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ABSTRACT 

The objective of this dissertation is to develop a comprehensive Structural Identification 

(St-Id) framework with damage for bridge type structures by using cameras and computer vision 

technologies. The traditional St-Id frameworks rely on using conventional sensors. In this study, 

the collected input and output data employed in the St-Id system are acquired by series of vision-

based measurements. The following novelties are proposed, developed and demonstrated in this 

project: a) vehicle load (input) modeling using computer vision, b) bridge response (output) using 

full non-contact approach using video/image processing, c) image-based structural identification 

using input-output measurements and new damage indicators. The input (loading) data due 

vehicles such as vehicle weights and vehicle locations on the bridges, are estimated by employing 

computer vision algorithms (detection, classification, and localization of objects) based on the 

video images of vehicles. Meanwhile, the output data as structural displacements are also obtained 

by defining and tracking image key-points of measurement locations. Subsequently, the input and 

output data sets are analyzed to construct novel types of damage indicators, named Unit Influence 

Surface (UIS). Finally, the new damage detection and localization framework is introduced that 

does not require a network of sensors, but much less number of sensors. 

The main research significance is the first time development of algorithms that transform 

the measured video images into a form that is highly damage-sensitive/change-sensitive for bridge 

assessment within the context of Structural Identification with input and output characterization. 

The study exploits the unique attributes of computer vision systems, where the signal is continuous 

in space. This requires new adaptations and transformations that can handle computer vision 

data/signals for structural engineering applications. This research will significantly advance 
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current sensor-based structural health monitoring with computer-vision techniques, leading to 

practical applications for damage detection of complex structures with a novel approach. By using 

computer vision algorithms and cameras as special sensors for structural health monitoring, this 

study proposes an advance approach in bridge monitoring through which certain type of data that 

could not be collected by conventional sensors such as vehicle loads and location, can be obtained 

practically and accurately. 
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CHAPTER ONE: INTRODUCTION 

Vision based Approach in Structural Health Monitoring Practices 

Maintenance and safe operation of civil structures such as bridges, tunnels, stadiums, 

airports etc., require major investment and funds, especially in most of the developed countries 

where the civil engineering systems were built almost a hundred years ago. To help the owners of 

those structures manage their assets, assess the health of both old and new structures for 

maintenance and operation with limited funds, the need for efficient, cost-effective tools and 

technologies is very well established. Traditional maintenance and inspection of civil structures 

heavily rely on visual inspections, whose drawbacks have been sufficiently studied and pointed 

out (Phares, Washer, Rolander, Graybeal, & Moore, 2004). As an alternative practicing, Structural 

Health Monitoring (SHM) has been acknowledged as the most efficient approach for assessment 

of structures’ health and performance, providing valuable information for better decision-making. 

Due to the increasing demand of structural assessment, SHM has been studied by numerous 

researchers worldwide especially over the last two decades.  

In general, SHM utilizes advanced sensing technologies to measure the effects of input 

(naturally or artificially induced) and output (responses of structures) in order to track structural 

behavior towards more objective assessment of structures. Any change that is interpreted as an 

alteration of routine structural behavior can be a possible early onset of damage, raising a flag 

leading to a more in-depth investigation to produce information related to structural integrity. So 

far, many novel SHM methods, frameworks, and algorithms have been proposed and implemented 

for some certain cases but unfortunately there has not been a widespread adoption in practice. 

Several reasons to explain this observation are pointed out (F Necati Catbas & Kijewski-Correa, 
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2013). Hardware requirement of SHM systems is one of the challenges as many systems require 

complex field installation and maintenance for the sensors and the data acquisition (DAQ) systems. 

In addition, installation along with cost of these systems are generally quite expensive. Thus, 

possible use of non-contact measurement methods has received interest recently for inexpensive 

and/or practical field implementation purposes. It also motivates for paving a new route in SHM 

involving deployment of advanced image processing and computer vision techniques.  

Vision based methods are acknowledged as a potential approach in SHM field due to 

emerging of related technologies (Webb, Vardanega, & Middleton, 2014). Undoubtedly, the most 

advantageous side of computer vision-based methods is non-contact implementation that 

accelerates inspection speed and reduces maintenance cost of structural assessments. Some 

challenges related to surface damage of structures are effectively solved by using image processing 

such as detection, and quantification of cracks and delamination of concrete (Jahanshahi & Masri, 

2012; Kabir, Rivard, He, & Thivierge, 2009; Matsumoto, Mitani, & Catbas, 2015; T. Yamaguchi 

& Hashimoto, 2010; Yin, Wu, & Chen, 2014) and pavement (Oliveira & Correia, 2013; Zou, Cao, 

Li, Mao, & Wang, 2012). Measuring displacements of structures using vision based methods is 

also favored in the SHM community with numerous studies (Busca, Cigada, Mazzoleni, Tarabini, 

& Zappa, 2013b; Lee, Fukuda, Shinozuka, Yun, & Cho, 2007; Lee & Shinozuka, 2006; Santos, 

Costa, & Batista, 2012; Wahbeh, Caffrey, & Masri, 2003). Regarding structural identification 

systems for decision making, some researchers propose hybrid sensor-camera monitoring systems 

while utilizing cameras and computer vision techniques for obtaining traffic information inputs (F. 

Necati Catbas, Zaurin, Gul, & Gokce, 2012; Elgamal et al., 2003; Fraser, 2006; R Zaurin & Catbas, 

2007; R. Zaurin & Catbas, 2010).  
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Background of Bridge System 

Bridge network is always considered as one of the most essential components of civil 

infrastructure systems due to the vast amount of people and automobile that utilize it every day. 

For example, bridges are the key links in transportation grid helping passengers over natural 

obstacles such as rivers, valleys, or other roads. They have a direct influence on economy and 

human life. Well-operated bridges bring prosperity and convenience while damaged or collapsed 

bridges yields severe unwanted consequences such as terminated logistical flow and traffic jam.  

As to structural engineering, bridges are special types of structures commonly working 

under difficult situations such as limited loading and harsh ambient conditions. Thus, it is seen that 

many bridges in the United States and their counterparts worldwide have been deteriorated and 

have lost some of their load carrying capacity over their life-cycles due to structural aging, lack of 

caring, and accidental effects. The 2013 assessment report issued by the American Society of Civil 

Engineers (ASCE) indicates that even though just below 11% of the nation's bridge are rated as 

structurally deficient, those bridges constitute one-third of total bridge decking area in the country. 

The report also states that $20.5 billion is needed to invest annually to eliminate the deficient 

bridge backlog by 2028. It means that in case there is inexistence of effective methods for 

inspection and maintenance of the nation’s bridges, the goal for eliminating the deficient bridges 

will be never accomplished since the annual budget is very limited. 

It is acknowledged that a great deal of money can be saved by early diagnosis of bridge 

problems as well as fixing and retaining them in service rather than replacing the damaged 

components or rebuilding new structures. Although most bridges are assessed via periodic visual 

inspection, the drawbacks of this method have been well studied and pointed out (Aktan, Chase, 
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Inman, & Pines, 2001; Phares et al., 2004). For example, the main shortcomings are denoted as 

follows: 

 Incorrect Judgments of Visual Inspections: So far, bridge inspection and maintenance 

have been visual tasks. Based on a schedule, inspectors visit a particular bridge 

followed by an inspection with bare eyes, and then subjective evaluation. Hence, the 

inspection results are biased depending on the personal opinions related to the 

experience of various inspectors. In addition, the challenge of access to numerous 

structural elements may cause inspectors to check possible deficiencies from distance, 

which results in incorrect identification of an initial damage. As a confirmation, a report 

issued by Federal Highway Administration's NDE Center reveals that 56% of the short-

to-medium span bridges graded by visual inspection as being in average condition are 

incorrect (Turner Fairbanks Highway Research Center 2005). 

 Lack of Global Damage Evaluation: The damages identified by bridge inspectors such 

as cracks, rusty members, leaking of members, etc. are considered as local damage. 

Even if these conclusions are correct, evaluating the effects of these damages to the 

global health of structures is still a challenge (Aktan et al., 2001).  

Research Goal and Objectives 

Motivated by the background of bridge system and also inspired by the promising 

applications of vision-based approach in SHM, the research goal is to propose a novel Structural 

Identification (St-Id) framework for assessment of bridge structures by deploying series of non-

contact measurements based on advanced computer vision techniques. The collected vision based 

data is analyzed to form new types of damage indicators. Finally, the new damage indicators are 
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utilized for developing a damage identification algorithm (e.g. damage detection and damage 

localization). This research advances current sensor-based SHM for bridges by using camera-

based implementation, enabling practical applications for broad adoption in Bridge Health 

Monitoring (BHM). The schema of research is illustrated as in Figure 1, and the detail objectives 

are listed as follows. 

 

Figure 1: Schema of the vision-based bridge St-Id system 

 Objective 1 – A new fully non-contact displacement measurement for bridge structure 

by means of image key-points: Selection of structural response type to be measured and 

method for acquisition is always the first step of any SHM implementation. Since 

displacement is a sort of powerful structural response that can be acquired wirelessly, 

introducing a fully contactless displacement measurement method is the first objective 

of this study. Besides, the fully contactless displacement measurement proposed for 
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this particular St-Id system can be used for different applications in civil engineering 

on a vast variety of structures. 

 Objective 2 – Developing a framework for estimating traffic vehicle weights and 

vehicle locations by employing object detection and localization algorithms on traffic 

surveillance images: In general, Bridge Health Monitoring studies are implemented 

with the lack of vehicle information. It is due to the fact that the traffic vehicle data has 

not been comprehensively obtained yet (e.g. multiple vehicles, random route of 

vehicles etc.). In addition to that, the test-truck deployment requires permission for 

bridge closure. Thus, a framework for estimating traffic vehicle information such as 

weights and locations is proposed for complimenting the structural response data (i.e. 

structural displacements obtained as context in Objective 1).  

 Objective 3 – Construction of a new damage indicator for bridge health monitoring: 

Unit Influence Surface: Since both the input data (traffic vehicle information) and the 

output data (structural displacements) can be obtained, a new damage indicator named 

the displacement Unit Influence Surface (UIS) is proposed. Unlike current damage 

indicators that solely demonstrate structural behaviors, the introduced damage indicator 

consists of not only structural responses but also geometric components of responses. 

It enables the capability of damage localization by using a single UIS. In addition, the 

UIS can be obtained by a non-contact method without conventional sensors. This is 

due to the fact that the data for UIS construction is acquired without any contact by 

cameras and vision techniques (ref. Objective 1 & 2). 

 Objective 4 – Bridge damage detection and localization based on limited measurement 

locations (sensors) by employing the new damage indicator UIS: Although damages 
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can be directly detected by establishing a sort of binary classifiers from damage 

indicators (features), their locations are estimated based on corresponding sensor 

positions. Hence, a conventional damage identification requires a dense array of 

sensors. The proposed damage identification method has employed the geometric 

components of the new damage indicator UIS for localizing damage. Therefore, the 

framework can do both detection and localization without the need for multiple 

measurement locations or a sensor array. Since the new proposed framework does not 

require a network of sensors, it enables the possibility of a low-cost and convenient 

SHM implementation. 

Organization of Dissertation 

This dissertation is presented in the form of journal template. Except Chapter 1 which is 

given as the introduction of the dissertation, four (4) previously mentioned Objectives are broken 

down into corresponding Chapters 2, 3, 4, and 5 as independent journal papers. Each Chapter is 

introduced with the same template comprising of Introduction, Chapter Objectives, Theoretical 

Background, Verifications, and Chapter Conclusions sections. Finally, Chapter 6 summarizes the 

theoretical highlights as well as the results of every previous Chapters (2, 3, 4, and 5). The 

novelties and distributions of those proposals are also listed and pinpointed in Chapter 6. 

Furthermore, all disadvantages and challenges of the introduced frameworks are brainstormed and 

discussed, especially for further real-life implementation.  
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CHAPTER TWO: COMPLETELY CONTACTLESS DISPLACEMENT 

MEASUREMENT OF STRUCTURES USING COMPUTER VISION 

BASED APPROACH 

Introduction 

Reliably obtaining structural responses and tracking them for decision-making purposes is 

the first critical step for SHM. A change in dynamic and/or static response trend of a structure 

would be an indicator of damage occurring on the structure or some other structural issues that 

need to be evaluated. Most fundamental and common responses employed in SHM are 

acceleration, strain, tilt, displacement since these can clearly reflect both local and global behaviors 

of an existing structure under various loading conditions. Moreover, out of these common response 

types, displacement is arguably the most important one as the most developed performance-based 

design is direct displacement-based design where performance is related to acceptable damage and 

damage to displacement. As such displacement can be directly used for safety and serviceability 

limit state estimation despite displacement poses a particular measurement challenge due to 

reference requirement.  Motivated by those reasons, this Chapter is aimed to develop a completely 

contactless, cost-effective and practical displacement measuring method for real-life structures 

where displacement monitoring might not be easy or possible. 

Traditionally, displacement sensors such as linear variable differential transformers 

(LVDTs), slide wire potentiometer (SWPs) or dial gauges have been utilized to collect 

displacement responses. These classical sensors are quite convenient to use in laboratories; 

however, are not practical to deploy on a real-life structure due to several reasons such as the need 

for stationary platforms near measurement points to mount sensors, and limitation of the sensor 

range. There are other proposed approaches to tackle those drawbacks of classical sensors such as 
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Global Position System (GPS), Interferometric Radar, Laser Doppler Vibrometer (LDV), and 

Scanning Laser Vibrometer. Although radar and laser based methods provide high precision, they 

require very high cost equipment. Currently, the GPS system costs are coming down, however the 

limitations due to GPS accuracy as well as possible sampling rates remain as issues to be solved. 

Those limitations make the GPS system be commonly suitable for specific applications such as 

cable-bridge monitoring studies due to those structures have larger displacement range and low 

natural frequencies (Im, Hurlebaus, & Kang, 2011). To address all above limitations, vision-based 

monitoring has been exploded due to its practical deployment and cost-effectiveness. Regarding 

vision-based displacement and vibration measurement, several studies proposed algorithms for 

determining deflection and vibration from multi-points on a small beam by means of matching 

detected edges or markers between consecutive image frames collected by a digital camera 

(Cantatore, Cigada, Sala, & Zappa, 2009; Jurjo, Magluta, Roitman, & Gonçalves, 2010; Patsias & 

Staszewskiy, 2002; Poudel, Fu, & Ye, 2005; Rucka & Wilde, 2005; Shi, Xu, Wang, & Li, 2010; 

Sładek et al., 2013). Even though most of these studies could obtain both static deflection and 

dynamic vibration of a beam, the algorithms were limited for laboratory implementations. This is 

due to the fact that the studies were only practical for a small structure, hence the entire structure 

could be taken inside an image view.  

Conducting SHM studies for real-life structures using computer vision-based techniques 

has been explored by some researchers due to practical nature of the measurements. In 2003, 

Jauregui et al. conducted a series of tests in New Mexico State to measure displacements of targets 

attached under main girders of several bridges by identifying their three-dimensional (3-D) 

locations (Jauregui, White, Woodward, & Leitch, 2003). By obtaining images of targets at 

different viewpoints, the authors successfully determined 3-D locations of targets by utilizing the 
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principle of triangulation algorithm (a basic computer vision technique). Another research to 

determine displacements of a real structure was implemented in 2006 at a steel bridge in Korea 

(Lee & Shinozuka, 2006). In this study, the authors developed a practical vision system that could 

obtain displacement data at real-time speed. Using a special target containing four black dots on 

white background, these dots could be detected in terms of color filtering for tracking their motions 

in time domain. Moreover, the pre-defined distances among the dots had be utilized for converting 

from pixel unit to engineering unit (millimeter). That approach was later improved to obtain 

displacements from multiple locations of structures by synchronizing numerous vision systems 

with a wireless network (Lee et al., 2007).  

Application of normalized cross correlation (NCC) imaging algorithm has become quite 

popular for vision-based displacement measurement methods. By calculating correlation of ROIs 

(region of interest) of two target images, movements of the ROIs between consecutive imaging 

frames were determined even at sub-pixel accuracy. A comprehensive study using this NCC 

approach for vibration monitoring was carried out (S.-W. Kim & Kim, 2013). In that study, several 

powerful image processing techniques were employed such as digital image correlation (DIC), 

image transform function (ITF), and sub-pixel analysis to make their method robust and precise. 

The study had been conducted for assessment of cables on a suspension bridge including natural 

frequency estimation and cable-tension verification. Some other researchers deployed the NCC 

based displacement monitoring systems for assessment of bridge sub-structures (Sung, Miyasaka, 

Lin, Wang, & Wang, 2012) as well as for finite element model updating (S.-W. Kim, Lee, Kim, & 

Kim, 2013). That approach was also successfully conducted on laboratory experiments and on 

several other bridges in Korea and Hong Kong (S.-W. Kim et al., 2013; Ye et al., 2013). Lately, 

some targetless practices have also been implemented by utilizing the NCC imaging algorithm on 
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natural textures of structure images. However, only pixel-based vibration for identifying structural 

characteristics was interested during these experiments (S. W. Kim, Jeon, Kim, & Park, 2013). 

Additionally, inconsistent results were observed due to the effects of low contrast on structure 

textures (Busca, Cigada, Mazzoleni, Tarabini, & Zappa, 2013a).   

Motivation and Objectives 

Although vision-based SHM systems for structural displacement and vibration monitoring 

have been proposed over a decade, the main requirement of these systems has not really changed. 

A general framework for conducting a vision-based displacement measurement includes (i) 

Capturing video clips of targets attached on monitored locations using an extra-tele lens camera, 

(ii) Identifying dominant regions on targets by means of image processing, (iii) Determining image 

features of these dominant regions to match them between consecutive frames, and (iv) Calculating 

pixel-based displacements; and then converting them to the engineering unit (millimeter) by using 

standards on the targets (e.g. pre-defined shape dimensions). Following these steps, a target (e.g. 

a plate consisting of figures such as circles or rectangles with known dimensions) plays ultimately 

important roles for image processing such as being a dominant marker of measurement location, 

and being a conversion standard for transferring displacements from pixel unit to engineering unit 

(e.g. inch, millimeter). Target attachment on real life structures such as bridges, high rise buildings, 

towers etc. may be cumbersome in many cases due to the limited access to target locations as well 

as the effort needed for target attachment using specialized equipment such as a snooper truck and 

high scaffold systems. Requirements to utilize targets make such vision-based displacement 

measurement not a fully non-contact method, limiting the real life implementations so far. Besides 

this limitation, most of previous vision-based displacement measurement methods lack of a 
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comprehensive study for evaluating accuracy of the proposals. Since users do not know the 

accuracy of these methods (e.g. what is the minimum displacement the method can reliably be 

obtained?), it is difficult for them to agree upon using a new measurement method/approach in 

their SHM studies. 

The goal of this Chapter is to further improve displacement monitoring by developing a 

non-target vision-based method that will address the limitation of target attachment. To discard 

the physical targets in general vision-based displacement monitoring framework, three objectives 

are proposed as follows. 

 Exploration of a new type of virtual marker on measurement locations called imaging 

key-points that can replace conventional physical targets 

 Development of a conversion method based on the camera calibration technique to 

transfer pixel-based displacements to engineering-based (millimeter) displacements 

since physical targets no longer exist. 

 Proposing approaches to handle challenges such as low contrast, changing illumination 

and outliers in matching key-points  

By achieving fully non-contact monitoring, implementing the proposed method will be 

more practical, especially for real-life structures. Without using the target attachment in a vision-

based displacement monitoring, most of the field works and requirements such as installing targets, 

sensors, and DAQ systems, as well as wiring cables are not needed anymore. That improvement 

enables not only a cost-effective measurement method but also a possibility to obtain structural 

responses from difficult access locations. With the implementation advantages plus the generic 

response that can be obtained, the method gives an opportunity for developing a more 

comprehensive and practical SHM framework.  



13 

 

The proposed framework is validated on a 4-Span Bridge model at the University of 

Central Florida (UCF) Structures Laboratory. Subsequently, field verifications are conducted on 

an elevated guideway structure and on a real-life stadium during foot-ball games. The obtained 

results have successfully been verified using those conventional sensors such as LVDTs and 

accelerometers, which are presented on subsequent sections.     

Theoretical Background 

The implementation of the non-target vision-based displacement and vibration monitoring 

is summarized in six steps (Figure 2). First, an image sequence of a particular measurement 

position is acquired using a low-cost camera. These images are processed to extract the key-points, 

which are then matched between consecutive frames to determine pixel based displacements. The 

pixel based displacements are then converted to engineering units (e.g. inch, millimeter).  
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Figure 2: Overview of the non-target vision-based displacement measurement method 

Vision Acquisition System 

As an important goal of this study, a low-cost and practical vision acquisition system is 

designed so that data can be acquired very easily. Minimum requirements for this vision system 

include: 

 A low-cost high density (HD) camcorder with a sample rate of 60 frames per second 

(e.g. Canon VIXIA HF R42 or similar ones)  

 A laser distance measurer which can obtain both distance and angle between the 

measurement location and the camera  

 Miscellaneous equipment such as a tripod, a checkerboard, etc. 

Acquiring Video Clip
at Measurement Locations

Key-points Extraction from 
Video Clip Frames as Virtual Markers

Matching Key-points

False Matches Detection using
Outliers Discarding Algorithm

Final Matches to Get Dynamic
Pixel Displacement 

Converting Pixel Displacement To Engineering Unit
using Camera Calibration
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New Virtual Markers - Image Key-points 

Image matching is a fundamental aspect of many problems in computer vision including 

object or scene recognition, rebuilding 3D structure, stereo, and motion tracking (Lowe, 2004). To 

match different images of the same object, researchers commonly extract image features of the 

object that are invariant to such as image translation, rotation, scaling and illumination changing. 

The image matching technique utilizes a general procedure for vision-based displacement 

monitoring while the matched and tracked objects are measurement positions. Traditionally, 

previous studies for vision-based displacement measurement employ physical targets as a type of 

predefined image feature; consequently, target attachment is a requirement. A target including 

known-dimension circles or rectangles provides dominant markers (e.g. center and/or corner points 

of those geometrical shapes) for matching and tracking easily by means of basic image processing 

algorithms. In this paper, due to the shortcomings of using target attachment as mentioned in the 

previous sections, image key-points (a natural image feature) are used as virtual markers of 

measurement locations that replacing any physical targets.  

In computer vision field, a key-points is defined as a special pixel that has dominant 

textures or characteristics comparing to its neighbors. Even though there are different types of key-

points obtained by different computer vision algorithms, the robust key-points are interested due 

to their invariance, reliability and consistency. Once the robust key-points on monitoring positions 

are detected, motions of these structural locations will be determined in terms of the key-points 

movements, which can be tracked across consecutive image frames. In the pool of extracting robust 

key-points algorithms, following methods have been acknowledged as the most robust techniques 

including Harris Corner Point (Harris & Stephens, 1988), Scale Invariant Feature Transform 

(SIFT) (Lowe, 2004), Speed-up Robust Feature (SURF) (Bay, Ess, Tuytelaars, & Van Gool, 2008), 
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Binary Robust Invariant Scalable Key-points (BRISK) (Leutenegger, Chli, & Siegwart, 2011), and 

Fast Retina Key-points (FREAK) (Alahi, Ortiz, & Vandergheynst, 2012). In this study, the Harris 

Corner Point and the Scale Invariant Feature Transform (SIFT) methods are explained due to their 

basic and fundamental insights, which are then upgraded and expanded for the next generation of 

key-point related algorithms. 

Harris Conner Points 

One of the beginning algorithm for extracting a sort of key-points is introduced by Harris 

and Stephens (Harris & Stephens, 1988). In that study, the key-points are acquired by means of 

deploying the Hessian matrix, a square matrix of second-order partial derivatives of a multivariable 

function. Since an image can be represented as a discrete two-variable function (or so-called a 

matrix) of intensity values I(x, y) with respect to x-row and y-column, the Hessian matrix of an 

image describes the local curvature of the function I(x, y), which is shown in Equation 1. 

      
𝐻 =  𝑤 ⊗ [

𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ] (1) 

where ⊗ is a mathematical operator called convolution applied to two matrices in this certain case. 

A Gaussian kernel w is a filtering window, which is commonly convolved with an image to discard 

noises. 𝐼𝑥
2 and 𝐼𝑦

2 are second-order derivatives of the image corresponding to x-coordinate and y-

coordinate; while 𝐼𝑥𝐼𝑦 is a mixed derivative of the image with respect to both x and y-directions. 

The first order derivatives Ix and Iy of the image can be found by using different derivative kernels 

kx and ky, with respect to x and y-coordinates respectively. Then, the second order derivatives 𝐼𝑥
2, 

𝐼𝑦
2 and 𝐼𝑥𝐼𝑦 are determined by convolving the kernels kx and ky with the first order derivatives as 

follows. 
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𝑘𝑥 = [

−1 0 1
−1 0 1
−1 0 1

]  𝑎𝑛𝑑 𝑘𝑦 = [
−1 −1 −1
0 0 0
1 1 1

] (2) 

Where  

      𝐼𝑥 = 𝑘𝑥 ⊗ 𝐼(𝑥, 𝑦) 

𝐼𝑦 = 𝑘𝑦 ⊗ 𝐼(𝑥, 𝑦) 
(3) 

And 

      𝐼𝑥
2 = 𝑘𝑥 ⊗ 𝐼𝑥 

𝐼𝑦
2 = 𝑘𝑦 ⊗ 𝐼𝑦 

𝐼𝑥𝐼𝑦  =  𝑘𝑦 ⊗ 𝐼𝑥 𝑜𝑟 =  𝑘𝑥 ⊗ 𝐼𝑦 

(4) 

Due to the Gaussian filtering window w being a constant matrix, this part can be embedded 

inside the Hessian matrix, hence, Equation 1 can be rewritten as follows.  

      𝐻 = [
𝐴 𝐶
𝐶 𝐵

]  (5) 

where A, B, and C are matrices determined as 

      𝐴 =  𝑤 ⊗ 𝐼𝑥
2 

𝐵 =  𝑤 ⊗ 𝐼𝑦
2 

𝐶 =  𝑤 ⊗ 𝐼𝑥𝐼𝑦  

(6) 

To detect the key-points of the image, Harris and Stephens proposed a response matrix F 

(Equation 7) by analyzing the eigenvalues of the Hessian matrix (Harris & Stephens, 1988). Then, 

once a threshold for F is chosen and utilized, regions of positive key-points can be identified. To 

obtain key-point locations, the local maxima algorithm is executed on these positive key-point 

regions at a sub-pixel level of accuracy. For example, the key-points obtained as corner points of 

a checkboard is shown in Figure 3 by implementing the Harris corner detection. 
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      𝐹 =  𝐴𝐵 − 𝐶2 − 𝑘(𝐴 + 𝐵)2  (7) 

where k is an empirical factor, k = 0.04-0.06. 

 

Figure 3: Key-points (red dots) as corner points of a checkboard 

Scale Invariant Feature Transform (SIFT) Algorithm 

The SIFT algorithm is a robust key-point detection technique that can extract the key-points 

that are highly invariant with respect to rotation, translation, scale, and changing of illumination 

condition. Following the SIFT method, an input image I(x, y) is filtered by using the Gaussian 

kernel to discard noise that commonly dominate key-point candidates. Since it is impossible to 

find the most suitable Gaussian kernel, a scale-space of Gaussian functions corresponding to 

different standard deviation values of σi, namely G(x,y,σi), is utilized to scan all potential 

candidates of key-points at every scale of filtering. The scale space of filtered images L(x,y,σi) is 

derived following Equation 8.  

      𝐿(𝑥, 𝑦, 𝜎𝑖) =  𝐺(𝑥, 𝑦, 𝜎𝑖) ⊗ 𝐼(𝑥, 𝑦) (8) 

Where  
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𝐺(𝑥, 𝑦, 𝜎𝑖) =  

1

2𝜋𝜎𝑖
2
𝑒−(𝑥2 + 𝑦2 )/2𝜎𝑖

2
 (9) 

To efficiently detect key-point locations, differences of two adjacent filtered images (e.g. 

filtered images L(x,y,σi) and L(x,y,σi+1)) have been determined in which the local extrema detection 

algorithm is then applied. Those differences of filtered images D(x,y,σi) can be calculated as 

follows. 

      𝐷(𝑥, 𝑦, 𝜎𝑖) =  𝐿(𝑥, 𝑦, 𝜎𝑖+1) −  𝐿(𝑥, 𝑦, 𝜎𝑖) (10) 

Subsequently, a key-point can be detected at the location which has a local extrema value 

on the differences of filtered images D(x,y,σi). That local extrema detection process is to compare 

the candidate intensity value (marked with X) to its (26) neighbors in 3 x 3 regions at the current 

and adjacent scales (marked with circles) as shown in Figure 4. Consequently, the key-points found 

from the previous step have been tested their robustness to reject the low contract and the poor 

location (e.g. along an edge) candidates. The detailed explanation as well as all related equations 

can be found in (Lowe, 2004).  

 

 

Figure 4: Key-point identification using the local extrema detection algorithm – Modified from a 

figure in (Lowe, 2004) 

Figure 5 shows the detected key-points from an image of a measurement position located 

under the bottom flange of an I-section steel girder. The girder is from a football stadium and is 

D(x,y,σi+1)

D(x,y,σi)

D(x,y,σi-1)

Key-point 
Candidate

Neighbors



20 

 

supported at an elevation of more than 10 meters. Although the coating paint layer makes the 

image low in contrast, more than sixty (60) key-points were detected around the bolt and along the 

weld on the member. 

  

Figure 5: Detected key-points (red stars) on the bottom flange of the I-section steel girder at an 

elevation of more than 10 meters 

Matching Key-points Between Consecutive Images  

The key-points are obtained from a sequence of images following the process described in 

the previous section. To track the key-points over time, key-point matches between two 

consecutive images need to be determined by matching their descriptor vectors. Commonly, a 

descriptor vector of a key-point is extracted from image intensity values of a small patch around 

the key-point since its neighborhood tells more information than itself. A good descriptor describes 

the patch in a way that it is invariant with respect to the image changes (rotation, translation, and 

changing of illumination condition, etc.). As an intuitive example, fingerprint is a very good 

descriptor to identify a person. Although many algorithms have been proposed to obtain different 

types of descriptors, they can be categorized into two families: gradients and orientations based 

descriptors and binary based descriptors.  
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In the first group, researchers have computed the gradients of pixels in the patch which are 

invariant to light intensity. Then, these gradients have been concatenated into a histogram which 

is invariant to rotation to explore orientation of sub-cells on the patch. The descriptor has become 

a vector presenting all gradients and orientations of the patch sub-cells (Bay et al., 2008; Lowe, 

2004). Recently, a new approach has received the attention of the computer vision community 

since it has encoded characteristics of the patch as a binary vector by sampling many logical 

connections ("0" and "1" values) among pixels on the patch (Alahi et al., 2012; Calonder, Lepetit, 

Strecha, & Fua, 2010; Leutenegger et al., 2011). Those logical links may be assigned randomly, 

or pre-defined patterns may be followed. Even though it is difficult to tell what the approach 

outperforms when compared to others, the binary based descriptors can be obtained at a very fast 

computation speed compared to gradient and orientation based descriptors. 

Gradients and Orientations based Descriptors 

Following the approach, a descriptor vector of a key-point is built up from the gradient 

magnitudes and orientations of the key-point neighbors, which can be calculated as following 

Equation 11 & 12. The details of development of descriptor vector from the gradient magnitude 

and orientation values are illustrated in (Lowe, 2004).  

      
𝑚(𝑥, 𝑦) =  √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))

2
+ (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))

2
  (11) 

And 

      
𝜃(𝑥, 𝑦) =  𝑡𝑎𝑛−1 (

𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)
) (12) 

where m(x, y) is the gradient magnitude, and θ(x, y) is the orientation of each neighboring pixel.  
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Once descriptor vectors are determined for every key-points, a key-point on a certain image 

(e.g. image kth on a video sequence) will be matched to another key-point on the next image (k+1)th 

by identifying its nearest neighbor. The nearest neighbor is obtained by determining the minimum 

Euclidean distance between the key-point descriptor vector on the image kth and all other key-point 

descriptor vectors from the image (k+1)th.  

Binary based Descriptors – FREAK algorithm 

Proposed by Alahi et al., the FREAK algorithm is the most recent binary based descriptors 

that utilizes a series of pre-defined logical link patterns inspired by the distribution of receptive 

fields over the human retina (Alahi et al., 2012). The "0" or "1" value of each link in these pre-

defined logical link patterns are simply assigned by comparing the intensity values of two pixels 

at the link ends following Equation 13.  

      
𝐿 = {

1, 𝑖𝑓 𝐼2 − 𝐼1 < 0
0, otherwise

 (13) 

Where L is a logical link value; I1 and I2 are the intensity values at the beginning and ending 

pixels of the link, respectively. Consequently, the FREAK descriptors (V) can be determined as a 

512-dimension binary vector which demonstrates the local region around the key-point.  

      𝑉 = {𝐿1, 𝐿2, … , 𝐿512} (14) 

To match the key-points between two images, their descriptors are compared. As 

descriptors are represented by binary strings, their comparisons are carried out by means of 

measuring the Hamming distances (H) between two binary vectors (Va and Vb). The shortest 

Hamming distance indicates the best match. 

      𝐻 = ∑(𝑉𝑎 𝑋𝑂𝑅 𝑉𝑏) (15) 
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where XOR is a logical operation called “exclusive or” that outputs true (1 value) whenever 

both inputs differ and false (0 value) whenever these inputs turn out to be the same. 

The matching of two key-point sets extracted from two images deploying the binary based 

descriptors is illustrated in Figure 6. Even though the number of key-points obtained from image 

1 and 2 are 60 and 37 respectively, the number of matches determined by the matching algorithm 

is 18. Again, similar to the results obtained by deploying the gradients and orientations based 

descriptors, the results shows some false matches that can even be recognized visually.  

 

Figure 6: (a) Key-points on image 1, (b) Key-points on image 2, (c) The matching result  

(a) (b)

(c)
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False matches and outlier discard algorithm using planar geometric transformation 

Although using descriptors for matching key-points can be considered as the state of the 

art approaches, false-matching problem can be observed. The problem occurs more frequently 

when the tests are conducted under change of illumination or bad light conditions, which is a 

common issue when collecting video clips in the field from real structures. To discard the outliers 

in the pool of matches, a relationship function between two matched key-point sets is determined 

by using the Geometric Transformation technique. Let Si and Si+1 be the two sets of matched key-

points obtained from two consecutive images ith and (i+1)th, so 

      𝑆𝑖 = {K𝑖
1, K𝑖

2, … , K𝑖
𝑛−1, K𝑖

𝑛} 

And 

𝑆𝑖+1 = {K𝑖+1
1 , K𝑖+1

2 , … , K𝑖+1
𝑛−1, K𝑖+1

𝑛 } 

(16) 

Where n is the number of key-points in each matched set; and K is R2 - coordinates (x, y) 

of key-points. A particular matched pair of key-points (Ki
j, Ki+1

j) is detected as the outliers if the 

distance between the projection of Ki
j, which is calculated by the relationship function, and Ki+1

j 

is higher than a pre-set threshold value, for instance, one pixel. 

The relationship between Si and Si+1 can be expressed in Equation 17 and Equation 18 as 

follows. 

      𝑆𝑖 =  𝑇 𝑆𝑖+1 (17) 

Or 

      

[
𝑥𝑖

𝑦𝑖

1 
] =  [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 1

] . [
𝑥𝑖+1

𝑦𝑖+1

1 
] (18) 

where T is the transformation matrix, or the relationship function that maps ith image coordinates 

to (i+1)th image coordinates. 
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𝑇 =  [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 1

] (19) 

The T matrix is established by using a common approach named as the Least Squares Fit 

algorithm for an over-determined system. As a consequence, matches which are not compatible 

with the matrix of T are assigned as outliers and are discarded out of the matched key-point sets. 

The result of this procedure is illustrated in Figure 7.  

The procedure for matching and then rejecting outliers will be repeated for all images along 

the video clip in time domain; and displacements of the measured locations in time history is 

illustrated in Figure 8. 

 

Figure 7. (a) The matches without the outlier discarding algorithm, (b) Final matching result after 

utilizing the outlier discarding algorithm 

(a) (b)
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Figure 8. Displacements of a measured location by matching key-points of its images along the 

video clip. 

Converting pixel based displacement to the engineering unit (e.g. inch, mm) 

It is common to use the physical target not only as a marker but also as a sort of calibrating 

standard in vision-based methods. By knowing the distance between two pre-selected points on 

the target in the image coordinate and the world coordinate, a conversion ratio between pixels and 

engineering units can easily be determined from Equation 20. 

      
𝑅 =  

𝑑

𝐷
     (

𝑝𝑖𝑥𝑒𝑙

𝑚𝑚
) (20) 

Where R is the conversion ratio between the image coordinate and the world coordinate; d 

is the distance in the image coordinate (pixel); and D is the distance in the world coordinate (mm).  
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Even in case of no physical targets, the value of d can easily be determined by measuring 

an imaging object in the pixel unit; however, obtaining the D value may be impossible due to the 

real object being in a position that is out of reach for real-life structures. Here, an alternative 

method is proposed to tackle this problem by establishing a relationship between the conversion 

ratio R and the distance Z from the camera to measurement locations in terms of camera calibration. 

Following the camera theory as illustrated in Figure 9, the value of d can be calculated from 

Equation 21. 

      
𝑑 =  

ℎ

𝑝
     (𝑝𝑖𝑥𝑒𝑙) (21) 

Where h is the object image dimension in the engineering unit (mm); p is the unit length 

of camera sensor (mm/pixel), which may be provided by the camera manufacturer. In addition, the 

triangle similarity theorem allows Equation 22 to be used. 

      h

D
=  

f

Z
    (𝑝𝑖𝑥𝑒𝑙) (22) 

Where f is the focal length of camera; Z is the distance from the camera to the object 

(measurement location). 

 

Figure 9. Camera Theory 

Camera Len

Z

D

C
a
m

e
ra

 S
e
n
s
o
r

f - focal length

h



28 

 

Substituting Equation 21 and Equation 22 into Equation 20 and rearranging gives Equation 

23, in which the conversion ratio R is demonstrated as an inversely proportional function to Z 

value. 

      
𝑅 =  

𝑓

𝑝 ∗ 𝑍
     (

𝑝𝑖𝑥𝑒𝑙

𝑚𝑚
) (23) 

Generally, the ratio 
f

p
 can be calculated via the camera specifications provided by its 

manufacturer; however, this information can hardly be found for the majority of low-cost cameras. 

Due to this reason, the relationship between R and Z values is determined by using a camera 

calibration algorithm. Calibration of a camera is always one time implementation and it is not 

related to the monitoring framework. In this study, a Canon VIXIA HF R42 camcorder is calibrated 

using a checkerboard which possesses 7x10 square shapes of alternating black and white color. 

The dimensions of a unit square are 14.4x14.4mm. By keeping the same zoom factor of the camera 

after collecting video clips from the measurement locations (normally at the highest zoom factor), 

the checkerboard is captured at a series of pre-defined distances of Zcal. The conversion ratio Rcal 

is calculated by Equation 24.  

      
𝑅𝑐𝑎𝑙  =  

𝑑𝑐𝑎𝑙 

𝐷𝑐𝑎𝑙
     (

𝑝𝑖𝑥𝑒𝑙𝑠

𝑚𝑚
) (24) 

Where dcal is the space between two adjacent corner points on the checkerboard measured 

in the image coordinate (pixel). This value can be obtained by utilizing a simple image processing 

on the checkerboard image such as using Harris corner detection method (Harris & Stephens, 

1988). The value of Dcal is the dimension of the unit square on the checkerboard (14.4 mm). The 

results of Rcal values with respect to the variables of Zcal are shown in Table 1. 
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Table 1. The conversion ratio R vs. the distance of Z 

 Zcal 

(m) 

Dcal (World) 

(mm) 

dcal (Image) 

(pixel) 

Rcal 

(pixel/mm) 

Test 1 13.8 14.4 64.6 4.474 

Test 2 12.9 14.4 68.9 4.775 

Test 3 11.9 14.4 74.1 5.135 

Test 4 11.0 14.4 79.6 5.516 

Test 5 10.1 14.4 86.4 5.987 

Test 6 9.2 14.4 94.4 6.545 

Test 7 8.3 14.4 104.3 7.228 

Test 8 7.4 14.4 116.1 8.049 

Test 9 6.5 14.4 131.6 9.117 

Test 10 5.5 14.4 151.6 10.508 

Test 11 4.6 14.4 178.1 12.344 

Test 12 3.7 14.4 218.4 15.113 

Test 13 3.2 14.4 246.6 17.088 

 

Following the expressions derived as given in Equation 20 through Equation 23, it is 

obvious that the relationship between the R and Z values should be inversely proportional. 

Therefore, the results of the calibration tests are curve-fitted to verify this finding and to explore 

the expression of the relationship function. The result is shown in Figure 10; and the graph shape 

confirms the inverse proportionality of the relationship function which is given in Equation 25.     

      
𝑅 =  

63.3

(0.4732 + 𝑍)
     (

𝑝𝑖𝑥𝑒𝑙

𝑚𝑚
)  (25) 
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Figure 10. The relationship between the conversion ratio R vs. the camera distance of Z obtained 

for a Canon VIXIA HF R42 camcorder 

Laboratory Verification 

The proposed computer vision-based monitoring demonstrated first on a small-scale bridge 

at the University of Central Florida (UCF) Structures Lab. The bridge named UCF 4-Span Bridge 

Model consists of two 304.8 cm main continuous spans and two 120 cm approach spans. The 

model deck is 120 cm wide 3.18mm steel sheet compositely connected to two HSS 25x25x3 mm 

steel girders separated 60.96 cm from each other as shown in Figure 11. As a part of various SHM 

studies at the UCF, there are a large number of sensors attached on the model such as strain gages, 

accelerometers, LVDTs, tilt-meters, and Fiber Bragg Grating (FBG) sensors. Moreover, some 

common bridge damage scenarios can be replicated by changing boundary conditions at the 

supports or altering the local stiffness of the girders by losing some bolts to reduce composite 

action of the model elements. To simulate traffic loading, small-scale vehicles are deployed back 

and forth on the bridge deck. In this Chapter, displacements of the small-scale bridge due to traffic 
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induced loading from a small-scale vehicle are obtained by utilizing the non-target vision-based 

displacement measurement method.  

 

Figure 11. The 4-span bridge at the UCF Structural Laboratory 

Experiment design 

For verification purposes, the monitored region is selected as close as possible to the 

location of pre-attached sensors (LVDT and accelerometer) located under the main girder at the 

two-fifth-span point (Figure 12). There is a data acquisition system for simultaneously collecting 

data from all sensors and the camera. To confirm reliability and consistency of the proposed 

method, a total of six (6) tests is conducted by altering small-scale vehicle weights and speeds, as 

well as locations and angular orientations of the camera as detailed in Table 2. A small-scale 

vehicle is driven over the bridge deck following pre-defined loading configurations and speeds. 

As the small-scale vehicle is actually a dynamic load, it induces not only static displacements but 

also dynamic vibrations on the structure. Such obtained displacements and vibrations are presented 

and verified in the following sections.  
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Figure 12. Measured location and experimental setup 

Table 2. The test specifications 

 Speeda 

(m/s) 

Weighta 

(kg) 

Distanceb 

(m) 

Angleb  

degree 

Test 1 0.32 12.3 2.04 0 

Test 2 0.26 12.3 3.74 0 

Test 3 0.27 12.3 3.75 6 

Test 4 0.30 12.3 2.07 11 

Test 5 0.79 12.3 2.04 0 

Test 6 0.37 5.30 2.04 0 

a Speed and Weight of the small-scale vehicle 

b Distance value Z from camera to the measured location; and angular orientation of camera.  

Laboratory results and discussion 

The displacement results at the measurement location of all tests are shown in Figure 13. 

The sample rates of all data sets measured by both LVDT and the proposal vision based method 

are 30 Hz. In each of the graphs, both raw displacement data collected from the LVDT and the 

proposed vision-based method are synchronized and illustrated in a comparative fashion. 

LVDTAccelerometer

Camera
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Figure 13. Comparison of displacement results by using the LVDT and the proposed method 

It is seen that although the experimental setups are different among the tests, displacement 

values determined from the non-target vision-based method highly correlate with the results 

obtained from the LVDT sensor. This observation is even confirmed strongly at every peak of the 

vibration data as shown in the insets in Figure 13. To measure the correlation behavior between 

two datasets, the correlation coefficient factors () are determined by Equation 26 for every 

experiment. In addition, a statistical measure named determination coefficient (R-squared) factors 
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is computed to determine how well the two datasets match together. The R-squared value can be 

calculated using Equation 27.   

      
𝜌 =  

| ∑ (𝑑𝐿(𝑖) − 𝜇𝑑𝐿
) × (𝑑𝑣(𝑖) − 𝜇𝑑𝑣

) 𝑖 |

√∑ (𝑑𝐿(𝑖) − 𝜇𝑑𝐿
)
2

𝑖 √∑ (𝑑𝑣(𝑖) − 𝜇𝑑𝑣
)
2

𝑖

   
(26) 

Where dL and dv are the dynamic displacement values extracted by filtering out the static 

component of the raw data from the LVDT sensor and the proposed vision-based method, 

respectively; and 𝜇𝑑𝐿
 and 𝜇𝑑𝑣

 are the mean values of two above datasets. The values of  vary 

from 0.0 to 1.0; and  shows perfect correlation whereas  indicates no correlation 

between two datasets. 

      
𝑅2  =  1 −

∑ (𝑟𝑣(𝑖) − 𝑟𝐿(𝑖))
2

𝑖

∑ (𝑟𝑣(𝑖) − 𝜇𝑟𝑣)
2

𝑖

     (27) 

Where rL and rv are the raw displacement values obtained by the LVDT and proposed 

vision-based method, respectively; and 𝜇𝑟𝑣 is the mean value of the raw dataset determined by the 

proposed method. The values of R is from 0.0 to 1.0; and the R value of 1.0 implies the perfect 

similarity between two datasets. 

The comparison results between two displacement datasets obtained from a classical sensor 

and a new vision-based method are described in Table 3. As seen in Table 3, maximum and 

minimum static displacements of the bridge model are consistent from Test 1 to 5 based on the 

responses from the same small-scale vehicle weight (12.3 kg). However, the lighter weight vehicle 

(5.3 kg) being utilized at Test 6 induces smaller displacement amplitudes and the ratio of 

displacement amplitudes is similar to the weight ratio. It is also seen that the correlation coefficient 

 values (from 0.929 to 0.971) and the determination coefficient R-squared values (from 0.9987 
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to 0.9998) are close to 1.000, which indicate a very high correlation and similarity between the 

two compared datasets. Hence, the displacements obtained by the non-target displacement 

measurement method show comparable and accurate results when under laboratory condition. 

Table 3. Correlation and error analysis for the proposed method 

 

Vision-based 

Method 
LVDT Error 

Corr. 

(ρ) 

R-

squared 
Max 

Disp.a 

Min 

Disp.a 

Max 

Disp.a 

Min 

Disp.a 

Max 

Disp.a 

Min 

Disp.a 

(mm) (mm) (mm) (mm) (%) (%) 

Test 1 2.45 -0.71 2.47 -0.72 0.8% 1.4% 0.969 0.9997 

Test 2 2.36 -0.64 2.41 -0.67 2.1% 4.5% 0.971 0.9998 

Test 3 2.37 -0.68 2.45 -0.69 3.3% 1.4% 0.961 0.9995 

Test 4 2.46 -0.70 2.48 -0.71 0.8% 1.4% 0.929 0.9995 

Test 5 2.51 -0.74 2.50 -0.74 0.4% 0.0% 0.951 0.9987 

Test 6 1.06 -0.30 1.07 -0.31 0.9% 3.2% 0.938 0.9988 

a The static maximum and minimum displacement values after filtering dynamic behavior. 

Furthermore, the dynamic characteristics of the 4-span bridge model can be captured by 

analyzing the dynamic component of the raw displacement datasets. By FFT-transforming the 

dynamic displacements from time domain to frequency domain, the natural frequencies of the 

bridge model can be identified as shown in Figure 14 at 4.9 Hz, and 6.9 Hz. In the meantime, 

vibration response of the bridge model is collected by using an accelerometer attached at the same 

location captured by the camera. Figure 14 also shows the raw data recorded by using that 

accelerometer; from which the first and second natural frequencies of the structure can be detected. 

The identified frequencies from accelerometer data are 5.2 Hz, and 7.0 Hz that closely match to 

the frequencies of 4.9 Hz, and 6.9 Hz identified using the proposed vision-based method. However, 
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in spite of the good match for the first two frequencies, higher frequencies of the bridge structures 

can only be identified using accelerometer data.    

 

Figure 14. Comparison of identified natural frequencies using the proposed method and the 

accelerometer data 

Through the results of the non-target vision-based displacement measurement method 

described in this section, it is seen that the proposed algorithm can not only obtain static 

displacements but also identify dynamic characteristics of the 4-span bridge model. The outcomes 

from different experimental setups confirm the accuracy of the proposed method consistently in 

the laboratory. For further verification, real-life structures are conducted and the corresponding 

results are presented and discussed in the following sections. 
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Field verification on an elevated guideway for APM systems 

An automated people mover (APM) system mainly includes four basic components: trains, 

guideways, stations and a control system. For the system presented here, trains are designed to run 

on a viaduct system comprised of multiple span bridges that connect four airsides to the landside 

terminals as shown in Figure 15. Operating every 2 minutes from 5am to mid-night, maintenance 

of the skybus system is critical to guarantee the safety of passengers. As a part of the APM 

guideway rehabilitation project, some spans of the viaduct are monitored to verify the behavior of 

the structure after retrofitting. Because of the access and space limitation (Figure 15b), all 

monitoring equipment are designed wirelessly including accelerometers, strain gages, and cameras 

in order not to interfere with the busy under viaduct traffic. Although there are different types of 

sensor data available from this monitoring project, only displacement and vibration responses of 

the viaduct are obtained using the proposed vision-based method under train loadings and the 

results are verified using sensor-based measurements.    

 

Figure 15. (a) Trains running on the viaduct, (b) Runway under the viaduct 

(a) (b)
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Considerations for changing ambient illumination  

In general, the most common obstacles that affect both the quality of images and the 

accuracy of obtained results when conducting a vision-based monitoring are 1) far distance from 

the camera to the measurement locations, and 2) changing ambient illumination when collecting 

video clips. In this monitoring study, especially changing illumination issues had to be resolved. 

For the setup of the experiment, the camera is focused on a measurement location near the mid-

point of a main girder from a distance of 11.5 meters away from the camera location, where a 

wireless accelerometer (AS1-ACC25) is attached (Figure 16). 

   

Figure 16. Measurement location and camera setup 

Image sequence of the measurement location is captured using the camera when trains pass 

over the monitored span. Highly changing of ambient illumination and low contrast of images due 

to shade of the trains on the measurement location are the challenges to be solved (Figure 17). It 

is difficult to address these problems by using common vision-based displacement measurement 

methods, which are based on the image correlation algorithms. Besides, the correlation approach 

is very sensitive to both illumination changes and low contrast of photography. By utilizing the 

proposed method, the matching key-points algorithm automatically selects the strongest key-

points from an appropriate illumination region to match. In this monitoring study, the measured 

 11.5m

 32.4o

Measurement Location
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positions are captured under highly changing of light illumination as well as dark condition (due 

to under the bridge deck), the false-matching rate is a high value. Then, the outlier discarding 

algorithm is performed to successfully obtain the best matches as illustrated in Figure 18. 

 

Figure 17. Highly changing illumination among image frames due to shade of the trains  

 

Figure 18. (a) Automatically matching the strongest key-points for low change of illumination 

region, (b) The best matches after utilizing the outlier discarding algorithm 

Obtaining Structural Displacements and Identifying Dynamic Frequencies 

Figure 19 shows the displacements of the measurement location beginning from the time 

of the trains approaching the monitored span to the time of their exit. A total of three data tests 

were collected that illustrate the consistency of the general behavior such as the deflection pattern, 

maximum displacements (~12 mm), and the response time (~4.27 seconds). Although there is not 

High changing of 

illumination region

Low changing of illumination region

(a) (b)
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any LVDT information to verify the maximum displacements in a comparative sense, the 

deflection pattern and the time of structural response are observed to be similar to strain pattern 

and response time (~4.32 seconds) acquired from a strain gage mounted at the same location. 

 

Figure 19. Raw displacement data of a measurement location on obtained using the proposed 

method 

Modal frequencies of the main girder can be identified using the dynamic component of 

the displacement data extracted from the raw displacement history by filtering out the static 

response. In addition, acceleration responses of the same girder are collected by total of ten (10) 

accelerometers attached at different locations on the girder (including the one at the same camera 

capturing location, AS1-ACC25). Dynamic responses from both displacement and acceleration 

data are shown in Figure 20. Natural frequencies found via the processing of both camera and 

accelerometer data are presented in Figure 21. While one can observe some minor differences in 

the identified frequencies, a considerable number of the dominant frequencies identified using two 

different approaches match. The errors between two sets of frequencies are calculated in Table 4 
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indicating errors less than 2.5%. The comparison result confirms that the proposed vision-based 

method works efficiently even in case of a real-life structure under difficult lighting condition.  

 

Figure 20. Dynamic responses of the main girder extracted by the proposed method and an 

accelerometer (AS1-ACC25) 
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Figure 21. Comparison of natural frequencies of the girder identified by the proposed vision-

based method and accelerometers 

Table 4. Comparison of natural frequencies 

 Vision-based 

(Hz) 

Accelerometer 

(Hz) 

Error 

(%) 

1st Freq. 3.98 3.97 0.18 

2nd Freq. 4.57 4.46 2.44 

3nd Freq. 12.76 12.84 0.62 

4nd Freq. 14.87 14.79 0.54 

5nd Freq. 16.62 16.63 0.06 

6nd Freq. 18.73 18.77 0.21 

7nd Freq. 20.61 20.72 0.53 

Field implementation on a Stadium Structure 

Assessment of civil engineering structures that are densely occupied by people such as 

stadiums, theaters, airports, stations etc. are significantly important not only for safety but also for 
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serviceability and human comfort reasons. For such structures, sport stadiums deserve special 

attention due to having to serve under variable harsh loading conditions induced by unpredictable 

and excited fans. Some structural response issues for monitored stadiums during games are 

excessive deflections, high vibration levels, and resonance problems, which have significant 

effects on human comfort experience (Caprioli, Reynolds, & Vanali, 2007; F Necati Catbas, Gul, 

& Sazak, 2009; Salyards & Hanagan, 2009). It becomes very important to determine the response 

characteristics (deflections, vibration levels, human comfort indices) during the games with 

practical and accurate methods without interfering the crowd and the infrastructure owners. In this 

section, the non-target vision-based displacement and vibration monitoring is demonstrated based 

on the methodologies provided previously for verification as a part of a football stadium 

monitoring project. Completed in 2007, this stadium is a steel structure with approximately 45,000 

seating capacity (Figure 22). Although it was designed and constructed recently, it exhibited 

considerable vibration levels especially at the sections of the highly active team supporters and 

fans, and consequently, these sections were retrofitted later on. Before and after the retrofit, an 

SHM study was performed particularly at these sections of the structure where the most excessive 

responses are most likely to occur due to the more excited crowd.  

The non-target vision-based method is implemented under altering illumination conditions, 

different camera locations (distances and angles), and camera frame rates. The dynamic 

displacement response data to different crowd reactions are also analyzed in frequency domain to 

identify structural frequencies of the stadium. Those responses and identified dynamic 

characteristics are compared to ones acquired from conventional sensors including accelerometers 

and LVDTs.  
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Figure 22. The Football Stadium Monitored During Games 

Stadium Displacements: Raw Data and Verification  

The responses of the aforementioned football stadium are investigated using the data 

collected during the games. The most significant movements of the crowd are observed in reaction 

to some typical events during the American football game such as "kickoff", "touchdown", 

"interception", "fumble" etc. and in return, the excitation of interest is generated by in forms of 

cheering, bouncing, stamping, and even jumping. To verify the non-target vision-based monitoring 

method, the tests are implemented on a supported girder of the grand stand (a retrofitted W16x40 

steel beam) right underneath the active crowd seating. There are total number of two (2) LVDTs 

and four (4) accelerometers attached on the bottom side of the girder as illustrated in Figure 23 for 

the verification of the proposed method for structural displacement measurement and frequency 

identification. 

Monitored Portion
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Figure 23. Experimental setup on the supported beam 

 

Figure 24. Camera placement on a tripod 

Although several experiments were conducted in the stadium, only four (4) of them are 

presented in this section; and each study stands for a certain test scenario. The details of the test 

scenarios are shown in Table 5.   

Retrofitted W16 x 40 Beam
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Table 5. The test scenarios 

 Distancea 

(m) 

Anglea 

(degree) 

Frame Rate 

(Fps) 

Light  

Condition 

Test 1 7.16 19 30 Night, Dim 

Test 2 10.21 13 30 Night, Dim 

Test 3 11.58 11 30 Day, Dim 

Test 4 5.85 23 60 Day, Dim 

aDistance and angle of the camera 

The captured video clips for all the tests have been processed following the flowchart in 

Figure 2. Meantime, the sensor data was acquired by a National Instrument DAQ system. Figure 

25a illustrates raw displacement history obtained using proposed computer vision method as well 

as using LVDT 1 at the same location (see Figure 23). These data sets were collected when the 

home team scored the 2nd touchdown, and subsequently, the crowd started to stamp and jump with 

the popular song called "Zombie Nation", which lasted for about 30 seconds. To visually compare 

the results of the two methods, a 15 second time window is picked and illustrated with both results 

overlapped (Figure 25b). This plot confirms that the outcomes of the two methods are similar in 

terms of displacement levels, vibrating pattern, and the matching of the peak displacements.   
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Figure 25. (a) Test 2 displacement datasets, (b) An zoom-in window from Test 2  

Another dataset is recorded for a much longer time period (about 260 seconds) at the 

beginning of another game. In this event, the recording starts with spectators cheering and jumping 

for 30 seconds when the home team takes position on the field until its players run for the kickoff 

that excites the crowd in the form of jumping in accompaniment with a special song for the home 

team. All these observations are clearly captured by all sensors as well as the camera of the vision-

based monitoring system (Figure 26a). In this case, two time-windows (20th sec - 35th sec and 220th 

sec - 235th sec) are employed for detailed analysis as presented in Figure 26b. The two data sets 

showing both vision-based method and LVDT measurements almost perfectly match. 
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Figure 26. (a) Test 3 displacement datasets, (b) Two zoom-in windows from Test 3  

In addition, quantitative analyses are performed to verify the correlation between LVDT 

and vision-based results. The correlation coefficient factor () is determined by the following 

formulation (Equation 26). Moreover, error analysis of these two displacement datasets are also 

performed and quantified using determination coefficient (R-squared) factors. The value of R-
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squared factor can be calculated by utilizing Equation 27 and it indicates how well these two 

datasets fit together. 

The correlation and error analysis results are described in Table 6. As seen in this table, 

although the Tests 1 and 4 were executed at closer distances, the results from these tests are slightly 

lower than the ones from the Tests 2 and 3, in which the angles of the camera orientation are 

smaller. It can be concluded that the results obtained by the proposed vision-based method are 

more sensitive to angle of the camera than the camera distance for the ranges given in these tests. 

In summary, the correlation coefficient  (from 0.9689 to 0.9887) and the determination 

coefficient R-squared (from 0.9368 to 0.9775) are very close to 1. Those values imply that the 

stadium displacements determined by the non-target displacement measurement method show 

reliable results when compared with the data obtained from the LVDTs for all four tests. 

Table 6. Correlation and error analysis 

 Distance 

(m) 

Angle 

(degree) 

Corr. 

() 

R-squared  

R2 

Test 1 7.16 19 0.9880 0.9426 

Test 2 10.21 13 0.9877 0.9751 

Test 3 11.58 11 0.9887 0.9775 

Test 4 5.85 23 0.9689 0.9368 

Identification of the Modal Frequencies of the Structure  

Dynamic characteristics of the stadium are determined by analyzing displacement data 

from the vision-based method induced by crowd excitation. The natural frequencies of the 

supported beam are identified by analyzing the proposed method data and compared with the 
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accelerometer data in frequency domain as shown in Figure 27. Although accelerometer data 

shows additional frequencies for the higher frequency band especially beyond 10 Hz, it is seen that 

the first three natural frequencies identified by two different methods are perfectly matching at 

2.37 Hz, 4.75 Hz, and 6.62 Hz, respectively. This observation confirms the quality of vibration 

data acquired from the proposed method, and enables a potential complement for the most common 

sensors deployed in SHM including LVDTs and accelerometers for the type of real-life 

applications where access might be an issue. In addition, data can be collected from any locations 

with an engineer or inspector.            

 

Figure 27. Comparison of natural frequencies of the supported beam identified by the proposed 

vision based method and processed acceleration data 

Accuracy of the Proposed Method 

Unlike classical measurement approaches, in which sensor accuracy is provided by its 

manufacturer with a roughly stable value, accuracy of a vision-based measurement system depends 

on several parameters. In such parameters, the distance from cameras to measurement positions 
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possibly is the most critical one. In this section, an approach is presented to evaluate vision system 

accuracy based on statistical analysis of error in data. The proposed vision-based monitoring is 

carried out with a Canon VIXIA HF R42 camcorder to measure displacements of a perfectly 

stationary object (a 20 cm diameter of steel round barrier in a laboratory) for a series of pre-defined 

distances of Zaccu (Figure 28). While the real displacements of the stationary barrier must be zero 

under ambient condition, the non-zero displacements obtained by the proposed vision-based 

monitoring must be errors. Just like the camera calibration procedure, evaluation of the vision 

system accuracy is one time, independent deployment. 

 

Figure 28: Experimental setup for the method accuracy evaluation 

Figure 29a shows the distribution of errors for a particular Zaccu distance of 2.9 m. The 

distribution can be assumed as normal with the mean value of zero and the standard deviation of 

0.0049 mm. Results from the other accuracy evaluation tests conducted at distances for 2.9 m, 8.9 

m, and 13.5 m are also illustrated in Figure 29b. Although the mean values of those distributions 

are zero, the standard deviation values decrease for closer measurement distances.  

Z

camera 20 cm diameter

steel round barrier
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Figure 29. Distributions of error data obtained from several accuracy evaluation tests 

By defining an accuracy interval for a measurement equal to ± 2 times of a standard 

deviation of the measurement error distribution (at a level of confidence of 95%), the accuracy of 

the proposed vision-based monitoring can be determined corresponding to the pre-defined 

distances of Zaccu; and the results are demonstrated in Figure 30. It is seen that at a distance of 3 

m, the accuracy of the proposed measurement is ± 0.01 mm; however, the accuracy becomes ± 

0.04 mm for a measurement distance of 13 m. Moreover, it is also observed that the relationship 

between the accuracy of the proposed vision-based monitoring and the camera distance is a linear 

function, which can be represented by the fitted line as shown in Figure 30. 
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Figure 30. The relationship between the accuracy of the proposed measurement vs. the camera 

distance of Z obtained for Canon VIXIA HF R42 camcorder 

Conclusions 

This study demonstrates a completely contactless SHM system for obtaining displacements 

and vibrations of structures using a low-cost camera and computer vision techniques. The new 

method makes it possible to obtain not only static displacements but also displacements with 

vibration characteristics, from which structural frequencies are identified. The advantage of this 

proposed method is that it does not require any type of physical targets attached on structures 

which are commonly required by other vision-based methods. Non-contact monitoring is achieved 

by means of a new type of virtual markers instead of physical targets. The key-points of 

measurement locations are extracted by using robust computer vision algorithms, and their 

characteristics show a potential ability to replace physical targets. Key-point matches among image 

frames are further improved by using an outlier detection algorithm to discard false matches. 
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Furthermore, a calibration procedure is developed to calculate the unit conversion ratio R between 

the image and the world coordinates when conventional targets no longer exist. 

The proposed method and framework are implemented and verified in a laboratory 

apparatus and two real-life structures under different experimental conditions including altering 

light conditions, different camera locations (distances and angles), and camera frame rates. Since 

this method does not require any type of attachment, its implementation is observed to be much 

more convenient (e.g. faster and easier) than other conventional sensors employed on the same 

structure. For verification purposes, the displacement data sets for different influences are obtained 

using the proposed method to be compared to conventional LVDT data. The comparison results 

are validated by means of visual inspection and some statistical measures such as correlation 

coefficient and the determination of R-squared coefficient. Moreover, dynamic frequencies are 

also identified from the dynamic displacement time histories as the camera can capture images at 

speed rates of 30 Hz and 60 Hz. Identified natural frequencies are compared to the frequencies 

obtained using acceleration data. The comparison of these two aforementioned frequency values 

shows perfect matching in most of the cases. The real-life study indicates that important structural 

responses can be determined using non-contact vision-based monitoring method presented in this 

paper. Although the proposed method provides improvements and advantages for practice 

including completely non-contact implementation, low-cost hardware and quite accurate results 

for defined measurement ranges and conditions, some related issues such as data storage 

requirement for clips and images, processing time for image data, and limitation for horizontal 

displacement measurement need to be considered. 
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CHAPTER THREE: DETECTION AND LOCALIZATION OF VEHICLES 

ON A BRIDGE USING COMPUTER VISION APPROACH  

Introduction 

Loading estimation is a very important task as for both designing a new civil engineering 

project and the assessment of existing structures. In the field of Structural Identification (St-Id), 

these loads are commonly utilized as input parameters in conjunction with output structural 

responses for identifying damage. Additionally, the loads and corresponding responses are also 

continuously updated to obtain calibrated FE (Finite Element) models for numerous aims such as 

safety evaluation, damage detection, and eventually prediction of the remaining life of structure. 

In general, bridge loading effects might be exemplified as wind, temperature, earthquake, pre-

stressed tension, vehicles etc. However, the influence of vehicle loading is strongly being 

interested in Bridge Health Monitoring (BHM) since it can be easily controlled by inspectors. In a 

common monitoring study, the pre-weighted trucks are located or crawled on the monitored bridge 

following predefined configurations. The axle weights of the trucks are obtained by a weight-scale 

or a Weight-In-Motion (WIM) system (in some exceptional cases), while their locations are 

determined using labor (Figure 31). This manual process requires bridge closures as well as being 

time consuming and labor-intensive that makes bridge inspection and monitoring costly and 

ineffective.  
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Figure 31. Pre-weighted trucks deployed in a common bridge monitoring study 

The goal of this section is to propose an alternative approach employing traffic vehicles 

instead of using the testing trucks for BHM, thereby mitigating some previously noted 

shortcomings of the current practices. The proposal process is immensely based on vision 

technologies for obtaining information about the traffic passing on the bridge deck, such as vehicle 

weights and positions. The protocol hardware simply consists of a surveillance camera system 

with the aim of capturing traffic scenes on the bridge. Subsequently, the acquired images are 

analyzed by a computer vision software package for firstly detecting and then classifying traffic 

vehicles into classes. The weight-distribution of a particular vehicle class can be developed from 

manufactures specifications coupling with weight-in-motion (WIM) database. Thus, the weight of 

a classified vehicle is assigned equal to its class weight-distribution that has been pre-developed. 

In addition to estimating vehicle weights, the detected vehicles are located in terms of geometric 

transformation between the image coordinate system (acquired by the surveillance camera) and 

the world coordinate system by which the bridge deck is defined in real life. Once the vehicle 

information is obtained, this data (instead of manually obtained data from the testing trucks) is 

transmitted to a St-Id system for structural assessment. Data acquisition without the constraint of 

bridge closure saves time and labor work in bridge monitoring practices, and also mitigates 
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uncountable hours of traffic jam and detour. The proposal in this chapter is developed by means 

of numerous advanced computer vision algorithms involving object detection, classification, and 

localization, which have been substantially progressed in recent years. 

In computer vision, object detection and tracking are the most appealing challenges since 

those algorithms are fundamental techniques for other diversity implementations (Javed & Shah, 

2002; Yilmaz, Javed, & Shah, 2006). Related to vision based analysis of traffic vehicles, it is a 

matter of raising importance in Intelligent Transportation Systems (ITS). Following the review of 

computer vision techniques for traffic analyses (Buch, Velastin, & Orwell, 2011), it is seen that 

hundreds of research papers have been published in the last decade in the context of ITS field. 

These publications mainly cover detection, tracking, and classification of vehicles for multiple 

aims such as counting vehicles, detection of traffic violations (illegal turns, over speed limit, etc.), 

automatic number plate recognition (ANPR), traffic control and incident detection. In this pool of 

studies, vehicle detection has been put in much more effort due to the grants allocated for 

subsequent tasks of detected vehicle information in a number of traffic analysis frameworks, such 

as vehicle tracking, classification, and localization. Generally, vehicle detection algorithms are 

categorized into two groups named as motion-based and appearance-based approaches. 

The first group of vehicle detection, motion-based methods, identify vehicles by analyzing 

frame sequences of video clips (Cedras & Shah, 1995). Since traffic flows, positions of vehicles 

on a particular image shift to other locations on the next image. A fundamental computer vision 

algorithm based on foreground estimation and segmentation is implemented for numerous vehicle 

detection studies. In that method, foreground regions are defined as moving objects, which do not 

belong to the scene (so-called the background). Given an image of highway traffic, detected 

foreground regions are certainly supposed as hypothesized vehicles. These foreground regions are 
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commonly obtained by means of the frame differencing or the background subtraction algorithm. 

An early research focusing on the recognition of traffic vehicles is presented by Gupte et al. (Gupte, 

Masoud, Martin, & Papanikolopoulos, 2002). As described in the paper, a self-adaptive 

background subtraction algorithm, that could extract foreground regions under changing 

illumination condition of background, is employed. Using the similar process to the one presented 

in Gupte’s study, Huang and Liao try to address the occlusion problem by predicting merged 

borders of foreground regions based on  the velocity estimation of vehicles (Huang & Liao, 2004). 

Due to the authors being able to identify occlusion occurrences, foreground regions could be 

divided into multiple vehicles making the detection more robust. A complete framework for traffic 

analysis is introduced  to comprise studies for detection, tracking, classification and also counting 

vehicles on highways (Rad & Jamzad, 2005). In this implementation, the authors employ the 

closing and opening morphological methods to get more robust foreground regions. Hsieh et al. 

propose an approach for solving a common challenge called shadow problem when utilizing 

background subtraction algorithm (Hsieh, Yu, Chen, & Hu, 2006). Since vehicles are regularly 

located on inside lanes, the authors could determine shadow and occlusion happenings by lane-

dividing lines. A new feature named 'linearity' is developed in addition to dimensional features 

yielding better results from the vehicle classification. Besides,  to address the occlusion, shadow 

and other drawbacks of the background subtraction method, Su et al. propose a novel and effective 

framework named collaborative background extraction algorithm for detection and tracking 

multiple vehicles (Su, Khoshgoftaar, Zhu, & Folleco, 2007). Following this method, a detected 

vehicle could be firstly consolidated and then be separated from neighboring vehicles based on 

collaborations among them along a sequence of images. Furthermore, shadows of vehicles and 

falsely detected foregrounds are successfully rejected as the outliers of background. Besides the 
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previously mentioned shortcomings, the background subtraction method suffers from intensive 

computation as well. Therefore, some other studies focus on the optimization of computational 

efficiency (Z. Kim, 2008; Vargas, Milla, Toral, & Barrero, 2010). Recently, employment of 

background subtraction algorithms for moving object detection has not received enough attention. 

Despite a mature approach, the outcomes of such binary foreground regions provide limited 

information for the next tasks in the way of developing a complete and robust traffic analysis 

framework.  

Another motion-based approach for detecting traffic vehicles is developed based on a 

fundamental computer vision method named Optical Flow (Lucas & Kanade, 1981). Theoretically, 

a moving object can be recognized via the optical-flow vectors extracted from the object region. 

These vectors are distinct from the background optical-flow vectors. This approach is generally 

employed for rejecting ego-motion of cameras (cam-shake) mounted on a moving observer (e.g. a 

vehicle) to detect other vehicles on roads (Baehring, Simon, Niehsen, & Stiller, 2005; Jazayeri, 

Cai, Zheng, & Tuceryan, 2011; K. Yamaguchi, Kato, & Ninomiya, 2006). Arrospide et al. propose 

a method that includes coupling of optical flow computation for detecting hypothesized objects 

and an outlier rejection algorithm (Mahalanobis distance based classifier) for confirmation of the 

final results (Arróspide, Salgado, Nieto, & Jaureguizar, 2008). Detecting traffic vehicles from an 

airborne drone is also investigated (Yu & Medioni, 2009). Since a vast region is captured on aerial 

images, the authors aim to track traffic flow before focusing on vehicle detection. To do so, only 

a limited area corresponding to roads is effectively analyzed to identify vehicles by means of the 

motion-pattern difference. Some drawbacks of optical flow based algorithms such as background 

movement, estimation of flow velocity, and computational overload are studied (Dessauer & Dua, 

2010). Herein, an input image is processed by wavelet decomposition method before it is handled 
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with optical flow computation. A comparative study, in which vehicle detection is specifically 

subjected, among the three most popular optical flow methods is conducted (Głowacz, Mikrut, & 

Pawlik, 2012). These optical flow methods (Brox, Bruhn, Papenberg, & Weickert, 2004; Horn & 

Schunck, 1981; Lucas & Kanade, 1981) are employed for detecting and counting traffic vehicles 

on a street intersection. The authors find out that the Horn-Schunck algorithm is the most effective 

for the aforementioned particular application. Occlusion challenge in vehicle detection is also 

addressed by implementing the optical flow and the active learning algorithm along with a 

calibrated stereo camera system (Ohn-Bar, Sivaraman, & Trivedi, 2013). 

Recently, there has been a transition from utilizing motion-based methods to appearance-

based approaches. This is due to the fact that the features extracted from motion-based algorithms 

provide inadequate information for the next tasks of vehicle understanding such as vehicle 

tracking, recognition, and classification. In addition, the features obtained from appearance-based 

methods allow detection and classification of vehicles from even a single image instead of a 

sequence of images. In the pool of apparent features employed for vehicle detection, some of them 

such as edge, symmetry, SIFT, Gabor etc., HOG and Haar-like features have been routinely 

exploited in the literature because of their high performance. The Histogram of Oriented Gradient 

(HOG) descriptor introduced by Dalal and Triggs comprises gradients and orientations of cells 

inside an image window (Dalal & Triggs, 2005). Following  the implementation by Wijnhoven 

and De With, this feature is extracted from different poses of vehicles and then introduced to a 

simple linear classification for obtaining a detector (Wijnhoven & De With, 2011). Since variety 

of vehicle poses are utilized to train the classifier, the detector could successfully recognize 

vehicles under divergent views. Cheon et al. propose a way to estimate hypothesized vehicle 

positions using shadow detection, and then to extract HOG features from those hypothesized areas 
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in the image to confirm positive vehicles (Cheon, Lee, Yoon, & Park, 2012). Vehicles in dense 

urban areas are also identified from an aerial camera (Tuermer, Kurz, Reinartz, & Stilla, 2013). In 

this paper, the authors try to separate road regions from other city areas based on height 

information from the global Digital Elevation Map (DEM). Subsequently, HOG features are 

extracted from the separated road areas for recognizing vehicles. Using HOG features and the 

Latent-SVM (Support vector machines) on the Deformable Part Model (DPM), Felzenswalb et al. 

develop one of the best detection algorithms that has received an extensive attention in computer 

vision community recently (Felzenszwalb, Girshick, McAllester, & Ramanan, 2010). The DPM 

based algorithm that yields appealing results is specially applied for on-road vehicle detection 

(Niknejad, Takeuchi, Mita, & McAllester, 2012). Another comparative study among three active 

learning approaches compares the most popular apparent features, HOG and Haar-like, for vehicle 

detection (Sivaraman & Trivedi, 2014). The research provides a general observation in terms of 

time spent for annotating, amount of data required, recall, and precision of appearance-based 

approaches for vehicle detection.   

Using Haar-like features is even more favored than utilizing HOG descriptor for vehicle 

detection due to two main reasons. First, Haar-like features are suitable for detecting the horizontal, 

vertical and symmetric structures such as vehicles. Second, these features are determined by 

applying the integral image method at very fast computation speeds, which grants real-time 

performance in practice. Inspired from the well-known Viola and Jone’s face detection algorithm 

(Viola & Jones, 2001), one of the first Haar-like based study for vehicle detection is introduced by 

Ponsa et al. (Ponsa, López, Lumbreras, Serrat, & Graf, 2005). This research could detect vehicles 

by tracking 3D positions of those by following a sequence.  The Haar-like features extracted from 

rear-view images of vehicles are delivered to a boost-classifier for obtaining hypothesized vehicle 
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regions. After that, a coupling between the perceived horizon and the actual width of the vehicles 

is implemented to estimate the 3D locations of the vehicles for verifying the hypotheses. Haselhoff 

et al. deploy a study to measure the influence of training image resolution on classification 

performance (Haselhoff, Schauland, & Kummert, 2008). The research shows that an optimization 

of image resolution could be learnt to mitigate computational load, which allows a faster 

performance. Sivaraman and Trivedi introduce a robust method for vehicle recognition and 

tracking (Sivaraman & Trivedi, 2010). Following this practice, vehicles could be recognized by 

using Haar features and a novel active-learning framework. Another study focusing on Haar-like 

features is proposed by Rios-Cabrera. In this research, a complete framework for detection, 

tracking, and matching vehicles through a tunnel is implemented with the aim of overcoming 

numerous real-life challenges such as bad illumination and poor image quality in tunnels (Rios-

Cabrera, Tuytelaars, & Van Gool, 2012). An algorithm for vehicle detection and inter-vehicle 

distance estimation is proposed (G. Kim & Cho, 2012). First, Haar-like features of car-rear 

shadows are obtained to determine hypothesized vehicles. After that, directional edge features are 

employed to verify these hypotheses. The inter-vehicle distance is also calculated by means of 

estimating actual width of the detected vehicles and their locations. Park and Hwang introduce an 

improved descriptor named Haar Contrast Feature that could efficiently operate under various 

illumination conditions (Park & Hwang, 2014). The proposed descriptor compensates for 

diversified image contrast by a normalization factor, which is created from alteration of average 

intensity between consecutive image frames. The improved Haar features are verified on vehicle 

detection to confirm its outperformance under a wide range of illumination conditions in real-life 

environment.       
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Regarding the classification, most of the studies categorize vehicle types based on the 

information obtained from detected vehicles. For the cases where motion-based methods are used, 

classification parameters are generally dimensional features such as area, length, and height of 

bounding boxes (Gupte et al., 2002; Hsieh et al., 2006; Huang & Liao, 2004; Kanhere & Birchfield, 

2008; Rad & Jamzad, 2005). Since these algorithms are mostly based on low-level image features, 

results are not really appealing and robust. Implementation of vehicle type classification by 

employing HOG features and SVM are provided by numerous papers (Z. Chen & Ellis, 2011; Z. 

Chen, Ellis, & Velastin, 2012; Khan, Cheng, Matthies, & Sawhney, 2010; Ng, Suandi, & Teoh, 

2014). Moreover, some other authors even propose algorithms that could classify brand names and 

also logos of vehicles (Llorca, Arroyo, & Sotelo, 2013; B. Zhang, 2013). Due to Haar-like features 

providing less information than HOG descriptors for classification task, there are limited number 

of authors utilizing Haar-like features (Sam & Tian, 2012; Wang, Hsieh, Han, & Fan, 2014; B. 

Zhang, Zhou, & Pan, 2013).  

Vehicle localization on the world coordinate system is seemed to receive less attention than 

vehicle detection and classification. Several studies introduce frameworks for determining vehicle 

locations in terms of intrinsic and extrinsic camera parameters (Levinson, Askeland, Dolson, & 

Thrun, 2011; Parra, Sotelo, Llorca, & Ocaña, 2010; Sivaraman & Trivedi, 2013). Following these 

papers, a mathematical function is developed from the parameters that are derived by the 

calibration of the camera, representing relationship between the image coordinates and the world 

coordinates. Once the function is established, the world locations of vehicles could be obtained 

from their image positions pinpointed by the detected bounding boxes. Another approach for 

locating vehicles based on stereo technique is conducted in some studies (Senlet & Elgammal, 

2011; Sivaraman & Trivedi, 2011; Wu & Ranganathan, 2013). Stereo method is a mature 
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technology in computer vision to recover 3-D objects from two 2-D images captured by two 

synchronized cameras. Since the pixel disparity of a certain point on both left and right cameras 

can be measured, a distance from that point to cameras is resolved for archiving its 3-D 

coordinates. Although both mentioned approaches could localize vehicles, camera calibration can 

be complicated and challenging, especially for in field deployment.       

Motivation and Objectives 

It is seen that vision based vehicle detection protocols have been immensely developing in 

the last decade. These studies are categorized into two groups named motion-based and 

appearance-based methods. Based on numerous fundamental algorithms in computer vision such 

as background subtraction, frame differencing, and optical flow, motion-based techniques seem to 

attract more interest at the beginning; however, some noted shortcomings have been pointed out 

later on. Due to fast evolution of high-level imaging features, such as symmetry, SIFT, Gabor, 

HOG, Haar-like, etc., vehicle detection algorithms are recently switching to the appearance-based 

group, especially using outperforming HOG and Haar-like approaches. While HOG features are 

obtained by calculating pixel intensity gradients and orientations of cells inside an image window, 

Haar-like features are determined by convolving Haar wavelets kernels. The features extracted 

either by HOG or Haar-like approaches are transmitted to training programs such SVM and/or 

Boost classifiers for obtaining detectors. The trained detectors are then employed on an image of 

highway (road) traffic for distinguishing hypothesized vehicles. Although it is difficult to conclude 

which feature (HOG or Haar-like) surpasses another, Haar-like based techniques are more efficient 

in computation because these features are calculated by means of the integral image execution. 



65 

 

Although using Haar-like methods for detecting vehicles is very fast and potent, employing 

these features yields rather global information than local aspects of a particular vehicle type. Thus, 

conducting HOG descriptors for classifying vehicle types seem to attract more interest in the 

literature. Using dimensional features obtained from motion-based approaches has also been 

handled for vehicle type categorization. However, the features such as area, length, and height 

attained from bounding boxes of detected vehicles bring inadequate inputs for developing a robust 

vehicle type classifier. Regarding the vehicle localization, two fundamental techniques are widely 

utilized including stereo and camera model. Despite these methods are able to recover 3-D 

positions of vehicles on the world coordinate system, complex camera calibration is a challenge 

as for real-life implementation.   

In this Chapter, a selection of suitable computer vision algorithms is implemented to serve 

towards the research aim, which is to obtain traffic information including weights of vehicles and 

their positions while passing over a bridge deck. The objectives are comprised of two modules: 1) 

vehicle categorization by detection of vehicle types, and 2) localization of detected vehicles on the 

bridge deck defined by the world coordinate system. Based on the investigation conducted in the 

previous sections, HOG descriptors will be selected in service of the first module. The findings of 

the first module such as bounding boxes are provided as inputs for the second module, that is, 

vehicle localization. Since it is known that a bridge deck can be posited as a plane, a proper plane 

geometric transformation technique is proposed for calculating positions of vehicles by means of 

world coordinates on the bridge deck. The methodology details of the protocol are presented 

subsequently. After that, the efficiency of the procedure is verified through multiple tests 

conducted in the UCF Structural Laboratory on a small-scale bridge.   
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Theoretical Background 

The flowchart illustrating the implementation for detection and localization of traffic 

vehicles passing over a bridge is seen in Figure 32. In brief, a surveillance camera is mounted at a 

high position overlooking the whole deck of the bridge. The images acquired by the surveillance 

camera are analyzed to detect every type of vehicles that may appear on the bridge deck. The 

detected vehicles are then labeled by bounding boxes matching with their types. Finally, the 

positions of bounding boxes on the 2-D image coordinates corresponding to detected vehicles are 

transformed to the 2-D bridge deck coordinates based on the plane geometry transformation.    

 

Figure 32. Protocol for detection and localization of traffic vehicles passing over a bridge based 

on computer vision approach 

Acquiring Video Clips
of Traffic on the Bridge Deck

Detecting Vehicle-Class 1 

Detecting Vehicle-Class N 

... 

Labeling Detected Vehicles
For every Classes using Bounding Boxes

Locating Bounding Boxes on Image Coordinate
Transforming Image Coordinate to Bridge Deck Coordinate

Data Outputs: Detected Vehicle Types 
and Bridge Deck based Locations

Module 1

Module 2
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Imaging Features: Histograms of Oriented Gradients (HOG) Descriptors 

Histograms of Oriented Gradients (HOG) descriptors are introduced as a sort of robust 

features for human detection (Dalal & Triggs, 2005). In that study, the HOG based human 

detection significantly outperforms the other human detection techniques upon a certain time. 

From then, the HOG descriptors have been successfully being utilized for detecting other types of 

objects including vehicles. As suggested in the name itself, Histograms of Oriented Gradients 

(HOG) descriptor is a vector comprising intensity gradient orientations and magnitudes of cells 

inside an image window (so-called patch).       

To determine an HOG descriptor of an image window W(x,y), the intensity gradient 

magnitudes and orientations of the window W are required. The equations leading to the derivation 

of descriptor are as follows: 

 
𝑚(𝑥, 𝑦) =  √(𝑊(𝑥 + 1, 𝑦) − 𝑊(𝑥 − 1, 𝑦))

2
+ (𝑊(𝑥, 𝑦 + 1) − 𝑊(𝑥, 𝑦 − 1))

2
  (28) 

 
𝜃(𝑥, 𝑦) =  𝑡𝑎𝑛−1 (

𝑊(𝑥, 𝑦 + 1) − 𝑊(𝑥, 𝑦 − 1)

𝑊(𝑥 + 1, 𝑦) − 𝑊(𝑥 − 1, 𝑦)
) (29) 

where m(x,y) is the gradient magnitude, and θ(x,y) is the orientation at a pixel location (x,y) in the 

image window W. Subsequently, the image window W is divided into cells, for instance, 16 x 16 

cells. A block is developed from 4 neighboring cells. Each block is then placed on each other by 

50% overlap across the image window. For an image window defined by 128 x 128 pixels, the 

number of blocks yield to be 15 x 15 = 225.As the cell size is of 8 x 8 pixels, each block has its 

size of 8 x 8 pixels. The details of separation on the given 128 x 128 pixels image window are 

illustrated in Figure 33. Apparently, other division scenarios can be conducted for a particular case; 

however, performances of the descriptors corresponding to these scenarios are not greatly changed 

(Dalal & Triggs, 2005). 
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Figure 33. Protocol for determining HOG features; example for a given 128 x 128 pixels image 

window with cell size of 8 x 8 pixels and block size of 4 x 4 cells 

Since the cell size is of 8 x 8 pixels, there are sixty four (64) values of gradient magnitudes 

as well as another sixty four (64) values of gradient orientations, which are calculated from 

Equation 28 and 29. These (64) values of gradient orientations are quantized into nine (9) bins 

such as 10o, 30o, 50o, … , 170o, and the vote for each orientation is its gradient magnitude. After 

quantizing, a cell information is presented by nine (9) values of summarized-vote magnitudes 

corresponding to the (9) bins of angles. As the HOG descriptor vector of an image window W(x,y) 

is constructed by concatenated information of every cell, number of elements in the vector yields 

as illustrated in Equation 30. 

 n =  blocks x cells x bins =  225 x 4 x 9 

n = 8,100 (elements) 

(30) 

Let H be a certain HOG vector, then it is represented as below.  
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 𝐻 = {𝑣1, 𝑣2, … , 𝑣𝑛−1, 𝑣𝑛} (31) 

where v is the voted histogram value; and n is number of histograms (e.g. 8,100 elements) 

calculated from Equation 30. Some examples for HOG extraction on various objects such as a 

sedan car, a bike, and a bottle are shown in Figure 34. Herein, the H vectors are depicted as imaging 

fashion to observe the shapes of objects having been reflected by HOG descriptors.  

 

Figure 34. HOG feature extraction represented as imaging fashion for example (a) a bike, (b) a 

sedan, and (c) a bottle 

Detection of Vehicle Types based on AdaBoost Technique and Cascade Classifier with HOG 

Features 

Detecting objects from images is one of the most interesting challenges in computer vision. 

Generally, a detector is developed to detect a particular type of object such as human, conveyance 

means (bikes, vehicles, planes, boats, etc.), animal (cats, dogs, birds, horses etc.), and other 

miscellaneous. Mathematically, a detector comprises complex mathematical functions that can 

discriminate and then recognize a certain object from a scene based on the object features. Despite 
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there are several approaches to develop various sorts of detectors, using machine learning 

techniques to train a detector is the most popular way due to its efficiency and robustness. As 

mentioned previously, the HOG features are utilized for developing detectors in this dissertation 

research. Since there are many elements in an HOG vector (following Equation 30), dealing with 

such huge number of elements is prohibitively expensive for any classification algorithms. Thus, 

only a limited number of features with outperformance are selected. After that, detectors are built 

up on these crucial features. Herein, AdaBoost technique is appointed for two purposes being 

selection of crucial features and development of vehicle-detectors. The approach is acknowledged 

as a very powerful tool and has been also conducted in numerous object detection studies.   

Introduced by Freund and Schapire, Adaboost is a very popular boosting technique that 

combines poor performance classifiers (so-called weak classifiers) into a complex one with much 

higher achievement (Freund & Schapire, 1997). In this context, a weak classifier can be any “rule 

of thumb” guessing that performs better than random (50 percentage of chance). A weak classifier 

can be developed by means of feature distributions that are evolved from training of data sets. For 

example, based on the reliable statistical datasets, distributions of human height (a sort of human 

feature) in a city can be constructed for males and females separately denoting as the male-height 

and the female-height distributions. By setting a height threshold on these distributions, a weak 

classifier can be attained to categorize males and females with an accuracy greater than 50%.. Let 

ft(i) be the tth weak classifier for identifying a particular type of object on image (i). Since ft(i) is a 

rule of thumb guessing that yields to zero (0) or one (1) for a negative or positive object 

respectively, the boosted classifier for image (i) becomes: 
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𝐹(𝑖) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑡𝑓𝑡(𝑖)

𝑇

𝑡=1

) (32) 

where F(i) is the final (strong) classifier that also yields zero (0) for a negative object and one (1) 

for a positive object; T is the number of available weak classifiers; and 𝛼𝑡 is the weight 

corresponding to the tth weak classifier. These weight values are the key parameters of the 

AdaBoost technique assigned by the training process that emulate error rate of the weak classifiers. 

For instance, a weak classifier with 50% accuracy will be assigned a weight value of zero (no 

benefit for the classification) whereas a good performance classifier has its positive weight but a 

bad performance one is assigned a negative value of weight. By ranking the performance of many 

better-random classifiers and putting them into construction of the final classifier through certain 

weighing values, the final classifier is obtained to provide a much higher achievement of 

categorization results. The details of the AdaBoost technique involving its mathematical equations 

and processes can be seen in the related reference (Freund & Schapire, 1997). 

Implementation of the AdaBoost technique for selecting outperforming features is firstly 

introduced by Tieu and Viola (Tieu & Viola, 2000). Following that paper, features as elements in 

a vector H = {v1, v2... vn-1, vn} (Equation 31) can be ranked by developing a strong classifier from 

various amount of weak classifiers, each of which is developed from a single feature. In other 

words, for a particular feature vt, a weak classifier ft(i) is established as follows.   

      
𝑓𝑡(𝑖) = {

1, 𝑖𝑓 𝑣𝑡(𝑖) < 𝜃𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (33) 

where t is a threshold appointed for the vt feature; and t is from 1 to n. Since there are n number 

of weak classifiers, the strong classifier is able to be obtained by utilizing the AdaBoost technique. 

The form of the final classifier derived from Equation 32 will be: 
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𝐹(𝑖) = {
1, 𝑖𝑓 ∑𝛼𝑡𝑓𝑡(𝑖)

𝑛

𝑡=1

≥
1

2
∑𝛼𝑡

𝑛

𝑡=1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (34) 

where 𝛼𝑡 is the weight of the tth weak classifier corresponding to the vt feature. Although this 

process yields a compelling classifier, it results in idle computation due to the usage of whole set 

features (Viola & Jones, 2001). Here, the strength of the method comes from the set of weight 𝛼𝑡. 

By ranking these weight values, the crucial features are recognized with higher weights for the 

purpose of developing an even more powerful classifier in discriminating and with less 

computation time. The protocol using the crucial features for creating a strong classifier is 

subsequently described as follows. 

Since using a huge set of features for developing a classifier causes ineffective computation 

in return, Viola and Jones construct a cascade of classifiers that bring more robust detectors while 

radically mitigating computation time (Viola & Jones, 2001). The conceptual insight is that the 

less the number of features used, the faster the ciphering classifier is. The protocol of the cascade 

implementation is depicted in Figure 35. 
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Figure 35. Schematic for a cascade of classifiers. Each level is a strong classifier that boosted 

from many weak classifiers 

It is seen that the cascade comprises finite levels of boosted classifiers. At each level, a 

very limited number of features is utilized for establishing a boosted classifier. For instance, the 

obtained crucial features are concatenated starting from the best going down to the worst 

performance. Then, only the strongest feature is used for the first level boosted classifier, the next 

five (5) features for the second level, the subsequent ten (10) features for the third level, and so on. 

The figure also shows that the positive objects from a certain level (including true positive and 

false positive objects) will be bestowed to the next level, which is developed by using more 

features. Hence, a less feature classifier deals with more inputs (such as image windows) while a 

more feature classifier handles much less inputs, which is achieved by the current computation 

efficiency. Moreover, since a more feature classifier (more robust classifier) deals with a few 
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inputs that have high rate of positive objects, the detection rate of the whole cascade immensely 

increases.        

A detector is obtained by training the AdaBoost based cascade classifier with labeled 

image datasets of positive images and negative images respectively. For instance, a truck-detector 

is developed by means of learning from a set of truck images that are called as positive images 

followed by negative images which can be another set of non-truck images such as landscape 

images or other types of vehicle (sedan, bus, etc.) images. In this Chapter, an off-the-shelf 

AdaBoost based cascade classifier embedded in MatLab is used for obtaining detectors 

corresponding to each vehicle classes. Obviously, the training image datasets (positive and 

negative image sets) must be manually prepared by the user. The training process is illustrated in 

Figure 36.      

 

 Figure 36. The training process for obtaining a detector  

Once the detector is obtained, it is utilized for identifying the objects by a scanning window 

at any region on an image. At a particular region, the scanning window crops the input image 

getting an image window. Then, the image window is fed to the detector developed by AdaBoost 

based cascade classifier to find out if the constituents of the window is either object or non-object. 
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Since object sizes are varied, scanning window dimensions must be scaled from the smallest up to 

the biggest possible ratios to detect all available objects on the input image. If there are multiple 

detectors for different types of objects, the procedure will be repeated for each detector one at a 

time. The detection scheme is described in Figure 37.      

 

Figure 37. The detection scheme using a trained detector  

Verification of the detection framework for vehicle types based on AdaBoost technique 

and cascade classifier with HOG features is conducted on subsequent section. The results, 

shortcomings, and how to overcome false detection are also discussed therein.  

Localizing Detected Vehicles based on Geometry Transform Approach 

As it is mentioned at the beginning of this Chapter, determining the positions of loads on 

structures is as essential as attaining their amplitudes. This is due to the fact that altering load 

locations on a structure might come off in forms of extremely fluctuated magnitudes of responses. 

Since vehicles can be detected and then matched with predefined catalog of vehicle classes, 

weights of these vehicles are assigned to the mean weight of corresponding classes. Furthermore, 

the detected vehicles are also localized on the 2-D image coordinates by bounding boxes, which 

are appointed by the detector (Figure 38). 
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Figure 38. Two detected vehicles are located on the 2-D image coordinates by bounding boxes; 

for example, the bottom-right corners of boxes are obtained in the pixel-unit 

In this study, only locations of vehicles in the 3-D world coordinate system are of interest 

rather than those on 2-D image. Hence, this section aims to convert points on a 2-D image to 3-D 

world points belonging the Cartesian coordinate system predefined on the bridge deck. From 

literature review, camera calibration is an imperative technique in 3-D computer vision for 

obtaining metric information from 2-D image. Although many studies have been conducted, most 

of them are developed in terms of a fundamental equation for camera model. Let a 2-D point on 

an image be denoted by p = (u, v)T; and the corresponding point in 3-D world coordinate system 

by P = (X, Y, Z)T. Then camera model equation is written as: 
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      𝑝 = [𝑀] [𝐸] 𝑃 (35) 

The M matrix is the camera intrinsic matrix to link the pixel coordinates of an image to the 

corresponding metric coordinates in the camera sensor. This matrix comprises parameters such as 

perspective projection (focal length) and some scale factors to transform between pixel coordinates 

to camera sensor coordinates. It is presented as below 

      

𝑀 = [
−𝑓𝑘𝑥 0 𝑢0 0

0 −𝑓𝑘𝑦 𝑣0 0

0 0 1 0

] (36) 

where f is the focal length of the camera; kx and ky are the effective size of pixel in mm; and (u0, 

v0) is the coordinates of the principal point. 

 The matrix E in Equation 35 is the camera extrinsic matrix. Since it is actually a 

rototranslation matrix for transforming between the image sensor coordinates and the predefined 

3-D world Cartesian coordinate system, a 3 by 3 rotation matrix and a 3-D translation vector are 

included    

      

𝐸 =  [

𝑟1,1 𝑟1,2 𝑟1,3 𝑡𝑥
𝑟2,1 𝑟2,2 𝑟2,3 𝑡𝑦
𝑟3,1 𝑟3,2 𝑟3,3 𝑡𝑧
0 0 0 1

] (37) 

where ri,j is the coefficient of the rotation matrix; and tx, tx, and tz are the distances between the 

origin of the camera sensor coordinate system and the origin of the 3-D world coordinate system 

in x-axis, y-axis, and z-axis, respectively.  

Thus, the Equation 35 takes the form of 

      

[
𝑢
𝑣
1
] =  [

−𝑓𝑘𝑥 0 𝑢0 0
0 −𝑓𝑘𝑦 𝑣0 0

0 0 1 0

] [

𝑟1,1 𝑟1,2 𝑟1,3 𝑡𝑥
𝑟2,1 𝑟2,2 𝑟2,3 𝑡𝑦
𝑟3,1 𝑟3,2 𝑟3,3 𝑡𝑧
0 0 0 1

] [

𝑋
𝑌
𝑍
1

] (38) 
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To form the relationship depicted in Equation 38, all parameters in the camera extrinsic 

and intrinsic matrices must be obtained. Although this challenge could be overcome by some basic 

camera calibration methods, the implementations require procedures that would be difficult to 

conduct in the field for real-life structures (Sturm & Maybank, 1999; Triggs, 1998; Z. Zhang, 

2000).  

Fortunately, it is seen that the vehicles travel on a bridge deck that is mostly planar. Since 

the vehicle loads of interest act vertically on bridge structures, elevations of those insignificantly 

alter responses of the structures acquired by sensors. This observation enables an alternative 

protocol to calculate the positions of vehicles on the 2-D bridge deck instead of in 3-D space. The 

assumption of planar bridge deck is also made in a previous research (R. Zaurin & Catbas, 2010). 

In that paper, Zaurin and Catbas adopt this assumption for determining distances from a vehicle to 

a camera in terms of Lagrange Interpolation method. 

In consideration of planar bridge deck, a point on the bridge deck is denoted by P = (X, Y)T 

as Z = 0. Therefore, the Equation 38 becomes 

      

[
𝑢
𝑣
1
] =  [

−𝑓𝑘𝑥 0 𝑢0

0 −𝑓𝑘𝑦 𝑣0

0 0 1

] [

𝑟1,1 𝑟1,2 𝑡𝑥
𝑟2,1 𝑟2,2 𝑡𝑦
0 0 1

] [
𝑋
𝑌
1
] (39) 

Or 

      
[
𝑢
𝑣
1
] =  [

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 1
] [

𝑋
𝑌
1
] 

[
𝑢
𝑣
1
] = [𝑇] [

𝑋
𝑌
1
]  

(40) 

Where T is named as transformation matrix mapping the coordinates from the image to the 

real-life coordinates set on the bridge deck. From the derivation of Equation 40, we have 
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𝑢 =  

𝑎1𝑋 + 𝑎2𝑌 + 𝑎3 

𝑎7𝑋 + 𝑎8𝑌 +  1
 

𝑣 =  
𝑎4𝑋 + 𝑎5𝑌 + 𝑎6 

𝑎7𝑋 + 𝑎8𝑌 +  1
 

(41) 

And then 

      𝑎1𝑋 + 𝑎2𝑌 + 𝑎3 − 𝑎7𝑢𝑋 − 𝑎8𝑢𝑌 =  𝑢 

𝑎4𝑋 + 𝑎5𝑌 + 𝑎6 − 𝑎7𝑣𝑋 − 𝑎8𝑣𝑌 =  𝑣 

(42) 

The Equation 42 is rewritten in a matrix form  

      

[
𝑋 𝑌 1 0 0 0 −𝑋𝑢 −𝑌𝑢
0 0 0 𝑋 𝑌 1 −𝑋𝑣 −𝑌𝑣

]

[
 
 
 
 
 
 
 
𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8]
 
 
 
 
 
 
 

=  [
𝑢
𝑣
] (43) 

These coefficients, a1 to a8, are calculated by assigning a set of reference points on the 

bridge deck. The coordinates of reference points in the image coordinate system are denoted as 

(ui, vi) while the coordinates in the bridge deck are (Xi, Yi). Given n reference points, the total 

number of functions derived from Equation 43 is 2*n. Eventually, the coefficients are calculated 

by means of the Least Square Fit algorithm. The insight of plane transformation is illustrated in 

Figure 39, while the details and numerous implementations are described on the next section.   
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Figure 39. Geometry transformation between the 2-D image and the 2-D bridge deck coordinates 

Laboratory Verification 

Experiment Design: UCF 4-Span Bridge, Camera, and Vehicle Classes 

The verification for detection of vehicle type framework, which is expressed on the 

“Theoretical Background” section, is conducted at the Structural Lab of UCF. To simulate traffic 

passing over a bridge, multiple small-size cars are driven back and forth on the deck of the UCF 

4-Span Bridge. As it is described on Chapter 2, that apparatus bridge consists of two 300cm main 

continuous spans and two 120cm approach spans. The bridge deck includes a 3.18mm steel sheet 

at 120cm wide which turns out the deck dimension of 600 x 120 cm to length and width 

respectively. To view the whole bridge deck, a camera is mounted on a steel pole placed at the end 
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of the bridge. The camera utilized herein is a Logitech Webcam C930e that can directly connect 

to a computer via a USB port. This webcam can capture full 1080p (1080 x 1920 pixels) High 

Density (HD) video clips at a speed of 30 frames per second (30 Fps). Since other cameras have 

also been employed, it is seen that there is no requirement on any type of cameras. The 

experimental setup is shown in Figure 40.  

 

Figure 40. The UCF 4-Span Bridge and experiment setup 

Taking the bridge deck dimension (600 x 120 cm) into account, several small-scale cars 

are used. Those cars are divided into three classes named Class 1, Class 2, and Class 3 with their 

own descriptions by their appearances, weight of axles, axle distances, and horizontal wheel 

distances. The specifications of each class are depicted in Figure 41. The tests are simply deployed 

by driving those small-scale vehicles back and forth on the 4-Span Bridge deck, while the camera 

is recording. Numerous driving scenarios are implemented by changing vehicle configurations. 

Those configurations comprise changing number of deployed vehicles as well as number of 

deployed classes, driving vehicles within the specified lanes or freely (no lane), and altering speed 

of vehicles (fast or slow). In total, forty (40) tests are carried out to cover those mentioned 
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configurations. Finally, the clips are analyzed using the proposed framework. Details of results 

including problems and challenges are discussed in subsequent section. 

 

Figure 41. Vehicle classes and their specifications 

Training Detectors using AdaBoost and Cascade Classifiers 

As there are three vehicle classes, three vehicle detectors are developed namely Detector 

1, Detector 2, and Detector 3 corresponding to these classes in Figure 41. The procedure to train 

the detectors is explained in Figure 36. First, a set of positive images is prepared. For example, a 

total number of 102 images of the Class 1 are labeled manually by cropping image windows of 

the Class 1 vehicles from testing images. Those images for cropping are also subjectively selected 

by the engineer to make positive images covering all facets of a particular vehicle Class such as 

image window sizes of vehicle class (image scale) and views of vehicle poses. Although selecting 
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and cropping are manually performed, labeling is accomplished by using the Image Labeler Apps 

from MatLab. Meanwhile, negative images are picked out from non-vehicle images as well as 

images of Class 2 and Class 3 vehicles, for example, when developing Detector 1. It is affirmed 

that to select other Classes of vehicle images as negative ones for training a certain Detector is 

immensely important to obtain the discriminative and robust Detector. Preparing a set of negative 

windows is very simple when the training program sequentially crops windows from the selected 

negative images. As indicated previously, an off-the-shelf AdaBoost based cascade classifier 

embedded in MatLab is utilized for training to obtain Detectors in the end.  

In summary, there is a total number of 102 positive images for training Detector 1, 104 

positive images for training Detector 2, and 102 positive images for training Detector 3. The 

negative window sets are replicated from a pool of 20 negative images (1920 x 1080 pixels) for 

each class. To simulate the variation of illumination conditions, those positive and negative images 

are also modified in terms of brightness and contrast parameters. The number of cascades used for 

the training procedure are appointed as 10 cascades. Each Class of vehicle is trained independently 

to obtain its Detector such as Detector 1, Detector 2, and Detector 3, which is used for recognizing 

vehicle Class from an input image. The detection vehicle results are shown in the next section. 

Examples of positive and negative images that are used for training Detectors are illustrated in 

Figure 42.  
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Figure 42. Examples of positive and negative images for training classes (1,2,3) of vehicles  
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Class Vehicle Detection Results, and False Detection 

Each Detector developed from the training module is consecutively used to scan across an 

input image at multiple scales and locations to find out the corresponding vehicle classes. The aim 

for using scalable windows is that vehicle image at any size appeared on the input image would be 

possibly identified (e.g. a vehicle that is further from the camera has a smaller size in the input 

image, and vice versa). The locations of the Detectors are obtained by shifting those scalable 

windows for some number of pixels. Selecting small values of scale for windows as well as shifting 

pixels yield more accurate creation of bounding-boxes, but tedious computation in return. Due to 

the fact that dimension and location of bounding boxes are both essential for the next vehicle 

localization task, the detection parameters are selected at small rates values, for example the scale 

ratio of 1.05, and the shifting pixel of one (1 pixel).    

The results of vehicle detection for several different test scenarios such as single or multiple 

vehicles appearing on the deck are presented in Figure 43. It is seen that the detected vehicles are 

labeled by bounding boxes that have yellow, green, and red colors corresponding to the Class 1, 

Class 2, and Class 3 respectively. Although vehicles can successfully be identified in most cases, 

some false detections are also recognized and depicted in Figure 44. The types of false detection 

encountered are undetectable vehicles, detected background regions, wrong type of class, and 

inaccurate dimensions of bounding boxes.  
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Figure 43. True positive of class vehicle detection   
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Figure 44. Examples of False Detection   

The efficiency of detection procedure is evaluated based on the number of false detections 

out of 5826 images that are captured from forty tests. Since there is no ground-truth image database 

for verification, the accuracy of all 5826 images is visually verified by the researcher. The 

evaluation is conducted by comparing detection rates among three classes (Table 7) as well as 

between single vehicle and multiple vehicle scenarios (Table 8).  Table 7 shows that the detection 

rate of the Class 1 (95.9 %) is the best while the one of the Class 2 (88.9 %) is the worst. That 

observation can be explained with front part of the Class 1 vehicle having more textures that makes 

discrimination easier for classifier. During the evaluation process, it is also realized that most of 

the false detections occur when vehicles are far away from the webcam. This is due to the fact that 

vehicles driven away from the webcam commonly become smaller sized and blurry (textureless) 
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objects in images. Because of this shortcoming, using multiple cameras for vehicle tracking (Javed, 

Rasheed, Shafique, & Shah, 2003)  is highly recommended for real life implementation especially 

for long bridges so that each camera could only focus on a particular section of a bridge (e.g. a 

span). Obviously, the detection rate for the case of single vehicle (92.5 %) is better than the rate 

when multiple vehicles passing over the bridge (87.2 %). In summary, the detection rates for all 

scenarios vary in a range from 87.2 % to 95.9 %. False detection problems are addressed and 

discarded in Chapter 4. 

Table 7: Detection rates for each classes of vehicles 

Vehicle Class Class 1 Class 2 Class 3 

Detection Rates 95.9 % 88.9 % 94.4 % 

 

Table 8: Comparison of detection rates between cases of single vehicle and multiple vehicles on 

bridge deck 

Number of Vehicles Single Multiple 

Detection Rates 92.5 % 87.2 % 

Vehicle Localization Results  

As specified in the theoretical section, positions of detected vehicles are determined by 

transforming 2-D image coordinates of bounding boxes (Figure 38) to 2-D coordinates on the 

bridge deck coordinate system. This implementation can be achieved by developing the 

transformation matrix T, which is denoted in the following equation. 

      
𝑇 =  [

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 1
] (44) 
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The coefficients a1 to a8 of the matrix T are calculated by utilizing the Least Square Fit 

algorithm for relationship equations (each created by Equation 43) between a set of reference 

points on the bridge deck (Xi, Yi) and its image (ui, vi) on the pixel-unit coordinates. The 2-D world 

Cartesian coordinate system on the UCF 4-Span Bridge deck is defined as in Figure 45.  It is seen 

that there are fifteen reference points marked on the bridge deck by using LEDs (Light-Emitting 

Diode). Subsequently, those LEDs are also identified on the 2-D image coordinate system. The 

coordinates of reference points on the bridge deck (Xi, Yi) and the image (ui, vi) are presented on 

Table 9. Please note that placing any sorts of references on a bridge deck is commonly simple, and 

it does not require any equipment. For a real-life structure, reference objects may be traffic cones 

or other similar things so that these could be seen clearly by the surveillance cameras.      

 

Figure 45. Reference points on the 2-D bridge deck coordinate system (left) and on the 2-D 

image coordinate system (right)   



90 

 

Since both the real life (Xi, Yi) and image (ui, vi) coordinates are obtained of the reference 

points (LEDs) , these are substituted into Equation 43; and we have 

       

[
 
 
 
 
𝑋1 𝑌1 1 0 0 0 −𝑋1𝑢1 −𝑌1𝑢1

0 0 0 𝑋1 𝑌1 1 −𝑋1𝑣1 −𝑌1𝑣1

  ⋮  ⋮  ⋮  
𝑋𝑖 𝑌𝑖 1 0 0 0 −𝑋𝑖𝑢𝑖 −𝑌𝑖𝑢𝑖

0 0 0 𝑋𝑖 𝑌1 1 −𝑋𝑖𝑣𝑖 −𝑌𝑖𝑣𝑖 ]
 
 
 
 

[
 
 
 
 
 
 
 
𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8]
 
 
 
 
 
 
 

=  

[
 
 
 
 
𝑢1

𝑣1

⋮
𝑢𝑖

𝑣𝑖 ]
 
 
 
 

 (45) 

       Or          𝑋(2𝑖,8) 𝑎(8,1) = 𝑢(8,1) 

Where:          𝑋 =  

[
 
 
 
 
𝑋1 𝑌1 1 0 0 0 −𝑋1𝑢1 −𝑌1𝑢1

0 0 0 𝑋1 𝑌1 1 −𝑋1𝑣1 −𝑌1𝑣1

  ⋮  ⋮  ⋮  
𝑋𝑖 𝑌𝑖 1 0 0 0 −𝑋𝑖𝑢𝑖 −𝑌𝑖𝑢𝑖

0 0 0 𝑋𝑖 𝑌1 1 −𝑋𝑖𝑣𝑖 −𝑌𝑖𝑣𝑖 ]
 
 
 
 

 

(46) 

The Equation 46 is a form that can be solved by using the Linear Least Squares method. 

For this particular practice where 15 reference points are used, X becomes matrix of size (30, 8), 

a and u columns of size (8, 1). The matrix of a is calculated by following Equation.  

        𝑎 =  (𝑋𝑇𝑋)−1𝑋𝑇𝑢 (47) 

       

Or        𝑎 =  

[
 
 
 
 
 
 
 

14.13
−1.00
0.00
8.99

109.30
0.14

−13481.98
−15872.12]

 
 
 
 
 
 
 

 (48) 

      
And       𝑇 =  [

14.13 −1.00 0.00
8.99 109.30 0.14

−13481.98 −15872.12 1
] (49) 
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Once the matrix T is determined, a point on the bridge deck defined by the image 

coordinate system can be converted to its real-life estimated location defined by bridge deck 

coordinate system using the following relation: 

      
[
𝑋
𝑌
1
] = [𝑇]−1 [

𝑢
𝑣
1
]  (50) 

 The verified coordinates of LEDs obtained from the image coordinates and the matrix T 

are shown in Table 9. It is seen that coordinate errors alongside of the bridge width (120 cm) are 

from 0.00 cm to 1.46 cm, while coordinate errors alongside of the bridge length (600 cm) are from 

0.00 cm to 7.51 cm. The results yield the maximum relative error of 1.2 %, which is acceptable 

for estimating locations of moving loads.  

Table 9: Reference point coordinates: the world coordinate and the image coordinate systems 

(Column 2-5). The world coordinates calculated by the matrix T and errors (Column 6-9)  

LED # X (cm) Y (cm) 

u 

(pixel) 

v 

(pixel) 

Xverified 

(cm) 

Yverified 

(cm) 

Error_X 

(cm) 

Error_Y 

(cm) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

1 0 600 518.00 685.75 0.00 600.00 0.00 0.00 

2 60 600 929.09 683.04 59.99 600.00 0.01 0.00 

3 120 600 1344.91 688.45 121.46 602.02 -1.46 -2.02 

4 0 450 722.50 369.81 0.96 456.07 -0.96 -6.07 

5 60 450 939.89 370.86 60.24 456.46 -0.24 -6.46 

6 120 450 1151.69 372.25 118.54 457.17 1.46 -7.17 

7 0 300 796.52 247.93 0.01 300.14 -0.01 -0.14 

8 60 300 943.33 248.63 60.19 299.69 -0.19 0.31 

9 120 300 1087.83 249.78 119.96 300.15 0.04 -0.15 
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LED # X (cm) Y (cm) 

u 

(pixel) 

v 

(pixel) 

Xverified 

(cm) 

Yverified 

(cm) 

Error_X 

(cm) 

Error_Y 

(cm) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

10 0 150 833.22 191.15 0.32 157.42 -0.32 -7.42 

11 60 150 944.94 192.07 60.17 157.51 -0.17 -7.51 

12 120 150 1055.51 191.38 120.27 152.27 -0.27 -2.27 

13 0 0 856.53 153.06 -0.21 0.03 0.21 -0.03 

14 60 0 946.79 153.06 60.63 -4.28 -0.63 4.28 

15 120 0 1035.43 153.52 121.20 -6.14 -1.20 6.14 

Conclusions 

 This chapter demonstrates a framework for obtaining loads induced by traffic vehicles 

passing over a bridge for BHM based only on computer vision techniques. The implementation 

consists of two main objectives: (1) to estimate vehicle loading amplitudes and (2) to localize 

vehicle positions. The highlight of the proposal framework is that neither bridge closure nor any 

conventional sensors are needed. Briefly, a surveillance camera is placed at a relatively higher 

position on the bridge for acquiring images of traffic vehicles moving on the deck. Those images 

are analyzed to identify vehicles and then categorize them into classes based on series of advanced 

computer vision algorithms and features including AdaBoost technique, cascade classifier and 

HOG descriptors. The detected vehicles are then labeled by bounding boxes corresponding to their 

types. Eventually, the positions of these bounding boxes (pixel metric) in image coordinates are 

converted to the positions defined by real-life coordinate system affixed on the bridge deck for 

localizing vehicle positions. The transformation process is achieved by adjusting the camera model 

equation based on the fact that vehicles move on a planar bridge deck.  
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 The proposed approach is validated through tests conducted in the UCF Structural Lab on 

an experimental bridge. Multiple small-scale vehicles are deployed to simulate traffic on the 

bridge. Those vehicles are identified and categorized into their classes (Class 1, Class 2, or Class 

3) at the detection rates ranging from 87.2 % to 95.9 % for all vehicle configurations. Subsequently, 

the detected vehicles are also localized by using the transformation matrix T, which is determined 

by means of employing 15 reference points on the bridge deck. The transformation matrix is 

verified for re-calculation of reference point locations in the world coordinate system from their 

places on images. The accuracy of reference point coordinates yield the maximum relative error 

of 1.2 %.       

 The process proposed in this Chapter is conducted and verified under laboratory conditions. 

Although the introduced framework shows fair results in laboratory, numerous considerations 

should be studied and addressed as to real-life implementations. Such considerations involve the 

task to develop a good database of vehicle classes as well as to identify real vehicles with very 

diverse appearances. The outcomes of the proposed methods are found acceptable and conveyed 

to the next tasks of this dissertation research in Chapter 4. 
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CHAPTER FOUR: OBTAINING UNIT INFLUENCE SURFACES FROM 

VISION BASED MEASUREMENTS: A NEW STRUCTURAL DAMAGE 

INDICATOR  

Introduction 

A very basic definition for Structural Identification (St-Id) is the development of a 

mathematical model to characterize input-output behaviors of a structure by analyzing 

experimental data. Common practice is to first identify, and then to classify these behaviors for 

assessment and decision making. Determination of damage or non-damage state, quantification of 

damage as well as locations of damage occurrences are some instances of this practice. Similar to 

any classifiers, a St-Id system makes use of various features, sometimes termed as structural 

damage indicators (or just damage indicators as in the context of this study) that are generated 

establish input-output interactions and later used to detect any change over time that can be related 

to damage. To successfully achieve this objective, a damage indicator has to provide evidence 

when there is variation from the established or defined healthy condition of a structure. For 

example, the curvature of a mode shape may be highly sensitive to discontinuity such as local 

cracking at a point and can be an effective damage indicator. Generally, damage indicators are 

determined by interpreting the measured data through signal processing and statistical pattern 

recognition techniques. Although numerous St-Id systems have been proposed for the last several 

decades, damage features can be categorized into two groups namely non-parametric based and 

parametric based indicators.  

In non-parametric approach, damage indicators are extracted directly from SHM data in 

time domain. There is no information requirement associated with structural model such as 

geometric, material, and even loads as these methods only require the measured data from a sensor 
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network. In this group of methods, variety of advanced statistical analyses are utilized on time 

domain datasets to yield some sorts of statistical coefficients termed as non-parametric damage 

indicators, which must be roughly stable for a particular structural health condition. In case of 

acceleration data used as monitoring responses, Auto-Regressive (AR) based methods seem 

dominant (Nair, Kiremidjian, & Law, 2006; Omenzetter & Brownjohn, 2006; Sohn, Czarnecki, & 

Farrar, 2000; Sohn & Farrar, 2001). Originated from statistical model used in econometrics, an 

AR model describes the evolution of time series variables as a linear function of their past values. 

Since coefficients of the linear function show consistency and are calculated by least squares 

algorithm, a feature vector comprising those coefficients can be used as a damage indicator. An 

extended version of AR model is also  developed since the current value of a time series can be 

predicted not only from its past values but also from other time series (exogenous inputs), for 

example the data from neighbor sensors. Examples of such models termed as Auto-Regressive 

with eXogenous input (ARX) are found in numerous papers (Gul & Catbas, 2011; Lu & Gao, 

2005; Q. Zhang, 2007). 

Another group of non-parametric methods is developed by means of correlation based 

analysis. As a sensor network is commonly employed in a SHM study, those sensors are acquired 

at the same time and be also synchronized. It is expected to see that the measured data sets from 

various sensors in the network correlate with each other at different levels. Inspired from that 

observation, a feature vector of correlation coefficients among sensors are practiced as a sort of 

damage indicator. Some correlation methods are implemented on strain and deflection data such 

as Cross Correlation Analysis (CCA) (F. N. Catbas, Gokce, & Gul, 2012; Posenato, Lanata, Inaudi, 

& Smith, 2008), Robust Regression Analysis (RRA) (Laory, Trinh, & Smith, 2011; Posenato, 

Kripakaran, Inaudi, & Smith, 2010), Principal Component Analysis (PCA) (Posenato et al., 2008).  
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Although non-parametric damage indicators have promising advantages of simple 

implementation, no need for structural information and fast response for damage warning, those 

indicators are absolutely meaningless when it comes to physical interpretation of damage. 

Therefore, it is ineffective to utilize non-parametric indicators for damage evaluation as well as 

structural performance prediction for the future. Moreover, that type of indicators cannot be used 

to perform finite element model updating to aid users supplementally for understanding about non-

instrumentation regions on structures.  

On the other hand, parametric damage indicators are sorts of modal parameters derived 

from only structural characteristics such as mass, damping and stiffness. Hence, whenever 

condition of a structure changes, these indicators are altered indicating problems on the structure. 

Damage indicators in this group are exemplified as natural frequencies, mode shapes, curvature 

shapes, modal flexibility, and damping ratios that are obtained from dynamic testing or are attained 

later by analyzing static measured data such as strain and/or displacement unit influence line (UIL). 

In case of using dynamic data, these parametric indicators or so-called modal parameters are 

determined by handling Modal Analysis techniques, a powerful approach initially employed in 

aerospace from 1970s, and then mechanical and civil engineering. Since the approach has a long 

history, a large pool of research efforts has been implemented (Doebling, Farrar, Prime, & Shevitz, 

1996).  

Conventionally, modal analysis based methods can be assorted into two main branches 

namely Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA). In EMA, 

damage indicators are estimated by means of input excitation-output dynamic response forms. 

Since it is quite challenging and expensive to excite large scale civil structures such as highway 

bridges, using EMA is not of interest in this dissertation research point of view. Conducting OMA 



97 

 

methods are either preferred or the only choice for data collection for identification due to the fact 

that this technique does not require input data. In OMA, the modal parameters are identified by 

processing vibration data of structures induced by ambient effects like wind and traffic. Peak 

Picking method is perhaps the most original OMA implementation to determine modal frequencies 

of structures after the transformation of ambient vibration data measured by sensors into frequency 

domain by variable techniques. This technique is conducted in this dissertation at Chapter 2 as 

well. Despite being simple and fast, the Peak Picking method is only suitable for a structure having 

well-separated modes and low damping ratios. Another method termed Frequency Domain 

Decomposition (FDD) is firstly introduced by Brincker et al. that based on Peak Picking technique 

and Singular Value Decomposition (SVD) (Brincker, Zhang, & Andersen, 2001). Random 

Decrement analysis is conducted in numerous researches (Gul & Catbas, 2008, 2009; Rodrigues, 

Brincker, & Andersen, 2004) for the reason that it is able to cleanly discard noise from the vibration 

data for further data processing steps. There are also other methods such as Stochastic Subspace 

Identification (SSI) (Ren, Zhao, & Harik, 2004; Van Overschee & De Moor, 2012), Complex 

Mode Indicator Function (CMIF) (F. Catbas et al., 1997; F Necati Catbas, Brown, & Aktan, 2004), 

to name a few.   

Although obtaining parametric damage indicators by means of modal analysis has been 

employed in SHM since long time, this approach still gets much attention from researchers as these 

parameters may be used for many assessment purposes. The shortcomings of using modal analysis 

is that it requires structural information associated with a dense array of accelerometers to produce 

a better warning of damage. Furthermore, the modal parameters such as frequencies, mode shapes, 

damping ratios etc. are not effective for evaluating severe level of damage or estimating structural 

remaining life-time, which are directly related to structural analyses.      
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To determine local damage with another approach for structural identification for input-

output characterization, influence lines can be employed at critical elements as presented in 

superload case study on three highway bridges by Turer et al (Turer, Levi, & Aktan, 1998). 

Recently, obtaining unit influence line (UIL) from real-life measured data as a new type of damage 

indicator has earned considerable attention in Bridge Health Monitoring, an essential practice in 

SHM. Unlike modal parameters, strain and/or deflection unit influence lines are explicit structural 

features that are directly related to responses adopted to structural valuation and assessment. 

Hence, these parameters are quite intuitive for civil engineers. Obtaining an Unit Influence Line 

(UIL) from measurements is introduced by Catbas and Aktan along with other promising indices 

for condition and damage assessment with real life examples of utilization (F Necati Catbas & 

Aktan, 2002). A study for obtaining an influence line from measurement is introduced by OBrien 

et al. (O'Brien, Quilligan, & Karoumi, 2006). Following this algorithm, strain influence lines could 

be calculated by knowing vehicle axle weights as well as axle internal distances. As measured 

responses are superimposed from all axles, a mathematical method is proposed to decompose the 

influence of each axles. Since these influences are derived from ordinates of the bridge UIL, the 

vector of those ordinates is obtained by solving multiple equations corresponding to each scans of 

the data. The UILs determined by this method are conducted as damage indicators in successor 

papers (González, Rowley, & OBrien, 2008; OBrien, Carey, & Keenahan, 2015). Another 

implementation for Bridge Health Monitoring using UIL is conducted by Stohr et al. (Stöhr, Link, 

Rohrmann, & Rüker, 2006). In this research, incline (tilt) UILs are attained at a support by placing 

quaci-static load along a steel beam on a laboratory. The test results show that these incline UILs 

are pretty sensitive to some simulated damage on the beam. Orcesi and Frangopol conduct a study 

employing strain UILs for analyzing life-time structural reliability of a long span bridge (Orcesi 
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& Frangopol, 2010). The strain UILs herein are determined from crawl tests, which are commonly 

conducted by slowly driving a pre-weighted vehicle (so-called a testing vehicle) on a bridge deck 

following a pre-assigned path. Correlation analysis such as moving principle component analysis 

(MPCA) and robust regression analysis (RRA) on measured displacement and tilt UILs are studied 

by Cavadas et al. (Cavadas, Smith, & Figueiras, 2013). The correlation parameters gained from 

that implementation illustrates capability of damage detection on a frame structure. Using UIL as 

s damage indicator is also preferred on long cable bridges such as cable-stayed and suspension 

bridges (Z.-W. Chen, Zhu, Xu, Li, & Cai, 2014; Zhu, Xu, & Xiao, 2014). Since cable bridges are 

very complex structures consisting of cables, trusses, beams etc., it is very difficult to extract modal 

parameters for assessment purposes. By capturing strain UILs as a result of deploying crawl tests 

or using train (metro shuttle) loading, some induced damage could be identified in these 

monitoring studies. An alternative approach for determining UIL without using a pre-weighted 

vehicle is proposed by Catbas and Zaurin (F. Necati Catbas et al., 2012; R. Zaurin & Catbas, 2010). 

In these studies, the authors try to utilize a traffic vehicle instead of a testing truck. The information 

of a traffic truck such as type of vehicle, weight, and locations on a bridge deck is estimated by 

means of computer vision techniques.  The UILs determined in these papers are employed not only 

for damage detection but also for bridge load rating.  

Motivation and Objectives 

Obtaining a sensitive damage indicator for engineering decision making is an ultimate aim 

for Structural Health Monitoring studies since this feature can be employed towards safety, 

serviceability, maintenance and operational decision in relation to the “the health condition” of a 

particular structure. After three decades of practice in SHM, a large pool of damage indicators has 
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been introduced, obtained and then utilized to identify damage in structures, especially for bridges. 

Despite only the highlight research belonging to the field are reviewed in this Chapter, 

accomplishments about damage indicators are compiled as subsequent bullets 

 Non-parametric damage indicators have been receiving attention from SHM 

community lately due to model-free analysis enabling fast and simple implementation. 

The methods for extracting non-parametric indicators are substantially based on 

statistical algorithms such as Auto-Regressive (AR) and Correlation based analyses. 

Since the damage indicator is a type of statistical coefficient, it is independent from any 

structural parameter. Thus, non-parametric indicators do not help users measure 

damage level as well as update finite element model for further understanding of 

structural behavior.  

 On the contrary, modal parameters, sorts of parametric damage indicators, have been 

maturely studied for the last several decades. These parameters are obtained from two 

main approaches including Experimental Modal Analysis (EMA) and Operational 

Modal Analysis (OMA). OMA method is preferred in civil engineering due to no 

loading information demanded. Modal analysis requires structural information and also 

a dense network of accelerometers to yield better signs of damage. In civil engineering, 

deploying modal analysis is not easy for quantifying severe level of damage and also 

estimating remaining life-time of structures, which is commonly governed by structural 

analysis. 

 Recently, Unit Influence Lines (UILs) are practiced as new type of damage indicators 

especially in Bridge Health Monitoring (BHM). Since UILs are structural parameters, 

they are capable of addressing some shortcomings of both modal analysis parameters 
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and statistical analysis coefficients when acting like damage indicators. The weakness 

of developing UIL is that vehicle of a known-weight is required. In addition, since 

developing an UIL depends on the tests along truck pathways, the obtained UIL is only 

invariable if either vehicle testing routes are kept the same or the bridge distribution 

factors are well-established. Those shortcomings limit the practicing for UIL extraction 

in real-life.      

In this Chapter, a new damage indicator is introduced as a consequence of coupled 

outcomes from previous Chapter 2 and Chapter 3. The proposed damage indicator is Unit Influence 

Surface (UIS), which is a 3-D construction of UIL. In bridge structural analysis, deploying UIS is 

more convenient than using UIL for calculating internal forces (e.g. moment, shear, and normal 

force) as well as responses (e.g. strain, deflection) since UIS based analyses do not require 

distribution factors. Similar to UIL, UIS is a normalized structural parameter influenced by only 

structural characteristics such as mass, stiffness, and geometric info. In other words, UIS can be 

employed as a possible damage indicator for bridge health monitoring. In this study, estimated 

traffic loading information including vehicle weights and positions (from Chapter 3) is coupled 

with measured displacements (from Chapter 2) to construct displacement UIS. Other types of UIS 

can be also obtained in the same manner corresponding to different types of measured responses 

such as strain and tilt (rotation). The details of theoretical background are described in next 

sections. Subsequently, the framework is validated on the small-scale bridge located in the UCF 

Structural Lab.    
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Theoretical Background 

Theory of Unit Influence Surface (UIS) 

Unit Influence Surface (UIS) of a certain response (displacement, strain, etc.) at a 

measurement location on a beam-type or plate-type structure (e.g. single or multi-span bridge with 

its deck) is defined as a response function of the unit load with respect to the any location on that 

structure. Since the value of the unit load equals to one (1), a UIS can be mathematically presented 

as a two-variable function S as shown in Equation 51.  

      𝑈 = 𝑆(𝑋, 𝑌) (51) 

where (X, Y) represents the location of the unit load on the bridge deck coordinate system. U which 

is called as the normalized response is the response at the measurement point due to the unit load 

at (X, Y). An example of UIS is depicted in Figure 46. 

 

Figure 46. An example of Unit Influence Surface  

 As mentioned previously, a UIS is used to calculate internal forces and responses at a 

position on a bridge girder induced by moving loads such as vehicles passing over the deck. Let a 
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group of loads on a bridge be denoted by {P1, P2, … , Pk}, and corresponding locations by {(x1, y1), 

(x2, y2), … , (xk, yk)} as illustrated in Figure 46. Then, the vertical coordinates of the UIS under 

those loads derived from Equation 51 are  

      𝑈𝑘 = 𝑆(𝑥𝑘 , 𝑦𝑘) (52) 

 Thus, the internal force or response R (depending on type of UIS) can be determined as 

follows 

      

𝑅 = ∑𝑈𝑘𝑃𝑘

𝑘

1

 (53) 

Using UIS for structural analysis is quite convenient and simple, especially when dealing 

with movable loads. Moreover, a UIS is not function of the loading but the structural characteristics 

including geometry and stiffness, which makes UIS as a potential damage/change indicator. 

However, determining a UIS in real life following its definition is not a direct measurement for 

the reason that the unit load is an unreal effect. Hence, structural responses to the unit load cannot 

be measured. As a remedy, a practical approach is introduced for constructing UIS from direct 

measurements.     

Construction of Unit Influence Surface (UIS) from Direct Measurement  

In this study, displacement Unit Influence Surface (UIS) is developed from measured data. 

Obviously, other types of UIS derived from strain, tilt (rotation), and also other capably measured 

responses can be also obtained in the same manner proposed in this Chapter. Herein, the 

displacement UIS is constructed from direct measurements including vehicle axle weights, vehicle 

locations, and structural displacements (Figure 32). All of these measurement protocols are 

introduced in Chapter 2 (i.e. structural displacement measurement) & 3 (remaining vehicle-info 
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estimations). Briefly, the methodology for constructing UIS is proposed based on surface fitting 

algorithms for a set of 3-D discrete points called UIS-points. A UIS-point describes the state of 

vehicle loading-structural response (input-output) interaction. Intuitively, a certain state 

corresponds to an instant when a scene of traffic vehicles and corresponding bridge girder 

deflection due to those vehicles is captured by the surveillance camera. While two horizontal 

coordinates of a UIS-point are bridge-deck coordinates of the configuration location that are 

derived from vehicle positions, vertical coordinate of that UIS-point is the normalized 

displacement of the bridge girder. Details of determining the configuration location and also the 

normalized displacement from direct measurements are described in next sections.           

 

Figure 47. Protocol for extracting displacement Unit Influence Surface from direct measurements 
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The Configuration Location  

The configuration location is the representation of equivalent location that accounts for a 

certain vehicle configuration (combination of multiple vehicle locations) on the bridge deck. At a 

particular instant, the scene of traffic vehicles is acquired by the surveillance camera. Then, those 

vehicles are identified by their weight and localized by their positions on the bridge deck (Chapter 

3). For example, the estimated loads of each wheel are {W1, W2, … , Wj} while the positions of 

these loads are {(x1, y1), (x2, y2), … , (xj, yj)}. In this study, the coordinates of the configuration 

location (X, Y) are subjectively appointed as the centroid of the load group, which can be 

determined as          

      
𝑋 =

𝑊1𝑥1 + 𝑊2𝑥2 + ⋯+ 𝑊𝑗𝑥𝑗 

𝑊1 + 𝑊2 + ⋯+ 𝑊𝑗 
 (54) 

      
𝑌 =

𝑊1𝑦1 + 𝑊2𝑦2 + ⋯+ 𝑊𝑗𝑦𝑗 

𝑊1 + 𝑊2 + ⋯+ 𝑊𝑗 
 (55) 

The Normalized Displacement  

The normalized displacement U is defined as the vertical coordinates of the UIS at the 

configuration location (X, Y). Assuming that the surface S is the two-variable function of the UIS 

that needs to be found, the measured displacement D induced by the vehicle configuration must 

be constrained with the function S following Equation 53.   

      𝐷 = 𝑊1𝑆(𝑥1, 𝑦1) + 𝑊2𝑆(𝑥2, 𝑦2) + ⋯+ 𝑊𝑗𝑆(𝑥𝑗 , 𝑦𝑗) (56) 

On the other hand, another constrain is expressed as follows:  

      𝐷 = 𝑊𝑒𝑞𝑢𝑖𝑣𝑈 

Similarly: 𝐷 = 𝑊𝑒𝑞𝑢𝑖𝑣𝑆(𝑋, 𝑌) 

(57) 

Where Wequiv is an equivalent load placed at the configuration location.    
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 Equations 56 and 57 yields 

      𝑊𝑒𝑞𝑢𝑖𝑣𝑆(𝑋, 𝑌) = 𝑊1𝑆(𝑥1, 𝑦1) + 𝑊2𝑆(𝑥2, 𝑦2) + ⋯+ 𝑊𝑗𝑆(𝑥𝑗 , 𝑦𝑗) (58) 

Or 

      
𝑊𝑒𝑞𝑢𝑖𝑣 = 𝑊1

𝑆(𝑥1, 𝑦1)

𝑆(𝑋, 𝑌)
+ 𝑊2

𝑆(𝑥2, 𝑦2)

𝑆(𝑋, 𝑌)
+ ⋯+ 𝑊𝑗

𝑆(𝑥𝑗 , 𝑦𝑗)

𝑆(𝑋, 𝑌)
 (59) 

Set 𝑟𝑗 =
𝑆(𝑥𝑗,𝑦𝑗)

𝑆(𝑋,𝑌)
 is the weighted-factor of the load Wj in the way of constructing the 

equivalent load Wequiv. Equation 59 becomes  

      𝑊𝑒𝑞𝑢𝑖𝑣 = 𝑊1𝑟1 + 𝑊2𝑟2 + ⋯+ 𝑊𝑗𝑟𝑗 (60) 

Thus, it is seen that the normalized displacement U can easily be calculated if the equivalent 

load Wequiv is obtained (Equation 57). Unfortunately, determining the equivalent load Wequiv by 

means of Equation 60 is not a straightforward process because all the weighted-factors rj are 

unsettled. The solution to tackle this challenge is an iterative approximation algorithm, as shown 

in the following, which makes use of many relationships in the same form of Equation 60 derived 

from many vehicle configurations, respectively.  

 Step 1: Given n states of vehicle loading-structural response (input-output) interaction, 

there will be n values of measured structural displacements Di. There are also n vehicle 

configurations providing n configuration locations {(X1, Y1), (X2, Y2), … , (Xn, Yn)}. For 

a particular state, vehicle loads {W1, W2, … , Wj} and vehicle positions {(x1, y1), (x2, y2), 

… , (xj, yj)} are obtained. Please note that the number of loads (or number of detected 

vehicles) j in each vehicle configuration varies.  

 Step 2: Initialize all weighted-factors r = 1.  

 Step 3: For i = 1, … , n. Operating for each states 

o Calculate 𝑊𝑖
𝑒𝑞𝑢𝑖𝑣

 for each vehicle configurations following Equation 60. 
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𝑊𝑖
𝑒𝑞𝑢𝑖𝑣

= ∑𝑊𝑗𝑖
𝑟𝑗𝑖

𝑗𝑖

1

  

o Obtain the normalized displacement Ui (Equation 57) 

      
𝑈𝑖 =

𝐷𝑖

𝑊𝑖
𝑒𝑞𝑢𝑖𝑣

  

 Step 4: Utilize surface fitting algorithm for Ui, which yields the surface function S. 

 Step 5: Update all weighted-factors based on the function S 

      
𝑟𝑗 =

𝑆(𝑥𝑗 , 𝑦𝑗)

𝑆(𝑋, 𝑌)
  

 Loop through the Step 3, Step 4, and Step 5 until the error is less than a pre-established 

threshold. The error value is calculated as the percentage difference of the S volumes 

between two consecutive fitting implementations. In this study, 1% of difference is 

selected as the threshold to stop the iteration. 

Surface Fitting for Discrete Data  

Surface fitting is the core analysis for constructing UIS in this study. In general, surface 

fitting is the process to develop a 2-D surface that fits the best to a set of 3-D points. Since the 2-

D surface is a mathematical function with two variables and numerous of constant parameters, that 

fitting surface is regulated if its function type and also corresponding parameters are determined. 

The common procedure to construct a fitting surface is to hypothesize a mathematical function, 

and then to estimate its parameters to achieve the best fit with a given discrete data set. Due to the 

hypothesized mathematical function being subjectively appointed by users, the approach for its 

selection is an iterative process based on evaluating the accuracy of fit such as SSE (sum of squares 

due to error), R-square (coefficient of determination), and RMSE (root mean squared error).  
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Although numerous mathematical functions and methods for obtaining function 

parameters are introduced, these can be assorted into two groups. In the first group, the 

mathematical function is formed from a single equation, for example, a polynomial, a 

trigonometric or a distributional equation. The second group involves either interpolation or 

smoothing function, which are combinations of finite equations. While the first group of fitting 

functions can provide parameters for the whole set of data, they require well-understood behavior 

of experimental data sets and also are highly influenced by outliers. On the other hand, in spite of 

no parameter extraction, interpolation and smoothing functions yield better matching to given 

discrete data sets and do not require deep knowledge of the data shapes. Knowing that a UIS should 

be a complex function involving many characteristics (mass, stiffness, geometric, etc.) of a 

composite structure, it is impossible to identify a mathematical UIS function. Thus, the approach 

of using interpolation and smoothing functions for fitting (so-call nonparametric fitting) is 

deployed in this dissertation study. The selected methods are 1) Bilinear Interpolation and 2) Thin-

plate Spline Interpolation fitting that are briefly reviewed later on. 

Bilinear Interpolation 

Bilinear interpolation is the simplest and the most straightforward method in the pool of 

interpolation. As an extension of linear interpolation for two variables, it can be deployed by 

performing linear interpolation in each variable, consecutively. In mathematics, the surface 

function S developed by means of bilinear interpolation comprises finite equations, each of which 

is represented as in the following form 

      𝑓(𝑋, 𝑌) = 𝑎0  +  𝑎1𝑋 + 𝑎2𝑌 + 𝑎3𝑋𝑌 (61) 
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A surface segment f(X, Y) is determined from four adjacent data points; and it is only valid 

inside the space limited by these points. For example, given four adjacent UIS-points such as (X1, 

Y1, U1), (X2, Y2, U2), (X3, Y3, U3), and (X4, Y4, U4), the coefficients (a0, a1, a2, a3) are calculated by 

substituting the given values into Equation 61, and then solving the equation below.  

        

[

𝑎0

𝑎1

𝑎2

𝑎3

] =  [

1 𝑋1 𝑌1 𝑋1𝑌1 

1 𝑋2 𝑌2 𝑋2𝑌2 

1 𝑋3 𝑌3 𝑋3𝑌3 

1 𝑋4 𝑌4 𝑋4𝑌4 

]

−1

[

𝑈1

𝑈2

𝑈3

𝑈4

] (62) 

Since every surface segment is obtained from four certain adjacent 3-D points in the data 

set, the fitting surface is a combination of these segments. An example result for constructing a 

surface from a discrete data set (X, Y, U) in terms of the bilinear interpolation is illustrated in Figure 

48. It is seen that the fitting surface passes through every given data points (blue points). That 

makes the surface rough with hill-peaks. Using bilinear interpolation returns a surface reflecting 

original information, but it also catches all outliers. One advantage of deploying bilinear 

interpolation is that the method performs efficient computation because of its simple methodology. 

In this study, bilinear interpolation is employed in Step 4 in the iteration algorithm for obtaining 

the UIS described in the previous section. 
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Figure 48: A fitting surface constructed by using the bilinear interpolation 

Thin-plate Spline Interpolation 

In general, a spline is a combination of multiple mathematical curves that are connected 

through predefined points (so-called knots). Due to the smooth shape of a spline by its construction, 

the two-first derivatives of the spline must be continuous everywhere, apparently, at the knots as 

well. Hence, a spline interpolation is commonly carried out in terms of these continuous derivative 

constrains and also a type of math function selected for its segments. Since a spline is merged by 

many segments, the spline based interpolation error can be achieved even using a simple math 

form for segment itself. For example, Figure 49 shows that a spline (red color) derived from a 3rd 

order polynomial function is well-fitted to a given dataset (blue dots) and better than a 7th order 

polynomial function (black color).      
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Figure 49: Spline interpolation vs. high order polynomial interpolation 

Multi-variable spline interpolation is an extended version done by conducting the spline 

interpolation on multiple dimensions. In this group, thin-plate spline interpolation is one of the 

most popular data fit technique for two dimensional datasets, which is initially introduced by 

Duchon (Duchon, 1977). Inspired by a physical observation involving the bending of a thin sheet 

of metal that has a certain rigidity, the smoothing criteria of the thin-plate spline can be controlled 

based on a rigid parameter. By assuming that the rigidity is equal along the whole thin-plate, the 

thin-plate spline interpolation yields a better plausible fitting surface, especially for physical 

engineering problems. This assumption also helps to discard outliers effectively making the thin-

plate spline interpolation preferable in many applications such as data mining, 3-D construction of 

geometric models, image warping etc., to name a few. 
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The fundamental function used to model a thin-plate spline is a sort of radial basis function 

as shown in Equation 63.  

        𝛹(𝑟) = 𝑟2ln (𝑟) (63) 

where r is the Euclidean radial length (distance from a data point to the origin) of a vector 

comprising independent variables. For the case of two independent variables (X, Y), the Equation 

63 can be rewritten as Equation 64. It is also seen than the function 𝛹 has its valid derivatives at 

the two-first orders. 

        𝛹(𝑋, 𝑌) = (𝑋2 + 𝑌2)ln (√(𝑋2 + 𝑌2)) (64) 

Then, a simple form of the thin-plate spline interpolation can be described as a combination 

of the radial basic 𝛹 functions and a first-order polynomial part. 

        

𝑓(𝑋, 𝑌) = ∑ 𝛹((𝑋, 𝑌) − 𝑐𝑖)𝑎𝑖 + 𝑋𝑎𝑛−2 + 𝑌𝑎𝑛−1 + 𝑎𝑛

𝑛−3

𝑖=1

 (65) 

where ci is the control point in R2 (knots); and ai is the parameter that is calculated by minimizing 

the energy function E:. 

         

𝐸 = ∑‖𝑈𝑗 − 𝑓(𝑋𝑗 , 𝑌𝑗)‖ + 𝛾 ∬[(
𝑑2𝑓

𝑑2𝑋
)

2

+ 2(
𝑑2𝑓

𝑑𝑋 𝑑𝑌
)

2

+ (
𝑑2𝑓

𝑑2𝑌
)

2

] 𝑑𝑋 𝑑𝑌

𝑛−3

𝑗=1

 (66) 

Where (Xj, Yj, Uj) are the data points (the UIS-points herein) for constructing the thin-plate spline; 

γ is the rigid parameter that is mentioned previously. It is also proved that minimization of 

Equation 66 returns a unique parameter set of ai; or a single f function, in other words (Wahba, 

1990). 

A fitting surface obtained by means of deploying the thin-plate spline interpolation is 

depicted in Figure 50b. Also, a comparison between fitting surfaces of the same discrete dataset 

constructed by both methods (bilinear interpolation and thin-plate spline interpolation), is also 
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illustrated in Figure 50. The figure shows that all hill-peaks on the bilinear interpolated surface are 

smoothed on the thin-plate spline surface. Obviously, using the thin-plate spline interpolation 

yields a plausible outcome, especially when the data is measured from a rigid plate such as a bridge 

deck. However, it is seen that the bilinear interpolation is also capable of providing a good result 

if the measured data is processed discarding outliers. Since thin-plate spline method suffers from 

computational efficiency, this deployment is only utilized for constructing the final UIS for further 

analyses to identify damage that is presented in Chapter 5.      
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Figure 50: Fitting surfaces of a given dataset obtained by two selected methods: a) Bilinear 

interpolation; b) Thin-plate spline interpolation 
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Laboratory Verification 

Experiment Setup on UCF 4-Span Bridge 

The displacement Unit Influence Surface (UIS) is obtained for the UCF 4-Span Bridge: an 

SHM apparatus on the UCF Structural Lab detailed in the previous Chapters. To obtain the 

displacement UIS from direct measurements, two groups of data are needed to be acquired 

including traffic vehicle information and bridge girder displacements. Since the experimental setup 

for simulating traffic and for determining info of vehicles is described in Chapter 3, this section 

only focuses on the illustration of the experimental setup for measuring displacements of bridge 

girders caused by those simulated traffic configurations.             

The displacement UIS’s are extracted from a number of positions on UCF 4-Span Bridge 

girders in a comparative fashion and also localization of damage locations, which are introduced 

in the next Chapter. Since the bridge has two continuous spans consisting of two main girders, the 

measurement locations are assigned below the girder flanges and along these girders as depicted 

in Figure 51. The displacement of a measured location can be obtained by using the non-target 

vision based method as proposed in Chapter 2. To be able demonstrate UIS for several locations, 

the displacements from other twelve (12) monitored positions are obtained by a set of LVDTs. The 

vision based displacement method is also conducted at a location for verification as presented in 

Chapter 2. A National Instrument data acquisition system (NI-SCXI) is employed to acquire data 

from these LVDTs. To synchronize the image data of vehicles and the displacement data of the 

bridge girders, both the NI data acquisition and the webcam for capturing small-scale cars passing 

over the bridge deck are triggered from a shared LABVIEW code.  
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Figure 51: The twelve (12) measured locations on the UCF 4-Span Bridge girders 

Unit Influence Surfaces Results and Discussion 

As mentioned in the Chapter 3, a total of forty (40) crawling tests are conducted to get 

enough data for obtaining numerous UIS’s for every measurement locations. For each test, the 

vehicles are driven one-turn (back and forth) from the starting point to the end of the bridge. 

Meanwhile, dynamic displacements caused by the vehicles are collected at the twelve (12) 

measurement locations simultaneously. As only static responses of dynamic displacements are of 

interest for constructing UIS, a low-pass filter (filtering off high frequencies from the raw data) is 

employed to discard the dynamic part of the raw data while keeping the static response. The static 

displacements that are extracted from dynamic raw data of the L1 location at a particular test are 

depicted in Figure 52a. The filtering process is applied to data for all measurement locations. The 

static displacement results of several locations, for instance from L1 to L6 that are acquired 

simultaneously, are also shown in Figure 52b. 
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Figure 52: Experimental displacement data; a) The raw data and extracted static part at the 

location L1; b) The static displacements at the locations from L1 to L6 

Since a UIS is constructed by surface fitting to a number of discrete data points, a combined 

data set from several tests is a need for the fitting analysis. To verify the consistency of the 

proposed UIS constructing algorithm, a number of fifteen (15) UIS’s are developed for each 

measurement position by randomly selecting ten (10) tests out of forty (40) from the test database. 

A particular combination of data sets from 10 selected tests for constructing UIS’s is named a Set, 

one of which is shown in Figure 53. As seen in this figure, each colored dot represents a UIS-point 

in the Set. The locations of these UIS-points in the plan view (X-bridge width, Y-bridge length) 

present vehicle configuration locations (ref. The Configuration Location section) while the U-unit 

displacement values of that color dot are the normalized displacements determined by means of 

the iterative algorithm (ref. The Normalized Displacement section). The plan view (Figure 53b) 

also illustrates that vehicle routes can be anywhere on the bridge deck; and these vehicles even do 

not travel straightly. Hence, it should be a convenience of using UIS instead of UIL for real-life 

bridges since constructing a UIL has a limitation of a certain pre-routed vehicle pathway. 
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Figure 53: A combination data from the 10 tests acquired at the location L2 for constructing 

displacement UIS at the L2 (dUIS-L2); a) 3-D View; b) Plan View 

The UIS-points (color dots) are employed to fit a surface by means of the thin-plate spline 

interpolation. Since the obtained UIS-points are commonly between 20 cm and 100 cm on the 

bridge width axis, only the surface range of 20-100 cm is constructed yielding a constructed UIS 
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(Figure 53b). Thus, the size of the UIS in the plan view becomes 80 cm x 600 cm in this particular 

study. The displacement UIS’s at the locations L7, L8, and L9, denoted as dUIS-L7, dUIS-L8, and 

dUIS-L9 respectively, are depicted in Figure 55. Due to the twelve (12) measurement locations 

being symmetrically distributed, these symmetrical UIS’s are expected to be similar in groups for 

example group I of {dUIS-L1, dUIS-L6, dUIS-L7, dUIS-L12}, group II of {dUIS-L2, dUIS-L5, 

dUIS-L8, dUIS-L11}, and group III of {dUIS-L3, dUIS-L4, dUIS-L9, dUIS-L10} as shown in 

Figure 54. The obtained UIS’s at locations L1, L6, L7 and L12 (group I) are illustrated in Figure 

56.   

 

Figure 54: The measured locations have geometrical symmetry. The UIS’s at the locations in the 

same group should be similar  
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Figure 55: The displacement UIS’s at the locations L7, L8, and L9 

Figure 55 shows 3-D views (left column) and also side views (right column) of the UIS’s 

from the locations L7, L8, and L9. As expected, all the UIS’s go through zero-value points at the 

positions of the bridge supports (0, 300, and 600 cm on the bridge length axis). The maxima points 

on the Span 1 of the UIS’s are located at 131, 144, and 159 cm distances from the left-end of the 

bridge for the locations L7, L8, and L9 respectively. Also, the highest value of these UIS’s is on 

the dUIS-L8. It is because the location L8 is the middle point of the span, which is commonly 

deflected the most in a beam. Related to other maxima points on the Span 2, the highest value 
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occurs on the dUIS-L9; and that is very plausible following structural analysis. However, the 

positions of these maxima points do not alter much for every measured locations.   

 

Figure 56: The displacement UIS’s of the group I at the locations L1, L6, L7, and L9 
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Figure 56 shows a comparative illustration of the UIS’s at the locations L1, L6, L7, and L9 

(group I of the measured positions) that are assigned symmetrically. Thus, these UIS’s are 

expected to be similar in shape as well as the maxima values. It is observed that the shapes of the 

UIS’s are totally analogous after flipping these about the symmetrical axis. The maxima points of 

the UIS’s are also identified and then be detailed in Table 10 including their locations as well as 

their values. The information of those maxima values affirms that the obtained UIS’s at the location 

L1 and L7, symmetrically placed over the median axis of the bridge deck, are almost identical. 

This similar occurrence is also observed for the UIS results of the locations L6 and L12. A little 

alteration is seen when comparing the UIS’s from L1 and L7 to the UIS’s from L6 and L12. 

Although the highest errors of the maxima values are approximately 7.2%, the most important info 

like the minimum values yield the errors at a rate less than 2.6%.  

In summary, an initial verification of the UIS’s constructed from a particular Set (Figure 

53) is deployed and depicted in Figure 55 and Figure 56. The evaluation illustrates that the 

proposed process for constructing UIS from direct measurements returns reliable and plausible 

outcomes, especially from structural analysis perspective. In the subsequent section, the UIS’s 

obtained from the other Sets (a total of fifteen Sets) are be compared by means of statistical analysis 

to verify their consistency, which is the most important characteristics of a potential damage 

feature.          
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Table 10: Error evaluation for the group I of the measured symmetrical positions 

  

Distance from 

Max to the Closest 

End (cm) 

Distance from 

Min to the Closest 

End (cm) 

Max Value (unit disp.) 

mm/gram 

Min Value (unit disp.) 

mm/gram 

  Value Error Value Error Value Error Value Error 

dUIS-L1 184 2.8% 130 -4.6% 5.7898E-05 0.9% 1.9818E-04 -1.3% 

dUIS-L6 172 -3.9% 145 6.4% 6.1526E-05 7.2% 2.0592E-04 2.6% 

dUIS-L7 186 3.9% 131 -3.9% 5.6476E-05 -1.6% 2.0120E-04 0.2% 

dUIS-L12 174 -2.8% 139 2.0% 5.3696E-05 -6.5% 1.9769E-04 -1.5% 

dUIS-

average 179 0.0% 136 0.0% 5.7399E-05 0.0% 2.0075E-04 0.0% 

 

As mentioned previously, a total number of fifteen (15) Sets are developed by combining 

ten (10) different tests out of forty (40) conducted for each Set. For every Set, the UIS’s at all 

locations are constructed. Hence, the protocol produces fifteen (15) UIS’s for each location. To 

verify the consistency characteristics of the obtained UIS’s, some parameters of UIS such as the 

surface volume and maxima values (only the Min Values are interested herein) are calculated. For 

instance, the volume and maxima values of these UIS’s at the location L1 for all Sets are depicted 

in Figure 57a as well as in Figure 57b respectively. The Figure shows that those outcomes are 

highly steady as they alter within a narrow range. A measure of data dispersion is also performed 

that yields the coefficient of variation (CV) value of 1.27% for the UIS volume data and the value 

of 1.00% for the UIS maximum data, which are greatly low. The error analyses implemented for 

other measured locations are illustrated in Table 11 and Table 12. The results of CV parameters 

for all cases illustrate that the maximum of CV value is 1.70% and many other CV values are less 
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than 1.00%. The evaluation confirms the successful consistency characteristics of the UIS’s that 

are attained by the proposed framework.  

  

Figure 57: The parameter values of the UIS’s at the location L1 for all Sets a) Volume of the 

UIS’s; b) The maxima values of the UIS’s 

Table 11: The volume values of the UIS’s for every Set 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 

µ 2.411 2.678 2.417 2.403 2.741 2.402 2.421 2.756 2.537 2.548 2.711 2.321 

σ 0.031 0.032 0.025 0.022 0.022 0.020 0.042 0.034 0.033 0.024 0.023 0.020 

CV 1.27% 1.19% 1.04% 0.90% 0.79% 0.82% 1.74% 1.22% 1.28% 0.94% 0.85% 0.88% 

 

Table 12: The maximum values of the UIS’s for every Set 
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CV 1.00% 0.59% 0.51% 1.32% 1.12% 1.26% 1.40% 1.21% 1.02% 0.42% 0.34% 0.35% 
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Conclusions 

This chapter introduces a novel type of damage indicator involving structural parameters 

for Bridge Health Monitoring (BHM). The proposed damage indicator is Unit Influence Surface 

(UIS) that is a 3-D version of Unit Influence Line (UIL), another interest catcher damage indicator 

in BHM recently. The procedure for constructing a UIS requires series of measurements that are 

proposed previously in Chapter 2 and Chapter 3. Since the measurements introduced in this 

dissertation are all vision based, the UIS can be extracted by means of a non-sensor monitoring 

protocol that brings about a potent and convenient implementation alternative for real-life bridges. 

In brief, a UIS is constructed by deploying surface fitting algorithms (e.g. Bilinear Interpolation 

and Thin-plate Spline Interpolation) to a set of UIS-points, each of which describes a state of 

vehicle loading-structural response (input-output) interaction while traffic passes on the bridge 

deck. Hence, a UIS-point (Xj, Yj, Uj) is developed from a configuration location (Xj, Yj) derived 

from vehicle positions and a normalized displacement Uj at the measurement location. While the 

configuration location can be effortlessly calculated from the detected vehicle positions, the 

normalized displacement is determined by operating an iterative approximate procedure on 

coupled information of vehicle and structural displacement data.     

The UIS’s are extracted for the 4-Span Bridge in UCF Structural Lab. To validate the 

outcomes of the proposed protocol, a total of twelve (12) positions under main girder flanges are 

selected for constructing the UIS’s. Since these positions are placed symmetrically over two 

symmetrical axes (middle-support axis and median of the deck), the UIS’s at the symmetrical 

locations illustrate identical shapes and maxima values (error values from 0.2% to 7.2%). In 

addition, the UIS’s determined from neighboring positions are observed complying with structural 

analysis perspective to supplement the UIS plausibility. The UIS consistency is also verified since 
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it is the most essential characteristics for a damage indicator. A consistent verification method is 

deployed by constructing numerous (15) UIS’s for each measurement locations from a database 

of forty (40) tests. The error analyses show that the (15) UIS’s at any location are identical. A 

measure of data dispersion for the UIS parameters (e.g. UIS volume and UIS maximum data) 

yields the maximum of CV (coefficient of variation) value to be 1.70% and many other CV values 

to be less than 1.00%. Quantitative analysis of the obtained UIS confirms the consistency and 

reliability. With these characteristics, the UIS promises a great potential to become a sensitive 

damage indicator. The UIS’s constructed by the proposed method are exploited for damage 

detection as well as damage localization in the next Chapter. 
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CHAPTER FIVE:  DETECTION AND LOCALIZATION OF DAMAGE 

USING UIS OBTAINED WITH LIMITED NUMBER OF SENSORS 

Introduction 

Structural Identification (St-Id), among others, is a broadly interdisciplinary research area 

in Structural Health Monitoring (SHM) involving various implementations such as structural-

characteristics extraction, structural inspection, structural control, and also physics-based model 

updating for constructed systems (F. Catbas, Kijewski-Correa, & Aktan, 2011). Since the ultimate 

aim of a St-Id system is to prevent failures likely to occur during routine operation of constructed 

structures, damage identification is always an essential component that provides clues and proofs 

for decision making. Ideally, a comprehensive damage identification scheme should be developed 

in three steps including 1) damage detection, 2) damage localization, and 3) damage quantification, 

sequentially. Following that scheme, the first step involving damage detection is to predict 

problems as well as to provide information for the next steps. The second and third steps of 

interpretation aim to support the proofs of damage, which help inspectors and also project owners 

for better decision-making. In practice, damage qualification is commonly a very particular 

implementation since critical levels of damage are ranked differently for each specific constructed 

structure. Examples of these are the structure type, importance of the structure in the infrastructure 

network, age of the structure, and specific requirements of owners. In scope of this work, only the 

two first steps of a damage identification paradigm are studied including damage detection and 

localization for bridges.  

Damage detection module of a St-Id system is developed as a sort of anomaly detection 

that yields either damaged structure or non-damaged structure states. In this type of anomaly 

detection, a damage condition is identified as an outlier due to the damage data creating an 
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unbalance within the usual nature of the whole measurement data sets. Design of such an anomaly 

detection necessitates damage indicators as exemplified in the previous chapters. The type of 

indicators can be selected from state-of-the-art features (e.g. natural frequencies, damping ratios, 

mode shapes etc.), or novel ones can be proposed (such the UIS damage indicators herein). The 

selected damage indicators are then extracted from measurement data of the monitored structure 

for damage detection purposes. As a requirement in data mining, long-term measurement data is 

demanded for developing any damage detection paradigm. Although numerous damage detection 

practices have been conducted, those can be categorized based on the utilized anomaly detection 

techniques as unsupervised and supervised methods.       

Unsupervised anomaly detection technique is to construct a binary classifier from only 

given labeled positive dataset. Hence, the technique for damage detection is developed just from 

long-term measurement data that is acquired while the monitored system is in healthy condition. 

Due to damage indicators demonstrating a steady level for a certain structural condition (as 

mentioned in Chapter 4), a threshold pointing the healthy case for those indicators can be 

developed. Once the confidence threshold is achieved, the input condition of the monitored 

structure is identified by comparing the damage indicator to the threshold. If that input damage 

indicator is ranked as an outlier (out of the threshold range), the structure is perceived as in damage 

condition, and vice versa. Since the unsupervised anomaly detection approach does not demand 

data of a damaged state, it provides advantages especially for monitoring real-life structures, where 

data for damage scenarios is unavailable in many cases. Sample studies of unsupervised damage 

detection in St-Id employ variety of damage indicators such as natural frequencies (Nandwana & 

Maiti, 1997; Salawu, 1997), mode shapes (Hu & Afzal, 2006; Lee, Lee, Yi, Yun, & Jung, 2005), 

modal flexibility (F Necati Catbas, Brown, & Aktan, 2006; F. N. Catbas, M. Gul, & J. L. Burkett, 
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2008), AR vector (Gul & Catbas, 2011; Q. Zhang, 2007), statistical coefficient (F. N. Catbas et 

al., 2012; M Malekzadeh, Atia, & Catbas, 2015), and UIL (OBrien et al., 2015; R. Zaurin & Catbas, 

2010),.  

Although employing unsupervised anomaly detection technique for identifying structural 

damage has advantages, the method also discloses a shortcoming involving false positive alarm 

due to other influences besides real deterioration. Those influences may be caused by noisy 

measurement data, sensor malfunction, environmental effects (e.g. temperature, wind). In addition, 

establishing reliable thresholds for unsupervised anomaly detection is subjective and challenging 

when there is lack of understanding about structural behaviors at damage conditions. To mitigate 

these issues, given data sets from damage scenarios should be introduced. Once negative (damage) 

data sets are available, the damage indicators obtained from that data can be used to verify the 

confidence and reliability of the thresholds. Thus, the supervised anomaly detection technique can 

be implemented to yield a more robust damage detection module that might even be capable of 

obtaining damage types or damage locations. Several supervised learning algorithms are utilized 

for structural damage recognition including Fuzzy Neural Network (Gul, Catbas, & Hattori, 2013), 

Artificial Neural Network (Arangio & Beck, 2012; Kao & Loh, 2013; Shu, Zhang, Gonzalez, & 

Karoumi, 2013), and Support Vector Machines (Farrar & Worden, 2012; Magalhães, Cunha, & 

Caetano, 2012). A challenge when conducting the supervised technique is how to acquire damage 

data sets. In laboratory monitoring studies, damage data can be conveniently obtained by 

simulating damage scenarios. However, damage reproduction in a real-life structure is a very 

difficult task, and commonly be rejected by the owner of the structure. Anyway, several real-life 

SHM implementations have been conducted while some damage schemes were being produced in 
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bridges for short time such as (F. Necati Catbas, Mustafa Gul, & Jason L. Burkett, 2008; Gul et 

al., 2013; Ricardo Zaurin, Khuc, & Catbas, 2016).  

Damage localization is the second step of damage identification. After the damage 

detection module gives the alarm, deteriorated locations are considered for further inspection by 

sending inspectors to the damage region or terminating operation on the structure. Locating 

damage in big constructed systems (e.g. bridges, stadiums, pipelines) especially helps save time 

and labor-work for detailed inspection. In general, damage locations are pinpointed based on the 

positions of sensors in a network. The insight of this idea is acquired from the observation 

involving the shifting magnitude of the damage indicator determined from different sensors when 

damage occurs. For instance, the damage feature values obtained from a particular sensor near to 

a deteriorated position are altered more significantly than the ones extracted from remaining 

sensors, which are away from the damage location. Thus, a sensor network is better to be deployed 

densely and at critical regions of the structures in SHM studies. Subsequently, the damage 

indicator values from all sensors are obtained and then quantified following the diagnosis of the 

damage location by looking at the neighboring sensors that show the highest changing of damage 

indicator level. The framework to determine a damage location based on the reference positions 

of sensors is introduced in a great number of literature studies (F. N. Catbas et al., 2012; Gul & 

Catbas, 2011; Lee et al., 2005; Orcesi & Frangopol, 2010; R. Zaurin & Catbas, 2010). Recently, 

damage localization can be also achieved by means of machine learning approach. This method 

categorizes the healthy status and all damage scenarios that may occur at different positions of a 

structure as various groups. As an example, a baseline case and four (4) damage scenarios yield 

five (5) structural condition groups. Subsequently, a classifier is developed from the training data 

sets acquired from the baseline case and also damage scenarios. Finally, an input data measured 
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from the structure is introduced to the classifier that points out the structural status. This approach 

is introduced in (Masoud Malekzadeh, 2014) and is successfully conducted with limited damage 

locations. 

Motivation and Objectives 

Damage identification is the ultimate aim of SHM studies that provides early notification 

for profound inspection on constructed systems. An impeccable damage identification framework 

comprises three steps of evaluation namely 1) damage detection, 2) damage localization, and 3) 

damage qualification. However, in academia, damage qualification is of less interest for the reason 

that qualification criteria are biased for a specific structure. Thus, only damage detection and 

localization schemes are introduced by means of the novel damage indicators that is proposed in 

Chapter 4 of this dissertation.    

In general, damage detection is about defining two likelihoods that are damaged structure 

or non-damaged structure by making use of binary classifiers. In regards to this, damage detection 

is commonly developed by employing anomaly detection techniques categorized as unsupervised 

and supervised learning. It is seen that the unsupervised damage detection is more popular and can 

be implemented in most of SHM studies. This is due to the fact that the technique only requires 

the measurement data obtained from the sound structural condition (positive data sets) for training 

and then determining damage thresholds. On the other hand, the supervised damage detection 

demands additional measurement data of a damaged state that is to serve as negative data sets for 

learning task. Obviously, supplementary damage data assists the supervised damage detection to 

have more robust classifiers, which, in return, yield more confident and reliable thresholds along 

with damage types or damage locations. The main shortcoming of the supervised technique is the 
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difficulty of collecting damage data. Although it is convenient and easy to simulate damage 

scenarios for a particular structure with modular parts in laboratory, it is extremely challenging 

and even impossible to do soon a real-life constructed system due to numerous legitimate 

requirements and structural safety concerns.  

The next step of damage evaluation, damage localization, is also introduced in many 

studies due to its benefits, especially for complex and big constructed systems. Based on the 

observation that the higher alteration of damage indicator is  acquired from the sensors in the 

vicinity of damaged regions, most of damage localization techniques are developed by quantifying 

changes in damage indicator obtained from a network of sensors. Hence, the location of the sensor 

corresponding to the highest alteration of damage indicator is hypothesized as the location of 

damage. Although the approach can achieve the goal, it requires a dense array of sensors that is 

costly for a real-life constructed system.      

The first part of implementation in this Chapter is to develop a damage identification 

framework based on the conventional approach. In a few words, a damage detection module is 

introduced by employing a new damage indicator, the Unit Influence Surface (UIS), which is 

described in Chapter 4. Since the UIS is not represented as a function of single parameter, there is 

an intermediate step to implementation to reduce that high dimensional space by calculating the 

volume of the UIS. The calculated volumes are then used for anomaly detection by establishing 

confident damage thresholds. Damage locations are also determined by comparing the normalized 

changes of the volume levels over the sensor network. This part aims to evaluate capability of the 

new damage indicator (UIS) using classical approach for identifying damage in bridges.  

The second part of this Chapter is to introduce a new damage identification approach by 

exploiting the high dimensional space of the UIS. Please note that the UIS comprises finite vertical 



133 

 

ordinates that correspond to the unit loading locations. Since those finite vertical ordinates can be 

extracted at any locations along a bridge deck, a damage occurrence and its location can be 

discovered by quantifying these. Moreover, since the proposed method does not require a network 

of sensor, it enables the possibility of a limited sensor SHM framework.            

The details of the theoretical background are described in next sections. The accuracy of 

the framework is verified on a small-scale bridge in the UCF Structural Lab, where several damage 

scenarios are simulated for damage identification purposes.               

Theoretical Background 

Classical Approach: Damage Identification based on a Network of Measurement Positions 

The damage identification method based on the conventional approach using the new 

damage indicator (UIS) consists of two phases. The first phase is to establish thresholds for the 

healthy structural scenario (so-called Baseline) as illustrated in Figure 58. In brief, a series of UIS’s 

is constructed for the Baseline case following the framework described in Chapter 4. Due to the 

UIS being a fitted surface function, it is discretized and then represented in matrix form for 

convenient analysis purposes. Subsequently, the Baseline UIS-volumes are calculated (Equation 

67) to develop the Baseline distribution. Thresholds are then defined equal to ± 2 times of the 

standard deviation away from the mean value of Baseline distribution (corresponding to a 

confidence level of 95%) as illustrated in Equation 68.  

    

Figure 58: Establishing thresholds for the healthy structural scenario (Baseline) 
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In the second phase, four damage scenarios (named Damage 1, 2, 3, and 4) are simulated 

on the UCF 4–Span Bridge. The Damage UIS’s are also obtained and discretized for determining 

Damage UIS-volumes in the same manner as shown in Figure 58 (from step 1 to 3 only). Those 

Damage UIS-volumes are employed for verifying or even modifying (if needed) the thresholds, 

which are developed in the first phase.  

For damage localization objective, a damage weight that measures the change of UIS-

volumes in percentages between Baseline and Damage scenarios is introduced. These damage 

weights are determined for every sensor; and then these values are concatenated to get the highest 

weight. The position of the sensor corresponding to the highest weight is a neighboring damage 

position.     

The UIS Discretion and Matrix Form of the UIS  

As mentioned previously, the UIS is a fitted surface function S(X, Y), where X stands for 

the coordinate of the bridge-width axis and Y of the bridge-length axis. To make the UIS analysis 

more convenient, the UIS surface is transformed into matrix form by discretizing by means of a 

preset grid. Since the obtained UIS size is 80 x 600 cm (ref. Chapter 4), the grid size of 80 x 600 

cells is selected for the UIS discretion. Hence, dimensions of a cell are 1 x 1 cm; and the vertical 

ordinates at every node of the grid are calculated from the fitted surface function S(X, Y). By that, 

a particular form of the UIS now is represented as a matrix with 81 rows and 601 columns denoted 

as UIS81 x 601.    

Volume of the UIS  

Once the UIS is discretized, its volume can be effortlessly calculated as follows: 
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𝑉 = ∑∑𝑈𝑖,𝑗

601

𝑗=1

81

𝑖=1

 (67) 

Where Ui,j is a vertical discretized ordinate of the UIS at location (X, Y) of (i-1 cm, j-1 cm). This 

value is an element in the matrix UIS81 x 601 at row-i and column-j.  

Thresholds of the UIS-Volume (V) 

      𝑇ℎ =  ± 2𝜎 +  𝜇 (68) 

Where σ is the standard deviation of the V distribution; and µ is the mean of the V distribution. 

Detecting and Localizing Bridge Damage Simultaneously based on UIS’s Obtained from Limited 

Measurement Locations  

In general, a damage indicator solely demonstrates structural behaviors with its capability 

of tracking structural alteration so that deterioration on constructed systems could be directly 

detected. On the contrary, the vicinities of damage are pinpointed indirectly via sensor locations 

thereby requiring a dense array of sensors which can be of high cost and complicated to be 

deployed. In this dissertation, it is fortunately observed that the UIS consists of not only structural 

responses (represented by vertical ordinates U) but also positions of these responses (represented 

by coordinate X and Y). That insight empowers the idea to utilize UIS’s for both objectives: damage 

detection and damage localization without the need for a sensor network. Success of such a 

framework with limited number of sensors is a promising progress involving improvement of a 

fast, low-cost and portable SHM system for a broad adoption. .    

The UIS based damage identification is proposed by quantifying changes of every cell on 

the first derivative of the UIS matrix on the Y axis (the bridge-length axis), named as the UIS-Y 

matrix. In a few words, this new framework is a combination of finite classifiers that are developed 
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for every element of the indicator matrix (the UIS-Y matrix herein). For example, at each cell 

(row-i, column-j) of series of matrices UIS_Y, a distribution of cell-intensity values is created, 

called the Baseline-Cell distribution. Subsequently, thresholds, which are called the Cell 

thresholds, are defined for each Baseline-Cell distribution that equal to ± 2 times of the standard 

deviation away from the mean. Finally, threshold matrices are established from the Cell thresholds 

as depicted in Figure 59. 

 

Figure 59: Establishing thresholds for the new UIS based damage identification  

Once the threshold matrices for the healthy scenario (Baseline) are obtained, the input 

matrix UIS_Y is compared with the threshold matrices for damage identification. A comparison 

based on the Cell threshold is made for each cell to classify if the cell is either damaged or non-

damaged. The overall structural status corresponding to the given UIS-Y is ranked as damaged if 

the number of damage-cells is higher than a preset level, and vice versa. The change in each cell 

is also calculated. Those changes are then quantified to obtain the region of cells altering the most. 

Hence, that region is decided as the vicinity of damage location.  
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The First Derivative of the UIS matrix 

The parameter deployed for developing the new UIS based damage identification is the 

first derivative of the UIS on the Y-axis (the bridge-length axis). Since the UIS obtained herein is 

the displacement UIS, its first derivative is the slope (tilt) UIS. Due to the inability of measuring 

displacements of structures at supports, using slope (tilt) is expected to address the challenge of 

damage identification at (or near) supports. The first derivative of the UIS matrix can be 

determined by convolving the derivative kernel ky on the matrix UIS81 x 601 as follows: 

      𝑈𝐼𝑆_𝑌 =  𝑘𝑦 ⊗ 𝑈𝐼𝑆 

𝑤ℎ𝑒𝑟𝑒 𝑘𝑦 = [
−1 0 1
−1 0 1
−1 0 1

] 
(69) 

Where UIS_Y is the first derivative of the matrix UIS; and ⊗ is a mathematical operator called 

convolution applied to two matrices in this certain case.  

Laboratory Verification 

Simulation of Damage Scenarios on UCF 4-Span Bridge 

Since the UCF 4-Span Bridge is an SHM apparatus in UCF Structural Lab, it is designed 

in such a way that a number of common damage scenarios encountered in bridges can be simulated. 

The scenarios simulated in the 4-Span model are typical damages (global and local) that are found 

as a result of comprehensive investigations carried out by SHM research group in UCF and with 

the help from Florida Department of Transportation engineers (F Necati Catbas et al., 2010; R. 

Zaurin & Catbas, 2010). Global damage is the deterioration related to changes in boundary 

conditions such as corrosion, a roller support being stuck, and support settlement (or movement). 

This type of damage causes internal-force redistribution and also affects other elements 
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extensively. On the other hand, local damages are signs of less critical deterioration emerging as 

loosened bolts, local section loss (or degradation) due to corrosion-penetration or shallow cracks, 

or even lateral bracket failure. In this study, both global and local damages are reproduced to verify 

the proposed damage identification framework and also the UIS damage indicator reliability. The 

global damage scenarios are simulated by converting the pinned supports of the 4-Span Bridge to 

the fixed supports whereas the local damage scenarios are conducted by loosening several bolts 

that connects the steel deck sheet with the main girders. The simulated global and local damages 

are illustrated in Figure 60.   

 

Figure 60: Damage simulation in the UCF 4-Span Bridge; a) Global damage by altering 

boundary condition at supports; b) Local damage by releasing composited connections 

A total number of four damage scenarios is simulated including two global (Damage 1 & 

Damage 2) and two local (Damage 3 & Damage 4). The Baseline and Damage scenarios are 

detailed as follows and also depicted in Figure 61.        

 Baseline: The Baseline is the healthy condition of the UCF 4-Span Bridge. It is 

described as in Figure 61a. 

 Damage 1: The global Damage 1 is simulated by converting one out of the two roller 

supports at the center to the fixed support. (Figure 61b). 

(a) Global Damage

Baseline: Roller Damage: Fixed

(b) Local Damage

Baseline: Bolt Links Damage: Released Bolts 
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 Damage 2: The Damage 2 is also replicated as another global deterioration with two 

stuck supports: one at the center and another at end of the bridge (Figure 61c). The 

same way where the conversion of the pinned supports to the fixed as in Damage 1 is 

followed. 

 Damage 3: The Damage 3 is a local damage case. The damage is simulated by releasing 

a connection between the steel deck sheet and the main girder of the bridge. Since the 

bridge model is designed as a modular system, releasing a composite connection results 

in a decrease of structural stiffness, especially at the neighboring area around the 

released connection. The position of the released connection is shown in Figure 61d.  

 Damage 4: Another local damage scenario is reproduced herein. The composite 

connections are released by loosening the bolts. The damage locations are selected on 

both spans of the UCF 4-Span Bridge as illustrated in Figure 61e. 
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Figure 61: Baseline and Damage scenarios simulated in the UCF 4–Span Bridge 
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Damage Detection and Localization based on a Network of Measurement Locations 

Baseline Results and Thresholds for the Healthy Condition of the Bridge Model  

As mentioned previously in Chapter 4, a total of fifteen (15) Sets of data are acquired for 

calculating UIS’s in the bridge model. For every Set, the UIS’s at all (12) measurement locations 

are constructed so as to have fifteen (15) UIS’s for each location. The volumes of (15) UIS’s for 

all (12) measurement locations are calculated in terms of Equation 67 that are shown in Figure 63. 

Finally, thresholds which are calculated by Equation 68 are assigned to be equal to ± 2 times of 

the standard deviation away from the mean value of those volume distributions. Measurement 

locations and their categorization groups are re-illustrated in Figure 62. 

 

Figure 62: The measurement locations (L1 to L12), and their groups (Group I, II, III) 

Damage Detection 

Similar to the Baseline scenario, fifteen (15) Sets of data are acquired for each Damage 

scenario to simulate monitoring of the structure with damage. For each Set of data, twelve (12) 

UIS’s are constructed corresponding to twelve (12) locations from L1 to L12. The volumes of 

those UIS’s are calculated, and then are compared with the thresholds established in the Baseline 

case. If the volume values are outside the range of thresholds, the particular Set of data is classified 

as belonging to a damage case, and vice versa.    
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Figure 64 shows the results of damage detection for the case of Damage 1. It is seen that 

the indicators obtained from the damaged structure (red dots) are clearly shifted out of the 

threshold range (dash-black lines). These alterations are observed at all twelve (12) measurement 

locations that point out obvious and perhaps critical damage occurrence. A much clearer 

observation is captured in Figure 65 for the Damage 2 when the data is processed and presented. 

The changes of damage indicators (UIS-volumes) are higher than the ones illustrated in Figure 64, 

notifying a more critical damage happening in this case. The remarks match well with the situations 

for both damage scenarios in which one deterioration is simulated in Damage 1 while two are in 

Damage 2. The results also confirm that the new damage indicator (UIS) can effortlessly detect 

global damage, which is commonly more critical than local damage. 

The results of the other damage scenarios are illustrated in Figure 66 and Figure 67 for the 

scenarios of Damage 3 and Damage 4, respectively. Since these two damage scenarios represent 

local damages, the alterations of the UIS damage indicators are quite small. As seen in Figure 66, 

the UIS-volume indicators (red dots) are almost inside the range of thresholds although the change 

of mean values between the Damage 3 and the Baseline conditions can be captured. It means that 

the Damage 3 is hardly detected if using the preset thresholds calculated by Equation 68. 

Therefore, the modified threshold levels are required, for example, ± 1 time of the standard 

deviation away from the mean value. The damage detection results seem more successful for the 

Damage 4 scenario. Figure 67 shows that the damage indicators are shifted out of the threshold 

range for eleven (11) out of twelve (12) locations. Even though the changes in this case are less 

than the ones observed in the Damage 1 and 2, there is enough proof to decide on if there is a 

structural incident in the Damage 4 case. Thus, the outcomes herein affirm that the new UIS 

damage indicators can detect not only global but also local damage, which is a minor type of 
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damage and is difficult to identify in many cases of SHM. In the next step, the UIS damage 

indicators are employed for damage localization by quantifying the changes of the UIS-volumes 

for every measurement position. 
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Figure 63: Volume of UIS’s for Baseline scenario: results and thresholds 
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Figure 64: Damage detection for Damage 1 scenario 
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Figure 65: Damage detection for Damage 2 scenario 

V
o

lu
m

e
V

o
lu

m
e

V
o

lu
m

e
V

o
lu

m
e

Set

Group I Group II Group III

Set Set

0 10 20 30

1

1.5

2

Location1

0 10 20 30

1

1.5

2

Location6

0 10 20 30

1

1.5

2

Location7

0 10 20 30

1

1.5

2

Location12

0 10 20 30

1

1.5

2

Location2

0 10 20 30

1

1.5

2

Location5

0 10 20 30

1

1.5

2

Location8

0 10 20 30

1

1.5

2

Location11

0 10 20 30

1

1.5

2

Location3

0 10 20 30

1

1.5

2

Location4

0 10 20 30

1

1.5

2

Location9

0 10 20 30

1

1.5

2

Location10

Baseline Data Baseline Mean Damage Data Damage MeanThreshold



147 

 

 

Figure 66: Damage detection for Damage 3 scenario 
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Figure 67: Damage detection for Damage 4 scenario 
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Damage Localization 

Damage localization is the second step of a comprehensive damage identification 

framework. That sort of implementation is achieved by ranking the changes of damage indicators 

on every sensor; and then by identifying the sensors matching with responses that alter the most. 

Thus, the damage positions are determined in the vicinity of these sensors. In this study, a damage 

weight is introduced as being a sort of standard for measuring the percentage changing of the UIS-

volumes between the Baseline and the Damage scenarios. The damage weights (DW) are 

calculated as follows: 

      

𝐷𝑊 = 
|
1
𝑛

∑ 𝑉𝑖 − 
1
𝑚

∑ 𝑉𝑗
𝐷𝑚

𝑗=1
𝑛
𝑖=1 |

1
𝑛

∑ 𝑉𝑖
𝑛
𝑖=1

 100% (70) 

Where V and VD are the UIS-volumes calculated for the Baseline and the Damage scenario, 

respectively; n and m are the number of data Sets that are conducted for both the Baseline and the 

Damage cases (e.g. fifteen (15) Sets for each scenarios herein).  

The DW values determined for the Damage 1 scenario are presented with color-bar graph 

in Figure 68. It is observed that the highest DW values appear at the locations L3 and L4 (e.g. 

20.4% and 21.8%, respectively) meaning that the damage/deterioration/change is on somewhere 

between the positions L3 and L4. This finding matches with the damage location, which is on the 

center support that is simulated in the Damage 1. Similar behavior is obtained for the case Damage 

2 since the utmost changes of the UIS-volumes occur at the locations L1, L9, and L10, which are 

the neighbors of the reproduced damage areas (Figure 69). So, the analysis outcomes clearly 

confirm the existence of damages as well as their locations for the global damage cases (Damage 

1 and Damage 2).  
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The local damage cases are analyzed and their results are illustrated in Figure 70 and Figure 

71 corresponding to the Damage 3 and the Damage 4. Although the DW values in Figure 70 show 

a minor change in the UIS-volumes from the healthy to the damaged status (the maximum DW 

value of 3.9%), these values at the locations L1, L2, and L3 are exceeded about 2 to 10 times 

compared to the ones from the remaining positions. The indication suggests a possible 

deterioration, which matches with the damage location simulated in the Damage 3, along Girder 

2 of Span 1 on the 4-Span bridge. The DW values for the Damage 4 scenario are presented in 

Figure 71. It is also seen that the changes of the UIS-volumes are more noticeable with the DW 

values from 3.2% to 11.3%. Again, the utmost values of DW are on the locations L3, L8, L9, and 

L10 that are around the simulated damage locations. So, the results herein confirm the capability 

of using the new UIS damage indication for not only detecting local damages but also localizing 

them. It is a very good sign since detecting and localizing that sort of local damage are always 

challenges in SHM implementations.          

The framework employing the new damage indicator UIS is successfully verified in this 

section for both goals: damage detection and damage localization. The presented results show that 

the new UIS indicators can effortlessly identify the global damage. The indicators are also effective 

as to local damages despite leaving fuzzy clues and proofs behind. This remark is understandable 

and is experienced in most of the other state-of-the-art damage indicators for local damage is 

commonly capable of altering the structural characteristics slightly, which returns minor changes 

in structural responses. The main disadvantage of this conventional approach is that an array of 

sensors is required for damage localization. Hence, an alternative approach is proposed by 

selecting a limited number of measurement locations (sensors) for damage identification; and its 

verification results are described in the subsequent section.  
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Figure 68: Damage weight DW for Damage 1 scenario 

 

Figure 69: Damage weight DW for Damage 2 scenario 
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Figure 70: Damage weight DW for Damage 3 scenario 

 

Figure 71: Damage weight DW for Damage 4 scenario 
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Detecting and Localizing Damage in Bridges Based on Limited Measurement Locations  

Establishing the Threshold Matrices for the Baseline Status 

As detailed in the theoretical section, the threshold matrices comprising upper-bound and 

lower-bound matrices are developed based on the mean (M) value and the standard deviation 

(SDT) matrices of series of UIS-Y matrices. Since a UIS is the form of a matrix, its first derivative 

matrix UIS-Y is determined following Equation 69. A particular UIS-Y matrix is depicted in 

Figure 72. As fifteen (15) UIS’s for each measurement locations are constructed, there is a 

distribution of fifteen (15) UIS-Y matrices; as well as the M matrix and the SDT matrix that is to 

be calculated. Finally, the threshold matrices (TH) are determined using Equation 71. The M 

(mean), the SDT (standard deviation), the upper-bound, and the lower-bound matrices for the 

Baseline case are illustrated in Figure 73. 

      𝑇𝐻 = ± 2 ∗ 𝑆𝐷𝑇 +  𝑀 (71) 

    

 

Figure 72: The UIS matrix and its first derivative UIS-Y matrix 
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Figure 73: The mean, standard deviation and threshold matrices for the Baseline status 
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Damage Detection 

A given UIS-Y matrix is compared with the developed upper-bound and lower-bound 

matrices for classifying whether the input data belongs to damaged or healthy state. An example 

comparison is shown in Figure 74. It is seen that the input data (magenta color surface) has vast 

amount of its region being out of the range between the threshold matrices (red and blue surfaces). 

This observation makes the input data classified as belonging to a damage state. For clearer 

observation, the section cut of those surfaces is illustrated in Figure 75. In that graph, the mean, 

upper-bound, lower-bound, and input data (latter ranked as damage data) lines are all presented. 

The graph also shows that whenever the input line (magenta line) lays outside the range of bounds 

(red and blue lines), the classifier gives alarm for damage that is denoted by dashed black line. 

 

Figure 74: Damage recognition for an input data based on pre-developed thresholds of healthy 

condition  
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Figure 75: A section cut of damage identification process 
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Table 13: Percentage of damage Cells for damage scenario 

  L2 (%) L5 (%) L8 (%) L11 (%) Average (%) 

Damage 1 68 65 55 53 60 

Damage 2 84 62 86 81 78 

Damage 3 23 19 25 18 21 

Damage 4 24 19 34 26 26 

 

Table 13 shows that an average of 60% of Cells in the UIS-Y matrix points out damage for 

the case of Damage 1. The percentage is even higher for the case of Damage 2 that is up to 78% 

damage alarm. Those results are plausible since both the Damage 1 and Damage 2 are global 

damages that commonly involve critical deterioration. Obviously, the severity of the Damage 2 is 

higher than the one obtained from the Damage 1 due to more deterioration problems reproduced 

in the Damage 2. The local damages such as Damage 3 and Damage 4 show much lower damage 

percentages, for example, 21% and 26% respectively. Again, the damage percentage value of the 

Damage 4 scenario (26%) is higher than the one determined from the Damage 3 data (21%) since 

the two local damage positions are simulated together in the Damage 4 whereas only one 

deterioration position exist in the Damage 3. 

The proposed framework for damage detection based on the UIS-Y Cells classification is 

verified. The method can clearly recognize both types of damage: global and local by quantifying 

the classified damage area on the bridge deck coordinate system, for example, from 21% to 78% 

in this study. In the next step, the framework is extended for damage localization by quantifying 

the change between the input UIS-Y data and the healthy threshold matrices for each Cells. The 

results of this implementation are described in the subsequent section. 
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Figure 76: Damage area for Damage 1 

 

Figure 77: Damage area for Damage 2 
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Figure 78: Damage area for Damage 3 

 

Figure 79: Damage area for Damage 4 
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Damage Localization 

The alteration between two conditions of the structure (e.g. healthy status vs. damage 

status) is determined based on the subtraction of the Baseline mean matrix MB from the Damage 

mean matrix MD, which is denoted as follows:   

      ∆ =  |𝑀𝐵 − 𝑀𝐷| (72) 

Where  is the alteration matrix between two structural conditions; MB is the mean of the series of 

the UIS-Y matrices obtained in the Baseline condition; MD is the mean of the series of the UIS-Y 

matrices acquired in the Damage condition 

Once damage is detected in terms of the scheme described in the previous context, it is 

located by scanning the matrix  to find out the region with high intensity values. To address this 

objective, another type of threshold that equals to 90% of the maximum value in the matrix  is 

introduced. The proposed framework is once more verified for four (4) reproduced damage 

scenarios: Damage 1, 2, 3, and 4. The identification results , which are obtained by analyzing the 

data from only four (4) measurement locations L2, L5, L8, and L11of damage regions for the 

Damage 1 are illustrated in Figure 80. Although only limited (4) measurement locations are 

deployed, the damage location is successfully detected by the measurement data from the L2 and 

L5. The observation is reasonable since the damage is reproduced on the Girder 1 where the L2 

and L5 be. The Damage 2 is also verified and the outcomes are depicted in Figure 81. It is seen 

that the positions of damage can be pinpointed by the data obtained from locations L2, L8, and 

L11. A limitation to be remarked from these results is that several false positives are detected as 

damage locations. Although some false positives can be discarded as being “too small damage 

area” or the “non-structural damage area”, the other false positives need further processing for 

rejection.  
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The method is also conducted for the local damages including the Damage 3 and Damage 

4. Figure 82 shows the damage localization results for the Damage 3 scenario; and unfortunately, 

the proposed approach is not really successful for this case. Although the damage location seem 

to be detected from the data at the location L2, numerous false positives are also identified. 

However, the results are better for the Damage 4 condition. Figure 83 reveals that the damage 

positions are detected by processing the data from locations L8 and L11; and it is plausible since 

the damage is simulated on the Girder 2. However, it is also seen that numerous false positives are 

obtained for this damage scenario as well.            

The proposed framework for identifying damage by deploying limited measurement 

locations (or sensors) is verified in this section. With only four (4) measurement locations, the first 

derivative of the UIS is exploited for not only damage detection but also damage localization. The 

analyzed outcomes show that the new approach, which eventually outperforms the conventional 

way based on an array of sensors, can efficiently detect the global damage as well as the local 

damage,. For the aim of damage localization, the proposed method can clearly locate the global 

damage. However, it meets challenges with local damage cases since numerous false positives of 

damage locations are also recognized for those cases.  
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Figure 80: Damage localization for Damage 1 

 

Figure 81: Damage localization for Damage 2 
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Figure 82: Damage localization for Damage 3 

 

Figure 83: Damage localization for Damage 4 
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Conclusions 

The main goal of this chapter is to propose two different frameworks for damage 

identification for bridge structures using the new damage indicator, UIS. The content herein 

comprises two parts corresponding to those damage identification methods. In the first method, 

the classical approach is followed since damage in structures can be detected and then be localized 

based on a network of sensors (or measurement locations). The main aim of the first 

implementation is to verify the consistency and reliability of the new damage indicator UIS. The 

second method is a novel approach that takes advantage of the geometric components of the UIS. 

Thus, the second framework can do both detection and localization without the need for a 

measurement location array. Since the new proposed framework does not require a network of 

sensors, it enables the possibility of a low-cost and convenient SHM implementation. 

 Both damage identification frameworks are verified in the UCF 4–Span bridge, a total of 

four (4) damage scenarios are simulated including two (2) global damage cases (Damage 1 & 

Damage 2) and other two (2) local damage cases (Damage 3 & Damage 4). For the conventional 

framework based on the twelve (12) measurement locations, the damage can be clearly detected 

and localized for the global damage case. However, for the local damage scenarios, the results are 

not so clear for damage localization. Especially for the Damage 3, the fuzzy clues and proofs can 

be seen for both implementations: damage detection and damage localization.   

The new damage identification framework presents a great performance for damage 

detection even though only the data acquired from four (4) measurement locations is utilized. The 

results obtained by the new approach for local damage cases are even better than the ones 

processed via the classical approach. The damage localization method yields good results for the 

global damage scenarios. Unfortunately, that implementation produces numerous false positives 
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of damage locations for the local damage cases. Thus, a more robust algorithm for damage 

localization based on this approach should be studied for rejecting the false positives accurately.     
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CHAPTER SIX: CONCLUSIONS 

Summary 

This research proposes a novel Structural Identification (St-Id) approach for bridges based 

on camera technologies and computer vision methodologies. The collected data employed in the 

St-Id system are acquired by series of computer vision based measurements. Subsequently, the 

input and output data sets are analyzed to construct a new types of damage indicator, named Unit 

Influence Surface (UIS). Finally, the new damage detection and localization framework is 

introduced that does not require a network of sensors, but much less number of sensors. The 

research has four main sections presented from Chapter 2 to 5, respectively. Brief review of each 

Chapter is noted as follows.  

Fully non-contact displacement measurement by means of image key-points:  

A measurement method is proposed to obtain displacements and vibrations of structures 

using a low-cost camera and computer vision techniques. The advantage of this proposed method 

is that it does not require any type of physical targets attached on structures, which are commonly 

required by current vision-based methods. This objective is addressed by employing the image 

key-points as a new type of virtual markers instead of physical targets. The key-points of 

measurement locations are extracted by using different robust computer vision algorithms, and 

their characteristics show a potential ability to replace physical targets. Key-point matches among 

image frames are further improved by using an outlier detection algorithm to discard the false 

matches. In addition, a specific camera calibration procedure is developed to calculate the unit 

conversion ratio R between the image coordinates (pixels) and the world coordinates (mm) since 

conventional targets no longer exist. 
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The proposed computer vision-based method is developed and verified on laboratory 

bridge model, a real life bridge, a stadium under different experimental conditions including 

altering light conditions, different camera locations (distances and angles), and camera frame rates. 

Since this method does not require any type of attachment, its implementation is observed to be 

much more convenient (e.g. faster and easier) than other conventional sensors employed on the 

same structure. For verification purposes, the displacement data sets obtained by the proposed 

vision-based method are compared to conventional LVDT data sets. The comparison results show 

very high correlation and similarity by means of statistical measures such as correlation coefficient 

(from 0.929 to 0.989)and the determination of R-squared coefficient (from 0.9368 to 0.9998) 

for both laboratory and real-life implementations. In addition, natural frequencies of modes (or 

modal frequencies) are also identified from the dynamic displacement time histories as the cameras 

utilized in this study can capture images at speed/frame rates of 30 Hz and 60 Hz. Identified natural 

frequencies are compared to the frequencies obtained using accelerometer data. The comparison 

of these two aforementioned frequency sets shows a maximum difference of   2.44 % indicating 

that the proposed method can successfully determine deflections and natural frequencies.  

Accuracy of the proposed vision-based method is evaluated in the laboratory. The 

evaluation reveals that the measurement accuracy highly depends on the distance between the 

camera and monitoring positions. For example, the method accuracy is ± 0.01 mm at a distance of 

3m; but the accuracy decreases to ± 0.04 mm for a measurement distance of 13 m. The relationship 

between the accuracy of the proposed monitoring method and the camera distance is demonstrated 

a linear function. 



168 

 

Estimation of traffic vehicle weights and locations based on computer vision algorithms:  

A framework for estimating the loading (amplitudes and locations) induced by traffic 

vehicles passing over a bridge is introduced by employing computer vision techniques. The 

highlight of the proposed framework is that neither bridge closure nor any conventional sensors 

are needed. A surveillance camera is placed at a relatively higher position on the bridge for 

acquiring images of traffic vehicles moving on the deck. Those images are analyzed to identify the 

vehicles and then the images are categorized into classes based on a series of advanced computer 

vision algorithms and features including AdaBoost technique, cascade classifier and HOG 

descriptors. Since the vehicle classes are pre-defined, the weight distribution of each class is 

available, thus this weight is assigned to the categorized vehicle. The detected vehicles are also 

labeled by bounding boxes corresponding to their types. Eventually, the positions of these 

bounding boxes (pixel metric) in image coordinates are converted to the positions defined by real-

life coordinate system affixed on the bridge deck for localizing the vehicle positions. The 

transformation process is achieved by adjusting the camera model equation based on the 

assumption that the vehicles move on a planar bridge deck.  

 The proposed framework is validated through tests conducted in the UCF Structural Lab 

on an experimental bridge. Multiple small-scale vehicles are deployed to simulate traffic on the 

bridge. Those vehicles are identified and categorized into their classes (Class 1, Class 2, or Class 

3) at the detection rates ranging from 87.2 % to 95.9 %. Subsequently, the detected vehicles are 

localized by using the transformation matrix T, which is determined by means of employing 15 

reference points on the bridge deck. The transformation matrix is verified for re-calculation of the 

reference point locations in the world coordinate system from their places on images. The accuracy 

of reference point coordinates yields a maximum relative error of 1.2 %.       
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A new damage indicator for bridge St-Id system: Unit Influence Surface:  

A new structural identification (St-Id) approach is formulated with both input (vehicle 

weights and locations) and output (structural displacements) data being acquired by a series of 

computer vision-based measurements. A new damage indicator involving structural parameters 

for Bridge St-Id system is introduced. The proposed damage indicator is named Unit Influence 

Surface (UIS), which is a 3-D version of Unit Influence Line (UIL). A UIS is constructed by 

deploying surface fitting algorithms (e.g. Bilinear Interpolation and Thin-plate Spline 

Interpolation) to a set of UIS-points, each of which describes a state of vehicle loading-structural 

response (input-output) interaction while traffic passes on the bridge deck. A UIS-point (Xj, Yj, Uj) 

is developed from a configuration location (Xj, Yj) derived from vehicle positions and a normalized 

displacement Uj at the measurement location. While the configuration location can be calculated 

as a centroid of the detected vehicle positions, the normalized displacement is determined by 

operating an iterative numerical procedure using the coupled information of the vehicle and 

structural displacement data.     

The UIS’s are extracted for the 4-Span Bridge in UCF Structural Lab. To validate the 

outcomes of the proposed protocol, a total of twelve (12) positions under main girder flanges are 

selected for constructing the UIS’s. Since these positions are placed symmetrically over two 

symmetrical axes (middle-support axis and median of the deck), the UIS’s at the symmetrical 

locations illustrate identical shapes and maxima values (error values from 0.2% to 7.2%). The UIS 

consistency is also verified since it is the most essential characteristics for a damage indicator. A 

consistent verification method is deployed by constructing numerous (15) UIS’s for each 

measurement locations from a database of forty (40) tests. A measure of data dispersion for the 

UIS parameters (e.g. UIS volume and UIS maximum data) yields the maximum of CV (coefficient 
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of variation) value to be 1.70% and many other CV values to be less than 1.00%. Quantitative 

analysis of the obtained UIS confirms the consistency and reliability. With these characteristics, 

the UIS promises a great potential as a sensitive damage indicator.  

Bridge damage detection and localization based on limited measurement locations (sensors):  

The last section of this dissertation is to propose two different frameworks for damage 

identification for bridge structures using the new damage indicator, UIS. In the first method, the 

classical approach is followed since damage in structures can be detected and then be localized 

based on a network of sensors (or measurement locations). The main aim of the first 

implementation is to verify the consistency and reliability of the new damage indicator UIS. The 

second method is a novel approach that takes advantage of the geometric components of the UIS. 

The damage detection is deployed at every point (Xj, Yj) of the UIS on the bridge coordinate system 

to finally decide the bridge either damage or non-damage. Thus, the second framework can do 

both detection and localization without the need for a measurement location array. 

 Both damage identification frameworks are verified in the UCF 4–Span bridge, a total of 

four (4) damage scenarios are simulated including two (2) global damage cases (Damage 1 & 

Damage 2) and other two (2) local damage cases (Damage 3 & Damage 4). For the conventional 

approach based on the twelve (12) measurement locations, the damage can be clearly detected and 

localized for the global damage case. However, for the local damage scenarios, the results are not 

so clear for damage localization. Especially for the Damage 3, the fuzzy clues and proofs can be 

seen for both implementations: damage detection and damage localization.   

The new damage identification framework presents a great performance for damage 

detection even though only the data acquired from four (4) measurement locations are utilized. 
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The results obtained by the new approach for local damage cases are even better than the ones 

processed via the classical approach. The damage localization method yields good results for the 

global damage scenarios. However, that implementation produces numerous false positives of 

damage locations for the local damage cases.  

Contributions 

Several main contributions are observed in this dissertation. Those are listed follows. 

 Vehicle Load (Input) Modeling Using Computer Vision: To the best knowledge of the 

literature search, it is the first time that the vehicles will be detected, tracked and 

classified including wheel weights, axle spacing, and moving load locations, by 

combining a series of computer vision techniques. In other words, the novelty of the 

study is developing algorithms for obtaining equivalent moving loads on the bridge 

from complex loading pattern due to multiple vehicles using the camera data.  

 Bridge Response (Output) Using Full Non-contact Approach Using Video/Image 

Processing: Besides using conventional sensors to extract bridge response, a full non-

contact method for displacement measurement is explored by utilizing computer vision 

techniques. The method promises further simplicity in deployment and cost-

effectiveness as the response will be measured without any targets attached to the 

structure.  

 Image-based Structural Identification (St-Id) using Input-Output Measurements: The 

video data processed using computer vision methods to determine the vehicle loads are 

analyzed in the context of structural identification (St-Id), which has not been available 

in the literature 
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 Development and Demonstration of a New Damage Indicator: A new damage indicator 

Unit Influence Surface (UIS) for bridge St-Id systems is introduced using the data from 

a series non-contact measurements. Thus, a bridge does not required to be closed while 

a monitoring study is being conducted. Furthermore, non-contact measurements are 

cost-effective, safe, and time-saving implementation.  

 Broader Impact on the Structural Assessment of Bridges: Based on the outcome of this 

research, a conventional network of sensors may no longer be necessity for certain 

conditions. This research enables reduction of sensors, installation time and cost; and 

as a result, the bridge monitoring practices may become simpler, faster, and cost-

effective for many bridges. 

Recommendations for Future Research 

Some challenges are pointed out, especially for real-life implementation issues that need 

to be considered and addressed are as follows.  

 Extracting and matching key-points suffer from intensive computation. Thus, the 

vision-based displacement measurements cannot be a real-time implementation. The 

image data is acquired in fields, and latter tediously processed, especially for long-term 

monitoring data. 

 The vision-based displacement measurement method can only monitor a single position 

in real-life structures. A multiple measurement point system is a challenge involving 

synchronization issue among cameras.   
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 Developing a comprehensive database for classes of real-life vehicles is a cumbersome 

job. The traffic vehicle information and their classes require an extensive research and 

data collection. 

 Even though a comprehensive database of traffic vehicles is developed, the weight of 

a classified vehicle may be very different from its class weight. This challenge may be 

mitigated by long-term monitoring or by using a portable WIM (Weigh In Motion) 

system, which is recently developed (Kwon, 2012). 

 Calculation of the UIS is a complicated process. It may be a trade-off between 

advantages of field data acquisition and complicated analysis.  
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