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Abstract We study the optimal data collection rate in a hybrid wireless sen-
sor network where sensor data is collected by mobile sinks. In such networks,
there is a trade-off between the cost of data collection and the timeliness of the
data. We further assume that the sensor node under study harvests its energy
from its environment. Such energy harvesting sensors ideally operate energy
neutral, meaning that they can harvest the necessary energy to sense and
transmit data, and have on-board rechargeable batteries to level out energy
harvesting fluctuations. Even with batteries, fluctuations in energy harvesting
can considerably affect performance, as it is not at all unlikely that a sensor
node runs out of energy, and is neither able to sense nor to transmit data.
The energy harvesting process also influences the cost vs. timeliness trade-off
as additional data collection requires additional energy as well. To study this
trade-off, we propose an analytic model for the value of the information that
a sensor node brings to decision making. We account for the timeliness of the
data by discounting the value of the information at the sensor over time, we
adopt the energy-chunk approach (i.e. discretise the energy level) to track en-
ergy harvesting and expenditure over time, and introduce correlation in the
energy harvesting process to study its influence on the optimal collection rate.
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1 Introduction

Wireless sensor networks (WSNs) are one of the key enabling technologies of
the Internet of Things (IoT) [1,2], and have attracted considerable research
interest over the past couple of years. WSNs are formed by a few to several
thousands of interconnected devices called sensor nodes (SN) that monitor
spatially distributed data like temperature, humidity, movement and noise [3,
4], extract information from the collected data and deliver relevant information
to the user. WSNs have a variety of applications including military, environ-
mental, home, industrial monitoring and healthcare. Applications of WSNs
are surveyed in [5], whereas [6] focuses on various applications of WSNs in the
context of the IoT.

The sensor node is the main component of a WSN. It’s a small electronic
device, powered by an on-board battery which can sense and transmit the
data. For applications like remote sensing, it is often unfeasible or at least very
expensive to replace the battery once a sensor node is deployed. Therefore a
sensor’s lifetime is largely determined by its energy budget on deployment. To
increase the lifetime, one can opt to increase the battery size, but this incurs
an additional cost and increases the weight and size of the SN which makes
this solution less attractive [7]. An alternative approach focuses on optimising
the energy expenditure of the SN. If less energy is used over time, the SN
remains operative for a longer time with the same initial energy budget, see
[8,9]. Controlling the communication subsystem of the SN is a key component
in the reduction of energy consumption [10]. The control can include duty
cycling [11] or be based on computing the redundancy of nodes in the WSN
[12].

Even if energy consumption is optimised, the lifetime of a SN is still de-
termined by the limited energy budget on deployment. To overcome this de-
pendence, one promising solution proposes networks of sensor nodes that can
scavenge the needed energy from their environment, see [13]. Such sensor nodes
are referred to as energy harvesting sensor nodes (EH-SN). The provisioning of
harvesting capability (e.g. solar, wind or heat harvesting) and a rechargeable
battery removes the fixed upper limit on the energy budget. Indeed, an EH-
SN can constantly recharge during its lifetime. However, energy management
is still required to balance energy harvesting and energy expenditure. More-
over, external conditions from which the harvesting circuitry draws its energy
fluctuate over time. As a result, the amount of energy that can be harvested
also varies largely with time. From a performance evaluation point of view,
the harvesting process is an additional source of uncertainty which can affect
performance.

This paper proposes a stochastic model to study the interplay between en-
ergy harvesting and SN performance. In particular, we adopt the hybrid WSN
of [14], which consists of static sensors responsible for sensing environmental
variables, and mobile sensors, referred to as IoT mobile sinks, that move to
various designated sink locations where they gather the data that was sensed
by static sensors. These mobile sinks were introduced to overcome the hot-
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spot effect in sensor networks, see e.g. [15]. Both static and mobile sink nodes
collect data from sensor nodes and sometimes act as gateways to other users
by processing and sending relevant information. If all sensor data is relayed
by the sensor nodes to a (static) sink node, nodes closer to the static sink are
more heavily loaded as they need to relay more packets to the static sink in
comparison with nodes further away. As a result, they consume more energy
and may die at an early stage, or will frequently run out of energy if they
can harvest energy. Mobile sinks overcome this problem by moving the sink
around. See e.g. [16] for a discussion on design issues and challenges in ex-
isting distributed protocols for mobile sinks. Although mobility increases the
network lifetime by balanced utilisation of power [17], it also introduces new
challenges as connectivity to the mobile sinks is intermittent while the packet
delivery delay should be sufficiently small [18].

Finally, we mention some applications of hybrid WSNs. Ren et al. optimise
data collection scheduling of a hybrid WSN, and propose such a WSN for high-
way traffic surveillance and ecosystem monitoring [19]. In the highway traffic
scenario, sensors are deployed along a highway and collect traffic information
such as the number of vehicles and their speeds, the types of vehicles, etc. The
ecosystem scenario includes monitoring of exotic plant growth or endangered
animals. In a typical ecosystem monitoring scenario, humans or vehicles can
only access the system via limited roads, while the exact sensor locations in
the forest are not easily reached. In unmanned agriculture, Huang and Chang
[20] propose a wireless sensor network with a mobile sink for collecting image
data. The mobile sink mitigates the need to relay large amounts of data or
to transmit large amounts over a large distance. In either case, considerable
energy is required which cannot be delivered by the sensors. Similarly, Yang
and Miao [21] propose a mobile sink to solve the problem of poor scalability
and unbalanced energy consumption in farmland WSNs. Finally, motivated by
energy constraints for the sensor nodes, Taherian et Al. [22] propose a WSN
with a mobile sink for monitoring a railway transportation system.

1.1 Related literature

As the present paper investigates a Markovian model for an EH-WSN, we
now discuss some related Markovian models. A first set of models consider
the battery dynamics of a wireless sensor node, without data buffering. The
battery state is usually discretised, meaning that the battery provides chunks
of energy, rather than a continuous stream of energy. The simplest Markovian
model of the battery, is a continuous or discrete-time (quasi-) birth-death
Markov process, where births and deaths correspond to energy harvesting and
energy expenditure respectively, see e.g. [23] where harvesting and recharging
are combined and [24] where the harvesting process exhibits time correlation.
The latter authors model the energy harvesting process as a two-state Markov
modulated model, i.e., a node either harvests energy leading to a random
increase of the amount of energy or is unable to harvest any energy. Also [25]
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considers a two-state harvesting process and determines a transmission policy
such that energy harvesting and consumption are balanced. While two-state
Markov models already exhibit some time correlation, more realistic models for
the time correlation in harvesting processes are studied in [26] and [27]. These
authors study traces of solar harvesting processes and statistically verify that
a Markov modulated process can be used to model the solar energy harvesting
process. Relaxing the assumption that the sensor node remains in its different
operational modes for an exponential amount of time, a semi-Markov model
for the battery dynamics is studied in [28].

While the former models account for energy storage, data buffering is not
considered. Data buffering however is accounted for in [29–33]. In [32], Gelenbe
considers a model with Poisson arrivals of data and energy. Assuming that the
time to transmit a packet is far smaller than the time to harvest the energy for
the transmission, there is either no data or no energy at the node, which sim-
plifies the analysis considerably. In [31], a similar model is studied where the
sensor nodes are also subject to ongoing energy loss through standby power
consumption and leakage from batteries and capacitors, and where transmis-
sions can be corrupted by noise and mutual interference. If transmissions can
be neither considered to happen almost immediately nor postponed due to
unavailability of the receiver, both the data and energy queue can be simul-
taneously non-empty. Therefore, Markov models with two queues (an energy
and a data queue) are required. In [29,30] such a Markov model is studied
where energy and packet arrivals depend on an exogenous Markovian back-
ground process. This allows to include correlation in both harvesting, sensing
and transmission processes. A similar Markov process is studied in [34] in the
context of a “green” base station. Such a base station uses renewable energy
sources for powering its operations. A somewhat different approach is pro-
posed in [33]. In contrast, to the models above, these authors do not adopt
energy chunks but model the battery as a fluid queue. The model allows for
correlated energy harvesting (a fluid Markov process with two states), packet
queueing and retransmissions, a sleep period and temporal death of the node.
A temporal death state is reached when the node runs out of energy.

Various authors have also tackled control problems for EH-SNs by for-
mulating the dynamics and control as a Markov decision process (MDP). A
survey [35] reviews numerous applications of MDPs in EH-WSN and discusses
and compares various algorithms and solution methods. We discuss some more
recent contributions. In [36], Rao et Al. use the framework of Markov decision
processes to determine the optimal task scheduling for a sensor node. Tasks
include sensing, reading and writing from flash storage, packet reception and
transmission, as well as computation. The MDP formulation accounts for task
priorities and deadlines. Although energy harvesting is making WSNs self-
sustainable, Lei et Al. [37] note that the uncertainty on harvesting leads to
unreliability and instability which is becoming a major challenge in the de-
sign of networks. These authors formulate the problem as a constrained MDP
and focus on scheduling algorithms that minimise data loss under delay con-
straints. Zordan et al. [38] investigate energy-aware lossy data compression
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policies for SNs, and model the SN’s transmission and energy dynamics as a
constrained Markov decision problem. If a SN does not have sufficient energy
to perform its tasks, a significant amount of energy can be saved by temporar-
ily powering off. An MDP formulation for similar sleep and wake-up strategies
is considered in [39]. Finally, accounting for both data- and energy buffers, an
MDP formulation for deciding on transmissions for EH-WSNs with a mobile
sink is proposed in [40].

1.2 Contributions

In contrast to the WSN models above, the present study focuses on controlling
the collection frequency of the mobile sink in a hybrid WSN. Key to our
study is the concept of “Quality of Information” which relates to the value
the information brings to decision making. Combining sensor networks with
data analytics enable fast data-to-decision applications that act in real time on
the collected data such that the value the information brings to the decision
not only depends on the quality and quantity but also on the timeliness of
the information. Therefore, analogous to Quality of Service which measures
the performance of a data communications network, the term “Quality of
Information” (QoI) has been introduced to evaluate performance of sensor
networks [41–43]. The present paper builds upon our previous paper [44] which
considered a SN in a hybrid WSN, where energy harvesting and data collection
does not exhibit time correlation. We summarise our contribution as follows:

– We propose a stochastic performance model for an energy harvesting sensor
node in isolation. The performance of the sensor node depends on three
exogenous processes: (i) the sensing process which describes the value of
the information that is sensed; (ii) the energy harvesting process; and (iii)
the data collection process which models the presence of the mobile sink
such that the SN can offload its information.

– We introduce time correlation in the energy harvesting process to capture
the time varying nature of harvesting source more realistically.

– We show that the model allows for studying the trade-off between the
cost of frequent data collection — data collection is not only costly but
also induces increased energy consumption at the SNs — and timely data
delivery. The modelling assumptions allow for time correlation in the en-
ergy harvesting process, as well as for time correlation in the data sensing
process.

– We present a numerical example which investigates the SN performance in
terms of various system parameters including the polling probability of the
mobile sink, the battery capacity, the parameters of the harvesting process,
etc. In particular, the numerical section discusses how correlation in the
harvesting process affects performance.
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1.3 Organisation

The remainder of this paper is organised as follows. Sections 2 and 3 introduce
the discrete-time stochastic model and its analysis, respectively. In section 4,
we focus on optimal data collection at EH-SNs with time-correlated energy
harvesting by means of some numerical examples. Finally, we conclude and
summarise our results in section 5.

2 Mathematical model

We consider an energy harvesting sensor node. The node is equipped with
a battery for storing harvested chunks of energy and on-board memory to
store sensed information. Time is assumed to be discrete, i.e., time is divided
into fixed length intervals or slots and we study the evolution of the value of
information of the sensed data and the energy levels at slot boundaries. During
each slot, sensor data is collected and stored in on-board memory, and energy
is collected and stored in the battery. Whenever the mobile sink passes by,
the data (if any) is transferred to the mobile sink, provided the sensor node
has sufficient energy to transmit the data and there is any data to transmit.
Hence, three interacting random processes — the energy harvesting process,
the sensor data arrival process and the data collection process — determine
the evolution of the state of the sensor node over time. These are described
underneath.

2.1 Energy harvesting process

Adopting the energy chunk paradigm, the battery can store at most C chunks
of energy, and the amount of energy that is harvested during a slot is a discrete
random variable. We assume that M energy chunks are required to sense data
and N chunks are required for a transmission to the mobile sink. Sensing has
priority over transmissions, meaning that the node senses when there are M
chunks present and transmits when there are M + N energy chunks present
when the mobile sink is in range.

We consider a Markov-modulated energy harvesting process, where the
modulating process takes values in the set J = {1, . . . , J}. Let En ∈ J de-
note the state of the modulating process during slot n, and let Hn denote the
number of chunks of energy that are harvested in this slot. The energy har-
vesting process is then characterised by the following marked state transition
probabilities,

αij(m) = P[Hn = m,En+1 = j|En = i] .

That is, αij(m) is the transition probability to go from state i to state j while
harvesting m chunks of energy. For further use, we also define the transition
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probabilities ᾱ
(m)
ij from state i to state j while harvesting at least m chunks,

ᾱij(m) = P[Hn ≥ m,En+1 = j|En = i] =

∞∑
`=m

αij(`) .

2.2 Sensor data arrival process

The sensor node is equipped with on-board memory to temporarily store the
information sensed during the consecutive time slots. Assuming that sensing
data does not require much storage, we do not track the size of the sensor
data, but track the value (or the quality) of information of the data instead.
Note that in some specific cases, the size of the data can even be constant over
time. This is e.g. the case if the data is a vector of environmental quantities
which is regularly updated by the sensing process. The amount of information
that is described by this vector however depends on the actual data values and
can differ considerably over time.

Let Sn denote the value of the data sensed during the nth slot. We assume
that the mean sensed value of information is constant over time i.e., S̄ = E[Sn]
for n ∈ N, as well as the following independence assumption: The indicator
that there is no sensed data 1{Sn=0} constitutes a sequence of independent and
identically distributed random variables with mean s0, s0 being the probability
that there is no information. Note that the latter assumption does not exclude
correlation in the sensing process. Indeed, let {Ŝn} be a sequence of stationary
ergodic random variables with mean S̄/(1 − s0), and let {In} be a sequence

of Bernoulli random variables with mean s0, then {Ŝn(1− In)} is a sequence
of non-independent random variables satisfying the independence assumption
above.

Assuming that older data is less relevant to decision making, the value of
the information drops while it is not collected. To capture such loss, we assume
that the value of information at the sensor node is discounted in each time
slot with discount factor γ. Moreover, we assume that the value of information
is additive: the value of the data sensed during a time slot that cannot be
transmitted is added to the (discounted) value already at the sensor.

2.3 Data collection process

Finally we assume that the time (in slots) between data collection constitutes
a sequence of independent and identically geometrically distributed random
variables with success probability p. Let Pn be the binary random variable
which denotes whether the data is collected at the nth slot boundary or not.
Then with the assumption above, the process {Pn} constitutes a Bernoulli
process with P[Pn = 1] = E[Pn] = p.

The data collection process models the availability of the sink at the loca-
tion of the sensor node and therefore relates to the trajectory that is followed
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by the mobile sink. I.e., Pn = 1 if the sink is in the transmission range in slot
n while Pn = 0 if this is not the case. The probability p therefore corresponds
to the fraction of time that the mobile sink is in range during the trajectory
of the mobile sink.

3 Performance analysis

We now study the evolution of the battery level and the value of information.
We first describe the stochastic difference equations for the battery level and
the value of information, and then calculate the battery level probabilities and
the mean value of information.

3.1 Stochastic difference equations

Let Bn denote the battery level at the beginning of time slot n and let Vn
denote the value of information at the sensor node at the nth slot boundary.

Assuming that the energy harvested in slot n cannot be used for sensing
and transmitting data in slot n, and that any energy which cannot be stored
in the battery is lost, we have,

Bn+1 = min(Bn −M1{Bn≥M} −NTn +Hn, C) .

Here Tn is the binary random variable which indicates if there is a transmission
during slot n or not. We express Tn in terms of the battery level Bn, the value
of information Vn, and the indicator of the mobile sink Pn below.

As the value of information is discounted with discount factor γ and infor-
mation is additive, we have,

Vn+1 = γVn(1− Tn) + Sn1{Bn≥M} .

Here we assumed that all information is immediately transferred to the mobile
sink when there is a transmission (Tn = 1), while any newly sensed data Sn

is not yet available for transmission.
When data is collected, the sensor node always transmits whenever there is

data and energy, independently of the value of information. This is a natural
assumption when the value of information cannot easily be assessed at the
sensor node. For example, the value may only become apparent when the
information of multiple sensor nodes is combined. To facilitate analysis, let An

be the binary random variable which indicates whether there is information
at the sensor node or not, that is, An = 1{Vn>0}. Here, the indicator function
1{·} evaluates to 1 if its argument is true and to 0 if this is not the case. While
An can be directly expressed in terms of Vn, the following recursion for An

simplifies the analysis,

An+1 = 1{Sn>0}1{Bn≥M} + (1− 1{Sn>0}1{Bn≥M})An(1− Tn) .
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The first and second term correspond to the case that information was and
was not sensed during the preceding slot, respectively. In the latter case, there
is only information at the sensor node if there was already information at the
preceding slot boundary that was not transmitted. Notice that the evolution
of An only depends on the indicator that there is information 1{Sn>0}, and
not on the actual value of Sn.

Finally, we express Tn in terms of An, Bn and Pn as follows,

Tn = An 1{Bn≥M+N} Pn .

That is, there is a transmission provided there is data to transmit (An = 1),
energy to transmit (Bn ≥M +N), and an opportunity to transmit (Pn = 1).

3.2 Battery level probabilities

We first focus on expressions for the battery level probabilities. To this end,
we note that the process {(Bn, An, En), n ∈ N} is a Markov process, and we
study its stationary distribution. Let

b̃j(k) = lim
n→∞

P[Bn = k,An = 0, En = j]

be the stationary probability that there are k chunks of energy in the battery,
while there is no information at the sensor node (An = 0), and the energy
harvesting process is in state En = j, j ∈ J . The stationary battery level
probabilities

b̂j(k) = lim
n→∞

P[Bn = k,An = 1, En = j]

when there is information at the sensor node are defined likewise. Note that we
account for the availability of information as the decision to transmit depends
on the availability of information, which in turn affects the battery level.

Expressing the state probabilities at slot n+ 1 in terms of those at slot n
by conditioning on the values of An, Pn, En and Hn, and then sending n to
∞ yields the following set of balance equations,

b̃j(k) =

J∑
i=1

M−1∑
`=0

b̃i(`)αij(k, `) + s0

J∑
i=1

C∑
`=M

b̃i(`)αij(k, `−M)

+ ps0

J∑
i=1

C∑
`=M+N

b̂i(`)αij(k, `−M −N) , (1)

and,

b̂j(k) =

J∑
i=1

M−1∑
`=0

b̂i(`)αij(k, `)+

J∑
i=1

C∑
`=M

(
b̂i(`) + (1− s0)̃bi(`)

)
αij(k, `−M)

+ p

J∑
i=1

C∑
`=M+N

b̂i(`) ((1− s0)αij(k, `−M −N)− αij(k, `−M)) , (2)
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for k = 0, 1, . . . , C with j ∈ J . Here, we introduced for i, j ∈ J and ` ≤ k,

αij(k, `) =

{
ᾱij(k − `) for k = C ,

αij(k − `) otherwise.

We collect the probabilities b̃j(k) and b̂j(k) in the row vectors b̃(k) =

[̃bj(k)]Jj=1 and b̂(k) = [̂bj(k)]Jj=1 for each k, and introduce the row vector

b(k) = [b̃(k), b̂(k)]. The equations above can then be summarised in the
following matrix equation,

b(k) =

C∑
`=0

b(`)B(`, k) (3)

where B(`, k) = [Bij(`, k)]2i,j=1 with,

B11(`, k) = 1{`<M}A(k, `) + s01{`≥M}A(k, `−M) ,

B21(`, k) = ps01{`≥M+N}A(k, `−M −N) ,

B12(`, k) = 1{`≥M}(1− s0)A(k, `−M) ,

B22(`, k) = 1{`<M}A(k, `) + 1{`≥M}A(k, `−M)

+ p1{`≥M+N} ((1− s0)A(k, `−M −N)−A(k, `−M)) .

In the former expressions A(k, `) is the J × J matrix with elements αij(k, `),

i, j ∈ J . Finally, let b = [b(k)]
C
k=0 and B = [B(`, k)]

C
`,k=0 such that (3) imme-

diately yields b = bB. The stationary probability vector b is the normalised
solution of this matrix equation.

It is easy to check that B(`, k) is a zero matrix for k < l−M −N . Indeed,
the battery level drops for at most M+N levels during a slot. Hence, B has an
upper-Hessenberg block structure with blocks of size (2J(M +N))× (2J(M +
N)). This block structure can then be exploited to calculate the stationary
probability vector b, for example by using linear level reduction (see e.g. [45]).

3.3 Mean value of information

We now study the mean value of information at the sensor node. Noting that
An = 0 implies Vn = 0, we obviously have,

E[Vn1{Bn=k,An=0,En=j}] = 0 ,

for k = 0, 1, . . . , C and j ∈ J . Let,

vj(k)
.
= lim

n→∞
E[Vn1{Bn=k,An=1,En=j}]

be the mean value information when there is information, when there are k
chunks of energy and the harvesting process is in state j, k = 0, 1, . . . , C and
j ∈ J . Furthermore, let v(k) =

∑J
j=1 vj(k) be the mean value information

when there is information and there are k chunks of energy.
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As for the battery level probabilities, we again condition on the values of
Bn, An and Pn, to express the mean E[Vn+11{Bn+1=k,An+1=1,En+1=j}] in terms
of the mean E[Vn1{Bn=k,An=1,En=j}] and the battery level probabilities. After
taking the limit n→∞, we find

vj(k) =

J∑
i=1

C∑
`=M

(γvi(`) + S̄ (̂bi(`) + b̃i(`)))αij(k, `−M)

+ γ

J∑
i=1

M−1∑
`=0

vi(`)αij(k, `) + p S̄

J∑
i=1

C∑
`=M+N

b̂i(`)αij(k, `−M −N)

− p
J∑

i=1

C∑
`=M+N

(γvi(`) + S̄b̂i(`))αij(k, `−M) , (4)

for k ∈ {0, 1, . . . , C}. Collecting the vj(k) for j ∈ J in the row vector v(k) =
[vj(k)]Jj=1, we obtain the system of vector equations,

v(k) = γ

C∑
`=0

v(`)V(`, k) + S̄w(k) , (5)

for k ∈ {0, 1, . . . , C} with

V(`, k) = 1{`<M}A(k, `) + 1{`≥M}A(k, `−M)− p1{`≥M+N}A(k, `−M)

and

w(k) =

C∑
`=M

(
b̂(`) + b̃(`)

)
A(k, `−M)

+ p

C∑
`=M+N

b̂(`) (A(k, `−M −N)−A(k, `−M))

As for the battery probabilities, the equations for the mean value of infor-
mation is a set of J(C + 1) equations with as many unknowns and is easily
solved provided C is not prohibitively large. For larger C, one can again ex-
ploit the upper-Hessenberg block structure of the set of equations, the blocks
now being J(M +N)× J(M +N) matrices.

3.4 Cost and profit of collection

Once the mean value of information at the sensor node for the different battery
levels is determined by numerically solving the systems of equations in the
preceding subsections, we can determine the cost or profit of data collection.
Noting that data is only collected if there is sufficient energy and the mobile
sink passes by, we find that the profit of the data collection, i.e. the mean value
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of information of the sensor data that is actually collected (per time slot), can
be expressed in terms of the vk’s as follows,

V̄ = p

C∑
k=M+N

J∑
j=1

vj(k) .

Assuming that there is a fixed cost for every time the mobile sink collects data
from the sensor, the mean cost of collection is linear in p

C̄ = c p

where c is a constant cost, expressed in terms of the value of information.
Subtracting the cost of collection from the mean value of information that is
collected, we find that profit or the mean value of the data collection equals

V̄p = −c p+ V̄ .

Remark 1 Recall that the collection cost relates to the trajectory that is taken
by the mobile sink: p is the probability that the sink is available, or the fraction
of time that the sink is in range. If the mobile sink moves continuously, a higher
p means that the mobile sink will visit the sensor node more often, while if
the mobile sink is not constantly moving, increasing p means that the mobile
sink remains idle for less time. In either case there is a cost increase, which we
assume to be proportional to p.

Remark 2 While we mainly focus on a single node, it is worth pointing out
that the results for the single sensor node can also be used to find the optimal
trajectory of the mobile sink. By carefully analysing a given trajectory of a
mobile sink that covers a set of sensor nodes, one can find the fraction of time
the mobile sink is in range for every sensor node. Say pk is this fraction for the
kth sensor node. Given pk, the calculations above allow for finding the value
of information at the kth sensor node. It then remains to find the trajectory
of the mobile sink which maximises the sum of the values of information.

4 Numerical results and discussion

Having established a numerical procedure to calculate the mean value of the
data collection in the preceding section, we now illustrate our approach by
some numerical examples. In particular, we study the mean value of the data
collection Vp in terms of the collection probability p as well as the optimal col-
lection probability in terms of various system parameters, including the effect
of time correlation in the energy harvesting process. Note that the optimal
collection probability below is only locally optimal. That is, it is the collection
probability which optimises the value of information of the single sensor node
under consideration, while accounting for some collection cost.
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For the numerical examples, we assume that the harvesting process is mod-
ulated by a Markov process with two states, J = {1, 2}. The harvesting pro-
cess is inactive in state 1 while the number of energy chunks constitutes a
sequence of independent Poisson distributed random variables with mean λ
when the modulating process is in state 2. Let α be the transition probability
from the active to the inactive state and let β be the transition probability
from the inactive to the active state. Moreover, let hm = exp(−λ)λm/m!.
Then we have α11(m) = (1 − β)1{m=0}, α12(m) = β1{m=0}, α21(m) = αhm
and α22(m) = (1− α)hm.

The following alternative characterisation of the harvesting process will be
used in the remainder. Let σ be the fraction of time the harvesting process is in
the active state and let κ be the average duration of an active and an inactive
period. The latter is a measure for the time-scale of the energy harvesting
process, larger κ meaning that the harvesting process alternates more slowly
between states. Simple calculations yield,

σ =
β

α+ β
, κ =

1

α
+

1

β
, λ∗ = λσ =

λβ

α+ β

For a fixed σ, any choice κ ≥ max(σ−1, (1 − σ)−1) uniquely defines α and β.
In particular, for κ = σ−1 +(1−σ)−1 we have no time correlation as α = 1−β
such that the next state is active or inactive, independently from the current
state.

We now define the parameter values used throughout this section. On av-
erage λ = 5 energy chunks are harvested in active slots, unless indicated
otherwise. It takes M = 1 energy chunk to sense the data and N = 4 energy
chunks for transmitting the information. The average value of the sensing
data is S̄ = 2, while we assume that during most time slots there is no data:
s0 = 0.9. Moreover, we set the information decay rate equal to γ = 0.9 and
the maximum capacity of the battery to C = 16, unless otherwise specified.
Finally, the cost to collect the data is c = 1 for all plots.

Fig. 1 depicts the mean value of information V̄p in terms of the collection
probability p. Energy harvesting is slightly bursty: we assume σ = 0.4 and
κ = 16. Fig. 1(a) shows the mean value of information for different battery
capacities C as indicated, while the decay rate is fixed to γ = 0.9. On the
other hand, fig. 1(b) fixes the battery capacity to C = 16 and shows V̄p for
different decay rates as indicated. From both figures, we see that V̄p = V̄ − C̄
is a concave function of p. This observation can be explained by noting that an
increase of p is beneficial for small p, as the data is collected more often (the
increase of V̄ compensates the additional collection cost C̄). For high p, it is
however quite likely that there is not sufficient energy to transmit. Therefore,
the possible gain of frequent data collection cannot compensate the collection
cost (the increase of V̄ no longer compensates the additional collection cost C̄).
Further, fig. 1(a) shows that it is beneficial to increase the battery size. Having
a battery with more capacity facilitates compensating periods with limited
energy. Similarly, fig. 1(b) indicates that increasing the discounting factor also
leads to better performance. A higher discounting factor implies that the value
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Fig. 1 The mean value of the data collection V̄p versus the polling probability p for (a)
different values of the battery capacity C and (b) different values of the decay rate γ as
indicated.

of information decays more slowly such that more information is available
for collection. Of course, the discounting factor models the timeliness of the
information and cannot be modified freely in practice. One may expect that
for p = 1, V̄p does not depend on the discounting factor as data is constantly
collected. This is however not the case, as a lack of energy prevents constant
transmissions. Summarising, in selecting the collection probability p, there is
a clear trade-off between the cost of frequent collection C̄, and the collected
information V̄ , while more battery capacity and higher discounting factors
both lead to a higher mean value of information V̄p.

We now focus on the effect of varying the length of the active and inactive
harvesting periods. Figure 2(a) depicts V̄p versus the polling probability p for
different κ as indicated. Here, we fix the fraction of time the system is active:
σ = 0.4. It is observed that increasing the length of the active and inactive
periods affects V̄p adversely. For high values of κ, the system has longer active
period followed by longer inactive periods. During long inactive periods, the
battery drains completely as there is no energy harvesting while excess energy
during active periods is lost as the battery capacity is limited. As a result,
there will be less value of information to be collected by the mobile sink. Fig.
2(b) shows the mean value of the data collection versus the energy harvesting
rate for different values of σ. We fix the data collection probability to p = 0.2
and the time-scale parameter to κ = 16. It can be clearly seen from the figure
that the increase in harvesting capability improves the system performance.
As κ is fixed, increasing σ means the system has longer active periods during
which the battery level increases on average, and shorter inactive period for
which the battery level decreases on average. Therefore, the chance of having
sufficient energy for data transmissions increases, and therefore also the mean
value of information collected by the mobile sink. However, if there is already
sufficient energy for data sensing and transmissions, no further improvement
is seen. In this case, the fixed battery capacity plays an important role. There
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Fig. 2 The mean value of the data collection V̄p versus the polling probability for differ-
ent energy harvesting process (a) and mean value of the data collection V̄p versus energy
harvesting rate λ for different fractions of active time σ as indicated (b).
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Fig. 3 The mean value of data collection V̄p versus average duration of active and inactive
process κ for (a) different values of the energy harvesting rate λ and (b) different fractions
of active time σ as indicated.

is no additional benefit from longer active periods for high λ, since the battery
reaches its maximum capacity quickly and excess energy chunks are lost.

To better understand the influence of the time-scale parameter κ, Fig. 3
shows V̄p versus κ, for fixed σ = 0.4 and various λ as indicated (Fig. 3(a))
and for fixed λ = 5 and various σ as indicated (Fig. 3(b)). As in the pre-
ceding plot, the collection probability is fixed to p = 0.2. Fig. 3 confirms the
observation that an increase of κ leads to a decrease of V̄p. Even when the har-
vesting capability is considerable, a performance degradation is unavoidable
when harvesting is interrupted for a long time. This effect is mitigated if one
increases the battery capacity, as a fully charged battery with higher capacity
can sustain the operation of the SN for longer times without harvesting.
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Fig. 4 The optimal collection probability popt (a) and the corresponding mean value of the
collected information V̄opt (b) vs. the time-scale parameter κ for different γ as indicated.

The time-scale parameter κ also affects the value of the optimal collection
probability popt. Fig. 4 depicts the value of the optimal collection probability
popt (Fig. 4(a)) and the corresponding mean value of information V̄opt (Fig.
4(b)) versus κ for different values of the discounting factor γ as indicated. We
set σ = 0.2 and λ = 5. For increasing κ, it is optimal to collect more if κ is
small. In contrast, for higher κ-values, it is optimal to collect less if κ further
increases. While this is not intuitively clear, simple arguments show that the
optimal collection probability increases as long as the average information
at the sensor node exceeds the collection cost. As the average information
at the sensor decreases for increasing κ, the optimal collection probability
first increases and then decreases. Similar arguments explain the difference in
decay rate of the optimal collection probability for different discount factors γ.
The resulting optimal mean value is easier explained: discounting less means
that the information is longer available at the sensor node, and that more
information is collected.

Finally, we investigate how the absence of information probability s0 af-
fects the optimal data collection probability and the corresponding value of
information. In fig. 5, we vary s0 while S̄ is fixed. Higher s0 means there is
less chance that information arrives in a slot. However, if there is data, the in-
formation it carries is more significant. In other words, the process Sn is more
bursty. We again plot the optimal collection probability popt (Figure 5(a)) and
the corresponding value of information V̄opt (Figure 5(b)). The harvesting pro-
cess is characterised by σ = 0.2 and κ = 16. It is observed from Figure 5(a)
that the optimal collection probability increases as the information process
becomes bursty. Indeed, for increasing s0, the data should be collected more
frequently as one does not want to miss out on the rare occasions that there
is information.
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Fig. 5 The optimal collection probability popt (a) and the corresponding mean value of the
collected information V̄opt (b) vs. the absence of information probability s0 for different γ
as indicated.

5 Conclusion

In this paper, we investigated the optimal data collection rate for an energy
harvesting sensor node. The assumptions at hand allow for correlation in both
the harvesting and sensing processes. The former is modelled by a Markovian
arrival process. For the latter, we assume that the process is first-order station-
ary with an additional independence assumption for the related indicator that
there is no information. We show that the mean value of the information that
is collected can be found by solving a system of linear equations. We find the
upper-Hessenberg block-matrix representation of this set of equations, which
can be exploited to speed up the calculations. To illustrate our approach, we
have presented a number of numerical examples, which exemplify how the var-
ious system parameters affect performance. In particular, it is demonstrated
that the presence of time correlation in the harvesting process has a major
impact on performance.
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