32 research outputs found

    Dashboard for the VISIR remote lab

    Get PDF
    The VISIR dashboard (VISIR-DB) is a learning analytics tool connected with the VISIR remote lab. In VISIR, every action performed by a student from the interface over the remote laboratory and back is logged and recorded. VISIR-DB helps visualizing, in a fast and deep way, the recorded logs from this communication. Using this tool, a teacher can analyze and understand better how the students are using the remote lab during their learning process on analog electronics. With this information, the VISIR platform can be improved and the use of remote labs can be better understood.The authors acknowledge the support provided by the European Project PILAR. Platform Integration of Laboratories based on the Architecture of visiR - Erasmus+ Strategic Partnership nº 2016-1-ES01-KA203-025327info:eu-repo/semantics/publishedVersio

    Innovative Remote Smart Home for Immersive Engagement

    Get PDF
    An openly accessible, remotely operated smart home will be demonstrated as a tool for students to learn about residential energy usage and environmental impacts. Specifically, the demonstration unit provides classrooms an engaging experience that teaches students about energy efficiency technologies and how their behavior will have an impact on energy usage and the environment. It is expected that as students become aware of and understand how various energy efficiency technologies work barriers to their adoption will be lowered. The use of a web accessible, remote laboratory dramatically reduces lab setup time and equipment cost/space requirements for educators. Special attention is given to the web based interface to ensure the system is easy to use and requires only a standard web browser in order to operate. The interface also includes a video link so the user can feel that they are working with real hardware in real time and not using a simulation or virtual facility. An associated website provides a self-scheduling tool to provide access to the system and a resource for related background information on smart grid and residential energy efficiency technologies. In addition, supporting instructional materials that coincide with NGSS standards are available via download

    Reconfigurable Web-Interface Remote Lab for Instrumentation and Electronic Learning

    Get PDF
    Lab sessions in Engineering education are designed to reinforce theoretical concepts. However, there is usually not enough time to reinforce all of them. Remote and virtual labs give students more time to reinforce those concepts. In particular, with remote labs, this can be done interacting with real lab instruments and specific configurations. This work proposes a flexible configuration for Remote Lab Sessions, based on some of 2019 most popular programming languages (Python and JavaScript). This configuration needs minimal network privileges, it is easy to scale and reconfigure. Its structure is based on a unique Reception-Server (which hosts User database, and Time Shift Manager, it is accessible from The Internet, and connects Users with Instruments-Servers) and some Instrument-Servers (which manage hardware connection and host experiences). Users always connect to the Reception-Server, and book a shift for an experience. During the time range associate to that shift, User is internally forwarded to Instrument-Server associated with the selected experience, so User is still connected to the Reception-Serer. In this way, Reception-Server acts as a firewall, protecting Instrument-Servers, which never are open to The Internet. A triple evaluation system is implemented, User session logging with auto-evaluation (objectives accomplished), a knowledge test and an interaction survey. An example experience is implemented, controlling a DC source using Standard Commands for Programmable Instruments

    Understanding Collaboration in Virtual Labs: A Learning Analytics Framework

    Get PDF
    Online education is increasing and progress within technology has inspired the development of virtual laboratories, which allow students to conduct experiments online. One of the main challenges of virtual laboratory environments is facilitating collaboration similar to those existing in physical laboratory settings. This research explores how one can obtain a better understanding of collaboration in virtual labs through the use of learning analytics. The research work of this thesis was carried out within the frame of design science research, where the main contribution is an artefact in the form of a learning analytics framework. The aim of the artefact is to provide a guiding framework for the integration of learning analytics to better understand and support learning and collaboration in virtual labs. The artefact was evaluated in two iterations using semi-structured interviews with seven experts. It was found through the artefact development process that social network anal- ysis, statistical analysis, natural language processing, and sentiment analysis are valuable data analysis methods for identifying patterns within collaboration in virtual labs. A proposal of a learning analytics dashboard has proved to be a valuable tool to visualise the analysis to the stakeholders in question (students and instructor). The overall reception of the framework was understandable and well-presented. The contribution of this research provides opportunities for future work which involves putting the framework into practice. The implementation of learning analytics to support collaboration in virtual labs can make it easier for students to reflect on their own performances and thereafter improve from it, as well as supporting instructors to reflect on their teaching methods and provide assistance to students in need.Masteroppgave i informasjonsvitenskapINFO390MASV-INF

    XIV Conference on Technology, Teaching and Learning of Electronics

    Get PDF
    Livro de atas da TAEE2020.A conferencia TAEE conhecerá na sua 14ª edição um momento histórico. Não só é a primeira vez que a será organizada fora do território Espanhol, como terá lugar a verdadeiramente pioneira experiência de realizar esta conferência num formato puramente virtual no Instituto Superior de Engenharia do Porto. Esta opção representa a solução possível para um evidente problema mundial, que surgiu de forma repentina durante a preparação desta edição. Optamos por aplicar a típica abordagem de engenharia, instintivamente encarando este novo problema como uma verdadeira oportunidade, e aproveitando as limitações impostas para experimentar novas soluções para novas questões. Tentamos criar uma TAEE diferente, não melhor nem pior, mas indo buscar proveitos às tecnologias de comunicação emergentes de forma a criar e dinamizar um evento onde não estaremos fisicamente juntos, mas poderemos comunicar e conviver de forma virtual. A grande motivação da TAEE será sempre os visíveis entrosamentos, dedicação e motivação da comunidade e serão estes fatores que permitirão o sucesso nesta nova forma de estarmos e trabalharmos juntos, mas à distância.info:eu-repo/semantics/publishedVersio

    Remote laboratory to support control theory

    Get PDF
    The Control Systems plays a vital role in the industry, which is the most essential application of the Electrical Engineering. The control concepts are present in most of the automation systems. The Control Systems theory is the key concept to achieve the automation and makes world faster. But, in reality the study of control engineering is decreased in the recent years, because of the difficulty in learning the concepts of the control theory. Most of the students feel difficult to understand theoretical concepts of control systems. The traditional teaching methodology is one way of teaching control systems concepts. Even though books are proper way of teaching control systems in a systematic way, we need additional tool to create interaction between the subject and the students. The teaching platform is worth to analyse the possibility to add or complement the way of standing with means able to add Real evidences. In another way, it is important that the provided lab experiment should be affordable. The teaching platform to support control theory has been introduced with set of experiments to create Real evidences, and manuals to carry out those experiments, slides to have a guidance and Graphical User Interface (GUI) to have an interaction with the control system is provided

    Labore in der Hochschullehre: Didaktik, Digitalisierung, Organisation

    Get PDF
    In der Hochschullehre ist das Labor als Raum des praktischen Lehrens und Lernens in den technischen Fächern ein zentraler Bestandteil der Curricula. Damit der "Lernort Labor" einen positiven Beitrag zum Kompetenzerwerb der Lernenden leisten kann, müssen didaktische, organisatorische und sowie technische Gestaltungsfaktoren neu betrachtet werden. Was brauchen Labore, um zu einem effektiven, zukunftsfähigen Lernort zu werden? Wie kann sich Laborlehre mit den aktuellen Möglichkeiten der Digitalisierung weiterentwickeln? Die Autorinnen und Autoren geben Antworten auf diese Fragen. Der erste Teil des Sammelbandes beleuchtet das Thema Labordidaktik unter den veränderten Kompetenzerwartungen. Die Beiträge des zweiten Teils befassen sich mit der aktuellen und zukünftigen Entwicklung von Cross-Reality-Laboren als Einzelangebote sowie als Plattformen und Netzwerke. Bedingungen für das Gelingen - und für das Misslingen - von Cross-Reality-Laboren sind das zentrale Thema des dritten Teils, der besonders auf die infrastrukturelle und organisationale Ebene blickt und untersucht, wie diese Laborform technisch verlässlich und ökonomisch nachhaltig in die Lehre integriert werden kann. Der Sammelband richtet sich an Lehrende in ingenieur- und naturwissenschaftlichen Studiengängen, die sich mit der Gestaltung, Weiterentwicklung und Durchführung der Laborlehre befassen sowie an Hochschuldidaktiker:innen, an Leitungen und Mitarbeitende in der Hochschulverwaltung sowie in technischen Verbänden

    Smart Environment for Adaptive Learning of Cybersecurity Skills

    Full text link
    Hands-on computing education requires a realistic learning environment that enables students to gain and deepen their skills. Available learning environments, including virtual and physical labs, provide students with real-world computer systems but rarely adapt the learning environment to individual students of various proficiency and background. We designed a unique and novel smart environment for adaptive training of cybersecurity skills. The environment collects a variety of student data to assign a suitable learning path through the training. To enable such adaptiveness, we proposed, developed, and deployed a new tutor model and a training format. We evaluated the learning environment using two different adaptive trainings attended by 114 students of various proficiency. The results show students were assigned tasks with a more appropriate difficulty, which enabled them to successfully complete the training. Students reported that they enjoyed the training, felt the training difficulty was appropriately designed, and would attend more training sessions like these. Instructors can use the environment for teaching any topic involving real-world computer networks and systems because it is not tailored to particular training. We freely released the software along with exemplary training so that other instructors can adopt the innovations in their teaching practice.Comment: Published in IEEE Transactions on Learning Technologies, see https://ieeexplore.ieee.org/document/992617

    Diseño de un laboratorio controlado de manera remota para la enseñanza de la electrónica de potencia

    Get PDF
    Con la constante evolución de las ciencias y las tecnologías, resulta imprescindible mantenernos al día. Para ello, es necesario comprender los avances y adquirir las habilidades y conocimientos necesarios que complementen nuestra formación, facilitando así el proceso de aprendizaje. Para lograr esto, los métodos de enseñanza deben evolucionar para alcanzar nuevos horizontes y proporcionar habilidades que complementen el conocimiento adquirido, lo que hace que el aprendizaje de nueva información sea menos complicado. Para esto, se han creado los laboratorios presenciales, de manera que los estudiantes adquieran no solo habilidades intelectuales, sino también prácticas. Sin embargo, con la creciente afluencia de estudiantes, los espacios de laboratorio se vuelven difíciles de usar, y su uso se limita a los horarios de clase y temas específicos. Además, la pandemia de COVID-19, que comenzó el 11 de marzo de 2020, mostró que algunas instituciones no estaban preparadas para la enseñanza a distancia, ya que sus prácticas de laboratorio en muchos casos se volvieron simulaciones por computadora. Esto mostró que algunos simuladores manejan solamente datos ideales y figuras poco precisas sobre los elementos reales, lo que da como resultado una experiencia poco realista y limitada. Con base en estas consideraciones, los laboratorios remotos se presentan como una opción viable. Al mostrar datos reales, permitir el control a distancia y poder obtener datos de ellos, los laboratorios remotos permiten al estudiante acceder a ellos las 24 horas del día, desde cualquier ubicación en la que se encuentre.With the constant evolution of science and technology, it is essential to stay up-to-date. To achieve this, one must comprehend advancements and acquire the necessary skills and knowledge to complement their education, thereby facilitating the learning process. Teaching methods must evolve to reach new horizons and provide skills that complement acquired knowledge, making it easier to learn new information. To address this, physical laboratories have been created, allowing students to acquire not only intellectual but also practical skills. However, with the increasing number of students, laboratory spaces become challenging to use, and their availability is limited to class schedules and specific topics. Additionally, the COVID-19 pandemic, which began on March 11, 2020, revealed that some institutions were unprepared for distance learning, as their laboratory practices often turned into computer simulations. This exposed the limitation of certain simulators, as they only handle ideal data and offer imprecise representations of real-world elements, resulting in an unrealistic and restricted experience. Considering these factors, remote laboratories emerge as a viable option. By displaying real data, enabling remote control, and providing data retrieval capabilities, remote labs allow students to access them 24/7 from any location.PregradoIngeniero(a) Electricista1. Contenido 2. INTRODUCCION......................................................................................................................... 11 2.1. Planteamiento del problema ............................................................................................ 11 2.2. Justificación....................................................................................................................... 12 2.3. Objetivos ........................................................................................................................... 14 2.3.1. Objetivo general ........................................................................................................ 14 2.3.2. Objetivos específicos ................................................................................................. 14 3. ESTADO DEL ARTE ..................................................................................................................... 15 4. MARCO TEORICO....................................................................................................................... 18 4.1. Laboratorio remoto........................................................................................................... 18 4.2. Electrónica de potencia..................................................................................................... 19 4.3. MicroPython...................................................................................................................... 19 4.4. Proteus.............................................................................................................................. 19 4.5. Microcontrolador.............................................................................................................. 19 4.6. Raspberry pi pico............................................................................................................... 19 4.7. Convertidor reductor ........................................................................................................ 20 4.8. Rectificador ....................................................................................................................... 21 4.9. Inversor ............................................................................................................................. 22 4.10. Fuente de poder............................................................................................................ 22 4.11. Optoacoplador .............................................................................................................. 23 4.12. Transistor....................................................................................................................... 23 4.13. Diodo ............................................................................................................................. 24 4.14. Relé................................................................................................................................ 25 4.15. Opamp........................................................................................................................... 25 4.16. XR2206 generador de señales....................................................................................... 26 4.17. La transmisión serial USB .............................................................................................. 27 4.18. Node-RED ...................................................................................................................... 27 4.19. Osciloscopio OWON SDS1102 ....................................................................................... 27 4.20. Escalamiento de una señal............................................................................................ 28 4.21. Diseño de circuitos de amplificador operacional.......................................................... 30 5. DISEÑO METODOLOGICO.......................................................................................................... 35 5.1. Etapa de Diseño................................................................................................................. 35 5.1.1. Diseño del módulo convertidor DC a DC................................................................... 35 5.1.2. Diseño del módulo rectificador AC a DC ................................................................... 38 5.1.3. Diseño del módulo inversor DC a AC......................................................................... 40 5.2. Etapa de Inicialización....................................................................................................... 45 5.2.1. Inicialización del convertidor reductor (Buck) .......................................................... 45 5.2.2. Inicialización del rectificador de puente completo................................................... 49 5.2.3. Inicialización del módulo inversor............................................................................. 52 5.3. Etapa De Adquisición De Datos y filtrado ......................................................................... 54 5.3.1. Acondicionamiento del convertidor reductor........................................................... 54 5.3.2. Acondicionamiento del rectificador.......................................................................... 57 5.3.3. Acondicionamiento del inversor............................................................................... 60 5.4. Etapa De Envió De Datos y Visualización .......................................................................... 64 6. Experimentos Y Resultados....................................................................................................... 68 6.1. Prueba de conectividad del circuito con Micro Python .................................................... 68 6.2. Pruebas de las respuestas de las cargas de cada modulo................................................. 70 6.2.1. Respuestas de la carga del módulo 1........................................................................ 70 6.2.2. Respuestas de la carga del módulo 2........................................................................ 77 6.2.3. Respuesta de la carga en el módulo 3....................................................................... 86 6.3. Prueba Node-Red con los módulos................................................................................... 87 7. Conclusiones Y Recomendaciones............................................................................................ 94 7.1. Conclusiones...................................................................................................................... 94 7.2. Trabajos Futuros y Recomendaciones .............................................................................. 94 8. Anexos....................................................................................................................................... 95 8.1. Guía original de los convertidores básicos de continua a continua.................................. 95 8.2. Guía original del rectificador controlado monofásicos..................................................... 95 8.3. Guía original de la práctica de generación P.W.M con A.O. ............................................. 95 8.4. Manual de usuario de la página del laboratorio remoto sobre la electrónica de potencia. 95 8.5. Practica 1 convertidor reductor........................................................................................ 95 8.6. Practica 2 rectificadores controlados monofásicos. ......................................................... 95 8.7. Practica 3 convertidor inversor......................................................................................... 95 9. Referencias Bibliográficas ......................................................................................................... 9

    Laboratórios remotos: interação remota com braços robóticos e integração com plataformas de e-learning

    Get PDF
    A realização de atividades práticas em contexto laboratorial desempenha um papel essencial no ensino das engenharias e de outras áreas científicas. Neste sentido, os laboratórios remotos e virtuais estão a ganhar importância e destaque nas escolas e universidades, pois permitem a redução de custos em equipamentos e manutenção, possibilitam a realização de experiências práticas no ensino à distância e permitem a partilha de recursos entre instituições de ensino. Todavia, a avaliação e acompanhamento de atividades em contextos não tradicionais é um processo complexo e demorado, que traz novos desafios para os professores. Facto que pode limitar a adoção generalizada deste tipo de ferramentas. A presente dissertação descreve o processo de análise, conceção, desenvolvimento e avaliação de um protótipo de um laboratório remoto para o ensino de redes de computadores, integrado com a plataforma Inven!RA. Esta, permite a recolha de analytics relevantes durante a realização de planos de atividades, possibilitando assim, que os professores consultem dashboards de acompanhamento que os auxiliem no processo de avaliação da sua intervenção pedagógica, de acordo com o progresso dos alunos, num ambiente integrado com uma plataforma de e-learning. Os resultados obtidos revelam que o protótipo do laboratório criado, permite o desenvolvimento de diversas atividades de redes de computadores, oferece um contributo efetivo ao acompanhamento dos alunos por parte dos professores, acolhe novas dinâmicas de trabalho dentro e fora da sala de aula e promove metodologias ativas de aprendizagem.The realization of practical activities in a laboratory context plays an essential role in the education of engineering and other scientific areas. The use of remote and virtual laboratories has become increasingly popular solutions in schools and universities. Its use allows for a reduction in equipment and maintenance costs, makes it possible to carry out practical experiences in distance learning contexts and allows the sharing of resources between educational institutions. However, the evaluation and monitoring of activities in non-traditional contexts is a complex and time-consuming process, which brings new challenges for instructors. This fact may limit the widespread adoption of this type of tools. This dissertation describes the process of analysis, design, development and evaluation of a prototype for a remote laboratory for computer network education, integrated with the Inven!RA platform. This enables the collection of relevant analytics during the execution of activity plans, which allows teachers to consult monitoring dashboards that helps them in the process of evaluating their pedagogical intervention, according to the student’s progress, in an integrated environment with an e-learning platform. The obtained results reveal that the created prototype of the laboratory, allows the development of several activities for computer networks, offers an effective contribution to the monitoring of students by instructors, welcomes new dynamics of work inside and outside the classroom and promotes active learning methodologies
    corecore