4 research outputs found

    Optimal data collection in wireless sensor networks with correlated energy harvesting

    Get PDF
    We study the optimal data collection rate in a hybrid wireless sensor network where sensor data is collected by mobile sinks. In such networks, there is a trade-off between the cost of data collection and the timeliness of the data. We further assume that the sensor node under study harvests its energy from its environment. Such energy harvesting sensors ideally operate energy neutral, meaning that they can harvest the necessary energy to sense and transmit data, and have on-board rechargeable batteries to level out energy harvesting fluctuations. Even with batteries, fluctuations in energy harvesting can considerably affect performance, as it is not at all unlikely that a sensor node runs out of energy, and is neither able to sense nor to transmit data. The energy harvesting process also influences the cost vs. timeliness trade-off as additional data collection requires additional energy as well. To study this trade-off, we propose an analytic model for the value of the information that a sensor node brings to decision-making. We account for the timeliness of the data by discounting the value of the information at the sensor over time, we adopt the energy chunk approach (i.e. discretise the energy level) to track energy harvesting and expenditure over time, and introduce correlation in the energy harvesting process to study its influence on the optimal collection rate

    Quality-Aware Scheduling Algorithms in Renewable Sensor

    No full text
    Wireless sensor network has emerged as a key technology for various applications such as environmental sensing, structural health monitoring, and area surveillance. Energy is by far one of the most critical design hurdles that hinders the deployment of wireless sensor networks. The lifetime of traditional battery-powered sensor networks is limited by the capacities of batteries. Even many energy conservation schemes were proposed to address this constraint, the network lifetime is still inherently restrained, as the consumed energy cannot be replenished easily. Fully addressing this issue requires energy to be replenished quite often in sensor networks (renewable sensor networks). One viable solution to energy shortages is enabling each sensor to harvest renewable energy from its surroundings such as solar energy, wind energy, and so on. In comparison with their conventional counterparts, the network lifetime in renewable sensor networks is no longer a main issue, since sensors can be recharged repeatedly. This results in a research focus shift from the network lifetime maximization in traditional sensor networks to the network performance optimization (e.g., monitoring quality). This thesis focuses on these issues and tackles important problems in renewable sensor networks as follows. We first study the target coverage optimization in renewable sensor networks via sensor duty cycle scheduling, where a renewable sensor network consisting of a set of heterogeneous sensors and a stationary base station need to be scheduled to monitor a set of targets in a monitoring area (e.g., some critical facilities) for a specified period, by transmitting their sensing data to the base station through multihop relays in a real-time manner. We formulate a coverage maximization problem in a renewable sensor network which is to schedule sensor activities such that the monitoring quality is maximized, subject to that the communication network induced by the activated sensors and the base station at each time moment is connected. We approach the problem for a given monitoring period by adopting a general strategy. That is, we divide the entire monitoring period into equal numbers of time slots and perform sensor activation or inactivation scheduling in the beginning of each time slot. As the problem is NP-hard, we devise efficient offline centralized and distributed algorithms for it, provided that the amount of harvested energy of each sensor for a given monitoring period can be predicted accurately. Otherwise, we propose an online adaptive framework to handle energy prediction fluctuation for this monitoring period. We conduct extensive experiments, and the experimental results show that the proposed solutions are very promising. We then investigate the data collection optimization in renewable sensor networks by exploiting sink mobility, where a mobile sink travels around the sensing field to collect data from sensors through one-hop transmission. With one-hop transmission, each sensor could send data directly to the mobile sink without any relay, and thus no energy are consumed on forwarding packets for others which is more energy efficient in comparison with multi-hop relays. Moreover, one-hop transmission particularly is very useful for a disconnected network, which may be due to the error-prone nature of wireless communication or the physical limit (e.g., some sensors are physically isolated), while multi-hop transmission is not applicable. In particular, we investigate two different kinds of mobile sinks, and formulate optimization problems under different scenarios, for which both centralized and distributed solutions are proposed accordingly. We study the performance of the proposed solutions and validate their effectiveness in improving the data quality. Since the energy harvested often varies over time, we also consider the scenario of renewable sensor networks by utilizing wireless energy transfer technology, where a mobile charging vehicle periodically travels inside the sensing field and charges sensors without any plugs or wires. Specifically, we propose a novel charging paradigm and formulate an optimization problem with an objective of maximizing the number of sensors charged per tour. We devise an offline approximation algorithm which runs in quasi-polynomial time and develop efficient online sensor charging algorithms, by considering the dynamic behaviors of sensors’ various sensing and transmission activities. To study the efficiency of the proposed algorithms, we conduct extensive experiments and the experimental results demonstrate that the proposed algorithms are very efficient. We finally conclude our work and discuss potential research topics which derive from the studies of this thesis

    Data collection maximization in renewable sensor networks via time-slot scheduling

    No full text
    In this paper we study data collection in an energy renewable sensor network for scenarios such as traffic monitoring on busy highways, where sensors are deployed along a predefined path (the highway) and a mobile sink travels along the path to collect data from one-hop sensors periodically. As sensors are powered by renewable energy sources, time-varying characteristics of ambient energy sources poses great challenges in the design of efficient routing protocols for data collection in such networks. In this paper we first formulate a novel data collection maximization problem by adopting multi-rate data transmissions and performing transmission time slot scheduling, and show that the problem is NP-hard. We then devise an offline algorithm with a provable approximation ratio for the problem by exploiting the combinatorial property of the problem, assuming that the harvested energy at each node is given and link communications in the network are reliable. We also extend the proposed algorithm by minor modifications to a general case of the problem where the harvested energy at each sensor is not known in advance and link communications are not reliable. We thirdly develop a fast, scalable online distributed algorithm for the problem in realistic sensor networks in which neither the global knowledge of the network topology nor sensor profiles such as sensor locations and their harvested energy profiles is given. Furthermore, we also consider a special case of the problem where each node has only a fixed transmission power, for which we propose an exact solution to the problem. We finally conduct extensive experiments by simulations to evaluate the performance of the proposed algorithms. Experimental results demonstrate that the proposed algorithms are efficient and the solutions obtained are fractional of the optimum

    Scheduling for Cooperative Energy Harvesting Sensor Networks

    Get PDF
    In cooperative communication networks, the source node transmits its data to the destination either directly or cooperatively with a cooperating node. When using energy harvesting technology, where nodes collect their energy from the environment, the energy availability at the nodes becomes unpredictable due to the stochastic nature of energy harvesting processes. As a result, when the source has a transmission, it cannot immediately transmit its data cooperatively with the cooperating node. It first needs to determine whether the cooperating node has sufficient energy to forward its transmission or not. Otherwise, its transmitted data may get lost. Therefore, when using energy harvesting, the challenge is for the source to schedule its transmissions whether directly or cooperatively, such that the fraction of its events (sensed data) that are successfully reported to the destination is maximized. Hence, in this dissertation, we address the problem of cooperating node scheduling in energy harvesting sensor networks. We consider the problem for the case of a single cooperating node and the case of multiple cooperating nodes, as well as the scenarios of one-way and two-way cooperative communications. We propose a simple scheduling scheme, called feedback scheme, which enables the source to optimally schedule its transmissions whether directly or cooperatively. We show that the feedback scheme maximizes the system performance, but does not require auxiliary parameter optimization as does the-state-of-the-art scheme, i.e., the threshold-based scheme. However, the feedback scheme has the problem of overhead caused by transmitting the energy status of the cooperating node to the source. To overcome this burden, we introduce a statistical model that enables the source to estimate the energy status of the cooperating node. Because cooperation may result in the cooperating node performing worse than the source, we address this problem through fairness in the performance between the nodes in the network. In addition, we address the problem of scheduling for throughput maximization in a wireless energy harvesting uplink. We propose centralized and distributed algorithms that find the optimal solution, and we address complexity issues. Our algorithms are shown to have a linear or quadratic complexity compared to the exponential complexity of the brute force approach. Compared with cooperative transmission, our approach maximizes the network throughput such that no node\u27s throughput is adversely affected
    corecore