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Abstract

Scheduling for Cooperative Energy Harvesting Sensor Networks

Ahmed M. Abuseta Ammar

In cooperative communication networks, the source node transmits its data to the desti-
nation either directly or cooperatively with a cooperating node. When using energy harvest-
ing technology, where nodes collect their energy from the environment, the energy availability
at the nodes becomes unpredictable due to the stochastic nature of energy harvesting pro-
cesses. As a result, when the source has a transmission, it cannot immediately transmit
its data cooperatively with the cooperating node. It first needs to determine whether the
cooperating node has sufficient energy to forward its transmission or not. Otherwise, its
transmitted data may get lost. Therefore, when using energy harvesting, the challenge is
for the source to schedule its transmissions whether directly or cooperatively, such that
the fraction of its events (sensed data) that are successfully reported to the destination is
maximized.

Hence, in this dissertation, we address the problem of cooperating node scheduling in
energy harvesting sensor networks. We consider the problem for the case of a single cooper-
ating node and the case of multiple cooperating nodes, as well as the scenarios of one-way
and two-way cooperative communications. We propose a simple scheduling scheme, called
feedback scheme, which enables the source to optimally schedule its transmissions whether
directly or cooperatively. We show that the feedback scheme maximizes the system perfor-
mance, but does not require auxiliary parameter optimization as does the-state-of-the-art
scheme, i.e., the threshold-based scheme. However, the feedback scheme has the problem of
overhead caused by transmitting the energy status of the cooperating node to the source. To
overcome this burden, we introduce a statistical model that enables the source to estimate
the energy status of the cooperating node. Because cooperation may result in the coop-
erating node performing worse than the source, we address this problem through fairness
in the performance between the nodes in the network. In addition, we address the prob-
lem of scheduling for throughput maximization in a wireless energy harvesting uplink. We
propose centralized and distributed algorithms that find the optimal solution, and we ad-
dress complexity issues. Our algorithms are shown to have a linear or quadratic complexity
compared to the exponential complexity of the brute force approach. Compared with coop-
erative transmission, our approach maximizes the network throughput such that no node’s
throughput is adversely affected.
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1

Chapter 1

Introduction

1.1 Overview

Wireless sensor networks have been widely used for different applications including surveil-

lance and monitoring, medical, and emergency applications [1]. Commonly, these applica-

tions use sensors that are powered by small size batteries so that they become energy-limited.

One general approach to improving energy efficiency in sensor network applications is coop-

erative communications, in which source node’s packets are sent to the destination through

direct paths and through relays/cooperating nodes [2]-[6]. Existing research has shown that

cooperative communications can achieve the same bit error rate with a lower transmission

energy as compared to direct transmissions [7].

Importantly, the limited size of the batteries causes the demand of periodic batteries

replacement or recharging, which is costly, inconvenient, or sometimes impossible, especially

in networks of a high number of sensors that are deployed in a hostile environment. One

solution to this problem, energy harvesting, has recently generated a great deal of research

interest for wireless sensor networks [8, 9]. Energy harvesting can provide essentially limitless

energy without the hassle of manual recharging, battery replacement, and the dangers asso-

ciated with battery leakage (environmentally-friendly). Moreover, energy harvesting can be

used in emergencies when a conventional power supply is unavailable or human intervention

is impractical.

These advantages of energy harvesting and the low power transmission property of co-
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operative communications have motivated researchers to combine these two technologies

in wireless sensor networks. Thus, their energy efficiency increases, and they become well

suited in some applications where human intervention or battery replacement/recharging

is impractical. However, the stochastic nature of the energy harvesting processes imposes

more challenges on the system design [10]. One of the challenges is cooperating node usage

scheduling for cooperative communication. Due to the stochastic energy availability at the

nodes, the source cannot immediately transmit cooperatively with the cooperating node.

It has first to determine whether the cooperating node has sufficient energy to forward its

transmission or not. Otherwise, its transmission may get lost. Under this energy constraint,

the challenge here is how to design an efficient scheduling algorithm that enables the source

to optimally schedule its transmission whether on its own or by using the cooperating node,

such that the packet delivery ratio of the system is maximized. In this dissertation, we focus

on this problem.

First, in Chapter 2, we address the problem of single cooperating node scheduling. We

consider a network of three nodes; a source, a cooperating node, and a destination, where

the source transmits its events either directly or cooperatively using the cooperating node

to the destination, and the cooperating node helps with the source’s transmissions as well

as it transmits its own events to the destination. For such a network model, we propose a

scheduling algorithm, called feedback algorithm, that enables the source to optimally decide

whether to transmit directly or cooperatively such that the packet delivery ratio of the

network is maximized, which is the ratio of the total events that are successfully delivered, to

the total events that are generated. In the proposed algorithm, the cooperating node usage is

scheduled based on a feedback that is frequently sent to the source carrying the energy status

of the cooperating node as either 1 or 0, i.e., energized or unenergized, where energized

means that the cooperating node has sufficient energy to forward the source’s transmission

to the destination. When the source has a transmission and the cooperating node status

is energized, cooperating node usage is scheduled; otherwise the source is scheduled to

transmit on its own if it has sufficient energy for direct transmission. The results show that

our algorithm maximizes the system performance, but does not require auxiliary parameter

optimization as does the-state-of-the-art scheme, which is the threshold-based scheme [53].
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In the threshold-based scheme, the decision on the cooperating node usage is made based

on a threshold level. When the source has a transmission and its energy battery level is

less than that threshold level, the cooperating node is scheduled to assist with the source’s

transmission. Otherwise, the source is scheduled to transmit on its own. To maximize the

system performance, the threshold level must be tuned for any given set of system parameters

or for any change in the system parameters. Tuning the threshold level requires simulating

the system at different energy levels of the source’s battery. This might not be easy or even

possible to implement especially in networks of unstable parameters or in networks with

sensors of a huge battery capacity.

Next, in Chapter 3 we upgrade the feedback algorithm for the scenario of multiple coop-

erating nodes and two-way cooperative communications. In this scenario, we assume that

the system has multiple cooperating nodes between two transmitting nodes, which commu-

nicate with each other either directly or cooperatively using one of the cooperating nodes.

In the algorithm, the cooperating nodes are indexed increasingly, and each node is assumed

to broadcast its energy status to the network as either energized or unenergized when-

ever it changes. Hence, when any of the transmitting nodes has a transmission and there

is at least one energized cooperating node, the transmitting node transmits cooperatively.

Otherwise, it transmits directly if it has sufficient energy for direct transmission. If there

is more than one energized cooperating node, the transmitting node uses the cooperating

node of the highest index, or in another scenario, it uses the energized cooperating nodes

sequentially. Because of the overhead problem caused by broadcasting the energy status

of each cooperating node to the network, we propose an adaptive method to decrease this

burden. That is, when the energy harvesting rate of a cooperating node is low, the other

nodes in the network will set the energy status of that node to unenergized after each time

it transmits as it will be more likely to be so. If the node is still energized after transmission,

the node will broadcast 1 to the network so that the other nodes will set its status back

to energized. Thus, the cooperating node does not need to always broadcast its energy

status to the network, which will reduce the overhead when the energy harvesting rate is

low. In addition, we propose an adaptive scheduling algorithm that incorporates fairness

constraints to ensure the same performance between the nodes. The algorithm optimally
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switches between two conditions, where one prioritizes the source’s transmission while the

other prioritizes the cooperating node’s transmission, such that the two nodes achieve the

same performance. However, in the adaptive scheme, the penalty on the cooperating node

performance sometimes has to be high in order to achieve the same performance of the source

node. In addition, because in the system model each node is fixed and categorized a priori

as either a source or a cooperating node, in the adaptive scheme fairness cannot be achieved

if the source has higher performance than the cooperating node. Therefore, in Chapter 4, we

first generalize the system model of the three nodes network, where each node can be either

a source, a cooperating, or a relay node depending on the system parameters. Then, We

propose a fairness scheduling (FS) scheme that achieves fairness based on a given penalty

function, which fairly determines how much a node should cooperate with the other. We also

propose a constrained scheduling (CS) scheme that constrains one of the nodes to achieve a

certain performance.

Although the adaptive method proposed in Chapter 3 decreases the burden of overhead,

it is still relatively high and could consume a significant amount of energy, especially when

using protocols of fixed packet/frame format, as in IEEE 802.11. Thus, to solve the problem

of overhead, we introduce in Chapter 5 a statistical model that estimates the cooperating

node’s energy status at the source. The simulation results show that over some values of

the energy harvesting rates of the transmitting nodes, it is more energy efficient to use the

statistical model than the feedback scheme with the adaptive method. Lastly, we address

in Chapter 6 the problem of scheduling for throughput maximization in a wireless energy

harvesting uplink. In most of the existing works, throughput is maximized at the expense

of some nodes that are either close to the sink or that discard their own transmissions in

favor of relaying. For fairness, we maximize the network throughput such that each node’s

throughput cannot drop below what it achieves by direct transmission to the base station.

The throughput is maximized using data relaying, and by optimally assigning a role to

each node, i.e., cooperating node, source (direct transmission), or user (of a cooperating

node). Both centralized and decentralized algorithms that find the optimal assignment of

each node are proposed and studied. We consider both fixed and variable transmit power

scenarios, and address complexity issues. Our algorithms are shown to have a linear or
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quadratic complexity compared to the exponential complexity of the brute force approach.

Compared with cooperative transmission, our approach maximizes the overall throughput

of the network such that no node’s throughput is adversely affected.

Throughout this dissertation, we assume a real-time monitoring scenario, where no pack-

ets/events are buffered for later transmission. In other words, we assume that there is no

buffer for storing sensed data as in [71]. We also assume that the transmission energy re-

quired for reliably transmitting an event from a sensor node to another or from a sensor node

to a destination is constant, i.e., the transmission rate is constant. Moreover, unlike [63], we

assume that if a node has an event to transmit to the destination, the node transmits only

if its current residual energy is sufficient for reliable transmission. Thus, if the transmission

occurs, the transmitted event is considered successfully delivered to the destination, with no

retransmissions required. We do not consider the energy consumption of signal processing

including receive signal processing. However, it can easily be subsumed under the transmit

energy.

1.2 Literature Review

In this section, we present literature related to the problems addressed in this dissertation.

We first start with the research work related to the area of energy harvesting sensor networks,

where we briefly discuss the technology of energy harvesting and mention some research work

that consider this technology in wireless sensor networks. Then, we present the research work

in the area of using cooperative communication in energy harvesting sensor networks. In

this area, we first talk about cooperative communication technology, and then we present

some research work that combine this technology with energy harvesting in wireless sensor

networks.

1.2.1 Energy Harvesting Sensor Networks

Energy harvesting technology has been widely addressed in the literature. Some of its

sources have been studied and investigated including but not limited to wind, solar, thermal,

and mechanical vibration [11]. Depending on the energy source, it has been shown that the
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power that can be harvested is in the range between several µW to several hundred mW

[12, 13, 14]. Because the power consumption of a sensor node is usually in the range between 1

to 100 µW [15, 16, 17], in the past few years some sensor nodes that can be powered by energy

harvesting sources have been introduced to the research communities. Some of the existing

energy harvesting sensor nodes are listed in [18]. Such sensor nodes can provide many unique

features that cannot be provided by conventional sensors, including, 1) no need for battery

replacement/recharging when it runs out, which reduces labor and new batteries’ costs, 2)

easy and fast deployment in hostile or inaccessible environments, and 3) reduction of carbon

effects associated with batteries leakage. These attributes have motivated researchers to

study and consider the idea of using energy harvesting technology in wireless sensor networks.

Due to the new imposed energy constraints, some fundamental issues and standard designs

of wireless sensor networks have been revisited and reanalyzed in the literature. In [19] and

[20], the authors analyzed the performance of various MAC schemes for a multi-sink and

a single-sink networks. In [21], the authors analyzed the power consumption of a ZigBee-

Based energy harvesting sensor network. The authors in [22] investigated the feasibility of

using IEEE 802.11 in energy harvesting sensor networks of low-power sensing applications.

In [23], the authors characterized the transmission capacity of an ad hoc wireless network

with ALOHA and CSMA protocols. Some sleep and wakeup strategies have been proposed

for solar-powered wireless sensor networks in [24]. Finally, the authors in [25]-[30] have

revisited the issues of power transmission and allocation as well as the issue of throughput

maximization for different models of energy harvesting sensor networks. More research work

and challenges can be found in [10].

1.2.2 Cooperative Energy Harvesting Sensor Networks

The idea of cooperative communication was first introduced by van der Meulen in the

1970s, where he introduced the three-terminal relay channel and derived the inner bounds for

capacity using a timesharing approach [5]. The results in this paper showed that cooperative

communication can be a promising solution for communication systems. Therefore, after

that, cooperative communication has been addressed extensively in the literature. Different
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issues were investigated and analyzed including diversity gain, outage probability, capacity,

energy and bandwidth utilization. In [6], the authors analyzed the capacity for the three-

terminal relay channel assuming that all the nodes operate in the same band. In [31] and [32],

the authors explored the idea of some general cooperative communication scenarios including

decode-and-forward, amplify-and-forward, and selection relaying. The idea of cooperative

communication was extended further to a more generic sense of cognitive radio in [33]. In

[34]-[36], the authors focused on achieving diversity gains in coded cooperation systems.

Cooperative communication using collaborative MIMO has also been investigated in the

literature. Some recent developments and challenges about using cooperative MIMO in

sensor networks can be found in [37].

Cooperative communication has been used in wireless sensor networks for more energy

efficiency and longer lifetime. However, some fundamental issues have been revisited and

considered. In [38]-[41], some MAC layer issues have been considered and cooperative MAC

protocols have been proposed under different assumptions. A cross-layer strategy and a co-

operation algorithm were proposed in [42] and [43], respectively. Cooperative communication

has also been used in wireless sensor networks with energy harvesting to maximize the data

collected from their sensor nodes. Data collection can also be maximized using a mobile sink

[44]-[46] or multihop transmission [47]-[52]. However, using a mobile sink may not be suit-

able for small networks or for hostile environments, where optimizing the trajectory may be

impossible. On the other hand, using mutlihop transmission results in data delivery latency

that may be untolerated in some applications. These two problems are avoided when using

cooperative communication.

In the literature, there has been a substantial research effort on using cooperative com-

munication to maximize data collection in energy harvesting sensor networks. In [53], the

authors considered a three-node relay network, and developed a scheduling scheme to max-

imize the data collected from the source node. In [54]-[58], the problem was considered

for the scenario when the network has multiple relays, and relay selection protocols were

proposed. The authors in [59] and [60] considered the problem for a three-node network

of an energy harvesting relay node that harvests its energy from the RF radiation of the

source. The authors proposed relaying protocols that enable the relay to switch between
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energy harvesting and data processing. A relaying protocol was also proposed in [61] for a

different setup of three-node relay network. In [62], the problem was considered for a Gaus-

sian three-node relay network. The authors in [63] improved data throughput for a network

of a set of nodes over low energy harvesting rates. The network throughput is improved by

assigning a cooperative repeater role to some nodes, which drop all their transmissions over

a period of time and retransmit the sources’ transmissions only if they are not successfully

received at the base station. Lastly, in order to maximize the data collected from the source

at the destination, the authors in [64] proposed schemes that enable the source to optimally

schedule the relays’ energy harvesting and data transmission for a multiple-relay network.

As in [53], in this dissertation, we also consider the problem of relay/cooperating node us-

age scheduling for cooperative communication at source. Using partially observable Markov

decision process, the authors in [53] derived an optimal policy which maximizes the sys-

tem performance in terms of the packet delivery ratio, which is the ratio of the data that

is successfully delivered, to the total data that is generated. This optimal policy is quite

sensitive to system parameters, which makes it impractical. Therefore, the authors designed

a simple and practical threshold-based relay scheduling scheme that is sensitive only to one

system parameter. The scheme achieves performance close to the optimal policy, and thus

we consider it as the state-of-the-art scheme to evaluate our proposed schemes. Because

cooperative communication can maximize data collection at the expense of relay or cooper-

ating nodes, we also use the approach of data relaying in the last chapter to maximize the

network throughput such that no node’s throughput is adversely affected. In this approach,

each node is assumed to transmit to the base station either direct or in two hops.

The rest of the dissertation is organized as follows. Chapter 2 addresses the problem

of single cooperating node scheduling, and proposes a practical relay scheduling scheme

to maximize the system performance. In Chapter 3, the proposed scheme in Chapter 2

is upgraded to include the scenarios of multiple cooperating nodes and sources, and to

accommodate fairness constraints. Chapter 4 generalizes fairness and provides analytical-

based approach fair and constraint scheduling schemes for optimal scheduling. In Chapter 5,

a statistical model is proposed to estimate the energy status of the relay or the cooperating

node, considering the same system model in Chapter 4. Chapter 6 considers the problem of
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data collection throughput maximization for an uplink wireless network. Chapter 7 concludes

the dissertation and presents some directions for future work.



Chapter 2

Single Cooperating Node Scheduling

2.1 Introduction

In this chapter, we consider a network of a single cooperating node that assists cooperative

communication between a source and a destination. We propose a simple practical scheduling

scheme, called feedback scheme, that enables the source to optimally decide whether to

transmit on its own or by using the cooperating node in order to maximize the packet delivery

ratio of the network, which is the ratio of the data that is successfully delivered, to the total

data that is generated. In the feedback scheme, the decision on the cooperating node usage

is made based on its actual energy status that is sent to the source in a feedback message as

either 1 or 0, i.e., energized or unenergized, where energized means that the cooperating

node has sufficient energy to forward the source’s transmission. The results show that

the feedback scheme provides almost the same performance of the threshold-based scheme,

which performs close to the optimal policy derived in [53]. The threshold-based scheme is

sensitive to one of the system parameters, threshold level. In order to maximize the system

performance, the threshold level has to be tuned for each given set of parameters or for any

change in the parameters, and tuning the threshold level requires simulating the system at

different levels of the source battery. Therefore, as the feedback scheme does not require

auxiliary parameter optimization to maximize the system performance, it becomes more

practical especially in networks with unstable parameters or with sensors of large battery

capacity.

Portion of this chapter appears in: A. Ammar and D. Reynolds, “A practical relay
scheduling scheme for wireless sensor networks with energy harvesting,” 47th Annual
Conference on Information Sciences and Systems (CISS), vol. 1, no. 6, pp. 20-22, March
2013.
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Figure 2.1: A three-node network with an energy harvesting source N1, an energy harvesting

cooperating node N2, and a destination. E1 and E2 are queues representing the energy

harvested by N1 and N2, respectively, in the n-th time block, n ∈ {1, 2, . . . , N}. A is the

latest energy status of the cooperating node N2.

2.2 System Model

We consider a three-node network with a source node N1, a cooperating node N2, and a

destination, as depicted in Figure 2.1, where each node is equipped with energy harvesting

devices and has a rechargeable battery with capacity K. We assume a discrete-time model,

where time is divided into N time blocks. To avoid collision, we use a TDMA protocol where

each block is divided into three time slots. The first time slot is for the source’s transmission,

the second is for the cooperating node to forward the source’s transmission, and the third is

for the cooperating node’s transmission. The energy available at node Ni, i ∈ {1, 2} in the

time block n, n ∈ {1, 2, . . . , N} is denoted by Li[n] ∈ {0, 1, 2, ..., K}.

We assume that there is at most one event generated per each transmitting node N1 and

N2 per time block. As in [53] and [65], the event generation process at node Ni, i ∈ {1, 2} is

modeled by a temporally correlated, two-state Markov process (“on”, “off”) with transition

probabilities qon
i and qoff

i , as illustrated in Figure 2.2. In the time block n, n ∈ {1, 2, . . . , N},

the “on” state means that there is an event generated at that block, i.e., Ei[n] = 1, while the

“off ” state means that there is no event generated, i.e., Ei[n] = 0. The energy generation

process of Ni, i ∈ {1, 2} is assumed to be modeled by the same process, but with transition

probabilities pon
i and poff

i . The “on” state at the n-th time block means that the sensor
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Figure 2.2: A state diagram of the two-state Markov process that models the event gen-

eration process of node Ni, i ∈ {1, 2} with transition probabilities qon
i and qoff

i . The energy

generation process is modeled the same but with transition probabilities pon
i and poff

i .

harvests Ei amount of energy at that block while the “off ” state means that there is no

energy harvested.

During each time block in which there is an event to report, the source node N1 oper-

ates in one of two transmission modes; direct transmission or relay transmission. In direct

transmission, the source transmits its event directly to the destination using δ1 amount of

energy. In relay transmission, the source transmits its event to the destination using δ̃1

amount of energy, and it also makes use of the cooperating node N2 to forward its trans-

mission to the destination in the next time slot. The cooperating node N2 also operates

in one of two transmission modes; own-traffic transmission or relay transmission. In the

own-traffic transmission, the cooperating node transmits its own packet to the destination

using δ2 amount of energy. While in the relay transmission, the cooperating node forwards

N1’s transmission to the destination using δ̃2 amount of energy. As in [53], we assume no

packet/event transmission losses occurred. We also assume that sensors are deployed in a

real-time monitoring scenario where no packets/events are buffered for later transmissions.

We assume that the cooperating node transmits its energy status A to the source node as

either 1 or 0, representing whether the cooperating is energized or unenergized, respectively.
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Algorithm 2.1 Feedback Scheduling Scheme

(a) Source node N1

1: Inputs: E1[n], L1[n], A[n], δ1, δ̃1;

2: Outputs: Transmission action of N1;

3: if E1[n] = 1 then in time slot 1

4: if L1[n] > δ1 AND A[n] = 0 then

5: N1 action = direct transmission;

6: elseif L1[n] > δ̃1 AND A[n] = 1 then

7: N1 action = relay transmission;

8: else

9: N1 action = no transmission;

10: endif ;

11: else

12: N1 action = no transmission;

13: endif

(b) Cooperation Node N2

1: Inputs: E2[n], L2[n], δ1, δ̃2;

2: Outputs: Transmission action of N2;

3: if L2[n] > δ̃2 then

4: Sense the link N1-N2 for N1 action;

5: if N1 action = relay transmission then

6: In time slot 2,

7: N2 action = relay transmission;

8: In time slot 3, Go to step 10:

9: elseif N1 action = no transmission then

10: In time slot 3,

11: if E2[n] = 1 AND L2[n] > δ1 then

12: N2 action = own-traffic transmission;

13: else

14: N2 action = no transmission;

15: endif

16: endif

17: else

18: N2 action = no transmission;

19: endif

In the n-th time block, the cooperating node N2 is said to be energized if it has sufficient

energy to forward at least one event for the source, i.e, L2[n] > δ̃2. Otherwise, it is said to be

unenergized. We assume that the cooperating node status is transmitted only whenever it

changes, i.e., if the cooperating node transmits its own packet or forwards the source packet

and its status is still the same as before transmitting or forwarding, the cooperating node

will not transmit its status.
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2.3 Feedback Scheduling Scheme

The feedback scheduling scheme proposed in this chapter is summarized in Algorithm

2.1. At the beginning of the time block n ∈ {1, 2, . . . , N}, the source node N1 generates an

event with probability modeled by the two-state process described earlier. And based on

the event status E1[n], the source in the first time slot takes one of the three transmission

actions; direct transmission, relay transmission, or no transmission, as illustrated in part (a)

of the algorithm. If E1[n] = 1, the source takes direct transmission action if A[n] = 0 and

L1[n] > δ1, i.e., if the cooperating node is unenergized and the source has sufficient energy

to transmit directly. On the other hand, if E1[n] = 1, the source takes relay transmission

action if A[n] = 1 and L1[n] > δ̃1, i.e., if the cooperating node is energized and the source

has sufficient energy to transmit cooperatively. In these two scenarios, the source’s event is

considered successfully delivered to the destination. If E1[n] = 1 and the transmission action

can neither be direct transmission nor relay transmission, the source takes the transmission

action no transmission, and in this scenario the source’s event is considered lost or not

successfully reported to the destination. If E1[n] = 0, the source takes the transmission action

no transmission regardless of the energy availability at both the source and the cooperating

node.

As for the cooperating node N2, it takes a transmission action that is either own-traffic

transmission, relay transmission, or no transmission, as illustrated in part (b) of the algo-

rithm. In the first slot of the n-th time block, the cooperating node N2 senses the N1-N2

link only if its latest energy status is energized. If there is a transmission coming from the

source in that slot, which means that the transmission action taken at the source is a relay

transmission, then the transmission action at the cooperating node will be taken as a relay

transmission to forward the source’s transmission in the second time slot. Otherwise, the

transmission action will be taken as no transmission in the first two time slots. In the third

time slot, the cooperating node takes the transmission action own-traffic to transmit its own

event if E2[n] = 1 and if L2[n] >δ2. In these two scenarios, the event of the source and the

event of the cooperating node are considered to be reported successfully to the destination.

In the first two time slots, if the latest energy status of the cooperating node is unenergized,
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then the cooperating node will not sense the N1-N2 link since the transmission action at

the source will not be taken as a relay transmission at that status. Hence, the transmission

action will be taken as no transmission in the first two time slots. The transmission action

will be taken as no transmission in the third time slot as well if the cooperating node has

no event generated, or has no sufficient energy to transmit its event, i.e., L2[n] < δ2. In this

scenario, the cooperating node’s event is considered lost. Note that in the algorithm, the

default transmission action of each node is no transmission. If a node takes a transmission

action that is not a no transmission in some time slot, the node will set its transmission

action back to no transmission at the end of that time slot.

The feedback scheme is a distributed algorithm because each node performs some analysis

and takes a decision on its transmission action by itself. As we will see later in the simulation

results, the feedback algorithm maximizes the overall packet delivery ratio of the system,

which is the ratio of the number of events that are successfully delivered for both the source

and the cooperating node over the total number of events that are generated for both the

source and the cooperating node over the N time blocks. In the algorithm, however, the

cooperating node prioritizes the source’s transmission over its own, i.e., when both the source

and the cooperating nodes have an event generated in the same time block, the cooperating

node cooperates with the source first and then it transmits its own event if sufficient energy

remained. If no sufficient energy remained, the cooperating node’s event would be dropped.

Consequently, the packet delivery ratio of the source will improve at the expense of the

cooperating node. The problem can be reversed if the source priority condition (A[n] = 1

if L2[n] > δ̃2) is changed to the cooperating node priority condition (A[n] = 1 if L2[n] > δ̃2

& E2[n] = 0). Under the cooperating node priority condition, the cooperating node will

prioritize its transmission over the source’s transmission which will improve its performance.

Note that, the packet delivery ratio of a node is the ratio of the total events that are

successfully delivered for that node to the total number of its generated events over the N

time blocks.

The flowcharts in Figure 2.3 illustrate the feedback and the threshold-based schemes. It

can easily be noticed that the difference between them is only in the condition where the

cooperating node is decided whether to be used or not. Our scheme bases its decision on
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Figure 2.3: Two flowcharts illustrate the feedback and the threshold-based schemes to easily

notice the difference between them.

the actual energy status of the cooperating node while the threshold-based scheme bases

its decision on the threshold value TH . As stated before, the threshold value needs to be

tuned for any given set of system parameters in order to maximize the system performance,

and tuning it requires simulating the system at different energy battery levels of the source

node, which is impractical in networks of unstable parameters or in networks of sensors with

batteries of huge capacity.

2.4 Simulation Results

In this section, we evaluate the performance of the feedback scheme by comparing it

with the performance of the threshold-based scheme. We simulate the two schemes using

the same set of parameters that was used to simulate the threshold-based scheme in [53]. We

simulate the feedback scheme for the two priority conditions to evaluate the performance of

each node under each condition. In addition, we simulate the two schemes when one of the

system parameters changes in order to show the sensitivity of the threshold-based scheme to
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Figure 2.4: The overall, the cooperating node, and the source packet delivery ratios of

the feedback and the threshold-based schemes. Parameters used: qon
1 = 0.9, qoff

1 = 0.7,

pon
1 = qon

2 = 0.85, poff
1 = qoff

2 = 0.7, E1 = E2 = 1, δ1 = δ2 = 3, δ̃1 = δ̃2 = 1, K = 20, TH = 10.

the system parameters, and how our scheme stands in this case. The simulations were done

using Matlab and they were run for a duration of N = 5× 106 time blocks.

The performance is represented in terms of the packet delivery ratio versus energy har-

vesting probabilities of the cooperating node pon
2 and poff

2 . Therefore, in the simulations,

these two parameters are changing from 0.55 to 0.95 while the rest of the parameters are

fixed. As in [53], the threshold value in the threshold-based scheme is set to the half of the

battery capacity, i.e., TH = 10, which is the tunable value for the system parameters given in

Figure 2.4 that maximizes the performance. The energy harvesting rate for both the source

and the cooperating node E1 and E2 are set to 1, where the source and the cooperating node

each harvests 1 unit of energy in a time block if its energy harvesting state is “on” at that

block. All the used parameters are given in the caption of the figures.

2.4.1 Performance Evaluation

Figure 2.4 illustrates the simulation results for the feedback and threshold-based schemes

using the system parameters shown in the figure. The figure shows that the overall, the

cooperating node, and the source packet delivery ratios for the two schemes are almost the

same. In [53], it has been shown that the threshold-based scheme performs close to the

optimum policy, meaning that, the feedback scheme performs also close to the optimum
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Figure 2.5: The overall, the cooperating node, and the source packet delivery ratios of

the feedback scheme with both the source and the cooperating node priority conditions.

Parameters used: qon
1 = 0.9, qoff

1 = 0.7, pon
1 = qon

2 = 0.85, poff
1 = qoff

2 = 0.7, E1 = E2 = 1,

δ1 = δ2 = 3, δ̃1 = δ̃2 = 1, K = 20, TH = 10.

policy. However, the close performance to the optimum in the feedback scheme is achieved

without requiring the optimization of system parameters.

From Figures 2.4 (a) and (b), it can be observed that the packet delivery ratio of the

cooperating node is significantly lower than the source. In the two schemes, the cooperating

node gives priority to the source’s transmission over its own. Thus, the cooperating node

spends most of its harvested energy on forwarding the source’s packets instead of transmitting

its own, which affects its packet delivery ratio. As we will see in the next simulation, the

packet delivery ratio of the cooperating node can be improved in the feedback scheme by

using the cooperating node priority condition mentioned in Section 2.3.

2.4.2 Cooperating Node Priority Condition

In this simulation, we simulate the feedback scheme using the cooperating node priority

condition (A = 1 if L2 > δ̃2 & E2 = 0) and compare it with the case when the source

priority condition (A = 1 if L2 > δ̃2) is used. Figure 2.5 (b) shows that the packet delivery

ratio of the cooperating node improves when using the cooperating node priority condition

compared to the source priority condition. However, the overall and the source packet

delivery ratios decrease as can be noticed from Figures 2.5 (a) and (c). The packet delivery
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Figure 2.6: The overall, the cooperating node, and the source packet delivery ratios of the

feedback and the threshold-based schemes when changing one of the parameters. Parameters

used: qon
1 = 0.9, qoff

1 = 0.7, pon
1 = qon

2 = 0.85, poff
1 = qoff

2 = 0.7, E1 = E2 = 1, δ1 = 3,

δ2 = δ̃1 = δ̃2 = 1, K = 20, TH = 10.

ratio of the source decreases because the cooperating node cooperates less with it when using

the cooperating node priority condition. From Figures 2.5 (b) and (c), we can notice that

the gap between the cooperating node and the source node packet delivery ratios decreases

when using the cooperating node priority condition, which is more fair than when using the

source priority condition.

2.4.3 Threshold-based Scheme Sensitivity

To show its sensitivity to the system parameters, we simulate the threshold-based scheme

when δ2 changes from 3 to 1 while the threshold value TH is still the same, not tuned. We

compare its performance with the feedback scheme. The simulation results in Figure 2.6

(a) show that the overall packet delivery ratio of the feedback scheme is better than the

threshold-based scheme. This is because the performance in the threshold-based scheme is

not maximized due to the fact that the threshold value TH = 10 is not the tunable value

for the new set of parameters. Hence, we conclude that using the threshold-based scheme in

networks of unstable parameters is impractical when the maximum packet delivery ratio of

the system needs to be maintained. Finally, Figure 2.6 (c) illustrates that the packet delivery

ratio of the source in the threshold-based scheme is better than the feedback scheme. This is
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because in the threshold-based scheme, the cooperating node in this new set of parameters

cooperates more with the source, which results in better packet delivery ratio for the source,

and worse packet delivery ratio for the cooperating node as can be seen from Figure 2.6 (b).

2.5 Conclusions

This chapter considers an energy harvesting three-node network of a source, a cooper-

ating node, and a destination, and it proposes a simple practical scheme, called feedback

scheme, that maximizes the packet delivery ratio of the system. The feedback scheme can

be generalized to any network of many sensor nodes when each group of three nodes in

the network can form a three-node relay channel. In the opposite to the threshold-based

scheme, the feedback scheme does not require auxiliary parameter optimization in order to

maximize the system performance. This advantage makes the feedback scheme easier and

more practical to be used, especially in networks with unstable parameters or with sensors

of huge battery capacity.

The feedback scheme can easily switch between two different conditions on the cooper-

ating node energy status, cooperating node priority condition and source priority condition,

in order to prioritize the transmissions of either the source or the cooperating node. Hence,

if the energy harvesting rate of the cooperating node is higher than its event occurrence

rate and the opposite holds true for the source, then the feedback scheme should use the

source priority condition. Thus, the cooperating node cooperates more and more events will

be delivered for the source. While if the energy harvesting rate of the cooperating node is

lower than its event occurrence rate and the opposite holds true for the source, the feedback

scheme should use the cooperating node priority condition. Thus, the cooperating node

cooperates less and more events will be delivered for the cooperating node. The switch be-

tween these two conditions can easily be done by the cooperating node, assuming that the

event occurrence probability and the energy harvesting rate of the source are known at the

cooperating node. In the threshold based scheme, prioritizing the transmissions of either

the source or the cooperating node is not easy. It requires tuning the threshold level at the

optimal value, which requires simulating the system at different levels of the source’s energy
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battery. Lastly, the feedback scheme is distributed as each node performs some analysis and

makes a decision on its transmission action by itself.



Chapter 3

Multiple Cooperating Nodes

Scheduling

3.1 Introduction

In this chapter, the feedback scheme is upgraded to include the scenario of multiple co-

operating nodes in one-way or two-way cooperative communications. In this scenario, we

assume that the system has multiple cooperating nodes that assist cooperative communica-

tion between two transmitting nodes, as well as they transmit their own events to one of

the transmitting nodes in the network. In the algorithm, the cooperating nodes are indexed

increasingly, and each node is assumed to broadcast its energy status to the network as ei-

ther energized or unenergized. When any of the two transmitting nodes has a transmission

and there is more than one energized cooperating node, then the transmitting node uses the

cooperating node of the highest index. In another scenario, the transmitting node uses the

cooperating nodes sequentially in order to be fair between the cooperating nodes. Using a

cooperating node definitely improves the performance of the transmitting nodes. However,

it increases the power consumed by the cooperating node, which affects its packet delivery

ratio. Therefore, we propose an adaptive scheduling algorithm that incorporates fairness

constraints to ensure the same performance between the nodes.

Portion of this chapter appears in: A. Ammar and D. Reynolds, “An adaptive scheduling
scheme for cooperative energy harvesting networks,” Journal of Communications and
Networks, vol.17, no.3, pp.256-264, June 2015.
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Figure 3.1: Energy harvesting sensor network of M − 2 cooperating nodes that assist

cooperative communication between two sensors (N1, N2). Each node Nm,m ∈ {1, 2, . . . ,M}
harvests Em amount of energy if its energy generation process is “on”. Each node has a

memory of M − 2 slots to save the latest status, Am, m ∈ {3, 4, ...,M}, of the cooperating

node Nm as either 1 or 0 in the corresponding m-th slot.

3.2 System Model

We consider a wireless sensor network with M sensor nodes, including M−2 cooperating

nodes that assist cooperative communications between two nodes (N1 and N2), as depicted

in Figure 3.1. We allow for one-way or two-way cooperative scenarios. In the one-way

scenario, N1 and N2 serve as a source and destination, respectively, and each cooperating

node Nm, m ∈ {3, 4, ....,M} serves as a relay for N1 and as a source to transmit its own

packets to the destination. In the two-way scenario, N1 and N2 serve as both a source

and a destination, and each cooperating node Nm serves as a source and also as a relay for

both N1 and N2. Each sensor node is equipped with energy harvesting devices and has a

rechargeable battery with capacity K. The energy available at node Nm, m ∈ {1, 2, . . . ,M},

is Lm ∈ {0, 1, 2, ..., K}. As in the previous chapter, we assume no errors or packet losses

occurred and that sensors are deployed in real-time monitoring scenarios where no packets

are buffered. Based on these assumptions, there is no need to use more than one cooperating
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node per transmission.

As in the previous chapter, we assume a discrete-time model, where time is divided into

blocks. We also use a TDMA protocol to avoid collision, however, here each block is divided

into a number of time slots that depends on the scenario. In the one-way scenario, there

are M time slots where the first slot is assigned for node N1, the second is assigned for a

cooperating node to forward N1’s transmission, and the rest are assigned for the cooperating

nodes sequentially for their own transmissions. In the two-way scenario, there is M + 2 time

slots, i.e., two extra time slots. One of these extra slots is the third time slot, which is assigned

for N2, and the second extra slot is the fourth time slot, which is used for forwarding N2’s

transmission.

During each time slot in which there is an event to report, the sensor node Ni, i ∈ {1, 2}

operates in one of two transmission modes; direct transmission or relay transmission. In

direct transmission, the sensor node N i transmits its packet directly to the destination using

δi amount of energy. In relay transmission, the sensor node N i transmits its packet to the

destination using δ̃i amount of energy, and it also makes use of a cooperating node Nm,

m ∈ {3, . . . ,M} to forward its transmission to the destination in the next time slot. The co-

operating node Nm also operates in one of two transmission modes; own-traffic transmission

or relay transmission. In the own-traffic transmission, the cooperating node transmits its

own packet to the destination using δm amount of energy. While in the relay transmission,

the cooperating node forwards the event of node N i to the destination using δ̃m amount of

energy.

As in Chapter 2, we assume that there is at most one event generated per transmitting

sensor per block. Both the event generation and the energy harvesting processes at each

node are modeled by a temporally correlated, two-state Markov process (“on”, “off”). For

node Ni, i ∈ {1, 2, . . . ,M}, the transition probabilities of the event generation process are qon
i

and qoff
i while the transition probabilities of the energy generation process are pon

i and poff
i .

The event generation status in the n-th time block for node Ni is denoted by Ei[n] ∈ {1, 2},

and the amount of harvested energy in a time block when the state is “on” is denoted by Ei.

The cooperating node Nm,m ∈ {3, 4, . . . ,M} is assumed to broadcast its energy status

Am ∈ {0, 1} to the network whenever it changes, and all the M nodes are assumed to have
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a memory of M − 2 slots, indexed as S3, S4, ..., SM , where the most recent status of each

cooperating node is stored. As stated in Chapter 2, the status of 1 corresponds to the

cooperating node status energized, and the status of 0 corresponds to the cooperating node

status unenergized. In the n-th time block, the cooperating node Nm is said to be energized if

it has sufficient energy to forward at least one event, i.e., it satisfies Lm[n] > δ̃m. Otherwise,

it is said to be unenergized. In the n-th time block, we assume that A[n] is a set that includes

all the energized cooperating nodes.

Broadcasting a cooperating node status whenever it changes increases the overhead of

the energy statuses’ transmissions, which could consume a significant amount of energy and

increase the computational complexity modestly (linearly) with the number of cooperating

nodes. This burden can be reduced when pon
m , the energy harvesting probability of the

cooperating node Nm, is low by adapting the energy status broadcasting of that node. Such

that, if the cooperating node Nm transmits, then all the M sensors will automatically set

the energy status of that node to unenergized. This is because node Nm is more likely to be

unenergized after transmitting due to its low rate of energy harvesting. If node Nm is still

energized after transmitting, the node will broadcast 1 to the network so that all the nodes

set its status back to energized.

3.3 Scheduling Algorithm

Algorithm 3.1 describes the scheduling algorithm for the one-way scenario. As illustrated

in part (a) of the algorithm, in the n-th time block, n ∈ {1, 2, . . . , N}, node N1 generates

an event E1 using the Markov process described earlier. If E1[n] = 1, then the transmission

action will be direct transmission if all the cooperating nodes are unenergized and L1[n] >

δ1. If E1[n] = 1, then the transmission action will be relay transmission if there is at

least one energized cooperating node and L1[n] > δ̃1. In these two scenarios, the event

of N1 is considered successfully reported. If E1[n] = 1 and the transmission action can

neither be direct transmission nor relay transmission, then the transmission action will be

no transmission. In this scenario, the event of N1 is considered not successfully reported

or lost. If E1[n] = 0, then the transmission action will also be no transmission. When
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Algorithm 3.1 Feedback Scheduling Scheme

(a) Source node N1

1: Inputs: E1[n], L1[n], A[n], δ1, δ̃1;

2: Outputs: Transmission action of N1;

3: if E1[n] = 1 then

4: In time slot 1,

5: if L1[n] > δ1 AND |A[n]| = 0 then

6: N1 action=direct transmission;

7: elseif L1[n] > δ̃1 AND |A[n]| > 0 then

8: N1 action=relay transmission;

9: The node of the highest index is scheduled;

10: else

11: N1 action=no transmission;

12: endif ;

13: else

14: N1 action = no transmission;

15: endif

(b) Cooperation Node

Nm,m ∈ {3, 4, . . . ,M}

1: Inputs: Em[n], Lm[n], A[n], δm, δ̃m;
2: Outputs: Transmission action of Nm;

3: if Am[n] = 1 then

4: if m is the highest index in A[n] then
5: Sense the link N1-Nm for N1 action;

6: if N1 action = relay transmission then

7: In time slot 2,

8: Nm action = relay transmission;

9: In time slot 3, Go to step 11:

10: elseif N1 action = no transmission then

11: In time slot m+1,

12: if Em[n] = 1 AND Lm[n] > δm then

13: Nm action = own-traffic transmission;

14: else

15: Nm action = no transmission;

16: endif

17: endif

18: else

19: Go to step 11;

20: endif

21: else

22: Nm action = no transmission;

23: endif
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Figure 3.2: A flowchart illustrates the feedback scheme for the case of multiple cooperating

nodes when the cooperating node of the highest index is selected for relay transmission.

the transmission action is relay transmission, there is no advantage to using more than one

cooperating node because we assume no errors or packet losses occurred. If there is more than

one energized cooperating node, the algorithm will arbitrarily choose the cooperating node

with the highest index number. Note that, choosing the cooperating node with the highest

index causes the cooperating node of the highest index to be scheduled more than the others,

which is unfair. This problem could be solved, for example, by choosing the cooperating

nodes sequentially instead of always choosing the cooperating node of the highest index, i.e.,

replace line 9 of part (a) of Algorithm 3.1 with “Schedule the cooperating nodes sequentially”.

However, scheduling the cooperating nodes sequentially may require the cooperating nodes

to track the most recently used cooperating node to decide which cooperating node should

cooperate next. The flowchart in Figure 3.2 illustrates how the decision is taken at the source

node N1 given the set of the energized cooperating nodes A[n] as well as its current energy

battery level and event status.

With regard to the cooperating nodes, in the first time slot of the block, the energized

cooperating node with the highest index number, say node Nm,m ∈ {3, 4, . . . ,M}, will sense
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the N1-Nm link. If N1 has transmitted, this means that the transmission action taken at

N1 is a relay transmission. Therefore, the transmission action at that cooperating node

will be taken as a relay transmission to forward N1’s transmission in the next time slot. If

not, the cooperating node will take no action and there will be no transmission in the first

two slots. In the rest of the time slots, each cooperating node generates an event Em with

independent realizations of the same Markov process, and it takes a transmission action in

its corresponding time slot based on its Em[n] and Lm[n]. If Em[n] = 0 or Lm[n] < δm, then

the transmission action will be taken as no transmission. If Em[n] = 1 and Lm[n] > δm, then

the transmission action will be taken as an own-traffic transmission, and the event will be

reported successfully. If Em[n] = 1 and Lm[n] < δm, the transmission action will be taken as

a no transmission, and the event will be dropped.

For the two-way scenario, node N2 can use part (a) of the algorithm to schedule one of

the cooperating nodes if slot 1 in line 4 is changed to slot 3. And the cooperating node of the

highest index that will cooperate with N2 can use part (b) of the algorithm if slot 2 in line

7 is changed to slot 4, slot 3 in line 9 is changed to slot 5, and slot m+1 is changed to slot

m+2. As in Algorithm 2.1, the default transmission action of each node is no transmission.

Thus, if a node takes a transmission action that is not a no transmission in some time slot,

the node will set its transmission action back to no transmission at the end of that time

slot.

3.4 Adaptive Scheme for Absolute Fairness

In Chapter 2, we saw that the feedback scheme can easily switch between the two condi-

tions, source priority condition and cooperating node priority condition, in order to prioritize

the transmissions of either the source or the cooperating node. Hence, the packet delivery

ratio of the prioritized node over the N time blocks becomes higher than the other, which

may not be desired in some applications when the same performance needs to be achieved

by the nodes. Therefore, we here propose an adaptive scheme that automatically switches

between the two priority conditions such that the nodes achieve the same performance over

the N time blocks. Again, for the cooperating node Nm,m ∈ {3, 4, . . . ,M}, the source prior-
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ity condition is (Am[n] = 1 if Lm[n] > δ̃m), which prioritizes the transmissions of N1 and N2,

and the cooperating node priority condition is (Am[n] = 1 if Lm[n] > δ̃m and Em[n] = 0),

which prioritizes the cooperating nodes’ transmissions. The algorithm switches adaptively

between these two conditions based on the current relative performance of N1, N2, and the

cooperating nodes. More specifically, we assume that the packet delivery ratio of, say N1,

is sent to the cooperating nodes after each interval of T blocks. In the first interval, the

decision on the cooperating nodes’ energy status is made by the source priority condition

for the first half of the blocks, and by the cooperating node priority condition for the second

half. After the first interval, the cooperating nodes will change the number of blocks of each

condition after receiving the packet delivery ratio of N1. If the packet delivery ratio of N1 is

higher than the cooperating nodes, the cooperating nodes will increase the number of blocks

of the cooperating node priority condition at the expense of the source priority condition

time blocks, so that the cooperating nodes cooperate less with N1 in the next interval which

improves their performance. In the case of the opposite, however, the cooperating nodes will

increase the number of the time blocks of the source priority condition at the expense of the

cooperating node priority condition time blocks, so that the cooperating nodes cooperate

more with N1 in the next interval which improves N1’s performance. Changing the number

of time blocks of the two conditions is done gradually, with a step size that can be chosen

depending upon the divergence gap between N1 and the cooperating nodes’ packet delivery

ratios and T .

As we will see in Section 3.5.4.2, the system will converge and ensure fairness for a fixed

set of parameters. However, changing any of the parameters relatively changes the packet

delivery ratio of N1 and the cooperating nodes. Therefore, after converging, if any of the

parameters changes, the system will diverge and the fairness problem will occur again. This

indicates that changing any of the system parameters influences fairness, and as we will

see in Section 3.5.4.2, the system will adapt as parameters change. With respect to the

threshold-based scheme and to the best of our knowledge, there is no straightforward way

to adapt the scheme for fairness.
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Figure 3.3: The packet delivery ratios of the one-way scenario when M = 3 and M = 4.

Parameters used: qon
1 = 0.9, qoff

1 = 0.7, pon
1 = qon

3 = 0.85, poff
1 = qoff

3 = 0.7, E1 = E3 = 1,

δ1 = δ3 = 3, δ̃1 = δ̃3 = 1, K = 20.

3.5 Simulation results

We simulate the proposed scheme in Section 3.3 for one-way and two-way scenarios when

M = 3 and M = 4. We use the same set of parameters used in the previous chapter,

which is shown in the figures. We also simulate the adaptive way of broadcasting the energy

status described at the end of Section 3.2. Moreover, we simulate the adaptive scheduling

scheme described in Section 3.4. In the simulations, the event occurrence parameters (qon
i ,

qoff
i ) for Ni, i ∈ {1, 2, . . . ,M}, and the energy harvesting process parameters (pon

i , poff
i ) for

Ni, i ∈ {1, 2} are fixed while the energy harvesting process parameters (pon
m , p

off
m ) for Nm,m ∈

{3, 4, . . . ,M} are allowed to vary. We set qon
i , qoff

i , pon
i , and poff

i to be the same for all

i ∈ {1, 2}, and we also set qon
m and qoff

m to be the same for all m ∈ {3, 4, . . . ,M}. In order

to plot the results, we set pon
m = pon and poff

m = poff for all m ∈ {3, 4, . . . ,M}, and they both

vary from 0.55 to 0.95.

3.5.1 One-Way Cooperative Scenario

As stated in Section 3.2, in the one-way scenario node N1 operates as a source while node

N2 operates as a destination, and the remaining M − 2 nodes operate as cooperating nodes

to relay for N1 and as sources to transmit their own events to N2. So, in this scenario, all

the transmitted packets will flow only in one direction, from N1 and {Nm}Mm=3 towards N2.
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Figure 3.4: The packet delivery ratios of the one-way and two-way scenarios when M = 3.

Parameters used: qon
1 = 0.9, qoff

1 = 0.7, pon
1 = qon

3 = 0.85, poff
1 = qoff

3 = 0.7, E1 = E3 = 1,

δ1 = δ3 = 3, δ̃1 = δ̃3 = 1, K = 20.

Based on {Am}Mm=3, L1, and E1, N1 schedules a cooperating node Nm for usage in its time

slot using Algorithm 3.1.

Using the parameters given in Figure 3.3, the scenario was simulated using Algorithm

3.1 for the case when the system has only one cooperating node N3, i.e., M = 3, and for the

case when the system has two cooperating nodes N3 and N4, i.e., M = 4. The simulation

results in Figure 3.3 compare the performance of the two cases. To make a fair comparison,

the overall performance in the case when M = 4 was represented by the packet delivery

ratio of N1 and N3. The results show that the performance of N3 and the performance of

N1 improve when M = 4. When M = 4, N1 has a better chance to transmit cooperatively

than when M = 3, so that more energy will be saved and more packets will be delivered for

N1. Also, when M = 4, each cooperating node cooperates less with N1 since the nodes share

the cooperation between them. Less cooperation with N1 means more packets delivered for

N3. Of course, increasing the number of delivered packets for N1 and N3 improves their

performance, and the overall performance of the system.

3.5.2 Two-Way Cooperative Scenario

In the two-way scenario, N1 and N2 both operate as a source and destination, and

the remaining M − 2 nodes operate as cooperating nodes to relay for N1 and N2, and
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Figure 3.5: The packet delivery ratios of the one-way and two-way scenarios when M = 4.

Parameters used: qon
1 = 0.9, qoff

1 = 0.7, pon
1 = qon

3 = 0.85, poff
1 = qoff

3 = 0.7, E1 = E3 = 1,

δ1 = δ3 = 3, δ̃1 = δ̃3 = 1, K = 20.

operate as sources as well. So, in this scenario, all the transmitted packets will flow in two

directions, from N1 and {Nm}Mm=3 towards N2, and from N2 and {Nm}Mm=3 towards N1. Using

Algorithm 3.1, N1 and N2 both schedule a node Nm for cooperation using their parameters

Li, Ei, i ∈ {1, 2}, and the cooperating nodes energy statuses {Am}Mm=3 as described earlier.

The simulation results in Figure 3.4 illustrate the performance of the algorithm for the

two-way scenario when M = 3. The results also compare the performance of the two-way

scenario with the one-way scenario when M = 3. To make the overall performance of the two

scenarios fairly comparable, the overall performance of the two-way scenario was represented

by the packet delivery ratios of N1 and N3, meaning that the performance of N2 was not

included. The results show that the performance of the two-way scenario is worse than the

one-way scenario. This is reasonable since N3 cooperates with two nodes in the two-way

scenario instead of one. Cooperating with two nodes increases the cooperation load on N3

and thus affects its performance. Also, it decreases the cooperation chance of N3 with N1

which affects the performance of N1. As a result, the overall performance of the system

decreases due to the decrease in the performance of N1 and N3.

The algorithm was also simulated for the two-way scenario with two cooperating nodes

N3 and N4, i.e., M = 4. Figure 3.5 shows the simulation results for the two-way scenario

compared with the one-way scenario when M = 4. The overall performance of the two
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Figure 3.6: The number of status transmissions of the standard and adaptive status broad-

castings for the one-way scenario when M = 3. Parameters used: qon
1 = 0.9, qoff

1 = 0.7,

pon
1 = qon

3 = 0.85, poff
1 = qoff

3 = 0.7, E1 = E3 = 1, δ1 = δ3 = 3, δ̃1 = δ̃3 = 1, K = 20.

scenarios is represented by the packet delivery ratio of N1 and N3.

3.5.3 Overhead Reduction

In Section 3.2, we mentioned that broadcasting a cooperating node status in the standard

way (whenever it changes) increases status transmissions overhead, and we suggested an

adaptive way of a cooperating node status broadcasting that could reduce this burden for

low values of pon. Here, we simulate the system when M = 3 for the standard and adaptive

ways of status broadcasting. Figure 3.6 illustrates the number of status transmissions of

N3 for the two ways. It can be noticed that the number of status transmissions is reduced

when pon 6 0.75, where the energy harvesting probability of N3 is considered low. Although

this burden is reduced for some values of pon, the burden is still relatively high. Therefore,

in Chapter 5 we develop a statistical model that enables the source to estimate the energy

status of the cooperating nodes.
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3.5.4 Fairness

3.5.4.1 Between Cooperating Nodes

In Algorithm 3.1, if there is more than one active cooperating node, the algorithm will

arbitrarily select the node with the highest index number. As mentioned earlier in Section

3.3, this selection causes an unfairness problem between the cooperating nodes, and this

problem could be solved by selecting the cooperating nodes sequentially instead of always

selecting the cooperating node of the highest index. The algorithm was simulated for the two

ways of selection for the one-way system when M = 4. Figure 3.7 illustrates the simulation

results, where Figure 3.7 (a) illustrates the overall packet delivery ratio which is represented

by N1 and N3, Figure 3.7 (b) illustrates the packet delivery ratios of the cooperating nodes

N3 and N4, and Figure 3.7 (c) illustrates the packet delivery ratio of node N1.

It can be noticed from Figure 3.7 (b) that N3 and N4 have the same packet delivery ratio

when the nodes are selected sequentially. This ensures fairness between the cooperating

nodes in contrast to the highest node selection case where the packet delivery ratio of N4

is less than N3. Figure 3.7 (c) shows that the packet delivery ratio of N1 is virtually the

same for the two ways of selection. This is expected since the only difference between the

two ways of selection is deciding which node should cooperate with N1. Figure 3.7 (a) shows

that the overall packet delivery ratio when the highest cooperating node is always selected

is better than it when the cooperating nodes are selected sequentially. This is also expected

since the cooperating node N3 is used more often when the cooperating nodes are selected

sequentially than when the highest cooperating node is always selected.

3.5.4.2 Between Cooperating Nodes and N1 and/or N2

The adaptive scheduling scheme described in Section 3.4 is simulated for the one and

two-way scenarios with one cooperating node N3, i.e., M = 3. In the two scenarios and for

the given set of parameters shown in Figure 3.8, the step size of adjusting the number of

blocks of the two conditions is set to 900 for an interval length T = 5000 blocks. When the

divergence gap becomes less than 0.1, the step size is changed to 200, where the gap stays

in the range between 0.005 to about 0.05. At this small range, the performance of N1 and
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Figure 3.7: The packet delivery ratios of the two ways of cooperating nodes selection (select-

ing the node of the highest index and selecting the nodes sequentially) for the one-way sce-

nario when M = 4. Parameters used: qon
1 = 0.9, qoff

1 = 0.7, pon
1 = qon

3 = 0.85, poff
1 = qoff

3 = 0.7,

E1 = E3 = 1, δ1 = δ3 = 3, δ̃1 = δ̃3 = 1, K = 20.

the performance N3 are considered to be converged.

Figure 3.8 (a) illustrates the convergence between N1 and N3 performances of the one-

way scenario. It can be noticed that the performance of the two nodes converges in the

second interval. At interval 41, the performance diverges again due to the change in one

of the system parameters, δ̃1 is changed to 3. After two intervals, i.e., at interval 43, the

performance gets converged again by repeating the same procedures. Before the parameter

change, the performance converges one block faster than after the parameter change. This

is because the divergence gap between N1 and N3 performances in the first interval before

the parameter change is smaller than it after the parameter change.

As for the two-way scenario, Figure 3.8 (b) shows the convergence in the performance

between the three nodes N1, N2, and N3. The figure shows that the performance converges

twice, before and after the change of δ̃1. Because of the same reason in the one-way system,

the convergence before the parameter change is faster than after the parameter change.

3.6 Conclusions

We upgrade the feedback scheme proposed in Chapter 2 for the scenarios of multiple

cooperating nodes, and for one-way and two-way cooperative communications. The upgraded
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Figure 3.8: The convergence of the packet delivery ratios for the one-way and two-way

scenarios when M = 3. Parameters used: qon
1 = qon

3 = 1, qoff
1 = qoff

3 = 0, pon
1 = 0.85,

pon
3 = 0.95, poff

3 = 0.55, poff
1 = 0.7, E1 = E3 = 1, δ1 = 3, δ̃1 = δ̃3 = δ3 = 1, K = 20.

algorithm communicates in one or two hops, maximizing the packet delivery ratio of the

system. It can be extended to three or more hops where in each hop the transmitting

node selects a cooperating node from the next hop using the same algorithm. However, this

requires some changes in the system model. For example, the number of time slots per a time

block would need to be adjusted. In this chapter, we also propose an adaptive scheme that

ensures fairness between the nodes and adapts as the parameters change. In addition, we

propose a method to decrease the overhead caused by energy statuses broadcasting. Although

this method reduces the overhead, it is still relatively high and might be untolerated in some

applications. As a solution, in Chapter 5 we develop a statistical model that enables the

source in the network to estimate the cooperating node energy status. Lastly, in the adaptive

scheme, fairness is considered ensured when the nodes achieve the same performance. This

might be unfair in some scenarios, for example, when the penalty on the cooperating node’s

performance has to be high in order to achieve the same performance as the other node.

Moreover, since each transmitting node in the system is fixed and categorized a priori as

either a source or a cooperating node, the adaptive scheme will not achieve fairness if the

source node achieves higher performance than the cooperating node. Therefore, in the

next chapter, we generalize the system model and we propose an analytical-based scheme
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that ensures fairness depending on a given penalty function while maximizing the overall

performance of the system.



Chapter 4

Generalized Fairness and Optimal

Scheduling

4.1 Introduction

In Chapter 2, we proposed a scheduling scheme, called feedback scheme, for a network

of a single cooperating node. We then upgraded this scheme in Chapter 3 to include the

scenario of multiple cooperating nodes as well as the scenarios of one-way and two-way

cooperative communications. In Chapter 3, we also proposed an adaptive scheduling scheme

that incorporates fairness in the performance between the transmitting nodes. However, the

adaptive scheme considers only the case of absolute fairness, which might be unfair in the

scenarios when the penalty on the cooperating node performance has to be high in order

to achieve the same performance of the source. Also, because each transmitting node in

the system is fixed and categorized a priori as either a source or a cooperating node, the

adaptive scheme cannot achieve fairness if the source node achieves higher performance than

the cooperating node. Therefore, in this chapter, we first generalize the system model of

the three-node network, where each transmitting node can be either a source, a cooperating,

or a relay node depending on the system parameters. And then we propose an analytical-

based approach scheme, called fair scheduling (FS), that 1) ensures fairness between the

performance of the transmitting nodes while maximizing the sum of their packet delivery

ratios, and 2) considers not only the case of absolute fairness, but also the case when fairness
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N2
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E2

E1

Figure 4.1: A cooperative energy harvesting sensor network of two transmitting nodes (N1

and N2) and a destination. E1 and E2 are queues representing the energy harvested by N1

and N2, respectively, in the n-th time block, n ∈ {1, 2, ..., N}.

is ensured when the transmitting nodes achieve performance with some difference that is

determined by a given penalty function. We also propose a constraint scheduling (CS)

scheme that constrains one of the transmitting nodes to achieve a certain performance.

To build the FS and CS schemes, we optimally design the system to operate in a mixed

mode which is a combination of two of the three operating modes: noncooperation, coop-

eration, and relay. For a given penalty function, the simulation results show that the FS

scheme provides the optimal operating mode for the system such that fairness is ensured

for the transmitting nodes while maximizing the sum of their performances. In addition,

the results show that the CS scheme provides the optimal operating mode for the system in

order for a transmitting node to achieve a certain performance, if possible.

4.2 System Model

We consider a network of three nodes: two transmitting nodes (N1 and N2) and a desti-

nation, as depicted in Figure 4.1. Depending on the scheduling purpose, the system operates

in a mixed mode which is optimally combined of two of the three operating modes: noncoop-

eration, cooperation, and relay, that are illustrated in Figure 4.2. In noncooperation mode,

each transmitting node operates as a Source type 1 (S1) node, which transmits on its own



Chapter 4 Generalized Fairness and Optimal Scheduling 40

S1
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S1

(a) Noncooperation mode

S2

Destination

Cooperating node

(b) Cooperation mode

Destination

Relay node

S2

(c) Relay mode

Figure 4.2: The figure illustrates the noncooperation, cooperation, and relay modes, which

are used in appropriate combinations to build the FS and CS scheduling schemes. The solid

line between S1, S2, or cooperating node and destination represents the direct transmission

of the event of that node to the destination. The dashed path in the cooperation and

relay modes represents the relay transmission of S2 to the destination using cooperating and

relay nodes, respectively. In the relay mode, there is no solid line between the relay node

and the destination because the relay node has no own transmissions where it drops all its

transmissions to help with S2 transmissions.

directly to the destination. In cooperation mode, one of the transmitting nodes operates

as a Source type 2 (S2) node while the other operates as a cooperating node. The S2 node

transmits its events to destination either directly or through the cooperating node, and the

cooperating node assists cooperative communication between S2 and destination, as well as

it transmits its own events directly to the destination. In relay mode, one of the transmitting

nodes operates as an S2 node similar to the cooperation mode. In the relay mode, however,

the S2 node transmits cooperatively using the other transmitting node that operates as a

relay node, which discards all of its own events to help with the transmissions of the S2 node

to the destination.

The main assumptions and notations that are used for the system model throughout this

chapter are:

1. Each transmitting node is equipped with energy harvesting devices and a rechargeable

battery with capacity K.

2. We use a discrete-time model where time is divided into N blocks.
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3. There is at most one event generated per transmitting node per block. We assume

that sensors are monitoring different events so that their event generation processes

are independent. As in [65], the event generation process of each node is modeled as

a Bernoulli process, where in the time block n, n ∈ {1, 2, ..., N}, node Ni, i ∈ {1, 2}

generates an event Ei[n] = 1 with probability qi.

4. The energy arrival process is modeled as a discrete random process. In the n-th block,

Ni, i ∈ {1, 2}, harvests Ei amount of energy, respectively, where Ei ∈ {0, 1, ..., K̃} and

K̃ 6 K is the maximum amount of energy that can be harvested in one block. Because

a cooperation scenario is considered meaning that sensors locate close to each other

and thus experience a similar environment, the energy harvesting processes of the two

nodes are assumed to be correlated, where the joint probability of any two energy

arrivals E1 and E2 is p(E1, E2). The marginal probability of Ei, i ∈ {1, 2} is denoted

by p(i)(Ei).

5. The energy harvested in the n-th block can be used only in a later time block.

6. We consider a real-time monitoring deployment scenario where no packets are buffered.

7. We assume that the length of each time block is enough to transmit only one event.

So that in the cooperation mode, if S2 and the cooperating node both have an event

generated and sufficient energy for transmission in the same time block, the cooperating

node will cooperate with S2 and drop its transmission.

8. As in [13] and [14], the battery of a transmitting node is modeled as a buffer, and that

each slot in the buffer can hold one energy unit. The maximum number of quanta

that can be stored is K so that the set of possible energy levels of node Ni is Lxi =

{0, 1, . . . , K}, x ∈ {n, c, r}, where the superscript n is to indicate the noncooperation

mode, the superscript c is to indicate the cooperation mode, and the superscript r is

to indicate the relay mode.

9. We assume that δi is the energy required to reliably transmit information about the

event Ei from the transmitting node Ni to the destination, and δ̃ is the energy required
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for reliable transmission between N1 and N2 in the cooperation and relay modes, where

δ̃ < δi and δ̃, δi ∈ {0, 1, . . . , K}.

10. We denote the achieved packet delivery ratio of node Ni, i ∈ {1, 2} by 4i ∈ {4n
i ,

4c
i ,4r

i,4m
i }, where the superscripts n, c, and r are as defined in Assumption 9 and

the superscript m is to indicate the mixed mode.

4.3 Operating Modes

As stated earlier, the system operates in a mixed mode which is a combination of two of

the three operating modes; noncooperation, cooperation, and relay. In order to design the

appropriate mixed mode, depending on the scheduling purpose, we first need to study these

three modes and calculate the packet delivery ratio achieved by each transmitting node in

each mode.

4.3.1 Noncooperation Mode

In this operating mode, the transmitting node Ni, i ∈ {1, 2} operates as an S1 node

which transmits its generated event Ei[n], n ∈ {1, 2, . . . , N} on its own to the destination

over the N time blocks. The event Ei[n] is considered to be successfully delivered to the

destination if Ni is energized in the n-th time block, i.e., its energy battery level Ln
i [n] > δi.

Thus, the packet delivery ratio 4n
i of node Ni over the N time blocks is

4n
i =

P
(
Ei[n] = 1

)
Pr
(
Ln
i [n] > δi

)
N

Pr
(
Ei[n] = 1

)
N

=Pr
(
Ln
i [n] > δi

)
, (4.1)

and the energy battery level of the node is

Ln
i [n] = min

{
Ln
i [n− 1] + Ei[n− 1]− 1{Ln

i [n−1]>δi}Ei[n− 1],K
}
, (4.2)

where 1{·} is the indicator function. Ln
i [n] is set to equal to the minimum between the two

terms shown in (4.2) because of battery overflow, which might occur due to the assumption

that the battery capacity of the transmitting nodes is finite. Because Ln
i [n] depends only

on the previous energy battery level Ln
i [n − 1], Ln

i [n] is modeled as a Markov chain with
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state space {0, 1, ..., K}, where the transition between any two states depends on Ei[n − 1]

and Ei[n − 1]. Let m and n be the current and the previous states of energy battery level,

respectively, and let z = m − n and w = m − n + δi. Then given qi and p(i)(Ei), Ei ∈

{0, 1, ..., K̃}, the transition probability P
(i)
n,m = Pr(Li[n] = m|Li[n − 1] = n) of node Ni,

i ∈ {1, 2} between any two states n,m ∈ {0, 1, ..., K} is

P (i)
n,m=



p(i)(z) n < δi,m < K

p(i)(w)qi + p(i)(z)(1−qi) n > δi,m < K

K̃∑
k=z

p(i)(k)I1 n < δi,m = K

w−1∑
k=z

p(i)(k)(1−qi)I2+
K̃∑
k=w

p(i)(k)I3 n > δi,m = K,

(4.3)

where I1 = 1{z6K̃}, I2 = 1{z6w−1}, and I3 = 1{w6K̃} are the indicator functions. Let P(i)

be the transition matrix of the Markov chain where its (n,m)-th element is given by P
(i)
n,m.

Since this Markov chain is finite, irreducible, and aperiodic, it has average (steady state)

probabilities for all states, energy battery levels. As in [65], we can obtain these average

probabilities using the eigen decomposition of the matrix P(i). Such that, the eigen vector

π(i) = [π
(i)
0 , π

(i)
1 , . . . , π

(i)
K ]T of P(i) that corresponds to its unity eigen value represents the

average state probabilities, where πi,k, k = {0, . . . , K} is the average probability of the k-

th energy battery level of node Ni, i ∈ {1, 2}. Using the average probabilities, the packet

delivery ratio of Ni in (4.1) becomes

4n
i = Pr

(
Ln
i > δi

)
=

K∑
k=δi

π
(i)
k . (4.4)

4.3.2 Cooperation Mode

In cooperation mode, one of the transmitting nodes, say Ni, i ∈ {1, 2}, operates as an S2

while the other transmitting node Nj, j ∈ {1, 2}, i 6= j, operates as a cooperating node. As

stated in Section 4.2, the S2 node transmits its events to destination either directly or through

the cooperating node, and the cooperating node assists cooperative communication between

S2 and destination, as well as it transmits its own events to the destination. Algorithm 4.1

explains the cooperation scenario of Nj with Ni. It is similar to Algorithm 2.1, however,
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Algorithm 4.1 Cooperation Mode

(a) S2 node Ni, i ∈{1, 2}

1: Inputs: Ei[n], Lc
i [n], Ac

j[n], δ̃, δi;

2: Outputs: Transmission action of Ni;

3: if Ei[n] = 1 then

4: if Lc
i [n] > δi AND Ac

j[n] = 0 then

5: Ni action = direct transmission;

6: elseif Lc
i [n] > δ̃ AND Ac

j[n] = 1 then

7: Ni action = relay transmission;

8: else

9: Ni action = no transmission;

10: endif ;

11: else

12: Ni action = no transmission;

13: endif

(b) Cooperating node Nj, j ∈{1, 2}, i 6= j

1: Inputs: Ej[n], Lc
j[n], δj;

2: Outputs: Transmission action of Nj;

3: if Lc
j[n] > δj then

4: Sense the link Ni-Nj for Ni action;

5: if Ni action = relay transmission then

6: Nj action = relay transmission;

7: Nj’s event will be discarded, if any;

8: elseif Ni action = no transmission then

9: if Ej[n] = 1 then

10: Nj action = own-traffic transmission;

11: else

12: Nj action = no transmission;

13: endif

14: endif

15: else

16: Nj action = no transmission;

17: endif
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here there is no need for using a TDMA protocol because of the asumption that only one

event is reported per time block. As can be seen in Algorithm 4.1, the decision on the S2

transmission action in the n-th time block is made based on the energy status Ac
j of the

cooperating node Nj, which is given by

Ac
j[n]=

1 if Lc
j[n] > δj

0 otherwise.
(4.5)

Using Ac
j[n] as shown in part (a) of the algorithm, the S2 node Ni in each time block

takes one of three transmission actions: direct transmission, relay transmission, or no

transmission. In direct transmission action, S2 transmits its event directly to the destination

if it has an event generated Ei[n] = 1, it is energized Lc
i [n] > δi, and the cooperating node

Nj is not energized Ac
j[n] = 0. In relay transmission action, S2 transmits its event to the

destination using the cooperating node if it has an event generated Ei[n] = 1, it is energized

for relay transmission Lc
i [n] > δ̃, and the cooperating node Nj is energized Ac

j[n] = 1. In both

of these two transmission actions, the event of S2 is reported successfully to the destination.

If none of these two transmission actions is taken, the transmission action of S2 will be no

transmission where no event will be reported for S2.

As shown in part (b) of the algorithm, the cooperating node Nj also takes one of three

transmission actions: own−traffic transmission, relay transmission, or no transmission.

In each time block, if Lc
j[n] > δj, the cooperating node senses the transmission link Ni-Nj.

If there is a transmission, i.e., S2 has a relay transmission, the cooperating node takes relay

transmission action to forward the transmission of S2. In this scenario, if the cooperating

node has an event generated, its event will be discarded due to the assumption that only

one event is reported per time block. If there is no transmission, the cooperating node

takes own − traffic transmission action if it has an event generated Ej[n] = 1, or no

transmission action if it has no event generated Ej[n] = 0. If the own-traffic transmission

action is taken, the event of the cooperating node is reported successfully to the basestation.

If Lc
j[n] < δj, the cooperating node does not need to sense the transmission link Ni-Nj and

takes no transmission action, where no event will be reported for the cooperating node.

Let dc
1 and dc

2 be the events of the direct and relay transmission actions of the S2 node
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Ni, respectively, and let dc
3 and dc

4 be the events of the own-traffic and relay transmission

actions of the cooperating node Nj, where from Algorithm 4.1

dc
1[n]=

1 if (Ei[n] = 1 ∩ Lc
i [n] > δi ∩ Ac

j[n] = 0)

0 otherwise,
(4.6)

dc
2[n]=

1 if (Ei[n] = 1 ∩ Lc
i [n] > δ̃ ∩ Ac

j[n] = 1)

0 otherwise,
(4.7)

dc
3[n]=

1 if (Ej[n]=1∩Lc
j[n]>δj)∩(Ei[n]=0∪Lc

i [n]<δ̃)

0 otherwise,
(4.8)

and dc
4 = dc

2. Then, the energy battery level Lc
i of Ni is

Lc
i [n] = min

{
Lc
i [n− 1] + Ei[n− 1]− δ̃dc

2[n− 1]− δidc
1[n− 1], K

}
, (4.9)

and the energy battery level Lc
j of Nj is

Lc
j[n] = min

{
Lc
j[n− 1] + Ej[n− 1]− δjdc

4[n− 1]− δjdc
3[n− 1], K

}
. (4.10)

The current energy battery levels Lc
i [n] and Lc

j[n] in (4.9) and (4.10), respectively, are

dependent, and each depends only on the energy battery levels of the previous time block

Lc
i [n − 1] and Lc

j[n − 1], so that their joint distribution is modeled as a Markov chain with

a state space {(0, 0), (0, 1), ..., (0, K), (1, 0), ..., (1, K), ..., (K, 0), ..., (K,K)}. Let m and n,

m,n ∈ {0, 1, . . . , K} be the previous energy battery levels of the source and cooperating

nodes Lc
i [n − 1] and Lc

j[n − 1], respectively, and let u and v, u, v ∈ {0, 1, . . . , K} be their

current energy battery levels Lc
i [n] and Lc

j[n], respectively. Define w = u−m and z = v−n.

Then from (4.9) and (4.10), the transition probability Ps1,s2 = Pr(s1 = (u, v)|s2 = (m,n))

from state (m,n) to state (u, v) if u < K and v < K is

Ps1,s2 =



p(w, z) m < δi, n < δj,

p(w, z + δj)q
r + p(w, z)(1− qr) m < δ̃, n > δj,

p(w+δ̃, z+δj)q
s+
(
p(w, z+δj)q

r+p(w, z)(1−qr)
)
(1−qs) m > δ̃, n > δj,

p(w + δi, z)q
s + p(w, z)(1− qs) m > δi, n < δj,

(4.11)
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where the first case is for the scenario when none of the nodes has sufficient energy for

any transmission; the second case is for the scenario when the source node has no sufficient

energy for any transmission while the cooperating node does; the third case is for the scenario

when the source node and cooperating node both have has sufficient energy for cooperative

transmission, and the fourth case is for the scenario when the source has sufficient energy for

direct transmission and the cooperating node has no sufficient energy for any transmission.

In each of these four cases, if u = K and/or v = K, the transition from state (m,n) to state

(u,v) will include all events that energy arrival in the previous time block can cause battery

overflow. For example, in the first case when m < δi and n < δj, Ps1,s2 =
K̃∑
x=z

p(w,x) if u < K

and v = K, Ps1,s2 =
K̃∑
y=w

p(y,z) if u = K and v < K, and Ps1,s2 =
K̃∑
y=w

K̃∑
x=z

p(y,x) if u = K and

v = K.

Let P be the transition matrix of the Markov chain where its elements are given by

Ps1,s2 . Then, we can obtain the marginal probabilities Pr(Lc
i ) and Pr(Lc

j) as well as the joint

probability Pr(Lc
i , L

c
j) using eigen decomposition of P. Using these probabilities, the packet

delivery ratio 4c
i of S2 is

4c
i =

[
Pr(dc

1 = 1) + Pr(dc
2 = 1)

]
N

Pr(Ei = 1)N
, (4.12)

4c
i = Pr

(
Lc
i > δi ∩ Lc

j < δj) + Pr(Lc
i > δ̃ ∩ Lc

j > δj
)
, (4.13)

and the packet delivery ratio 4c
j of the cooperating node is

4c
j =

Pr
(
dc

3 = 1)N

Pr(Ei = 1
)
N
, (4.14)

4c
j =

(
1− qi

)
Pr
(
Lc
j > δj

)
+ Pr

(
Lc
i < δ̃ ∩ Lc

j>δj
)
−(

1− qi
)

Pr
(
Lc
i < δ̃ ∩ Lc

j>δj
)
.

(4.15)

4.3.3 Relay mode

The relay mode is similar to the cooperation mode. However, instead of operating as

a cooperating node, node Nj in the relay mode operates as a relay node, which drops all

its own transmissions to help with the transmissions of node Ni, the S2 node. Algorithm
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4.1 can represent the relay mode if the lines (9-13) in part (b) are replaced by the line: Nj

action = no transmission, and superscript c is replaced by r in the two parts. Consequently,

the S2 node Ni will still have the same three transmission actions, while the relay node Nj

will have two transmission actions instead of the three that are relay transmission and no

transmission.

Let Ar
j be the energy status of the relay node, then the events of the direct and relay

transmission actions dr
1 and dr

2, respectively, of the S2 node Ni in the n-th time block are

dr
1[n]=

1 if (Ei[n] = 1 ∩ Lr
i[n] > δi ∩ Ar

j[n] = 0)

0 otherwise,
(4.16)

dr
2[n]=

1 if (Ei[n] = 1 ∩ Lr
i[n] > δ̃ ∩ Ar

j[n] = 1)

0 otherwise,
(4.17)

and the event of the relay transmission action of the relay node Nj d
r
4[n] = dr

2[n]. As a result,

the energy battery level Lr
i of Ni is

Lr
i[n] = min

{
Lr
i[n− 1] + Ei[n− 1]− δ̃dr

2[n− 1]− δidr
1[n− 1], K

}
, (4.18)

and the energy battery level Lr
j of Nj is

Lr
j[n] = min

{
Lr
j[n− 1] + Ej[n− 1]− δjdr

4[n− 1], K
}
, (4.19)

As in cooperation mode, the joint distribution of Lr
i[n] and Lr

j[n] is modeled as a Markov

chain with the same state space. The transition matrix of Lc
i and Lc

j described in (4.11) can

represent the transition matrix of Lr
i and Lr

j if we set qr = 1 and replace z + δj by z only

in the terms that have qr. From the transition matrix, we can find the probabilities Pr(Lr
i),

Pr(Lr
j), and Pr(Lr

i, L
r
j). Using these probabilities, the packet delivery ratio 4r

i of S2 is

4r
i =

[
Pr(dr

1 = 1) + Pr(dr
2 = 1)

]
N

Pr(Ei = 1)N
, (4.20)

4r
i = Pr

(
Lr
i > δi ∩ Lr

j < δj
)

+ Pr
(
Lr
i > δ̃ ∩ Lr

j > δj
)
, (4.21)

and the packet delivery ratio of the relay node 4r
j = 0, which is due to the fact that the

relay node drops all its own transmissions to help with the transmissions of S2.
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To compare the packet delivery ratios achieved by each transmitting node in the three

previous modes, assume that the transmitting node Ni, i ∈ {1, 2} and the transmitting node

Nj, j ∈ {1, 2}, j 6= i, each operates as an S1 node in the noncooperation mode, and Ni

operates as an S2 node in cooperation and relay modes and Nj operates as a cooperating

node and as a relay node in cooperation and relay modes, respectively. Then for any given

set of parameters, the performance of node Ni in relay mode is higher than or equal to its

performance in cooperation mode, and this is higher than or equal to its performance in

noncooperation mode, i.e., 4r
i > 4c

i > 4n
i . This holds the opposite in the case of node Nj

where its performance in noncooperation mode is higher than or equal to its performance

in cooperation mode, and this is higher than or equal to its performance in relay mode, i.e.,

4n
j > 4c

j >4r
j = 0. This is because in cooperation mode S2 sometimes transmits with lower

energy via node Nj, which saves S2 some amount of energy that can be used to transmit

more events than in noncooperation mode. In relay mode, S2 transmits more frequently via

node Nj than in cooperation mode. Thus, more energy will be saved and more events will

be transmitted. As for node Nj, it achieves lower performance in cooperation mode than

in noncooperation mode for two reasons. First, some of its harvested energy will rather

be used to forward some events of S2 than transmitting its own. Second, some events of

Nj will be dropped even when enough energy is available due to Assumption 8. In relay

mode, node Nj spends all its harvested energy to forward the events of S2 by dropping all

its generated events. Therefore, its performance in relay mode is lower than cooperation and

noncooperation modes.

4.3.4 Mixed mode

In mixed mode, the system operates in two of the three previous modes over the N time

blocks. Such that, the system operates in the first mode in the first n time blocks. After

that, i.e., in the remaining N − n blocks, the system operates in the second mode, so that

the packet delivery ratio of each node will be the summation of its successfully delivered

events in the two modes over its total generated events in the N time blocks. For any mixed

mode, let x, y ∈ {n, c, r}, x 6= y, be the first and the second operating modes, respectively,
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where n, c, and r are as defined in Assumption 9. Then, the packet delivery ratio of the

transmitting node Ni, i ∈ {1, 2} of that mixed mode will be

4m
i (x, y, n) =

4x
i n+ (N − n)4y

i

N
. (4.22)

From (4.22) if n = N , the system will operate in x mode regardless of y, and the node

will achieve the packet delivery ratio 4x
i . In contrast, if n = 0, the system will operate in

y mode regardless of x, and the node will achieve the packet delivery ratio 4y
i . In the first

case y is considered do not care while in the second case x is considered do not care.

4.4 Scheduling Schemes

4.4.1 Fair Scheduling (FS) Scheme

In noncooperation mode, one of the transmitting nodes may achieve lower packet delivery

ratio than the other. Thus, it will successfully deliver lower percentage of its total generated

events to the destination over the N time blocks. Therefore, here we address the issue of

event delivering with fairness from the transmitting nodes to the destination while providing

the optimal sum of their packet delivery ratios. The optimal or fair packet delivery ratios

can be achieved by providing the optimal scheduling or the optimal operating mode for the

system.

Assume that in noncooperation mode, node Nj, j ∈ {1, 2} achieves a packet delivery ratio

that is higher than or equal to node Ni, i ∈ {1, 2}, i 6= j. Then for fairness, intuitively node

Nj should cooperate with or relay for node Ni, but by how much? Let the system operate in

mixed x-n mode, where x ∈ {c, r}, and let node Ni operate as an S2 in x mode as it achieves

lower performance in noncooperation mode. Using (4.22), the packet delivery ratios 4i and

4j of Ni and Nj, respectively, achieved in the mixed x-n mode over the N time blocks can

be expressed as

4i = 4n
i +

n(4x
i −4n

i )

N
, (4.23)

4j = 4n
j +

n(4x
j −4n

j )

N
. (4.24)
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Because in x mode node Ni operates as an S2 and node Nj operates as a cooperating or

relay node depending on x, we have that 4r
i > 4c

i > 4n
i and 4n

j > 4c
j > 4r

j as explained in

Section 4.3.3. Thus, from (4.23) and (4.24), as n increases for a given x ∈ {c, r}, the packet

delivery ratio of node Ni increases linearly while the packet delivery ratio of Nj decreases

linearly. This implies that as n increases, the difference between the performance of the two

nodes decreases until it reaches to its minimum at the value of n where 4i and 4j intersect.

After that, the difference will start increasing because the performance of Nj becomes lower

than Ni. Hence, before the difference is minimized, the more node Nj cooperates with or

relays for node Ni, the better fairness is achieved in the performance of the two nodes.

However, the higher penalty is in the decrease of node Nj’s performance. Therefore, in order

to compromise, we achieve fairness based on a given penalty function while maximizing the

sum of the packet delivery ratios of the nodes. Define the penalty function Γ(| 4j −4i |) as

a monotonic increasing function in the absolute difference between the performance of the

two nodes, where as Γ(| 4j −4i |) decreases, the better fairness is achieved and the higher

penalty is in the decrease of node Nj’s performance. For a given Γ(|4j −4i |), the problem

of fairness under the constraints that x ∈ {c, r} and 0 6 n 6 N is formulated as

max
4j ,4i

max
n,x

4j +4i − Γ
(
| 4j −4i |

)
,

subject to x ∈ {c, r},

0 6 n 6 N.

(4.25)

For a given x ∈ {c, r}, we have from (4.23) and (4.24) that (4j +4i) is a linear function

that decays as n increases. Therefore, because Γ(| 4j − 4i |) is a convex function that

monotonically increases from both sides of its minimum, the cost function in (4.25) will be

concave over n for a given x, and its maximum is at some value of n that is less than the

value of n at which 4i and 4j intersect. Note that because the cost function is concave in

both when x = c and x = r, it is also maximized over 4i and 4j as can be seen from (4.25).

Define nc and nr as the values of n that maximizes the cost function when x = c and

when x = r, respectively, and these values can be solved for by taking the derivative of the

cost function and setting it to 0. For some penalty functions, nc can be a value that is higher

than N . This happens when node Ni harvests energy with a rate that is much lower than its
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Algorithm 4.2 FS Scheme

1: Goal: Achieving fairness while maximizing the sum (41 +42) for a given Γ(|41−42 |);
2: Inputs: q1, q2, δ̃, δ1, δ2, K̃,K, p(E1, E2), Γ(| 41 −42 |);
3: Outputs: n?, x?, 4?

1, 4?
2;

4: Derive nx, which is the value of n that makes the derivative of (4.25) w.r.t n equal to 0;

5: Generate the distributions Pr(Ln
1) and Pr(Ln

2) as described in Section 4.3.1;

6: Calculate 4n
1 and 4n

2 using (6.3);

7: if 4n
1 > 4n

2 then

8: i = 2, j = 1;

9: else

10: i = 1, j = 2;

11: endif

12: Let Nj= Cooperating node, Ni= S2 node, and form Pr(Lc
1, L

c
2) as in Section 4.3.2;

13: Let Nj= Relay node, Ni= S2 node, and form Pr(Lr
1, L

r
2) as in Section 4.3.3;

14: Calculate4c
i ,4c

j, and4r
i using (4.13), (4.15), and (4.21), respectively, and set4r

j = 0;

15: Calculate nc and nr using 4c
i , 4c

j, 4r
i, 4r

j, and the equation derived in step 4;

16: if 0 6 nc 6 N , then

17: x? = c, n? = nc, 4?
i = 4m

i (c, n, nc), and 4?
j = 4m

j (c, n, nc);

18: elseif 0 6 nr 6 N

19: x? = r, n? = nr, 4?
i = 4m

i (r, n, nr), and 4?
j = 4m

j (r, n, nr);

20: else

21: x? = do not care, n? = 0, 4?
i = 4n

i , and 4?
j = 4n

j ;

22: endif
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event generation rate, where 4i will still be lower than 4j even when Nj cooperates with

Ni the all N time blocks. In this case, 4i and 4j will intersect at a value of n > N , which

results in nc to be higher than N . This holds the opposite for nr, which is always a value

that is less than N , and this is because 4i and 4j will always intersect at some value of

0 6 n 6 N due to the fact that in relay mode 4r
j = 0. On the other hand, for some penalty

functions, nx, x ∈ {c, r} can be a value that is less than 0, which occurs when fairness for the

given penalty function needs to be achieved when the difference between4j and4i is higher

than 4n
j − 4n

i . Because 4n
j − 4n

i , which occurs when n = 0, is the maximum difference

over the range that is less than the value of n at which 4i and 4j intersect, achieving a

difference that is higher than 4n
j −4n

i can happen only if nx is less than 0.

The optimal solution n? and x? for the cost function in (4.25) is determined based on

the location of its maximum when x = c and its maximum when x = r, i.e., nc and nr. If

nc ∈ [0, N ], then x? = c and n? = nc regardless of where the cost function is maximized at

when x = r. This is because when x = c, (4j +4i) decays slower than when x = r due the

fact that in relay mode 4r
j = 0. Thus, the maximum of the cost function when x = c will be

higher than when x = r for the same penalty function, so that the optimal solution is when

x? = c and n? = nc. If nr ∈ [0, N ] and nc 6∈ [0, N ], then x? = r and n? = nr. If nc, nr < 0,

then n? = 0 and x? is do not care. In this case, the system will operate in noncooperation

mode where the closest performance to the optimal will be achieved. The values x? and n?

provide the optimal mixed mode of the system for the given penalty function, and by using

them, the optimal performance of the two nodes 4?
i and 4?

j can be calculated using (4.23)

and (4.24), respectively. Algorithm 4.2 summarizes the process of how to find the optimal

solution for the cost function in (4.25).

As a simple example, we can set Γ = |4j −4i |α, where α > 1. By taking the derivative

of the cost function in (4.25) containing this monotonic increasing penalty function, the value

of n that maximizes the cost function for a given x ∈ {c, r} is

nx =
N

(4x
j −4n

j )− (4x
i −4n

i )

[(
(4x

j −4n
j ) + (4x

i −4n
i )

α
[
(4x

j −4n
j )− (4x

i −4n
i )
])α−1

− (4n
j −4n

i )

]
. (4.26)

By following Algorithm 4.2, the optimal value of x and the optimal value of n can be

found for any given set of system parameters as we will see later in the simulation results.
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Algorithm 4.3 CS Scheme

1: Goal: If possible, node N1 achieves the performance γ, i.e., 41 = γ;

2: Inputs: q1, q2, δ̃, δ1, δ2, K̃,K, p(E1, E2), γ;

3: Outputs: n?, x?, 4?
1, 4?

2;

4: Generate Pr(Ln
1) and Pr(Ln

2) as in Section 4.3.1, then calculate 4n
1, 4n

2 using (6.3);

5: If γ 6 4n
1

6: Let N1= Relay node, N2 = S2, and form Pr(Lr
1, L

r
2) as described in Section 4.3.3;

7: Calculate 4r
2 using (4.13) and set 4r

1 = 0, and calculate nr using (4.28);

8: x? = r, n? = nr, 4?
1 = γ, 4?

2 = 4m
2 (r, n, n?);

9: else

10: Let N2= Cooperating node, N1 = S2, and form Pr(Lc
1, L

c
2) as in Section 4.3.2;

11: Let N2= Relay node, N1 = S2, and reform Pr(Lr
1, L

r
2);

12: Calculate4c
1,4c

2, and4r
1 using (4.13), (4.15), and (4.21), respectively, and set4r

2 = 0;

13: Calculate nx, x ∈ {c, r} using (4.28);

14: If 0 < nc 6 N , then

15: x? = c, n? = nc, 4?
1 = γ, 4?

2 = 4m
2 (c, n, n?);

16: elseif 0 < nr 6 N then

17: x? = r, n? = nr, 4?
1 = γ, 4?

2 = 4m
2 (r, n, n?);

19: else

20: γ cannot be achieved, optimal solution is unfeasible;

21: endif

22: endif
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4.4.2 Constrained Scheduling (CS) Scheme

In some applications, one of the transmitting nodes, say node Ni, i ∈ {1, 2} may need

to successfully report the average 0 6 γ 6 1 of its total generated events to the destination

over the N time blocks, which can happen only if node Ni achieves the packet delivery ratio

4i = γ. Depending on its energy harvesting rate, node Ni might be able to achieve the

performance γ either by its own or by the help of the other node Nj, j ∈ {1, 2}, i 6= j, or

node Ni might not be able to achieve the performance γ neither by its own nor by the help

of node Nj. Therefore, if γ is achievable, we provide the optimal operating mode of the

system. If not, we consider that the optimal operating mode of the system is unfeasible.

Assume that the system operates in mixed x-n mode, where x ∈ {c, r}. As node Ni

may need the help of node Nj to achieve γ, in x mode node Ni will operate as an S2 while

Nj, j 6= i will operate as a cooperating or relay node depending on x. As stated earlier,

when node Ni operates as an S2 in x mode, its performance 4i will increase linearly over n.

Therefore, because γ is a value from 0 to 1, the absolute difference between γ and 4i will

be convex over n that increases linearly from both sides of its minimum, which is 0. Finding

the optimal n and x that minimize the absolute difference between γ and 4i will provide the

optimal operating mode of the system in which node Ni achieves the performance γ. Under

the constraints that 0 6 n 6 N and x ∈ {c, r}, the problem can be formulated as

min
n,x

∣∣∣∣γ − (4n
i +

n(4x
i −4n

i )

N

)∣∣∣∣,
subject to x ∈ {c, r},

0 6 n 6 N.

(4.27)

Define nc and nr as the values of n that minimizes the cost function in (4.27) when x = c

and when x = r, respectively. Then by setting (4.27) equal to 0 and solving for n, the value

of nx is

nx =
(γ −4n

i )N

4x
i −4n

i

. (4.28)

From (4.28), nx will be in the range from (0, N ] if 4n
i < γ 6 4x

i , i.e., if node Ni can

achieve the performance γ only with the help of node Nj either by cooperation or relaying

depending on x. nx will be higher than N if γ > 4x
i , i.e., Ni cannot achieve the performance
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γ neither by its own nor by the help of node Nj. Thus, due to the fact that 4i increases

faster when x = r than when x = c over n, we imply that nr will definitely be in the range

from [0, N ] if nc is in the range from [0, N ], and not necessarily vice versa. In addition, we

imply that nc will definitely be higher than N if nr is higher than N , and not necessarily

vice versa. This can be interpreted as that γ will definitely be achieved when x = r if it is

achieved when x = c, and γ will definitely not be achieved when x = c if it is not achieved

when x = r. Lastly, nx will be less than or equal to 0 if γ 6 4n
i , which means that node Ni

can achieve the performance γ on its own.

Based on 4n
i and nx, x ∈ {c, r}, we find the optimal solution x? and n? for (4.27). For

a given γ, we first calculate 4n
i . If γ 6 4n

i , i.e., node Ni can achieve γ by its own and

nr, nc 6 0, then the optimal solution is when x? = r and n? = nr. However, here node Ni

will operate as a relay to improve Nj’s performance while achieving the performance γ. If

γ > 4n
i , then we first calculate nc and nr using (4.28). If nc, nr ∈ (0, N ], i.e., γ can be

achieved when x = c and when x = r, then there will be two optimal solutions. First is when

x? = c and n? = nc and second is when x? = r and n? = nr. We select the first solution

because Nj will achieve higher performance due to the fact that in relay mode 4r
j = 0. If

nr ∈ (0, N ] and nc 6∈ (0, N ], i.e., γ can be achieved only when x = r, then x? = r and n? = nr.

If nr, nc > N , the optimal solution is considered unfeasible because γ cannot be achieved

even if node Nj cooperates with or relays for node Ni all the time blocks. The CS scheme,

illustrated in Algorithm 4.3, summarizes the process of how to find the optimal solution for

(4.27) when node N1 needs to achieve the performance γ.

4.5 Simulation Results

We evaluate the performance of the proposed scheduling schemes in terms of the packet

delivery ratio, assuming that the energy status in Algorithm 4.1 is known by feedback. For

the simulations, we choose the system parameters shown in Figure 4.3, which shows the

packet delivery ratios of N1 and N2 in noncooperation mode. We plot the packet delivery

ratio versus energy harvesting rates E1 and E2 of N1 and N2, respectively. For better

representation and analysis of the results, we consider that the energy harvesting processes
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Figure 4.3: The packet delivery ratios of N1 and N2 in noncooperation mode. Parameters

used: q1 = 0.5, q2 = 0.4, δ̃ = 1, δ1 = δ2 = 2, K̃ = 1, K = 100, N = 5× 105.

E1 and E2 are independent (uncorrelated) and K̃ = 1. So, E1 = p(1)(1) and E2 = p(2)(1),

which are the probabilities of harvesting one unit of energy per time block by N1 and N2,

respectively.

4.5.1 Fairness

We simulate the FS scheme summarized in Algorithm 4.2 using the penalty function given

in Section 4.4.1 with three different values of α. Figures (4.4), (4.5), and (4.6) illustrate the

simulation results when α = 1, α = 3, and α = 5, respectively. α = 1 represents the case of

absolute fairness, i.e., the case when the two nodes have to achieve the same performance.

In this case, nx is not given by (4.26) because the cost function is not differentiable. So, we

solve for it by setting the cost function to 0 without taking the derivative.

For each value of α as can be seen from Figures 4.4, 4.5, and 4.6, the FS scheme provides

the optimal x and n that achieve fairness in the performance between the transmitting nodes.

In the case of absolute fairness, we can notice from Figure 4.4 (c) that the two transmitting

nodes achieve the same performance as expected. From Figures 4.4 (c), 4.5 (c), and 4.6

(c), it can be noticed that as α increases, the performance of each transmitting node gets

closer to its performance in noncooperation mode shown in Figure 4.3. This implies that

as α increases, the cooperation or relaying between the transmitting nodes decreases over

the time blocks. Therefore, when one of the transmitting nodes achieves very high packet
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(c) Optimal packet delivery ratio

Figure 4.4: Figures (a) and (b) illustrate the optimal x and n provided by the FS scheme

when α = 1. Figure (c) shows the optimal performance of N1 and N2 by which fairness is

considered achieved for the given penalty function.
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Figure 4.5: Figures (a) and (b) illustrate the optimal x and n provided by the FS scheme

when α = 3. Figure (c) shows the optimal performance of N1 and N2 by which fairness is

considered achieved for the given penalty function.

delivery ratio than the other in noncooperation mode, the value of α is recommended to be

high. Hence, the node of higher performance does not cooperate with or relay for the other

node over a long time, and thus it does not lose high performance for a slight improvement

in the other node’s performance, which is not considered in the adaptive scheme proposed

in Chapter 3.
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(c) Optimal packet delivery ratio

Figure 4.6: Figures (a) and (b) illustrate the optimal x and n provided by the FS scheme

when α = 5. Figure (c) shows the optimal performance of N1 and N2 by which fairness is

considered achieved for the given penalty function.

4.5.2 Constrained Scheduling

We simulate the CS scheme summarized in Algorithm 4.3 for the scenario when N1 needs

to report 70% of its total generated events to the destination, i.e., when γ = 0.7. From the

simulation results shown in Figure 4.7, we can see that the CS scheme provides the optimal

x and n by which node N1 achieves the performance γ. When E1 > 0.7, node N1 can achieve

γ by its own. Therefore, over this range, it operates as a relay for N2 while achieving γ.

When E1 < 0.7, node N1 can achieve γ over some values of E2 only by the help of node N2

that is either by cooperating or relaying. So, over these values of E2, node N1 operates as

an S2 to achieve γ by the help of node N2. For the remaining values of E2 when E1 < 0.7,

node N1 cannot achieve γ neither by its own nor by the help of node N2. Therefore, the

optimal solution is unfeasible and the packet delivery ratios of the transmitting nodes are

not plotted.

4.6 Conclusions

In this chapter, we consider a network of three nodes, two transmitting nodes and desti-

nation. We define three operating modes for the network that are combined appropriately

to build two scheduling schemes. The first scheme is to ensure fairness in the performance

between the two transmitting nodes while maximizing the sum of their packet delivery ra-
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Figure 4.7: Figures (a) and (b) illustrate the optimal x and n provided by the CS scheme

in order for node N1 to achieve the performance γ = 0.7. Figure (c) shows that node N1

achieves the performance γ over the values E1 and E2 where the system is feasible.

tios, and the second scheme is to constrain one of the transmitting nodes to achieve a certain

performance. The FS scheme ensures fairness in the performance of the transmitting nodes

based on a given penalty function that determines how much reduction in the performance

of the cooperating or relay node can be tolerated.



Chapter 5

Scheduling with Energy Status

Estimation

5.1 Introduction

In the previous chapter, in part (a) of Algorithm 4.1 (Line 4 and Line 6), node S2 needs

the knowledge of the cooperating/relay node’s energy status to make the decision on its

usage. In this chapter, we introduce a statistical model to estimate the energy status of

the cooperating/relay node at node S2. As discussed in the previous chapters, the energy

status of cooperating/relay node can be obtained by exchanging a few bits of information

between nodes as in the the feedback scheme, or by comparing the energy battery level of the

source by a threshold value as in the threshold-based scheme. However, in a practical fixed

packet/frame format, as in IEEE 802.11, or in large networks with dynamic parameters, the

overhead incurred or optimization of parameters may make estimation a better alternative.

In the proposed statistical model, node S2 makes the decision on the energy status of

the cooperating/relay node using a state information, which depends on the instantaneous

transmission status of the cooperating/relay node. When the cooperating/relay node has a

transmission, the state information includes the transmission status of the cooperating/relay

node and its current energy battery level. As in [53], we assume that the current energy

battery level of the cooperating/relay node is included in the header of its packet. So,

whenever the cooperating/relay node has a transmission, the S2 node receives only the
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header and reads the current energy battery level. When the cooperating/relay node has no

transmission, the state information includes the transmission status of the cooperating/relay

node and the relay transmission status of the S2 node. We evaluate the performance of the

statistical model by comparing it with the feedback scheme, which performs close to the

optimal policy [53], as shown in Chapter 2.

5.2 Cooperation Mode Statistical Model

The cooperation mode scenario using the statistical model is similar to the cooperation

mode scenario summarized in Algorithm 4.1 and Section 4.3.2. However, in the cooperation

mode scenario using the statistical model, the S2 node Ni, i ∈ {1, 2} in each time block

makes the decision on its transmission action using the estimate energy status Âc
j of the

cooperating node Nj, j ∈ {1, 2}, j 6= i. Thus, in the n-th time block, the direct transmission

event d̃c
1 and the relay transmission event d̃c

2 of node Ni become

d̃c
1[n]=

1 if (Ei[n] = 1 ∩ Lc
i [n] > δi ∩ Âc

j[n] = 0)

0 otherwise,
(5.1)

d̃c
2[n]=

1 if (Ei[n] = 1 ∩ Lc
i [n] > δ̃ ∩ Âc

j[n] = 1)

0 otherwise.
(5.2)

In each time block, the cooperating node Nj senses the transmission action of the S2

node d̃c
1[n] and d̃c

2[n] to decide on its transmission action. If d̃c
2[n] = 1 is taken at S2 based

on a correct estimate of Ac
j[n], the transmission action at the cooperating node will be

relay transmission. While if d̃c
2[n] = 1 is taken based on a wrong estimate of Ac

j[n], the

transmission action at the cooperating node will be no transmission, where in this case the

S2 event will be lost. If d̃c
1[n] = 1, the cooperation node will take no transmission action

regardless of its event and energy statuses due to Assumption 8, and to avoid interference. If

d̃c
2[n] = 0 and d̃c

1[n] = 0, the transmission action at the cooperating node will be own−traffic

if it has an event generated and it is energized. Consequently, in the n-th time block, the

own-traffic transmission event d̃c
3[n] and the relay transmission event d̃c

4[n] of the cooperating
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node are

d̃c
3[n]=

1 if (d̃c
1[n] =0∩ d̃c

2[n]=0∩Ej[n]=1∩Lc
j[n]>δj)

0 otherwise,
(5.3)

d̃c
4[n]=

1 if (d̃c
2[n] = 1 ∩ Lc

j[n] > δj)

0 otherwise.
(5.4)

Using d̃c
1[n], d̃c

2[n], d̃c
3[n], and d̃c

4[n], in the next time block the energy battery level Lc
i of

the S2 node Ni is

Lc
i [n+ 1] = min

{
Lc
i [n] + Ei[n]− δ̃d̃c

2[n]− δid̃c
1[n], K

}
, (5.5)

and the energy battery level Lc
j of the cooperating node Nj in the next time block is

Lc
j[n+ 1] = min

{
Lc
j[n] + Ej[n]− δj d̃c[n], K

}
, (5.6)

where d̃c[n] = d̃c
4[n] + d̃c

3[n] is either 0 or 1 since (d̃c
4[n] = 1∩ d̃c

3[n] = 1) = ∅. d̃c[n] = 1 means

that the cooperating node has either a relay or an own traffic transmission in the n-th time

block, and d̃c[n] = 0 means that the cooperating node has no transmission.

Now after deriving its model in (5.6), the energy battery level Lc
j[n+1] is estimated at S2

using the state information of the current time block X [n]. One of the pieces of information

included in X [n] is Ei[n] which is correlated with Ej[n]. The rest of the information depends

on the transmission status d̃c[n] of node Nj, which is considered known at the S2 node by

sensing the link between Nj and the destination in each time block. If d̃c[n] = 1, the rest

of the information includes: a) the transmission status of the cooperating node d̃c[n] = 1,

and b) the current energy battery level of the cooperating node Lc
j[n] = u, u ∈ {0, 1, . . . , K},

u > δj. As stated earlier, we assume that Lc
j[n] is included in the header of the transmitted

packet. Whenever the cooperating node transmits, the S2 node receives only the header and

reads Lc
j[n]. If d̃c[n] = 0, the rest of the information includes: a) the transmission status

of the cooperating node d̃c[n] = 0, and b) the relay transmission action of the S2 node

d̃c
2[n] = b ∈ {0, 1}. The state information can be summarized as

X [n] =


{
Ei[n], d̃c[n] = 1, Lc

j[n] = u
}

if (d̃c[n] = 1) Case 1{
Ei[n], d̃c[n] = 0, d̃c

2[n] = b
}

if (d̃c[n] = 0) Case 2
(5.7)
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Given the state information X [n − 1], the maximum likelihood estimator of Lc
j[n] at S2

is

L̂c
j[n]=arg max

06k6K
Pr
(
Lc
j[n] = k|X [n− 1]

)
. (5.8)

Using L̂c
j[n], the estimate energy status of the n-th time block is

Âj[n] =

1 if L̂c
j[n] > δj

0 otherwise.
(5.9)

Depending on the state information X [n− 1], the probability Pr(Lc
j[n] = k|X [n− 1]) in

(5.8) is calculated as follows.

Case 1: when X [n−1] =
{
Ei[n−1], d̃c[n−1] = 1, Lc

j[n−1] = u
}

. Let Lc
j[n] be a variable

that is defined as

Lc
j[n] = Lc

j[n− 1] + Ej[n− 1]− δj d̃c[n− 1]. (5.10)

Because d̃c[n − 1] = 1, Lc
j[n] can be a value from 0 to K + K̃ − δj. Using (5.10) and

because Ej and Ei are correlated, Pr(Lc
j[n] = v|X [n− 1]), v ∈ {0, 1, . . . , K + K̃ − δj} is

Pr
(
Lc
j[n] = v|X [n− 1]

)
= Pr

(
Ej[n− 1] = k̃|Ei[n− 1]

)
=

Pr(k̃, Ei[n− 1])

p(i)(Ei[n− 1])
, (5.11)

where k̃ = v−u+ δj and Pr(k̃, Ei[n]) = 0 ∀k̃ 6∈ [0, K̃]. Using Pr(Lc
j[n] = v|X [n− 1]), we can

calculate Pr(Lc
j[n] = k|X [n− 1]) ∀ 0 6 k 6 K as follows. If K̃ < δj,

Pr(Lc
j[n] = k|X [n− 1]) =

Pr(Lc
j[n]=k|X [n− 1]) if 06k6K+K̃−δj,

0 otherwise,

and if K̃ > δj

Pr(Lc
j[n] = k|X [n− 1]) =


Pr(Lc

j[n]=k|X [n− 1]) if 06k6K−1,

K+K̃−δj∑
`=K

Pr(Lc
j[n]=`|X [n− 1]) otherwise.

Case 2: when X [n− 1] =
{
Ei[n− 1], d̃c[n− 1] = 0, d̃c

2[n− 1] = b
}

. Because d̃c[n− 1] = 0,

Lc
j[n] in (5.10) becomes

Lc
j[n] = Lc

j[n− 1] + Ej[n− 1]. (5.12)
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Here, Lc
j[n] can be a value from 0 to K + K̃. Because Ej and Ei are correlated and Lc

j

and Ej in the same time block are independent, the distribution of
(
Lc
j[n]|X [n − 1]

)
is the

convolution of Pr(Lc
j[n − 1]) and Pr(Ej[n − 1]|Ei[n − 1]). Thus, Pr(Lc

j[n] = v|X [n − 1]),

v ∈ {0, 1, . . . , K + K̃} is calculated as

Pr
(
Lc
j[n] = v|X [n− 1]

)
=

K̃∑
k̃=0

Pr
(
Lc
j[n− 1] = v − k̃

)Pr(k̃, Ei[n− 1])

p(i)(Ei[n− 1])
. (5.13)

The distribution of Lc
j[n−1] in (5.13) is the same as the distribution of Lc

j[n−1] that was

calculated in the previous time block given the state information X (n−2), i.e., Pr(Lc
j[n−1] =

u) = Pr(Lc
j[n − 1] = u|X (n − 2)), u ∈ {0, 1, . . . , K}. However, if b = 1, i.e., Ac[n − 1] was

estimated wrong and Lc
j[n−1] should be a value that is less than δj since d̃c[n−1] = 0, then

we weight the probabilities Pr(Lc
j[n − 1] = u|X (n − 2)), δj 6 u 6 K on the probabilities

Pr(Lc
j[n− 1] = u|X (n− 2)), 0 6 u < δj as

Pr(Lc
j[n− 1]=u)=


Pr(Lc

j[n− 1]=u|X (n−2)) +
( K∑
l=δj

Pr(Lc
j[n− 1]=l|X (n−2))

)
/δj if 06u6δj−1,

0 otherwise.

Using Pr(Lc
j[n] = v|X [n− 1]), we can calculate Pr(Lc

j[n] = k|X [n− 1]) ∀ 0 6 k 6 K as

follows.

Pr(Lc
j[n]=k|X [n− 1]) =


Pr(Lc

j[n]=k|X [n− 1]) if 06k6K−1,

K+K̃∑
`=K

Pr(Lc
j[n]=`|X [n− 1]) otherwise.

Note that in order for this estimation model to work, the knowledge of the initial energy

battery level of the cooperating node is needed at the S2 node. Therefore, we assume that

the initial energy battery level of the cooperating node is transmitted to the S2 node in the

first time block. This is equivalent to setting d̃c[0] = 1. Using the estimation model, the

packet delivery ratio 4c
i of S2 is

4c
i =

[
Pr
(
d̃c

1 = 1
)

+ Pr
(
d̃c

2 = 1 ∩ d̃c
4 = 1

)]
N

Pr
(
Ei = 1

)
N

, (5.14)

4c
i = Pr

(
Lc
i > δi ∩ L̂c

j < δj
)

+ Pr
(
Lc
i > δ̃ ∩ Lc

j > δj ∩ L̂c
j > δj

)
, (5.15)
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and the packet delivery ratio 4c
j of the cooperating node is

4c
j =

Pr
(
d̃c

3 = 1
)
N

Pr
(
Ei = 1

)
N
, (5.16)

4c
j =

(
1− qi

)
Pr
(
Lc
j > δj

)
+ Pr

(
Lc
i < δ̃ ∩ Lc

j>δj
)
+

Pr
(
δ̃ 6 Lc

i < δi ∩ Lc
j>δj ∩ L̂c

j < δj
)
−
(
1− qi

)[
Pr
(
Lc
i < δ̃ ∩ Lc

j>δj
)
+

Pr
(
δ̃ 6 Lc

i < δi ∩ Lc
j>δj ∩ L̂c

j < δj
)]
.

(5.17)

Here, there is no closed form expression for the joint distribution of Lc
i , L

c
j, and L̂c

j.

Therefore, we use Monte Carlo technique to find the packet delivery ratios in (5.15) and

(5.17).

5.3 Relay Mode Statistical Model

As mentioned in Section 4.3.3, the difference between cooperation and relay modes is

that in relay mode node Nj operates as a relay, which has no own transmissions. Therefore,

the cooperation mode statistical model detailed in Section 5.2 can represent the relay mode

statistical model if the superscript c is replaced by r and d̃r
3 is set to 0. Hence, the packet

delivery ratio 4r
i of S2 is

4r
i = Pr

(
Lr
i > δi ∩ L̂r

j < δj
)

+ Pr
(
Lr
i > δ̃ ∩ Lr

j > δj ∩ L̂r
j > δj

)
, (5.18)

and the packet delivery ratio of the relay node is 4r
j = 0.

5.4 Simulation Results

We simulate the cooperation and relay modes in Sections 4.3.2 and 4.3.3 using the statis-

tical models and the feedback scheme. As stated in Chapter 1, the feedback scheme provides

the upper-bound performance as it performs close to the optimal policy. In the simulations,

we use the system parameters shown in Figure 4.3. We plot the performance in terms of the

packet delivery ratio versus energy harvesting rates E1 and E2 of N1 and N2, respectively.
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Figure 5.1: Figures (a) and (b) show the performance of N1 in the cooperation and relay

modes using the statistical models compared with the feedback scheme. Figure (c) shows

the number of energy status transmissions of N2 over the N time blocks.

We simulate the case when the energy harvesting processes E1 and E2 are independent (un-

correlated) and K̃ = 1. So, E1 = p(1)(1) and E2 = p(2)(1), which are the probabilities of

harvesting one unit of energy per time block by N1 and N2, respectively. We also simulate

the case when E1 and E2 are correlated. In this case, we plot the packet delivery ratio versus

correlation coefficient ρ assuming that K̃ = 1 and p(1)(1) = p(2)(1) = p. Given ρ and p, the

joint probability Pr(E1 = 1, E2 = 1) = p2 + ρp(1 − p). Using p and Pr(E1 = 1, E2 = 1),

we calculate the rest of the joint probabilities P (E1 = 0, E2 = 0), P (E1 = 1, E2 = 0), and

P (E1 = 0, E2 = 1). Finally, we simulate the FS and CS schemes proposed in the previous

chapter using the statistical models for the case when E1 and E2 are independent.

5.4.1 Cooperation and relay modes (independent case)

We simulate the cooperation and relay modes using the statistical models when E1 and

E2 are independent, where in both modes N1 operates as an S2 and needs to estimate the

energy status of N2. Figures 5.1 (a) and (b) illustrate the packet delivery ratio of node N1

for the cooperation and relay modes, respectively. Figure 5.1 (c) shows the total number

of energy status transmitted from N2 to N1 in the feedback scheme. From Figures 5.1 (a)

and (b) we can notice that in both modes when E1 is high, the gap between the statistical

model and feedback scheme increases as E2 movies towards 0.6, at which the uncertainty of
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(b) Relay mode

Figure 5.2: Figures (a) and (b) show the packet delivery ratio of N1 versus correlation

coefficient ρ for the cooperation and relay modes, respectively, using the statistical models

compared with the feedback scheme.

the energy status of node N2 is maximized. The fact that the uncertainty is maximized at

0.6 can also be noticed from the feedback scheme in Figure 5.1 (c) if the probability that the

energy status changes in each time block is defined as the number of status transmissions

over the total number of time blocks. From Figure 5.1 (c), we can observe that the number of

energy status transmissions is 0 over some values of E1 and E2, which means that over these

values the energy status of N2 is constant or deterministic. Therefore, over these values, the

statistical model and the feedback scheme perform the same. Hence, we conclude that when

the energy status of the cooperating/relay node is deterministic, the feedback scheme will

be more energy efficient than the statistical model. Otherwise, the statistical model will be

more energy efficient as the energy status transmissions of N2 could consume a significant

amount of energy, especially when using protocols with fixed frame/packet format.

5.4.2 Cooperation and relay modes (correlated case)

Here, we simulate the cooperation and relay modes when the energy harvesting processes

E1 and E2 are correlated, assuming that p = 0.7 and N1 operates as an S2 in both modes.

Figures 5.2 (a) and (b) show the simulation results in terms of the packet delivery ratio

versus correlation coefficient ρ for the cooperation and relay modes, respectively. It can be
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Figure 5.3: Figures (a) and (b) show the packet delivery ratios of N1 and N2, respectively,

for the FS scheme when using the statistical models compared with the feedback scheme.

We used the same penalty function in Section VI (A) with α = 3.

noticed that the performance of the feedback scheme is not affected by ρ because the decision

is made based on the actual energy status of node N2. In the statistical model, on the other

hand, the performance is affected by ρ, where it increases as the correlation between E1 and

E2 gets stronger until it reaches the performance of the feedback scheme at ρ = 1, where the

energy status of N2 becomes actual at N1.

5.4.3 FS and CS schemes

We simulate the FS and CS schemes for the same scenarios in Sections 4.5.1 and 4.5.2,

respectively, using the statistical models. In the FS scheme, we only simulate the scenario

when α = 3, and we calculate the value of nx by (4.26) using the packet delivery ratios

derived in Sections 5.2 and 5.3. Due to the imperfect estimation, nx sometimes comes out

as a complex value in the cases when the energy harvesting rate of S2 is much lower than its

event generation rate. In these cases, we just set nx = 0 as it is supposed to be.

Figures 5.3 and 5.4 illustrate the simulation results for the FS and CS schemes, respec-

tively. For the FS scheme, Figure 5.3 shows that the statistical model performs either the

same or very close to the feedback scheme. This is because whenever the system operates

in the cooperation or relay mode, i.e, whenever x? is decided to be either c or r in the FS
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Figure 5.4: Figures (a) and (b) illustrate the optimal x and n provided by the CS scheme

using the statistical models in order for node N1 to achieve the performance γ = 0.7. Figure

(c) shows that node N1 achieves the performance γ over the values E1 and E2 where the

system is feasible.

algorithm, the system operates over the ranges of E1 and E2 where the statistical model and

the feedback scheme perform the same or close to each other. As for the CS scheme when

using the statistical model, Figure 5.4 shows that the range of E1 and E2 over which N1

achieves the performance γ by its own stays the same, and the range over which N1 achieves

γ by the help of node N2 shrinks compared to the feedback scheme shown in Figure 4.7.

This is expected because when N1 achieves the performance γ by its own, it operates as

a relay for N2 over nr time blocks. After that, it operates as an S1 to achieve γ over the

rest of the time blocks. From (4.28) and because 4r
1 = 0, nr will be the same in both the

statistical model and feedback scheme, which can also be seen from Figures 5.4 (b) and 4.7

(b). The same value of nr results in the same range of E1 and E2 over which N1 achieves γ

by its own. In contrast, when N1 achieves γ by the help of node N2, it operates as an S2

over nx, x ∈ {c, r} time blocks and then it operates as an S1. Here, 4x
1 , x ∈ {c, r} in (4.26) is

calculated using the statistical model, which results in a lower nx compared to the feedback

scheme due to the imperfect estimation. Thus, the range over which N1 can achieve γ only

by the help of N2 shrinks compared to the feedback scheme.
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5.5 Conclusions

In this chapter, we propose a statistical model that can be used to estimate the energy

status of the cooperating/relay node at the source. In the scenarios when the energy status

of the cooperating/relay node is certain, i.e., it is either energized or not over the N time

blocks, it will be more energy efficient to use the feedback scheme where in these scenarios

there will be 0 overhead. Otherwise, it will be more energy efficient to use the statistical

model because overhead could consume a significant amount of energy, especially, when using

protocols with fixed frame/packet format.



Chapter 6

Scheduling for Throughput

Maximization

6.1 Introduction

In this chapter, we address the problem of scheduling for throughput maximization in

a wireless energy harvesting uplink. For fairness, we assume that each node’s throughput

cannot drop below what it achieves by direct transmission to the base station. We tackle

this problem by assigning a role to each node in the network, that is either a cooperating

node, a Source type 1 (type S1), or a Source type 2 (S2). The role assignments of the nodes

are optimally done based on the energy harvesting rate of each node compared to its energy

depletion rate. Such that, a node of a higher energy harvesting rate is assigned to be a

cooperating node of some type S2 nodes, some nodes of lower energy harvesting rates, if

(1) the total number of events that are successfully transmitted from that cooperating node

to the base station, including its type S2 nodes’ events, is higher than or equal to the total

number of events that are successfully transmitted from the cooperating node and its type S2

nodes when each transmits its events on its own to the base station, and (2) that cooperating

node can forward more events for each one of its type S2 nodes than any other cooperating

node in the network. If a node can neither be a cooperating node nor a type S2 node, it will

be assigned as a type S1 node, which transmits its events on its own to the base station.

We first analyze the problem for the scenario when the transmit power between the nodes

Portion of this chapter appears in: A. M. A. Ammar, Y. P. Fallah and D. Reynolds,
“Throughput in an Energy Harvesting Wireless Uplink,” in IEEE Sensors Journal, vol. 18,
no. 6, pp. 2617-2626, March 15, 2018.
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Base station

Cooperating node

S1 node

S2 node

Figure 6.1: A network consists three categories of sensor nodes; type S1 node which transmits

directly to the base station, type S2 node which transmits to the base station through another

node called cooperating node, and cooperating node which transmits its own events as well

as it forwards some type S2 nodes’ events to the base station.

is the same. After that, we generalize it for the scenario when the transmit power between

the nodes is variable. We first derive the data collection throughput of the network as the

summation of the successful transmission probabilities of its sensor nodes to the base sta-

tion. We then propose a centralized algorithm that maximizes the throughput by optimally

assigning a role to each node. The algorithm is run at the base station after receiving the

energy harvesting and event generation rates of each node, and then a message that con-

tains the role of each node is broadcasted to the network. We also develop a distributed

algorithm for use in networks when central control is not feasible, e.g., when overhead must

be kept low or when the base station is also energy-constrained. The results show that the

proposed algorithms maximize the throughput with less computation complexity than the

brute force approach, where all the possible combinations of nodes’ roles that are applicable

to the system model are examined. The results also show that our approach, compared with

cooperative communication, maximizes the overall throughput of the network such that no

node’s throughput is adversely affected. Note that, the role assignments of the nodes are

quasi-static, in that changes in the network topology or energy harvesting parameters re-

quires that the algorithm run again.

One practical application is bridge health monitoring [66]-[68], where nodes are usually
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powered by sunlight and/or vibration. Hence, the nodes that are exposed to sunlight or

located along the span are more likely to have a higher energy harvesting rate than their

energy depletion rate. Thus, these nodes can relay transmissions of the nodes that are

located inside the bridge or away from the span to the base station in order to maximize the

network throughput.

6.2 System Model

As shown in Figure 6.1, we consider an uplink wireless energy harvesting sensor network

with a set of M sensor nodes, N = {1, 2, ...,M}. We consider a discrete-time model where

time is divided into N blocks. In each block, node i ∈ N has an event generated (sensed

data) Ei[n] = 1 with probability qi. Each node transmits its events to the base station either

directly or through a cooperating node. Therefore, as shown in Figure 6.1, the network

contains nodes of three categories; type S1 nodes which transmit their events directly to the

base station, type type S2 nodes which transmit their events to the base station through

a cooperating node, and cooperating nodes which transmit their events as well as they

forward at least one type type S2 node’s events to the base station. We consider a real-time

monitoring deployment scenario where events cannot be buffered for a later transmission

[53]. We assume the nodes transmit over orthogonal frequency bands.

Each node is assumed to be equipped with energy harvesting devices and a rechargeable

battery with capacity K. In the n-th time block, n ∈ {1, 2, ..., N}, node i ∈ N harvests

Ei[n] ∈ {0, 1, ..., K̃} amount of energy with corresponding probabilities {pi,0, pi,1, ..., pi,K̃},

where K̃ 6 K is the maximum amount of energy that can be harvested in one block. We

assume that the energy required for a reliable transmission per event from node i to the

base station is δi, and between the nodes is δ̃, where δi and δ̃ are integers, and δ̃ < δi as the

distance between the base station and any node is assumed to be larger than the distance

between any two nodes.

Let Ai ∈ {0, 1} be the transmission event of node i ∈ N with distribution Pr(Ai = 1) =

vi. In the n-th time block, if node i has a transmission, i.e., Ai[n] = 1, the node is allowed to

transmit only if it is energized, i.e., if its energy battery level Li[n] > δ, where δ = δi if node
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i is a type S1 or a cooperating node and δ = δ̃ if node i is a type S2 node. At that time block,

δ amount of energy will be depleted from its battery, and its transmission will be considered

successfully delivered to the base station if node i is a type S1 node or a cooperating node,

or to its cooperating node if node i is a type S2 node. We denote the successful transmission

event of node i ∈ N by Bi. Otherwise, i.e., if Li[n] < δ, the transmission will be discarded.

Consequently, the energy battery level of the (n+ 1)-th time block of node i is

Li[n+ 1] = min{Li[n] + Ei[n]− δ1{Li[n]>δ}Ai[n], K}, (6.1)

where 1{.} is the indicator function. Because Li[n+ 1] depends only on the previous energy

battery level Li[n], it is modeled as a Markov chain with state space {0, 1, ..., K}, where

the transition between any two states depends on Ei[n] and Ai[n]. Let k and j be the

current and the previous states of the energy battery level, respectively, and let z = k − j

and w = k − j + δ. Then given vi and p i = [pi,0, pi,1, . . . , pi,K̃ ]T , the transition probability

Q
(i)
j,k = Pr(Li[n+ 1] = k|Li[n] = j) of node i ∈ N between any two states j, k ∈ {0, 1, ..., K}

is

Q
(i)
j,k=



pi,z j < δ, k < K,

pi,wvi + pi,z(1−vi) j > δ, k < K,

K̃∑̃
k=z

pi,k̃I1 j < δ, k = K,

w−1∑̃
k=z

pi,k̃(1−vi)I2+
K̃∑̃
k=w

pi,k̃I3 j > δ, k = K,

(6.2)

where I1 = 1{z6K̃}, I2 = 1{z6w−1}, and I3 = 1{w6K̃} are the indicator functions. Let Q(i) be

the transition matrix of the Markov chain whose (j,k)-th element is given by Q
(i)
j,k, and let

πi,0, πi,1, . . . , πi,K be its average (steady state) probabilities, where πi,k, k = {0, . . . , K} is the

average probability of the k-th energy battery level of node i ∈ N . Then, the probability

that node i is energized is

4i(vi, δ,p i) = Pr(Li > δ) =
K∑
k=δ

πi,k, (6.3)

and node i has a successful transmission (Bi = 1) is

τi(vi, δ,p i) = vi4i (vi, δ,p i) = vi

K∑
k=δ

πi,k, (6.4)
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Figure 6.2: Successful transmission probability τi(qi, δi,p i) of node i ∈ N versus qi for

different values of δi and K, and for p i = [0.3 0.7].

where πi,0, πi,1, . . . , πi,K can be obtained using eigen decomposition of Q(i) ∀K > δ [65]. In

the special case when the battery capacity is much greater than δ, i.e., K � δ, by following

the same derivation of
K∑
k=δ

πi,k in [69] where a different problem is considered, we get

4i(vi, δ,p i) =

1 vi 6 ri,

Ei[n]
viδ

vi > ri,
(6.5)

τi(vi, δ,p i) =

vi vi 6 ri,

Ei[n]
δ

vi > ri,
(6.6)

where Ei[n] is the average energy harvesting rate of node i, (viδ) is the energy depletion

rate, and ri is the value of vi at which the energy harvesting rate of the node is equal to its

energy depletion rate. ri can be expressed as

ri =
Ei[n]

δ
. (6.7)

6.3 Successful transmission probability Characteriza-

tion

Let node i ∈ N be a type S1 node, i.e., Ai = Ei and δ = δi. Then, its successful

transmission probability τi(qi, δi,p i) over qi for a given p i and different values of δi and K
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will be as shown in Figure 6.2. From the figure, we notice two key things.

First, we see in Figure 6.2 (a) that when K is much greater than δi, i.e., K � δi,

τi(qi, δi,p i) has two regions; linear which is the region over the range of qi 6 ri, and saturation

which is the region over the range of qi > ri. When qi < ri, the energy harvesting rate of

node i is higher than its depletion rate. If operating in this region, the node will have all

of its generated events successfully transmitted, i.e., τi(qi, δi,p i) = qi, and can operate as

a cooperating node to successfully forward the fraction di = ri − qi of events for another

node. When qi > ri, the energy harvesting rate of the node is lower than its depletion rate.

If operating in this region, the node will not have all of its generated events successfully

transmitted, i.e, τi(qi, δi,p i) < qi, and can operate as a type S2 node to improve its successful

transmission probability. Note that, as δi decreases, the linear region increases at the expense

of the saturation region, which implies that if τi(qi, δi,p i) = qi, then τi(qi, δ̃,p i) = qi since

δ̃ < δi. We need this fact later to prove Proposition 1.

Second, we see in Figure 6.2 (b) that when K is close to δi and greater, i.e., K > δi,

τi(qi, δi,p i) has an additional region, called transient. The range of this region increases as K

gets closer to δi, and it reaches the maximum size when δi = K. As K gets closer to δi, more

energy is wasted due to energy overflow, so that lower successful transmission probability is

achieved. This wasted energy of node i in this region can be exploited either by operating

the node as a type S2 where it transmits with a lower energy, or by operating the node as a

cooperating node where it can successfully forward some events for another node.

In this chapter we consider the first case when K � δi. The second case when K > δi

can be considered as a future work.

6.4 Problem Formulation

The goal of this chapter is to maximize the total average of events that are successfully

transmitted to the base station from the M nodes over the N time blocks, but without any

node dropping below its base performance, defined as the performance obtained through

direct transmission of its own events to the base station. As described in Section 6.2, each

node in the network acts as either a type S1, a type S2, or a cooperating node. Thus, the
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set N can be partitioned into three subsets; S which includes all type S1 nodes, R which

includes all cooperating nodes, and U which includes all type S2 nodes. Hence, S,R,U ⊆ N

and are disjoint.

Let s ∈ S be a type S1 node, r ∈ R be a cooperating node, and u be one of the type S2

nodes that transmits through the cooperating node r, so that u ∈ D(r) ⊆ U . The type S1

node s has a transmission to the base station whenever it has an event generated, and this

event is successfully delivered to the base station with probability τs(qs, δs,ps). This holds

the same for the type S2 node u. However, the type S2 node u transmits its event successfully

to its cooperating node with probability τu(qu, δ̃,pu). As for the cooperating node r, it has

a transmission to the base station not only whenever it has an event generated, but also

whenever one of its type S2 nodes u ∈ D(r) has a successful transmission to it. Thus,

the cooperating node transmits its event or one of its type S2 nodes’ events successfully

to the base station with probability τr(vr, δr,pr), where vr = Pr
(
Er = 1

⋃
u∈D(r)

Bu = 1
)

and

Pr(Bu = 1) = τu(qu, δ̃,pu). The cooperating node’s event and its type S2 nodes’ events are

independent and not mutually exclusive. Therefore, in the same time block, if more than one

of them occurs and the cooperating node is energized, only one of them will be considered

successfully transmitted, that will be the cooperating node’s event if any, or the event of the

type S2 node u ∈ D(r) that achieves the smallest successful transmission probability to the

base station. Because the base station receives only from type S1 and cooperating nodes,

the total number of the successful received events at the base station over the N time blocks

is

G = ΓN, (6.8)

Γ =
∑
s∈S

τs(qs, δs,ps) +
∑
r∈R

τr(vr, δr,pr), (6.9)

where Γ is the data collection throughput of the network. In order to maximized (6.8), we

maximize Γ by optimizing the sets S, R, and D(r), and these sets can be optimized by

optimally assigning each node in N as either a type S1 node, a cooperating node, or a type

S2 node of which cooperating node. A node i ∈ N is optimally assigned to be a cooperating

node of some type S2 nodes if, 1) the total number of events that are successfully transmitted

from that cooperating node to the base station, including its type S2 nodes’ events, is higher
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than or equal to the total number of events that are successfully transmitted from that

cooperating node and its type S2 nodes when each one of them transmits its events on its

own to the base station, and 2) that relay can forward more events for each one of its type

S2 nodes than any other cooperating node in the network. If node i cannot be a cooperating

node or a type S2 node, then it will be a type S1 node. Consequently, the optimization

problem can be formulated as

max
S,R,D(r)

Γ

s.t τr(vr, δr,pr)>τr(qr, δr,pr)+
∑
u∈D(r)

τu(qu, δu,pu), ∀r ∈ R

τr(vr, δr,pr)|u∈D(r) − τr(vr, δr,pr)|D(r)\{u} >

τj(vj, δj,pj)|u∈D(j) − τj(vj, δj,pj)|D(j)\{u}, ∀r, j ∈ R

|S|+ |R|+
∑
r∈R

|D(r)| = M.

(6.10)

6.5 A brute force approach

In (6.10), the optimal sets S?, R?, and D?(r) can be found by examining all the possible

combinations of the nodes in set N as a type S1, a cooperating node, or a type S2. To

reduce the computation complexity, some of these combinations can be excluded as they

do not apply to the system model. In the system model, we have that a cooperating node

serves at least one type S2 node, and a type S2 node uses only one cooperating node. This

implies that the number of type S2 nodes in the network must be equal to or larger than the

number of cooperating nodes. i.e., if the network has |S| type S1 nodes, 0 6 |S| 6M , then

the number of cooperating nodes has to be |R| 6 b(M − |S|)/2c and the number of type S2

nodes |U| = M − |S| − |R|. Also, this implies that the number of type S1 nodes cannot be

M − 1. This is because if the remaining node is categorized as a cooperating node, it will

not be associated with a type S2 node and vice versa. Using these constraints, the number

of all possible combinations as a function of M is

C =

[ M−2∑
|S|=1

b(M−|S|)/2c∑
|R|=1

(
|R|+ |U|
|R|

)(
M

|S|

)
+

bM/2c∑
|R|=1

(
M

|R|

)]
Q+ 1, (6.11)
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Figure 6.3: The number of all possible combinations increases exponentially with M .

Q =

(
11(|R|=1) + |R|!1(|R|=|U|6=1) + (|R||U| − |R|)1(1<|R|<|U|)

)
, (6.12)

where the first term in (6.11) calculates all the possible combinations when the network has

|S| type S1 nodes, 0 < |S| 6M−2, the second term calculates all the possible combinations

when the network has only cooperating nodes and type S2 nodes, i.e., |S| = 0, and the added

1 is for the only combination when all the nodes are type S1 nodes, i.e., |S| = M . Although

the number of the examined combinations is reduced, it is still relatively high. As shown in

Figure 6.3, it scales exponentially with M , meaning that the computation complexity of the

brute force approach will also scale exponentially. Therefore, we next propose algorithms

that finds the optimal Γ with less computation complexity.

6.6 Centralized Algorithm

Algorithm 6.1 illustrates the centralized algorithm that finds the optimal sets S?, R?,

and D?(r) that maximizes Γ in (6.10). For a given set of nodes N , the algorithm initializes

two sets Y and Z, where Y ,Z ⊆ N and Z = Yc. Set Y contains every node in N that

is a candidate to be a cooperating node while set Z contains every node in N that is a

candidate to be a type S2 node. A node i ∈ N is said to be a cooperating node candidate

if its energy harvesting rate is higher than or equal to its energy depletion rate, i.e., qi 6 ri.

Otherwise, the node is said to be a type S2 candidate. Note that when the node has its

energy harvesting rate equal to its energy depletion rate, i.e., qi = ri, it is still considered
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a cooperating node candidate in order to make the algorithm less complex. The algorithm

also initializes the sets R = {∅} and D(i) = {∅}∀i ∈ Y .

Proposition 1 : If all the nodes are cooperating node candidates, i.e., qi 6 ri ∀i ∈ N ,

|Y| = M , and |Z| = 0, then the maximum throughput of the network is achieved when all

the nodes are type S1 nodes, i.e., S? = N , R? = D?(i) = {∅}∀i ∈ Y .

Proof : We have seen in Section 6.3 that τi(qi, δi,p i) = qi for node i ∈ N when qi 6 ri,

and τi(qi, δ̃,p i) = qi if τi(qi, δi,p i) = qi. Given this and assuming that node i is a cooperating

node of |D(i)| type S2 nodes, the first constraint in (6.10) becomes

vi4i

(
vi, δi,p i

)
> qi +

∑
u∈D(i)

qu. (6.13)

Here vi = Pr(Ei = 1
⋃

u∈D(i)

Eu = 1). Because the events of the cooperating node and type

S2 nodes are independent and not mutually exclusive, the left-hand-side of (6.13) will be

less than its right-hand-side ∀ 4i

(
vi, δi,p i

)
6 1. Thus, the constraint in (6.13) will be met

only if D(i) = {∅}, where in this case both sides of (6.13) will equal to qi, i.e., node i ∈ N

will transmit only its events, acting as a type S1. When all the nodes are type S1, the third

constraint in (6.10) will be met, and the second constraint will also be met where both of

its sides will be 0.

Proposition 2 : If all the nodes are type S2 candidates, i.e., qi > ri ∀i ∈ N , |Y| = 0,

and |Z| = M , then the maximum throughput is achieved when all the nodes are type S1

nodes, i.e., S? = N , R? = D?(i) = {∅}∀i ∈ Y .

Proof : We showed in Section 6.3 that τi(qi, δi,p i) of node i ∈ N remains constant

∀qi > ri. Let node i be a cooperating node of |D(i)| type S2 nodes. Because vi = Pr(Ei =

1
⋃

u∈D(i)

Bu = 1) > qi > ri, then τi(vi, δi,p i) = τi(qi, δi,p i) ∀i ∈ N . Thus, the first constraint

in (6.10) becomes

τi(qi, δi,p i) > τi(qi, δi,p i) +
∑
u∈D(i)

τu(qu, δu,pu), (6.14)

and it will be met only if D(i) = {∅}, i.e., node i transmits only its events, acting as a type

S1.

If the network has some nodes that are cooperating node candidates and some nodes that

are type S2 candidates, i.e., |Y| 6= 0 and |Y| 6= M , the nodes in Y will be ordered decreasingly
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Algorithm 6.1 Centralized Throughput Maximization Algorithm

1: Inputs: qi, δi, p i, ∀i ∈ N = {1, 2, . . . ,M}, and δ̃;

2: Outputs: S?,R?,D?(r) ∀r ∈ R?;

3: Compute: ri using (6.7), di = ri − qi, and vi = qi ∀i ∈ N ;

4: Initialize Sets: Y = {i : i ∈ N , qi 6 ri}, Z = Yc, R = {∅}, D(i) = {∅}, ∀i ∈ Y ;

5: Use (6.6) to calculate any τ(·) that appears below;

6: if |Y| 6= 0 AND |Y| 6= M , then

7: Order Y decreasingly based on di, i ∈ Y ;

8: Assume dj of node j ∈ Y is the largest;

9: Order Z increasingly based on τi(qi, δi,p i), i ∈ Z;

10: Assume τk(qk, δk,pk) of node k ∈ Z is the smallest;

11: h = τj(qj, δj,pj) + τk(qk, δk,pk);

12: vj = vj + τk(qk, δ̃,pk)− vjτk(qk, δ̃,pk);
13: if τj(vj, δj,pj) > h, then

14: Node k is a type S2 of node j;

15: D(j) = D(j) ∪ {k};
16: R = {R} ∪ {j}, Z = Z \ {k};
17: if vj > rj, then

18: Y = Y \ {j};
19: else;

20: Update dj = rj − vj;
21: endif ;

22: Go to Step 6;

23: else

24: None of the nodes in Z, including k, can be a type S2;

25: Go to step 28;

26: endif

27:else

28: R? = R, D?(i) = D(i) ∀i ∈ Y , S? = N \
(
R
⋃
i∈Y
D(i)

)
;

29:endif
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based on their fractions of events that they can forward for another node (d). On the other

hand, the nodes in Z will be ordered increasingly based on their successful transmission

probabilities to the base station. Ordering these sets will ensure that if the first constraint in

(6.10) is met, then the second constraint will also be met. Assume that dj of node j ∈ Y is

the largest and τk(qk, δk,pk) of node k ∈ Z is the smallest. Then, node k will be tested to be

a type S2 of node j or not by checking the first constraint. If the first constraint is met, then

node k will be a type S2 of node j. After that, node k will be removed from set Z and added

to set D(j), and node j will be added to the set of cooperating nodes R. After adding node

k to its set, node j will be removed from set Y only if its energy harvesting rate becomes

lower than or equal to its energy depletion rate, i.e., vj > rj. Otherwise, it will remain in

the set and its dj will be updated. After updating and reordering the two sets Y and Z, the

same procedure will continue with the next nodes in Y and Z. If the first constraint is not

met, however, node k cannot be a type S2 of node j, or any of the remaining cooperating

node candidates as they have a lower fraction of events that they can forward. This holds

the same for the remaining type S2 candidates as they have higher successful transmission

probabilities than node k. And thus the test will terminate.

Note that if two nodes or more in Y or Z have the same fraction of events that they can

forward or have the same successful transmission probability, respectively, the algorithm will

arbitrarily order them. After the test ends or terminates, the sets R, D(i) ∀i ∈ Y , and S

will be optimized. Using these sets, the optimal Γ can be calculated from (6.9). As stated in

Section 6.1, the algorithm is run at the base station which broadcastes a message that has

the assignment of each node after the test ends. If a node is assigned to be a type S1 or a

cooperating node, then its transmission path is directly to the base station. If it is assigned

to be a type S2 of some cooperating node, then its transmission path to the base station is

through that cooperating node.

There is no close form expression for the number of iterations required to find the optimal

solution because it depends on the system parameters. However, we can provide an upper-

bound expression, which can be derived from the worst scenario, that is when the network

has only one cooperating node candidate and the rest of the nodes are type S2 candidates,

and these type S2 candidates are assigned to be type S2 nodes of that cooperating node
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candidate after running the algorithm. In this scenario, the number of iterations will be the

same as the number of type S2 candidates, which is M−1. Thus, the algorithm’s complexity

is O(M), which is linear.

6.7 Distributed Algorithm

Algorithms 6.2 and 6.3 summarize the distributed algorithm that finds the optimal solu-

tion for (6.10). Algorithm 6.2 is for node i ∈ N if it is a type S2 candidate, and Algorithm

6.3 is for node i ∈ N if it is a cooperating node candidate. Initially, each node i ∈ N calcu-

lates its ri using (6.7) when δ = δi, where by comparing qi with ri, node i can know if it is

a type S2 candidate or a cooperating node candidate. If node i is a type S2 candidate, then

as illustrated in Algorithm 6.2, the node first calculates its τi(qi, δ̃,p i) and τi(qi, δi,p i) using

(6.6). And then at the beginning of the time block, the node starts a timer of a duration

ti = τi(qi, δi,p i) time units. The timer is to give priority for the type S2 candidate that

achieves the smallest successful transmission probability to the base station to be assisted

first, which is similar to the centralized algorithm where the type S2 candidates are given

priorities by ordering them increasingly based on their successful transmission probabilities.

If none of the other type S2 candidates has broadcasted its successful transmission probabili-

ties before the time ti ends, which happens only if node i has the shortest timer length, node

i will broadcast its τi(qi, δ̃,p i) and τi(qi, δi,p i) to the network right after its timer expires,

and only the cooperating node candidates will receive them. After that, node i will wait

for an ACK from a cooperating node candidate. If the cooperating node candidate j ∈ N

can be a cooperating node of node i, then it will broadcast an ACK to inform the type S2

candidates that node i became its type S2 node. In this case, node i will be a type S2 of

node j and it will terminate the test. If no ACK is received, i.e., none of the cooperating

node candidates can be its cooperating node, then node i will be a type S1. If one of the

other type S2 candidates has broadcasted its successful transmission probabilities before the

time ti ends, node i will turn off its timer and wait for an ACK from a cooperating node

candidate j ∈ N . If an ACK is received, then the node will wait for the next time block to

start the procedure all over again. If not, node i will operate as a type S1.
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Algorithm 6.2 Distributed Algorithm for a type S2 Candidate Node i ∈ N

1: Inputs: qi, δi, δ̃, p i;

2: Outputs: Category of node i;

3: Compute: τi(qi, δ̃,p i) and τi(qi, δi,p i) using (6.6);

4: At the beginning of a time block,

5: Set and start a timer ti = τi(qi, δi,p i);

6: if none of the other type S2 candidates broadcasted its τ(·)s, then
7: When the timer expires,

8: Broadcast τi(qi, δ̃,p i) and τi(qi, δi,p i);

9: Wait for an ACK from a cooperating node candidate j ∈ N ;

10: if an ACK received before the end of the time block, then

11: Node i is a type S2 of the cooperating node candidate j;

12: else

13: Node i is a type S1;

14: endif

15: else

16: Turn off your timer when τ(·)s are started to be broadcasted;

17: Wait for an ACK from a cooperating node candidate j ∈ N ;

18: if an ACK received before the end of the time block, then

19: Go to step 4;

20: else

21: Node i is a type S1;

22: endif

23: endif
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Algorithm 6.3 Distributed Algorithm for a Cooperating Node Candidate i ∈ N
1: Inputs: qi, δi, p i;

2: Outputs: Category of node i;

3: Compute: ri using (6.7), and di = ri − qi, and set vi = qi;

4: At the beginning of a time block,

5: Wait for a transmitted τ(·)s from a type S2 candidate j ∈ N ;

6: if any τ(·)s received before the end of the time block, then

7: Check the first constraint in (6.10) including any previous type S2 nodes;

8: if the constraint is met, then

9: Set and start a timer ti = (1− di);
10: if none of the other cooperating node candidates broadcasted ACK, then

11: When the timer expires,

12: Broadcast an ACK that node i is a cooperating node of node j;

13: Calculate vi = vi + τj(qj, δ̃,pj)− viτj(qj, δ̃,pj);
14: if vi < ri, then

15: Update di = ri − vi, go to step 4;

16: else

17: Go to step 31;

18: endif

19: else

20: Turn off your timer, go to step 4;

21: endif

22: else

23: if the constraint has been met before this time block, then

24: Node i is a cooperating node for the nodes that have met the constraint;

25: else

26: Node i is a type S1;

27: endif

28: endif

29: else

30: Go to step 23;

31: endif
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If node i is a cooperating node candidate, then as illustrated in Algorithm 6.3, the node

first calculates its di = ri − qi and sets vi = qi. At the beginning of a time block, node i

waits for any broadcasted successful transmission probabilities τ(·)s from a type S2 candidate

j ∈ N . If any τ(·)s are received, node i will first check the first constraint in (6.10). And

if the constraint including any previous type S2 nodes is met, the node will start a timer

of a duration ti = (1 − di) time units, where the node of the largest fraction of the extra

events that it can forward will assist first. If none of the other cooperating node candidates

broadcasted an ACK before the time ti ends, then node i will broadcast an ACK after the

time ti ends to inform all the type S2 candidates that node j became its type S2 node. And

then node i will update its vi and check if its energy harvesting rate is still higher than its

energy depletion rate or not. If yes, then it will update its di, and then wait for the next

time block to start the procedure all over again as it may still be able to assist with the

transmissions of another type S2 candidate. Otherwise, it will terminate the test. If any of

the other cooperating node candidates broadcasted an ACK before ti ends, then node i will

turn off its timer and wait for the next time block to start again. On the other hand, at the

beginning of a time block, if any τ(·)s are received and the first constraint is not met, or if

no τ(·)s are received, then node i will be a cooperating node if the constraint has been met

with any type S2 candidates before the current time block. Otherwise, it will be a type S1.

In the distributed algorithm, the optimal solution is found in the first time block in which

there is no ACK broadcasted. By that time block, each node will already be optimally

assigned a role. Note that, if two or more type S2 candidates or if two or more cooperating

node candidates have the same timer length, the priority can be given for the node of the

largest ID number. That is, when the type S2 candidates of the same timer length broadcast

their τ(·)s, the cooperating node candidates of the same timer length each will broadcast an

ACK back that has the the largest ID among these type S2 candidates if the first constraint

is met. In turn, the type S2 candidate of the largest ID number will chose the cooperating

node candidate of the largest ID number as a cooperating node, and then broadcast an ACK

to inform the cooperating node candidates that the cooperating node candidate of the largest

ID number has been chosen to be its cooperating node, and so on.

In the distributed algorithm, the number of iterations required to find the optimal solution
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has the same upper-bound as the centralized algorithm. Therefore, the complexity of the

distributed algorithm is also linear. Here, the upper-bound of the number of iterations is

calculated from Algorithm 6.3 as it is more complex than Algorithm 6.2, and from the same

worst scenario discussed in the previous section. Although one of them could save the nodes

more energy than the other, both the centralized and distributed algorithms achieve the

same throughput over the long term, i.e., when N →∞. This is because when N →∞, the

average probability, given by (6.3), that a node is energized over the N time blocks will be

the same regardless of the remaining energy after finding the optimal solution, which is due

to the fact that the energy battery level of a node is modeled as a Markov chain. Hence,

each node will achieve the same successful transmission probability in (6.4), which will lead

to the same network throughput.

6.8 Variable Transmit Power

The centralized and distributed algorithms designed earlier can be adapted for the sce-

nario when the transmit power between the nodes is variable. Here, the transmit power

between any two nodes i, j ∈ N will be δi,j instead of δ̃. Thus, the successful transmission

probability from a type S2 node u to its cooperating node r will be τu(qu, δu,r,pu), which

still can be calculated using (6.6).

When the transmit power between the nodes is variable, we cannot guarantee that if the

first constraint in (6.10) is met, then the second constraint will also be met. Hence, each

type S2 candidate in Z has to be tested as a type S2 of each cooperating node candidate in

Y , which implies that set Y does not need to be ordered. For this scenario, therefore, we

can modify the centralized algorithm illustrated in Algorithm 6.1 as follows. After creating

the two sets Z and Y , we first order set Z increasingly. Then, we find the cooperating

node candidates that meet the first constraint with the first type S2 candidate in Z, and

the one that meets the second constraint among these cooperating node candidates will be

a cooperating node of that type S2 candidate. After that, we remove that type S2 candidate

from set Z, and then update the two sets Z and Y . After updating these two sets, we repeat

the same steps for the next type S2 candidate in Z.



Chapter 6 Scheduling for Throughput Maximization 89

As for the distributed algorithm, a type S2 candidate will broadcast its E[n] and q instead

of its τ(·)s as in the fixed transmit power scenario. Hence, the τ(·)s will be calculated at the

cooperating node candidates in order to reduce the computation complexity. This, however,

requires the assumption that each node knows the transmit power between it and any other

node in the network. Based on these modifications, Algorithm 6.3 can be changed for the

variable transmit power scenario as follows. In each time block, a cooperating node candidate

first calculates the τ(·)s of the type S2 candidate of the shortest timer length, and then checks

the first and the second constraints. After that, it broadcasts an ACK, which will have the

number of events that it can forward to that type S2 candidate without setting any timer. In

turn, that type S2 candidate will select the cooperating node candidate that can forward the

largest number of events to it by its ID, and broadcast this in an ACK to the cooperating

node candidates. Selecting the cooperating node candidate that can forward the largest

number of events as well as broadcasting E[n] and q instead of τ(·)s will be the only change

in Algorithm 6.2.

In the adaptive transmit power algorithms, the upper bound of the number of iterations

that is required to find the optimal solution is calculated from the worst scenario, that is

when M is even, and the half of the nodes are cooperating node candidates and the other half

are type S2 candidates, and each cooperating node candidate still can serve as a cooperating

node candidate after it adds a type S2 to its set. In this scenario, because each type S2

candidate will be tested as a type S2 of each cooperating node candidate, the total number

of iterations will be (M
2

)2. Thus, the algorithms’ complexity is O(M2), which is quadratic.

6.9 Simulation Results

Although the algorithms were designed for an arbitrary number of nodesM , for simplicity,

in the simulations we consider a network of three nodes, i.e., N = {1, 2, 3}. We use three

different sets of parameters. The first set of parameters is q1 = q2 = q3 = 0.2, p1 = p2 = [0.2

0.8], p3 = [0.8 0.2], K̃ = 1, K = 100, N = 105, δ1 = δ2 = δ3 = 2, δ̃ = 1. The second set

of parameters is q1 = q2 = q3 = 0.2, p1 = p2 = p3 = [0.2 0.8], K̃ = 1, K = 100, N = 105,

δ1 = δ2 = δ3 = 2, δ̃ = 1. The third set of parameters is q1 = 0.2, q2 = 0.8, q3 = 0.2,
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Table 6.1: All Possible Scenarios of the Network

Scenario Node 1 Node 2 Node 3

1 type S1 type S1 type S1

2 type S1 type S2 Cooperating node

3 type S1 Cooperating node type S2

4 type S2 type S1 Cooperating node

5 Cooperating node type S1 type S2

6 type S2 Cooperating node type S1

7 Cooperating node type S2 type S1

8 Cooperating node type S2 type S1

9 type S1 Cooperating node type S2

10 type S2 type S2 Cooperating node

p1 = [0.025 0.025 0.025 0.025 0.1 0.8], p2 = [0.2 0.3 0.3 0.2 0 0], p3 = [0.1 0.1 0.2 0.3 0.3

0], K̃ = 5, K = 100, N = 105, δ1 = δ2 = δ3 = 6, δ1,2 = 2, δ1,3 = 4, δ2,3 = 1. Each set is

contained in its figure’s caption.

We simulate both the fixed and variable transmit power scenarios. In these two scenarios,

the optimal Γ is calculated using the proposed algorithms and brute force approach. In the

brute force approach, using the constraints mentioned in Section 6.5, Table 6.1 shows all

the possible scenarios or combinations of the nodes’ assignments that were examined. In

the same row/scenario of Table 6.1 when there is a type S2 node and a cooperating node, it

means that the type S2 node is a type S2 node of that cooperating node. For each scenario, Γ

is calculated by simulation using Monte Carlo technique, and analytically using (6.9). In the

centralized algorithm, the nodes in Y or Z that have the same fraction of events that they

can forward or have the same successful transmission probability, respectively, are ordered

arbitrarily using a uniform distribution. All the simulations are done using Matlab. We

compare our approach with the cooperative transmission scenario discussed in Chapter 2,

where each pair of nodes in the network form a three-relay channel with the base station.
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Figure 6.4: Figure (a) shows the network throughput for all the scenarios shown in Table

6.1. Figure (b) shows the successful transmission probability of N1, N2, and N3. Parameters

used: q1 = q2 = q3 = 0.2, p1 = p2 = [0.2 0.8], p3 = [0.8 0.2], K̃ = 1, K = 100, N = 105,

δ1 = δ2 = δ3 = 2, δ̃ = 1.
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Figure 6.5: Figure (a) shows the network throughput for all the scenarios shown in Table 6.1.

Figure (b) shows the successful transmission probability of N1, N2, and N3. Parameters used:

q1 = q2 = q3 = 0.2, p1 = p2 = p3 = [0.2 0.8], K̃ = 1, K = 100, N = 105, δ1 = δ2 = δ3 = 2,

δ̃ = 1.
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6.9.1 Fixed Transmit Power

Using the first set of parameters contained in Figure 6.4, the results of the brute force

approach in Figure 6.4 (a) show that Γ is maximized at two scenarios. First, it is maximized

at Scenario 3 where node 1 is a type S1, node 2 is a cooperating node of node 3. Second,

it is maximized at Scenario 5 where node 2 is a type S1, node 1 is a cooperating node

of node 3. Thus, the optimal solution should be either Scenario 3 or Scenario 5. In the

centralized algorithm, from Figure 6.4 (b), we have that q1 < r1, q2 < r2, and q3 > r3,

which means that node 1 and node 2 are cooperating node candidates and node 3 is a

type S2 candidate. Because d1 = d2, in the simulation, node 1 was randomly selected

to be ordered ahead of node 2 in the set of cooperating node candidates. And because

τ1(v1, δ1,p1) ≈ 0.36 > q1 + τ3(q3, δ3,p3) = 0.3 events/time blocks, node 3 was assigned to be

a type S2 of node 1, and node 2 was assigned to be a type S1, which is the nodes’ assignment

of Scenario 5. If node 2 was randomly ordered ahead of node 1, then the optimal solution

would have been Scenario 3 instead of Scenario 5. In the distributed algorithm, because

node 2 is the cooperating node candidate of the largest ID number, the optimal solution was

Scenario 3.

Using the second set of parameters contained in Figure 6.5, the brute force approach

results in Figure 6.5 (a) show that Γ is maximized at Scenario 1, where all the nodes are

type S1 nodes. In the centralized algorithm, this optimal solution was found without testing

any of the nodes since all of them are cooperating node candidates as shown in Figure 6.5

(b). According to Proposition 1, if all the nodes are cooperating node candidates, then

Γ is maximized when all the nodes are type S1 nodes. In the distributed algorithm, the

optimal solution was found in the first time block because there was no τ(·)s received at the

cooperating node candidates and no ACK was broadcasted.

6.9.2 Variable Transmit Power

Using the third set of parameters shown in Figure 6.6, we simulate the scenario when the

transmit power between the nodes is variable using the centralized algorithm. For comparison

purposes, we also simulate the scenario when the transmit power is fixed. In the fixed
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Figure 6.6: The network throughput for each scenario shown in Table 6.1 when the transmit

power is variable and fixed. Parameters used: q1 = 0.2, q2 = 0.8, q3 = 0.2, p1 = [0.025 0.025

0.025 0.025 0.1 0.8], p2 = [0.2 0.3 0.3 0.2 0 0], p3 = [0.1 0.1 0.2 0.3 0.3 0], K̃ = 5, K =

100, N = 105, δ1 = δ2 = δ3 = 6, δ1,2 = 2, δ1,3 = 4, δ2,3 = 1.

transmit power scenario, in order for the nodes to communicate with each other, δ̃ was set to

4, which is δ1,3, the transmit power between node 1 and node 3. Using the same parameters,

we also simulate the two transmit power scenarios using the brute force approach.

The results of the brute force approach in Figure 6.6 show that the network throughput

is maximized at Scenario 7, where node 3 is a type S1 and node 2 is a type S2 of node 1.

Using the centralized algorithm, in the fixed transmit power scenario, this optimal solution

was found in one iteration while in the variable transmit power scenario, it was found in

two iterations. This is expected because in the variable transmit power scenario, each type

S2 candidate has to be tested as a type S2 of each cooperating node candidate, and here

the number of cooperating node candidates is 2. Also, the results show that the maxi-

mum throughput achieved when the transmit power is variable is higher than the maximum

throughput achieved when the transmit power is fixed. This is because the transmit power

between node 1 and node 2 in the fixed transmit power becomes higher, which results in

less number of events that are successfully transmitted from node 2 to node 1, and leads to

a lower throughput. Finally, in the variable transmit power scenario, although the transmit

power between node 1 and node 2 is higher than the transmit power between node 2 and

node 3, node 1 was selected to be a cooperating node of node 2 instead of node 3. This

implies that selecting a cooperating node for a node depends only on how many events that

cooperating node can forward for that node.
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6.9.3 Comparison with Cooperative Transmission

We compare our approach with the cooperative transmission scenario when each pair of

nodes in the network form a three-node relay channel with the base station, where one of

the pair is a type S2 node while the other is a cooperating node. We use the first and second

sets of parameters shown in Figure 6.4 and Figure 6.5, respectively. Because the network has

only three nodes, we consider that two of the nodes form a three-node relay channel with

the base station while the third operates as a type S1. In both cooperative transmission and

our approach, the node that operates as a type S1 achieves the same performance, which

makes the comparison fair.

In cooperative transmission, when using the first set of parameters contained in Figure

6.4, we found that the network throughput is maximized when the nodes’ assignment is set as

in Scenario 3 or Scenario 5. In these two scenarios, because the type S2 node always transmits

cooperatively using the cooperating node that is always energized, the maximum throughput

is the same as in our approach. However, in cooperative transmission, because the cooper-

ating node gives priority for the type S2 node’s transmissions over its own, the cooperating

node’s throughput drops to 0.16 events/time blocks while the type S2 node’s throughput

increases to 0.2 events/time blocks. In our case, the cooperating node’s throughput stays

the same that is 0.2 events/time blocks while the type S2 node’s throughput increases to

0.16 events/time blocks. This implies that in our approach, the overall throughput of the

network is maximized such that no node’s throughput is adversely affected.

As for the second set of parameters contained in Figure 6.5, when using cooperative trans-

mission, we found that the network throughput is maximized when the nodes’ assignment

is set as in one of the scenarios from 2-7. From Figure 6.5 (a), the maximum throughput

achieved in each of these scenarios is less than the maximum throughput achieved in our

approach, which occurs when all the nodes are type S1 nodes. The maximum throughput

achieved in our approach can be achieved in cooperative transmission without affecting any

node’s throughput only if in the same time block, the cooperating node is allowed to transmit

its own event after it forwards its type S2 node’s event to the base station. However, this

will require increasing the length of time blocks, which will increase the overall time required
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to collect the same number of events compared to our approach.

6.10 Conclusions

In this chapter, we consider an uplink energy harvesting wireless sensor network. We

address the problem of throughput maximization such that each node’s throughput can-

not drop below what it achieves by direct transmission to the base station. We propose

centralized and distributed algorithms, and we consider fixed and variable transmit power

scenarios. We conclude that when the transmit power between the nodes is variable, the

maximum throughput can sometimes be higher than the maximum throughput achieved

when the transmit power is fixed. However, when the transmit power is fixed, the compu-

tation complexity is lower. Compared with using cooperative transmission, our approach

maximizes the network throughput such that no node’s throughput is adversely affected.



Chapter 7

Summary and Future Work

7.1 Summary

In this dissertation, we address the problem of transmission scheduling in cooperative

energy harvesting sensor networks. We first consider the problem for a single cooperating

node network. We propose a scheduling scheme, called a feedback scheme, that enables the

source to decide whether to transmit its events to the destination by its own or by the help

of the cooperating node such that the packet delivery ratio of the system is maximized. The

feedback scheme can be generalized to any network of many sensor nodes when each group

of three nodes in the network form a three-node relay channel. Compared with the-state-

of-the-art scheme, the feedback scheme maximizes the packet delivery ratio of the system

with no need for optimizing any of the system parameters. And thus, the feedback scheme

becomes more practical in networks of unstable parameters and in networks of sensors with

large battery capacity.

We then generalize the feedback scheme to include the case of multiple cooperating

nodes, and to include one-way and two-way cooperative communications scenarios. The

scheme can be extended to three or more hops where in each hop the transmitting node

selects a cooperating node from the next hop using the same algorithm. However, this

requires some changes in the system model. For example, the number of time slots per a

time block would need to be adjusted. We also propose an adaptive method that reduces the

overhead caused by transmitting the energy status of the cooperating nodes to the source
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in a separate feedback message. In addition, we propose an adaptive scheme that achieves

fairness in the performance between the transmitting and cooperating nodes. The adaptive

scheme considers only the case of absolute fairness, where the nodes have to achieve the

same performance. This could be unreasonable in some scenarios when the penalty on the

cooperating node performance has to be high in order to achieve the same performance of the

source node. In addition, if the source node achieves higher performance than the cooperating

node, the absolute fairness cannot be achieved as each node is fixed and categorized a priori

as either a source or a cooperating node. Therefore, we next generalize the system model

where each node in the network can be either a source or a cooperating node depending on

the system parameters. We then propose a fairness scheduling (FS) scheme that ensures

fairness in the performance of the nodes depending on a given penalty function, which fairly

determines how much one of the nodes should cooperate with the other. We also propose a

constrained scheduling (CS) scheme that constrains one of the transmitting nodes to achieve

a certain performance, if possible.

Although the adaptive method reduces the overhead, it is still relatively high which

could consume a significant amount of energy resulting in a lower performance of the sys-

tem. Therefore, we also propose a statistical model that enables the source to estimate the

energy status of the cooperating node. In the scenarios when the energy status of the coop-

erating node is deterministic, e.g., when the cooperating node is always energized, it will be

more energy efficient to use the feedback because there will be no overhead. Otherwise, it

will be more energy efficient to use the statistical model. We lastly address the problem of

throughput maximization in an uplink energy harvesting wireless sensor network. We pro-

pose centralized and distributed algorithms that find the optimal role of each node, which is

either source, relay, or user, such that the throughput is maximized. We consider fixed and

variable transmit power scenarios and address complexity issues. We conclude that when the

transmit power between the nodes is variable, the maximum throughput can sometimes be

higher than the maximum throughput achieved when the transmit power is fixed. However,

when the transmit power is fixed, the computation complexity is lower. Compared with

using cooperative transmission, our approach maximizes the network throughput such that

none of the nodes’ throughputs is adversely affected.
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7.2 Future Work

In this section, we provide some interesting issues that can be addressed in the future.

For example, in Chapter 4, there are two interesting issues that are described as follows:

1. The proposed schemes in the chapter were designed such that they provide the opti-

mal operating mode for the system that is fixed over the N time blocks. With the

assumption that only one event can be reported per time block, in some scenarios, this

may lead to energy overflow, which can be exploited to achieve better performance.

To avoid energy overflow, the scheduling schemes need to be redesigned such that the

operating mode of the system is selected instantaneously at the start of each time

block, with the assumption that more than one event can be reported per time block.

So that in each time block, each transmitting node can be either a source, a cooper-

ating, or a relay node, and the cooperating node can transmit its own event, if any,

after helping with the source’s event transmission. In order to implement this new

scenario, the joint distribution of the two transmitting nodes energy battery levels in

the cooperation mode needs to be reformed under the following assumptions:

(a) The events of the two transmitting nodes are not mutually exclusive.

(b) If the two transmitting nodes both have an event generated in the same time

block, each node transmits its event on its own if each has sufficient energy for

direct transmission.

(c) If the two transmitting nodes both have an event generated in the same time

block, each node transmits its event first, and it then cooperates with the other

node if sufficient energy remains and if the other node has energy that is sufficient

only for relay transmission.

2. We assume that the length of each time block is sufficient to report only one event.

So, if the cooperating/relay node has an event generated, its event will be dropped to

assist with the transmission of the other node if it has an event generated. And this

may lead to energy overflow. As stated earlier, this could be solved by allowing for
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reporting more than one event per time block. However, this might not be the best

solution in applications when the time delay in reporting events is untolerated. So

another solution is using energy transfer technology. Instead of spending some amount

of its collected energy on forwarding another node’s transmissions, in this technology,

the cooperating/relay node transfers that energy frequently to the other node as a RF

signal. Thus, the cooperating node can transmit its events without delay regardless

of the source’s event status, assuming that the nodes transmit on different frequency

bands or orthogonally. To implement this idea, we can assume that the source node

Ni, i ∈ {1, 2} collects energy from the cooperating node Nj, j ∈ {1, 2}, j 6= i whenever

it transmits to the destination. As in [70], we can assume that the energy transfer

efficiency is 0 6 η 6 1, i.e., whenever the cooperating node transmits to the destination

using δ amount of energy, (ηδ) amount of energy enters the source’s battery. Based on

these assumptions, we reform the distribution of the energy battery levels of the nodes

and then we drive their packet delivery ratios. After that, we maximize the sum of

the packet delivery ratios of the nodes over δ for the given η such that δj 6 δ 6 K,

assuming that δj is the minimum amount of transmit energy required to successfully

report the event of the cooperating node to the destination.

In Chapter 6, there are also some interesting issues that can be addressed to make the

proposed algorithm more general. These issues include:

1. We consider in Chapter 6 the case when K � δi. The other case when K > δi can also

be considered in order to include applications when battery capacity of sensor nodes

cannot be large. When K > δi, as shown in Section 6.3, the successful transmission

probability has an additional region called transient. When a node operates in this

range, it has energy overflow, and this energy can be exploited by operating the node as

a type S2 node so it transmits with lower energy and more events will be transmitted,

or as a cooperating node to forward events to some other node/nodes. Thus, the nodes

that operate in the transient region can be called cooperating-type S2 candidates. To

solve the problem, we first need to create a new set that includes all cooperating-type

S2 candidates, and then we need to modify the algorithm of the case when K � δi
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such that it tests these nodes as cooperating nodes first and then as type S2 nodes.

2. The scenario that a node, in each time block, can make an instantaneous decision on

its transmission path can be investigated as it may lead to a better throughput.
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