1,766 research outputs found

    Damage-sensitive and domain-invariant feature extraction for vehicle-vibration-based bridge health monitoring

    Full text link
    We introduce a physics-guided signal processing approach to extract a damage-sensitive and domain-invariant (DS & DI) feature from acceleration response data of a vehicle traveling over a bridge to assess bridge health. Motivated by indirect sensing methods' benefits, such as low-cost and low-maintenance, vehicle-vibration-based bridge health monitoring has been studied to efficiently monitor bridges in real-time. Yet applying this approach is challenging because 1) physics-based features extracted manually are generally not damage-sensitive, and 2) features from machine learning techniques are often not applicable to different bridges. Thus, we formulate a vehicle bridge interaction system model and find a physics-guided DS & DI feature, which can be extracted using the synchrosqueezed wavelet transform representing non-stationary signals as intrinsic-mode-type components. We validate the effectiveness of the proposed feature with simulated experiments. Compared to conventional time- and frequency-domain features, our feature provides the best damage quantification and localization results across different bridges in five of six experiments.Comment: To appear in Proc. ICASSP2020, May 04-08, 2020, Barcelona, Spain. IEE

    Investigation of Computer Vision Concepts and Methods for Structural Health Monitoring and Identification Applications

    Get PDF
    This study presents a comprehensive investigation of methods and technologies for developing a computer vision-based framework for Structural Health Monitoring (SHM) and Structural Identification (St-Id) for civil infrastructure systems, with particular emphasis on various types of bridges. SHM is implemented on various structures over the last two decades, yet, there are some issues such as considerable cost, field implementation time and excessive labor needs for the instrumentation of sensors, cable wiring work and possible interruptions during implementation. These issues make it only viable when major investments for SHM are warranted for decision making. For other cases, there needs to be a practical and effective solution, which computer-vision based framework can be a viable alternative. Computer vision based SHM has been explored over the last decade. Unlike most of the vision-based structural identification studies and practices, which focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation, the proposed framework combines the vision-based structural input and the structural output from non-contact sensors to overcome the limitations given above. First, this study develops a series of computer vision-based displacement measurement methods for structural response (structural output) monitoring which can be applied to different infrastructures such as grandstands, stadiums, towers, footbridges, small/medium span concrete bridges, railway bridges, and long span bridges, and under different loading cases such as human crowd, pedestrians, wind, vehicle, etc. Structural behavior, modal properties, load carrying capacities, structural serviceability and performance are investigated using vision-based methods and validated by comparing with conventional SHM approaches. In this study, some of the most famous landmark structures such as long span bridges are utilized as case studies. This study also investigated the serviceability status of structures by using computer vision-based methods. Subsequently, issues and considerations for computer vision-based measurement in field application are discussed and recommendations are provided for better results. This study also proposes a robust vision-based method for displacement measurement using spatio-temporal context learning and Taylor approximation to overcome the difficulties of vision-based monitoring under adverse environmental factors such as fog and illumination change. In addition, it is shown that the external load distribution on structures (structural input) can be estimated by using visual tracking, and afterward load rating of a bridge can be determined by using the load distribution factors extracted from computer vision-based methods. By combining the structural input and output results, the unit influence line (UIL) of structures are extracted during daily traffic just using cameras from which the external loads can be estimated by using just cameras and extracted UIL. Finally, the condition assessment at global structural level can be achieved using the structural input and output, both obtained from computer vision approaches, would give a normalized response irrespective of the type and/or load configurations of the vehicles or human loads

    HierMUD: Hierarchical Multi-task Unsupervised Domain Adaptation between Bridges for Drive-by Damage Diagnosis

    Full text link
    Monitoring bridge health using vibrations of drive-by vehicles has various benefits, such as no need for directly installing and maintaining sensors on the bridge. However, many of the existing drive-by monitoring approaches are based on supervised learning models that require labeled data from every bridge of interest, which is expensive and time-consuming, if not impossible, to obtain. To this end, we introduce a new framework that transfers the model learned from one bridge to diagnose damage in another bridge without any labels from the target bridge. Our framework trains a hierarchical neural network model in an adversarial way to extract task-shared and task-specific features that are informative to multiple diagnostic tasks and invariant across multiple bridges. We evaluate our framework on experimental data collected from 2 bridges and 3 vehicles. We achieve accuracies of 95% for damage detection, 93% for localization, and up to 72% for quantification, which are ~2 times improvements from baseline methods

    Computer vision-based displacement identification and its application to bridge condition assessment under operational conditions

    Get PDF
    Bridge damage detection is crucial for ensuring the safety and integrity of the bridge structure. Traditional methods for damage detection often rely on manual inspections or sensor-based measurements, which can be time-consuming and costly. In recent years, computer vision techniques have shown promise in bridge displacement measurement and damage detection. The objective of this study is to extract reliable features from displacement measured with computer vision-based method that are sensitive to structural condition change while robust to the variation of operational condition. In particular, thisresearch paper presents a novel approach for bridge damage detection using an indicator defined based on the transverse influence ratio (DTIR) from computer vision-based displacement measurements. The proposed method utilizes computer vision algorithms to extract bridge girder displacement responses under moving load. The DTIR indicator, defined as the vehicle-induced bridge quasi-static displacement ratio between two adjacent girders, is extracted as the damage-sensitive feature. Theoretical derivation proves that DTIR indicator is only related to the structural condition and the transverse position of a vehicle over the deck, while independent of the variation of vehicle weight and speed. To validate the effectiveness of the proposed method, a series of drive-by experiments were performed on a multi-girder beam bridge with different structural conditions. The results demonstrated the capability of the proposed approach in accurately detecting the occurrence and possible location of structural damage. Furthermore, the paper discusses the advantages and limitations of the DTIR indicator for bridge damage detection, as well as how to generalize the proposed method to bridges with more than two traffic lanes. In conclusion, the proposed method offers a promising solution for low cost, easy deployable and scalable health monitoring solution for bridges under operating conditions

    Computer Vision Based Structural Identification Framework for Bridge Health Mornitoring

    Get PDF
    The objective of this dissertation is to develop a comprehensive Structural Identification (St-Id) framework with damage for bridge type structures by using cameras and computer vision technologies. The traditional St-Id frameworks rely on using conventional sensors. In this study, the collected input and output data employed in the St-Id system are acquired by series of vision-based measurements. The following novelties are proposed, developed and demonstrated in this project: a) vehicle load (input) modeling using computer vision, b) bridge response (output) using full non-contact approach using video/image processing, c) image-based structural identification using input-output measurements and new damage indicators. The input (loading) data due vehicles such as vehicle weights and vehicle locations on the bridges, are estimated by employing computer vision algorithms (detection, classification, and localization of objects) based on the video images of vehicles. Meanwhile, the output data as structural displacements are also obtained by defining and tracking image key-points of measurement locations. Subsequently, the input and output data sets are analyzed to construct novel types of damage indicators, named Unit Influence Surface (UIS). Finally, the new damage detection and localization framework is introduced that does not require a network of sensors, but much less number of sensors. The main research significance is the first time development of algorithms that transform the measured video images into a form that is highly damage-sensitive/change-sensitive for bridge assessment within the context of Structural Identification with input and output characterization. The study exploits the unique attributes of computer vision systems, where the signal is continuous in space. This requires new adaptations and transformations that can handle computer vision data/signals for structural engineering applications. This research will significantly advance current sensor-based structural health monitoring with computer-vision techniques, leading to practical applications for damage detection of complex structures with a novel approach. By using computer vision algorithms and cameras as special sensors for structural health monitoring, this study proposes an advance approach in bridge monitoring through which certain type of data that could not be collected by conventional sensors such as vehicle loads and location, can be obtained practically and accurately

    Utilizing the system instantaneous frequency for the structural health monitoring of bridges

    Get PDF
    This thesis focuses on the time-frequency analysis of the vehicle-bridge dynamic interaction response to identify the time-dependent resonances of railway bridges which are incorporated into a damage detection approach, rather than only system identification. Most of the current system identification techniques applied to bridges are based on the free vibration response analysis. It is known that the bridge free vibration response is sensitive to environmental conditions such as temperature and it is not sufficiently sensitive to damage. Input-output modal analysis or output-only modal analysis are the other most used techniques for the bridge system identification. The train-bridge dynamic response, obtained during passage of the train is potentially more sensitive to damage, but also a more complex signal to analyze. First of all, it is a nonstationary signal that is not valid for modal analysis. In addition to the time-variant nature, the vehicle-bridge dynamic response can show closely-spaced spectral components response. These features disrupt the performance of the most advanced signal processing techniques. This thesis therefore applies a recently developed technique, Wavelet Synchrosqueezed Transform (WSST) to extract the Instantaneous Frequencies (IFs) of the Vehicle-Bridge Interaction (VBI) system response. A comparative study is performed on the various commonly used time-frequency analysis techniques. The obtained results were further validated using field measurements on a real bridge. Subsequently, a concept for damage detection in (railway) bridges based on the instantaneous frequency analysis of the bridge’s forced and free vibration responses is proposed. Within this concept, based on the bridge natural frequency extracted from the bridge free vibration, a healthy baseline is obtained of the bridge forced vibration response. The shape correlation and the magnitude variation are proposed to distinguish between the global characteristics of the bridge baseline induced by variable operational conditions and the local deviations caused by damage. of the baseline deviation is damage, then the magnitude variation can be used as a damage index. The results of the numerical studies show that trains with single suspension systems cause more pronounced changes in the bridge’s frequency response, specifically the Vehicle-Induced Delta Frequency (VIDF) and Damage-Induced Delta Frequency (DIDF), than dual suspension trains

    Review on smartphone sensing technology for structural health monitoring

    Get PDF
    Sensing is a critical and inevitable sector of structural health monitoring (SHM). Recently, smartphone sensing technology has become an emerging, affordable, and effective system for SHM and other engineering fields. This is because a modern smartphone is equipped with various built-in sensors and technologies, especially a triaxial accelerometer, gyroscope, global positioning system, high-resolution cameras, and wireless data communications under the internet-of-things paradigm, which are suitable for vibration- and vision-based SHM applications. This article presents a state-of-the-art review on recent research progress of smartphone-based SHM. Although there are some short reviews on this topic, the major contribution of this article is to exclusively present a compre- hensive survey of recent practices of smartphone sensors to health monitoring of civil structures from the per- spectives of measurement techniques, third-party apps developed in Android and iOS, and various application domains. Findings of this article provide thorough understanding of the main ideas and recent SHM studies on smartphone sensing technology

    Structural Health Monitoring With Emphasis On Computer Vision, Damage Indices, And Statistical Analysis

    Get PDF
    Structural Health Monitoring (SHM) is the sensing and analysis of a structure to detect abnormal behavior, damage and deterioration during regular operations as well as under extreme loadings. SHM is designed to provide objective information for decision-making on safety and serviceability. This research focuses on the SHM of bridges by developing and integrating novel methods and techniques using sensor networks, computer vision, modeling for damage indices and statistical approaches. Effective use of traffic video synchronized with sensor measurements for decision-making is demonstrated. First, some of the computer vision methods and how they can be used for bridge monitoring are presented along with the most common issues and some practical solutions. Second, a conceptual damage index (Unit Influence Line) is formulated using synchronized computer images and sensor data for tracking the structural response under various load conditions. Third, a new index, Nd , is formulated and demonstrated to more effectively identify, localize and quantify damage. Commonly observed damage conditions on real bridges are simulated on a laboratory model for the demonstration of the computer vision method, UIL and the new index. This new method and the index, which are based on outlier detection from the UIL population, can very effectively handle large sets of monitoring data. The methods and techniques are demonstrated on the laboratory model for damage detection and all damage scenarios are identified successfully. Finally, the application of the proposed methods on a real life structure, which has a monitoring system, is presented. It is shown that these methods can be used efficiently for applications such as damage detection and load rating for decision-making. The results from this monitoring project on a movable bridge are demonstrated and presented along with the conclusions and recommendations for future work

    Damage identification in civil engineering infrastructure under operational and environmental conditions

    Get PDF
    Tese de doutoramento. Engenharia Civil. Faculdade de Engenharia. Universidade do Porto. 201
    • …
    corecore