like cloud, internet of things (IoT), and software-defined networking (SDN) are emerging as future applications and rendering benefits to the society. Integrating artificial intelligence with these innovations with scalability brings beneficiaries to the next level of efficiency. Data generated from the heterogeneous devices are received, exchanged, stored, managed, and analyzed to automate and improve the performance of the overall system and be more reliable. Although these new technologies are not free of their limitations, nevertheless, the synthesis of technologies has been challenged and has put forth many challenges in terms of scalability and reliability. Therefore, this paper discusses the role of artificial intelligence (AI) along with issues and opportunities confronting all communities for incorporating the integration of these technologies in terms of reliability and scalability. This paper puts forward the future directions related to scalability and reliability concerns during the integration of the above-mentioned technologies and enable the researchers to address the current research gaps
    • …
    corecore