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ABSTRACT 
Structural Health Monitoring (SHM) is the sensing and analysis of a structure to 

detect abnormal behavior, damage and deterioration during regular operations as well as 

under extreme loadings. SHM is designed to provide objective information for decision-

making on safety and serviceability. This research focuses on the SHM of bridges by 

developing and integrating novel methods and techniques using sensor networks, computer 

vision, modeling for damage indices and statistical approaches.  Effective use of traffic video 

synchronized with sensor measurements for decision-making is demonstrated. First, some of 

the computer vision methods and how they can be used for bridge monitoring are presented 

along with the most common issues and some practical solutions. Second, a conceptual 

damage index (Unit Influence Line) is formulated using synchronized computer images and 

sensor data for tracking the structural response under various load conditions. Third, a new 

index, Nd , is formulated and demonstrated to more effectively identify, localize and quantify 

damage. Commonly observed damage conditions on real bridges are simulated on a 

laboratory model for the demonstration of the computer vision method, UIL and the new 

index. This new method and the index, which are based on outlier detection from the UIL 

population, can very effectively handle large sets of monitoring data. The methods and 

techniques are demonstrated on the laboratory model for damage detection and all damage 

scenarios are identified successfully. Finally, the application of the proposed methods on a 

real life structure, which has a monitoring system, is presented. It is shown that these 

methods can be used efficiently for applications such as damage detection and load rating for 

decision-making. The results from this monitoring project on a movable bridge are 

demonstrated and presented along with the conclusions and recommendations for future 

work.  
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1. CHAPTER ONE: INTRODUCTION 

1.1. What is Structural Health Monitoring? 

Structures are complex engineered systems that are critical for a society’s 

prosperity and quality of life in general. To design structures that are operational and 

safe, standard building codes and design methodologies have been developed. In addition 

to routine daily loading, structures are often subjected to unexpected loading and severe 

environmental conditions that might result in long-term structural damage and 

deterioration[1, 2]. To assess the existing condition, to detect damage and to design safer 

and more durable structures, novel sensing technologies and data analysis methods have 

been explored for existing structures as well as for next generation “smart structures”. A 

new paradigm, Structural Health Monitoring, is an enabling approach for smart structures 

than can sense and even see [1, 2].   

Structural Health Monitoring (SHM) is the sensing and analysis of a structure to 

detect abnormal behavior, damage and deterioration during regular operations as well as 

under extreme loadings. There are different definitions for SHM in the engineering 

literature. One that will be presented here defines SHM as the measurement of the 

operating and loading environment as well as the critical responses of a structure to track 

and evaluate the symptoms of incidents, anomalies, damage and/or deterioration that may 

affect operation, serviceability, or safety and reliability [3]. SHM is designed to provide 

objective information for decision-making on safety and serviceability, and can be 

implemented to different types of aerospace, mechanical and civil structures to monitor 

their behavior by means of the information extracted from the sensor data. Monitoring 
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has long been implemented to evaluate the condition and performance by using different 

methods.  For example, the railroad workers used the sound of a hammer strike on the 

train wheel to evaluate if damage was present since the beginning of the 19th century as a 

routine inspection process. The modern SHM applications started within the aerospace 

community studying the use of vibration-based damage identification during the late 

1970s and the early 1980s in conjunction with the development of the space shuttle. The 

civil engineering community has focused on vibration-based damage assessment of 

bridge structures and buildings since the early 1980s [4].  

In the last ten to fifteen years, new SHM technologies have emerged, taking this 

field to the intersection of various engineering disciplines, making it a more 

multidisciplinary area. In addition to multidisciplinary engineering aspects of SHM, other 

factors such as the socio-organizational and non-technical challenges are to be considered 

as an integral part of complete and successful SHM applications especially in real life. 

Therefore, fundamental engineering, technology and socio-organizational challenges for 

routine health monitoring applications have to be carefully addressed [5]. In this study, 

the problem formulation addresses the fundamental aspects along with the technologies 

employed to fulfill the monitoring needs. The design and execution of the field 

monitoring presented at the end of the dissertation have been completed by also 

considering the non-technical and organizational challenges. 

1.2. Objective and Scope 

As previously stated, SHM is a new paradigm which, if implemented effectively, 

is expected to improve effective management of civil infrastructure systems (CIS). There 
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is a growing need and an interest for developing new technologies and methods for CIS 

to not only collect and analyze data but also to manage civil infrastructures with proactive 

and effective decision-making for improved safety and serviceability.   

Integration of image and computer vision technologies with traditional sensing 

data has not been fully explored by the SHM researchers.  The literature review of 

different studies illustrate that there is still a need for structural condition assessment and 

damage detection with conceptual damage indices that integrates sensor networks, 

computer vision, modeling for damage indices, and statistical approaches.  

The research conducted for this dissertation describes a methodology that uses 

both images and sensor data in conjunction with outlier detection methods to determine 

the changes in structural behavior and damage, especially for bridge type structures. The 

approach in this study is as follows. First, some of the most common computer vision 

applications used for SHM are discussed, and related issues in using these technologies as 

well as practical solutions for SHM of bridges are presented. Second, a conceptual 

damage index (Unit Influence Line, UIL) is formulated using synchronized computer 

images and sensor data for tracking the structural response under various load conditions. 

Third, a new index, Nd, is formulated and demonstrated to more effectively identify, 

localize and quantify damage in the case of large data sets. This approach combines the 

UILs feature vectors and utilizes a Mahalanobis distance-based outlier detection 

algorithm as summarized in Figure 1.  Results of these experiments conducted on a large-

scale experimental setup (the UCF 4-span bridge), which was designed and built for this 

study are also presented and discussed.  Finally, a movable bridge in Fort Lauderdale, 
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Florida is used to demonstrate these methods and technologies on a real life structure. 

It is shown that these methods can be used efficiently for applications such as 

damage detection and load rating for decision making.  The movable bridge was 

subjected to various damage scenarios where the structural configurations were slightly 

altered while the bridge was being monitored. The data is analyzed and presented for 

these scenarios. In addition, UILs extracted under the operational traffic by means of 

sensors and images are used to predict the bridge response and calculate the load rating 

that is commonly used by bridge engineers for decision-making. The results are also 

compared with Finite Element Model (FEM) of the bridge for verification purposes.  

Finally, the results are discussed along with the general conclusions and future work. 
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Figure 1.  A Monitoring with Cameras and Sensor Networks along with Novel Data 
Analysis 
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1.3. Organization of the Dissertation 

This dissertation is organized as follows.  

Chapter 2 presents a review of some of the methods and procedures currently 

used for damage detection on structures.  First visual inspections are briefly discussed.  

Then, methods and sensing technology for damage detection are presented with emphasis 

on previous experiments exploring the use of images, computer vision technologies and 

sensor data. Finally, a vision based structural health monitoring framework is proposed 

and described for the research conducted in this dissertation . 

 Chapter 3 includes the computer vision techniques employed in this research for 

SHM of bridges.  Also, some of the most common issues of using images and some 

possible practical solutions for bridge applications are discussed.  It is also shown how 

the structure response under various load conditions can be tracked by using a conceptual 

damage index called Unit Influence Line (UIL).  An experimental laboratory bridge 

model, the UCF 4-span bridge, built specifically for this research, is described and 

utilized to demonstrate the methods. Two different types of vehicles with various loading 

are driven over the UCF-4 span bridge while video images and computer vision 

techniques are utilized to detect, classify, and track the vehicles as sensors measure the 

corresponding responses. Synchronization of the vehicles images and the sensor 

responses is achieved to extract the  UILs for damage detection.  

In Chapter 4, first a Mahalanobis distance based outlier detection algorithm is 

used to show the presence of damage. Then, a new index, Nd, is formulated and 
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demonstrated to more effectively identify, localize and quantify damage. Commonly 

observed damage conditions on real bridges are simulated on the UCF-4 span bridge for 

the demonstration of the computer vision method, UIL and the new index. This new 

method and the index, which are based on outlier detection from the UIL population, can 

very effectively handle large sets of monitoring data. The methods and techniques are 

demonstrated on the laboratory model for damage detection and all damage scenarios are 

identified successfully 

Chapter 5 is mainly dedicated to the validation of extracting UIL feature vectors 

for real life data. This UIL vectors obtained directly from operational traffic video and 

sensor data are used for damage detection and bridge load rating.  The real life studies 

were conducted on a movable bridge in Ft. Lauderdale, Florida where the bridge was 

monitored under regular traffic load and also with slight structural alterations that 

represent the most common maintenance problems. The UILs are extracted as discussed 

in the previous chapters for the undamaged and damaged condition of the bridge. The 

results are presented in a comparative fashion. The UILs are also employed to calculate 

the load rating of the bridge. One of the novel aspects of the study is that a load test can 

be conducted with the traffic on the bridge, without any lane closure or special vehicles 

as well as any Weigh-in-motion device. Any heavy vehicle crossing the bridge can be 

employed for load testing as they are detected using the cameras, tracked over the bridge 

while synchronized sensor data collection provides the bridge response at the 

measurement locations. The classification of the vehicle gives information in terms of 

axle spacing and empty and fully loaded weight of the vehicle, which are used to obtain 

upper and lower bound normalized UIL responses. These UILs can be employed to 
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determine the load rating under commonly used American Association of State Highway 

Transportation Officials (AASHTO) HL93 truck as well as any other given vehicle. In 

this dissertation, the load rating for HL93 truck is presented along with the corresponding 

Finite Element Model (FEM) simulations, which are conducted for verification purposes. 

Finally, Chapter 6 contains the summary and the conclusions on developing and 

integrating novel methods and techniques using sensor networks, computer vision, 

modeling for damage indices and statistical approaches. The results from laboratory and 

field studies are also summarized along with the conclusions and recommendations for 

future research work. 
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2. CHAPTER TWO: STRUCTURAL HEALTH MONITORING 

APPLICATIONS AND NEEDS 

2.1. Related Work 

The ability to identify the condition of a structure and to detect damage or 

changes in condition at early stages is important to ensure safety and to maintain 

efficiently . Several approaches can be used within this realm: visual inspections, use of 

traditional sensors and statistical techniques for damage detection, and very recently 

incorporating and analyzing video images combined with the sensor data are some of 

them. 

2.1.1 Visual Inspections  

Traditionally, visual inspections have been used for inspecting structures and 

identify damage and deterioration.  In the case of bridges, inspectors go to the structures 

according a scheduled inspection plan, at least every two years in most of the cases, to 

identify if there is a need for maintenance, minor or major repair work, load posting or 

replacement. This method has some inherent drawbacks. One big problem with this 

approach is that if damage occurs gradually, it may not be observed by inspectors. The 

damage must have progressed far enough to be visually observable and in many cases 

accessible by inspectors. Also, the extent of damage is assessed based on subjective 

criteria. Visual inspection may not be very reliable when there is limited access to some 

elements or parts of a bridge, and observations are carried out from a distance.  

Shortcomings of visual inspections are well-documented in a study by FHWA in [6]. 



 

  9

Unless a major damage is present, the next inspection will be scheduled according to the 

inspection plan irrespective of the bridge condition until the next visit. Even if the 

damage is successfully identified, the final problem facing the engineer is accurately 

assessing its effect on the overall health of the structure [7]. Structural Health Monitoring 

(SHM) is expected to provide complementary information to visual inspections, helping 

to objectively detect damage and assess the condition. 

2.1.2 Use of SHM and Sensing Technology for Damage Detection 

A number of different methodologies have been introduced for damage detection 

by using the SHM approach. The theory behind monitoring structural dynamic properties 

is that if damage is present, then the physical properties of the structure will change and 

these changes will modify the dynamic response.  Modes of vibration and natural 

frequencies are studied and compared with the ideal undamaged structure responses.  

Recently, there have been rapid advances in the development of technologies for the 

evaluation of bridges. Monitoring approaches such as non-intrusive damage detection 

techniques, by means of dynamic properties, can be integrated into a structure to monitor 

the complete bridge or individual bridge members. If properly implemented, it is believed 

that these technologies extend the useful life of bridges by allowing deterioration/damage 

to be identified earlier and thereby allowing relatively minor corrective actions to be 

taken before the deterioration/damage grows to a state where major actions are required. 

In addition, SHM systems allow designers to learn from previous designs to improve the 

performance of future bridges [6]. It is also possible to permanently install the sensors on 

the bridge to reduce the amount of time required for testing and also to minimize the 



 

  10

impact on traffic, in particular associated with sensor installation [8]. 

Damage detection has been carried out based on modal parameters such as natural 

frequencies, mode shapes, and damping ratios from the recorded data.  Other physical 

properties as system stiffness matrices were obtained and used with the other mentioned 

parameters as damage indicators [9-11]. One important drawback for those methods is 

that often, damage has to be large enough to induce significant changes in mode shapes 

and a large spatial resolution for the experimental setup is needed.  For large structures, 

excitations caused by ambient vibrations or traffic may not be sufficient to reveal changes 

due to local damage. 

Modal analysis techniques have been extensively investigated by laboratory tests. 

In the following, some of them are presented. Two models were created at the University 

of Cincinnati and Drexel University to study the barriers for successful SHM 

applications. One of the main thrusts behind the research on these models is to quantify 

the effects and mechanisms of uncertainty [12]. The models were developed as adaptable 

structures that can be configured to simulate various damage scenarios, and study 

advanced health monitoring instrumentation technologies and algorithms [8, 13]. 

 These plane grid models also represent the early generations of the more 

complicated grid developed at UCF [14] which also serves as a benchmark model for an 

international study [15-17]. This grid structure has two clear spans with continuous 

beams across the middle supports. These supports may easily be removed to obtain a 

single span grid. The model is 18’ by 6’ and transverse bracing at 3 ft intervals from end 

to end of the grid is placed for lateral stability. Additionally, the structure is doubly 
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symmetric with typical parts that are interchangeable. Columns and beams are composed 

of W12x26 and  S3x5.7 sections respectively, providing the responses in terms of modal 

frequencies, deflections, rotations, stresses, and strains that are representative for typical 

short to medium span highway bridges. A very significant characteristic of this steel grid 

is that it can be easily modified for different test setups.  As mentioned before, for 

example, the two middle supports can easily be removed to analyze a simply supported 

structure. Furthermore, with specially designed connections, various boundary conditions 

can be obtained. These boundary conditions may include pin supports, rollers, fixed 

support, semi-fixed support, and any type of elastic material like neoprene pads. The 

adjustability of the structure allows a number of damage cases to be simulated including 

scour, boundary support change and reduced connection stiffness. A recent dissertation 

provides the experimental and analytical studies from this grid especially with emphasis 

on a novel time series analysis method to detect, locate and quantify damage from sensor 

clusters [18]. 

A benchmark study has been developed on a four story steel frame model on 

which several SHM tests were and are being performed with the major aim of damage 

detection for different damage case scenarios. Excitation to the structure was provided by 

an electro-dynamic shaker. The study sought the most dependant algorithm for different 

types of structures [19]. This study was followed by a two-phase benchmark problem on 

a cable-stayed bridge (Bill Emerson Memorial Bridge) as a test-bed for application of 

response control algorithms. The latter phase included consideration of more complex 

behavior [20, 21].   
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2.1.3 Incorporation of Imaging Technology with Sensors 

Very recently, some investigators have explored the possibility of incorporating 

imaging and optical devices and combining them with sensing technology. It should be 

noticed that there are only a few and limited attempts of real life testing and 

implementations of these ideas. 

One technique, applied by Wahbeh et al., consists of using a high fidelity video 

camera to track the position of two high-resolution low-power light-emitting-diodes 

(LED).  This study was implemented on the “Vincent Thomas Bridge”, San Pedro 

California, and the results were compared with experimental ambient data obtained 

previously by other studies.  The results indicate that the first and second modes match 

reasonably well [22].   

In another similar study, Lee and Shinozuka, implemented a real-time 

displacement measurement of bridges by means of digital image processing techniques. 

First, the measurement point is marked with a target panel of known geometry.  Then, the 

video camera takes a motion picture of the target. Meanwhile, the motion of the target is 

calculated using image processing techniques. The test results gave sufficient dynamic 

resolution in amplitude as well as the frequency.  No direct input-output relationship can 

be established [23].  

Another experiment was conducted by Lin et al., and photogrammetric techniques 

were used to measure displacements in an experimental setup composed of a masonry 

wall.  A digital camera was placed perpendicular to the wall and several pictures were 

taken while static horizontal-in-plane loads were applied.  Those images were post 
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processed and displacements were calculated. In this study, only in-plane static loads 

were considered and 2-D displacements were determined by post-processing the data 

[24].  

Hanji et al. presented a work using two digital images and stereography methods 

for corrosion measuring. Results of measurements were compared with those from the  

laser displacement meter and matched for small distances between the lens and the 

specimen [25]. 

Yoshida et al., constructed a measurement system for quantifying membrane 

displacements using three synchronized Charge-Couple Device (CCD) video cameras 

and stereo vision algorithms.  Results were matched with Laser Displacement Meter 

showing good correlation with the real behavior of the membrane and the time-history 

response [26]. 

Kanda and Miyamoto applied optical motion tracking technologies to measure 

earthquake induced motion with surveillance cameras.  Test was conducted in a two-story 

model subjected to uni-axial seismic motion.  Ten spherical 2.5 mm. markers wrapped in 

reflective tape were tracked by two digital video cameras.  Also conventional sensors 

were installed.  According the investigators, results showed good correlation between 

sensors displacements and video cameras readings [27]. 

Basharat et al., proposed a framework for intelligent sensor network with video 

camera for structural health monitoring of bridges. They suggested the use of mote sensor 

networks to monitor a structure.  The use of video cameras was prescribed to monitor 

traffic and other activities on the bridge.  Video cameras can also be triggered when the 
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activity metric is higher than some threshold, indicating that there is significant vibration 

in that particular section [28]. 

Javed et al., successfully developed a real time surveillance system for multiple 

overlapping and non-overlapping cameras called “KNIGHTM”  The system uses a client-

server architecture and runs at 10 Hz with three cameras [29]. 

A framework was proposed by Elgamal et al., combining a network sensors array, 

a database for storage and archival, computer vision applications for detection and 

classification of traffic, probabilistic modeling structural reliability and risk analysis and 

damage detection [30].   

Achler and Trivedi presented a vehicle detector algorithm.  The vehicle detector 

finds wheels and infers vehicle location from background segmentation and wheel 

detection.  Some results were presented mainly showing a big proportion of false 

positives and a successful ratio of detection around 60% [31]. 

Chang, Tarak and Trivedi suggested the use of multiple sensor modalities in order 

to perform traffic analysis for health monitoring of transportation infrastructure.  

Computer vision algorithms are used to detect and track vehicles and extract their 

properties.  Information is combined with data from seismic sensors for classification of 

vehicles [32]. 

Fraser presented his doctoral dissertation, based his work as an extension of a 

large team NSF ITR effort. Fraser shows a comprehensive study where one of the main 

objectives is the use of video analysis of pre-recorded data, computer vision algorithms, 

and artificial intelligence as a mean to classify and keep records of traffic (type, number 
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of vehicles, velocity, peak strain readings) over a fiber reinforced composite deck used as 

test bed.  Fraser also worked on damage detection, using a one dimensional finite element 

model and simulating two scenarios for a damage and undamaged structure with the 

vehicular loads coming from the video.  Then by examining changes in the computed 

peak strains for both cases, it was possible to locate damage and to predict the level of the 

reduction in stiffness [33]. In another related publication, accelerometer data was used to 

correlate with traffic images [34].  

Zhang et al., presented a video-based vehicle detection and classification system 

for truck data collection using wide-ranging available surveillance cameras. Several 

computer-vision based algorithms were developed or applied to extract background 

image from a video sequence, detect presence of vehicles, identify and remove shadows, 

and calculate pixel-based vehicle lengths for classification [35].  

Malinovskiy et al. presented, implemented, and tested a computer-vision based 

algorithm for vehicle detection.  The approach uses spatio-temporal slices that combine 

to create diagonal strands for every passing vehicle. The strands are then analyzed using 

the Hough transform to obtain groups of lines. A connected graph of the line objects is 

constructed for a connected-component analysis. Each connected line group represents 

one vehicle. Line group data can also be used to reconstruct vehicle trajectories and 

therefore track vehicles. Vehicle count errors ranged from 8% to 19% in the tests, with an 

overall average detection accuracy of 86.6% [36].  

Another framework for structural health monitoring of bridges by combining 

computer vision and a distributed sensor network that allows not only recording the 
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events but identifying the change in performance possibly due to damage by using a 

damage index was proposed [2] and demonstrated [37].  

In this framework, video stream is used in conjunction with computer vision 

techniques to determine the class and the location of the vehicles moving over a bridge as 

well as to have security surveillance on the bridge. By knowing the position and 

magnitude of moving loads; sensors data and video are synchronized and the structure is 

monitored at every instant by using operational traffic.  

This review shows that the implementation of computer vision based methods 

presents limited results for condition assessment of structures with conceptual damage 

indices. As a result, an SHM framework that also incorporates computer vision 

components is presented and discussed. 

2.2. An SHM Framework Using Computer Vision       

Computer-vision is the processing of acquired images in order to detect and track 

certain features. Recently, computer vision applications have gained attention for SHM. 

This approach has been implemented and tested at the UCF Structures and Systems 

Research Laboratory [37-39].  Also a novel framework for real-life structures has been 

developed and it is currently operating on a movable bridge in Fort Lauderdale, Florida 

[40]. 

Most of the previous work presented in the literature search was based on studies 

using mainly ambient vibration data and could not differentiate ambient from traffic 

readings, unless testing was scheduled by closing the bridge. An effective system should 

include the following closely interrelated components: the vision module, the distributed 
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sensors network array, the analytical model, the database, and the diagnostic module as 

shown in Figure 2.  
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Figure 2. The Components of a Monitoring Framework with Computer Vision 

 

Traffic is monitored and captured by fire wire cameras while sensors collect 

traditional data. Video stream is used in conjunction with computer vision techniques to 

determine the class, speed, and location of vehicles moving over the bridge and this 

information is synchronized with data from the sensors.  Unit Influence Line (UIL) 

feature vectors are extracted for assessment and damage diagnostic. Additionally, video 

can be also used to detect suspicious activities, i.e. the presence of persons, vehicles 

and/or objects in critical or prohibited, predetermined locations. 
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All of this is done in a continuous manner. Thus, the bridge is monitored and its 

condition is assessed, preventing damage progression and catastrophes as well as keeping 

the most critical legacy data for further studies. 

This feature is expected to prevent catastrophic failures by detecting any 

abnormal behavior, generation of image and numerical records, remote visual 

monitoring, tracking of structural behavior and help in scheduling condition-based 

maintenance.  

2.3. Summary 

In this chapter, a review of traditional approaches for SHM is presented. Visual 

inspections, benefits and shortcomings are discussed as well as some of the methods and 

procedures currently used for damage detection on structures.  Then some of the previous 

experiences using video images and sensor data are reviewed.  Finally a framework for 

structural health monitoring, which combines the analysis of video images by means of 

computer vision techniques, and traditional sensor data is introduced and described. 
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3. CHAPTER THREE: INTEGRATION OF VIDEO IMAGING 

AND SENSOR DATA FOR STRUCTURAL HEALTH 

MONITORING  OF BRIDGES 

3.1.  Computer Vision Techniques Used for Structural Health Monitoring (SHM) 

Computer vision can be defined as the process of analyzing images to obtain an 

understanding of the content such as what type of objects are present, where they are 

located and how they are related to the real world. The integration of imaging and optical 

devices with traditional sensing technology is a promising paradigm for SHM. 

Identifying moving objects such as vehicles from a video sequence is a critical task for all 

surveillance systems.  Some kind of mechanism is required to detect what is happening in 

the field of view of the camera.  Any moving or out-of-place object becomes of interest 

and has to be somehow detected.  Once objects are detected, further processing is needed 

to indicate moving direction (tracking) and/or type of object (classification).  In spite of 

many benefits of using video in conjunction with sensing technology, there are also many 

issues related with this approach in the case of monitoring of civil structures such as 

bridges. Some of the computer vision techniques, issues and possible solutions for 

applications on bridge monitoring are discussed in the following. 

3.1.1 Detection Approach with an Example from a Real Life Bridge 

In vision based systems, a common approach to identify moving objects is 

background subtraction, where each video frame is compared against a reference or 

background model.  Pixels in the current frame that deviate significantly from the model 

are considered to be moving objects and belonging to the foreground. This pixel based 



 

  20

information is then clustered to identify regions, and also to label as well as to classify 

objects. Computer vision techniques have also been used for traffic monitoring and 

surveillance systems [41]. The common approach for these methods is to build a model 

of the scene background and detect deviations in each pixel feature value from the model 

to classify the pixel as part of either background or foreground. Variations of pixels in the 

image of static background scene can be easily modeled as a Gaussian distribution. 

Although, pixel intensity or color is the most commonly used feature for scene modeling, 

there are several others being used in computer vision applications and new approaches 

are also explored by various researchers. Independent of the method, these approaches 

basically follow the same scheme shown in Figure 3.  

 
Figure 3. General Background Subtraction Method 

Two key issues have to be solved when using background subtraction are 

determining the value for threshold (λ) and deal with illumination changes. Although 

background subtraction method has been well studied during the last decades, 

determination of the pixel-wise optimal threshold value is still object of research and 

discussion. Several systematic methods have been proposed for selecting threshold values 
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but at the end, user has to select the most appropriate one.   

Thresholding for a bridge monitoring system application can be challenging due 

to illumination changes throughout the day as well as sudden changes due to fog, rain, 

and snow. Here, the writers discuss and illustrate their implementation for bridges with a 

set of RGB video (N=99 frames) which was used to create a background model.  For 

every pixel/RGB channel, the image mean (Figure 4) and standard deviation (Figure 5) 

are calculated using the Equations 1 and 2 respectively. 
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Where nxmjijiji BGR },,{ ,,,  is the matrix formed by  the mean per pixel of the 

corresponding red, green and blue channels of the background.  { }
nxmijijij BGR ,,  is 

matrix containing the red, green and blue intensities for each pixel in each one of the 99 

selected frames, and { }
nxmjiBjiGjiR ,,,, , σσσ  is the matrix formed by the standard 

deviations for red, green and blue of every pixel. 
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Figure 4. Image Mean for a Bridge in Florida 
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Figure 5. Image Standard Deviation 

Per every new input frame a combined change indicator Δ (for every pixel) is 

determined by normalizing the RGB color space using the background model information 

as shown in Equation 3. 
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Here jiBjiGjiR III ,,, ,,  are the values of red, green and blue per pixel for each 

new input frame. Then, the value of Δ  for every pixel ( Δ is a matrix nxm) is compared 

against the selected threshold (λ) to classify the pixel as belonging to the foreground 

( λ≥Δ ji, ) or as been part of the background ( λ<Δ ji, ).   

 

Figure 6 shows background subtraction results for different threshold (λ) values.  

Note that foreground ( λ≥Δ ji, ) is represented with white and background  ( λ<Δ ji, ) 

which is stationary is represented with black pixels. It is noticeable that for λ values 

smaller than 1000, many false positives appear and for values of λ greater than 1000 

vehicle shape starts to distort.  For this reason a value, λ=1000 was chosen as the initial 

threshold. 
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Figure 6. Background Subtraction Results for Different Threshold Values 

 

Sudden changes in illumination conditions completely modify the RGB color 

characteristics of the modeled background. For this reason, most of all real time 

background subtraction methods would have difficulty modeling quick and large lighting 

variations for bridges. Thus background subtraction method would fail under partially 
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cloudy days if no corrective actions are taken. Figure 7 shows how the appearance of 

false positives increases dramatically with slightly changes in illumination.  

 

λ =1000λ =1000 λ =1000λ =1000
 

 

Figure 7.  Background Results for the Same Threshold under Different Illumination 
Conditions 

 

Gradual and slow changes can be solved by updating the background model by 

periodically incorporating new images into the analysis, changing the background mean 

and standard deviation producing new Δ values as λ is kept constant. The threshold could 

be also modified as a function of the spatial pixel location (x, y), reducing its value for 

regions of low contrast and increasing it otherwise. Unfortunately, this solution can not 

be effective where there are sudden changes. While many researchers have studied this 
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problem, the proposed solutions are often computationally expensive. Computer vision 

for SHM of bridges with customized practical techniques can be implemented efficiently 

due to certain constraints and other known characteristics for a bridge and its 

environment. First, the monitoring area is limited only to the deck, making it possible to 

discard all false positives out of the region of interest. Objects projected exactly on the 

deck surface can be cataloged as shadows and be eliminated. For adjusting the threshold, 

statistical methods based on pixel counting of pre-determined regions are applied, by 

either increasing or decreasing λ accordingly [42].  

3.1.2 Tracking Approach with an Example from a Real Life Bridge 

Establishing the relationship between vehicles crossing a bridge (moving loads) in 

the 3D world and their projections on a 2D space (images) is the main goal for tracking 

algorithms employed for SHM. Once all camera parameters are determined, vehicles on 

the bridge can be tracked. Several methodologies have been proposed and proven to work 

very well, from snakes [43], through geodesic active contour level set based algorithm 

[44] and many others based on Scale-Invariant Feature Transform (SIFT)  [45]. 

The first step is to perform a camera calibration process, allowing image and 

world coordinates to be mapped. Equation 4 shows how homogeneous image coordinates 

and homogeneous world coordinates are related by the intrinsic and extrinsic camera 

parameter matrices. 
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Where: IyIx,  represent image coordinates, WzWyWx ,,  are world coordinates, f  

is the focal length,  kx, ky are the effective size of the pixel in mm,  r represents the 

coefficients of the camera rotation matrix (3x3), tx,ty,tz are the spatial translation of the 

camera, and ox,oy are the image center.  All the intrinsic and extrinsic parameters can be  

determined by knowing a set of points in the image and real world, establishing a system 

of equations and using singular value decomposition to get the final solution. Although 

this is a very common approach, it requires a process which can be impractical for long 

term field monitoring for bridges. This 3-D problem is greatly simplified when reduced to 

a 2-D situation if the surface is assumed to be planar. Hence all the z coordinates are 

either the same or the difference is negligible  [38].  Using the previous assumption, 

Lagrange Interpolation Method can be used to calculate the position of the vehicles over 

the bridge.  The geometry of the camera and setup is shown in Figure 8. Now, it becomes 

evident that if Z is assumed to be constant along the bridge, image and real world can be 

correlated both in the plane XY, which defines the plan view of the bridge. 
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Figure 8.  Geometry of the camera location and test set-up 

Considering a set of k+1 data points kidd iworldiimage →= 0);,(  where imaged  

is the distance in pixels between line ‘S’ and a set of known points in the image, and 

worldd  is the distance in the real world between the line ‘S’ and the same set of points, 

then: 

                       (5) 

 

 

In Equation 5 we find the distance of the object with respect to the original start 

line ‘S’ in the real world and in the image, respectively to calculate the world distance 

from the line S ( worldd ) for a given image distance from the line S ( imaged ).   Equation 6 

can be used with  )( imagej dl  being the Lagrange coefficients for a new input image 
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distance. 

                  

            (6) 

The Lagrange basis coefficients can be obtained using Lagrange basis 

polynomials as given in Equation 7. 

 

     

  

(7) 

 

A set of known correspondences between world and image spaces on the structure is used 

as reference and Lagrange coefficients are obtained following Equation 7.  For SHM of 

bridges, several known constrains can be considered such as common motion, constant 

speed, known trajectories, and predefined motion regions leading to practical algorithms. 

Basic features like shape, size, color, and speed can be used to build a weighted 

correspondence matrix between two consecutive frames at times t1 and t2. Matching is 

established between the two pair of objects giving the lowest cost.  

Occlusion is another concern in computer vision tracking.  For SHM of bridges, 

this issue can be minimized by placing the cameras, along the bridge in the traffic 

direction.  However, even by finding the best location for the video source, there might 

be objects in frame t1 which can not been paired to in frame t2 due to occlusion. In this 

case, position of the occluded object can be calculated using linear velocity models and 
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distance-speed relationships. Figure 9 shows results of the proposed tracking algorithm in 

a real-life structure. For the same time interval between frames distance and speed are 

calculated. 

 

d=3.91m

t=5/30 s  

v=23.46m/s d=3.88m

t=5/30 s  

v=23.28m/s d=3.98m

t=5/30 s  

v=23.88m/sd=3.91m

t=5/30 s  

v=23.46m/s d=3.88m

t=5/30 s  

v=23.28m/s d=3.98m

t=5/30 s  

v=23.88m/s  
Figure 9. Results of Proposed Tracking Algorithm  

3.1.3 Classification Approach  

For SHM of bridges, vehicles are moving loads and vehicle classification is 

critical in traffic monitoring analysis. In order to establish input-output relationship (load 

and response as function of time and location), type of vehicle, magnitude and location of 

the loads transmitted to the structure through the wheels must be obtained.  The goal is 

then to classify each moving object of interest within the input image as belonging to a 

certain group of vehicles. The first step to achieve this objective requires the detection 

and correspondence of each object. The tracking method discussed in the previous 

section provides the bounding box, centroid and motion path of each object over the 

frames. Classification can be made by computing the size (number of pixel) of the object 

for a particular location. This approach, assumes the only cause of change in the 

projected height of an object is the variation in its position respect the camera.  Once the 
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size is known, it can be compared with the statistical distribution for the particular traffic 

population of the bridge, previously compiled and stored in a database. Further 

improvements by including geometry (shape) along with size can be also included when 

employing only size is not sufficient. 

 VEHICLE DATABASE

BACKGROUND SUBTRACTION

VEHICLE DATABASE

BACKGROUND SUBTRACTION

 
 

Figure 10. Classification of Vehicles  

In addition, the number of wheel axles can be identified by using an additional 

camera located perpendicular to the traffic flow direction.  By means of computer vision 

procedures, number of axles and distance between them can be determined and used as 

extra features for classification purposes, as explained in the rest of the dissertation. 

3.2. Development and Synchronization of Damage Indices with Image Data 

Condition assessment is one of the most challenging activities to be performed by 

civil engineers to objectively evaluate if structures are safe for the public use.  In order to 

effectively assess the condition objectively, it is essential that some type of sensing 

technology and adequate index are employed for decision-making. Appropriate indices 

should be sensitive to damage, yet not to changes in ambient conditions or variations to 
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the testing method. An index should be easy to measure confidently and can be processed 

directly from measurement, with minimal assumptions or computational requirements. 

Finally, an index should be conceptual and thus easy to interpret [46]. Although there is 

no consensus on a comprehensive index and no single index can address all condition and 

damage identification requirements, unit influence line (UIL)  can be considered to meet 

many of the previously mentioned properties for an ideal index [47]. 

3.2.1 Description of Unit Influence Line (UIL) as a Damage Index 

UIL, which is commonly used by structural engineers, shows the variation of a 

response at any given point on a structure due to the application of a unit load at any 

point on the structure. Influence lines are generated by applying a unit load and moving it 

on the structure. The response due to this unit load at the location of interest is calculated 

and values are then plotted to generate the influence line for the function as shown in 

Figure 11. This fundamental concept is covered in elementary structural analysis courses, 

and it is widely used in bridge engineering design and load rating.   
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Figure 11. Example of UIL for the Reaction at the Pin Support of a Staticaly Determined 
Beam 

When UIL is identified from SHM data by means of an inverse problem, UIL 

provides a signature with a normalized bridge response for the critical locations 
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instrumented by any type of sensor. By knowing the weight and location of each axle, 

and the structural responses, it is possible to extract the UIL of the structure using the 

following formulation. 

 {r}=[w]*{u}                                                                                         (8) 

Where {r}  is a vector containing the response of a certain location due to the 

moving load,  [w] is a matrix containing the axle weights with its corresponding 

distances, and {u} is the UIL vector. Figure 12 shows an example of UIL extraction for 

Moment Response. 

 
Figure 12.  Example of UIL extraction for Moment Response (Adapted from [48]) 
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A matrix containing the information of the weight/location of each axle is formed.  

This matrix has m rows corresponding to the number of unit steps xΔ  the bridge is 

divided into plus the extra number of xΔ  coming from the distance between the first and 

last axle of the truck (m=LT / Dx). The number of columns is n i.e. the number of 

xΔ corresponding to the length of the bridge ( xLLn Δ+= /)( 21 ).  Where n is also the 

number of discretized coefficients for unit influence along the actual length of the bridge. 

The value of each cell within the matrix is the weight applied from the axle to the 

structure at that particular location (Equation 9). Then, by knowing the responses{ }r , 

Equation 10 can be established. 
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         (9) 

Unit influence line can be determined by taking the pseudo inverse, more 

formally the Moore-Penrose pseudo inverse, of the matrix [w] and multiplying it by the 

responses: 

{ } [ ] { }rwu *1−=                                                                                                             (10) 

However, four criteria have to be achieved for the pseudo inverse to be defined: 
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Also, for the system to have a unique solution, the rank of [ ]w  has to be equal to the rank 

of the augmented matrix ][ uw and equal to ‘n’. If these criteria are not met, the system 

could have various solutions leading to erroneous results. In this case, the corresponding 

UIL values should be discarded. 

3.2.2 Limitations and Uncertainties 

Although UIL is a very conceptual method, there are limitations and uncertainties 

in the experimental process that may lead to errors.  It is important to understand possible 

sources of uncertainties and limitations in order to employ UIL more efficiently.  Some 

of the uncertainties and limitations are described  in [46] as follows: 

Uncertainty in synchronizing time with distance: By using video cameras and 

computer vision algorithms, small differences in the location of the axles can appear. 

Uncertainty in the straight path of the truck: Vehicles do not necessarily follow a 

straight line while crossing over a bridge. Any small variation in their path along the 

transverse direction may cause experimental errors and affect the UIL.   

Uncertainty in data filtering: Recorded data contains ambient, dynamic effects 

(from the bridge as well as from the vehicle suspension), noise coming from the data 
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acquisition system (DAQ), and other signals added to the static data.  

Uncertainty in the weight per axle: Same vehicle can have infinite combinations 

of axle weight depending on how the load is distributed within them.  Any difference in 

the weight distribution per axle can lead to a different UIL.  Upper and lower bounds for 

the responses have to be established to indicate a safe condition for the bridge.  If a 

weight in motion system is added, exact weights per axle can be known and this 

uncertainty is minimized. 

Uncertainty in linear bridge behavior: The UIL method assumes a perfectly 

elastic behavior of the structure.  Any nonlinear behavior would induce error and 

uncertainties to the method. 

Uncertainties due to environment: Environmental conditions such as temperature 

and humidity would affect the stiffness and behavior of a bridge. Development of 

intrinsic forces due to temperature changes or a modification of boundary conditions can 

lead to variations in the response; hence its UIL would also change.  

3.3. Laboratory Demonstration 

3.3.1 Structure Description and Instrumentation (UCF 4-Span Bridge) 

An experimental setup was designed and constructed by the researchers to 

demonstrate sensing and video monitoring framework along with the data analysis 

method. The set up is a four span bridge-type structure consisting of two 120 cm 

approach (end) spans and two 304.8 cm main spans with a 3.18 mm thick, 120 cm wide 

steel deck supported by two HSS 25x25x3 girders separated 60.96 cm from each other. 
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Supports were designed in such a way that they could be easily changed to roller, pin or 

fixed boundary conditions as shown in Figure 13. 

 
Figure 13. Experimental Setup, Finite Element Model and Boundary Conditions 

Girder and deck can be connected together at will by using bolts at different 

locations to modify the stiffness of the system and to simulate damage.  Radio controlled 

vehicles can crawl over the deck with different loading conditions (from 4.02 kg to 15.71 

kg). Wheel axis distance and speed are also variable.  While a video camera is used to 

identify and track the vehicles, a set of strategically located sensors collects the data to be 

correlated with the video stream in real-time.  It is important to mention that although the 

structure is not a scaled down bridge model, however, its responses are representative of 

typical values for medium-span bridges.  A more comprehensive description of this 

structure as well as the analytical model can be found in [2].  

This laboratory setup is instrumented with various sensors as shown in the 
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instrumentation plan (Figure 14). A data acquisition system collects data while a USB 

type camera collects video stream data at a rate of 15 Hz., 20 foil type strain gages are 

sampled at a rate of 1kHz and are averaged every 100 points to minimize noise for an 

effective rate of 10 Hz. Figure 15 shows the Data Acquisition System (DAQ) and the 

execution of the tests. There are also a total of sixteen accelerometers, and two dynamic 

tiltmeters collecting data at the same sampling rate as the strain gages.  It should be noted 

that only strain and tilt data are used in this study for the demonstrations. 
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Figure 14.  Sensor array 
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a)  DAQ System         b) One of the Test Vehicles  

Figure 15.  Data Collection 

3.3.2 Data Filtering 

UIL analysis is based on static response of the bridge caused by traffic load; 

hence, dynamic response component has to be eliminated by filtering out the dynamic 

components of the signal. Dynamic load effects are due to road roughness and 

imperfections on the pavement that can cause impact forces exerted from the vehicles on 

the bridge.  Another issue is the redistribution of the axle weights while in motion, due to 

differential deflections of the bridge, especially for large heavy-loaded trucks. Also, as a 

vehicle moves over the bridge, its engine and suspension generates vibration that behaves 

itself as a dynamic system, introducing the additional dynamic component to the data. 

Some of these effects can be eliminated whereas the others have to be considered 

negligible. Filtering is performed by changing the time domain data into frequency 

domain by applying Fourier Transformation (which was done using Fast Fourier 

Transform (FFT) in this case).  When using this procedure, separation of static and 
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dynamic components is possible as shown in Figure 16. It is shown that the first two 

modes of vibrations of the bridge are in the vicinity of 5 Hz and 7.5 Hz. The modes are 

also identified from the Finite Element (FE) analysis and these are also shown in the 

figure. By inspecting this dynamic response, the cut off frequency for a low pass filter 

can be identified. After this stage, zero padding the to responses above the cut off 

frequency and Inverse Fourier Transform (IFT) of the frequency domain data to time 

domain gives the processed data for the UIL analysis. 
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Figure 16.  Conversion of Responses to Frequency Domain 

 

The new data are converted back to the time domain and the results of filtering 

are shown in Figure 17 and  Figure 18 for four different sensor measurements after 
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dynamic components and high frequency components are filtered out. 
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Figure 17.Raw & Filtered Data for  2-Axle-Vehicle (Lane 1-SG2) 
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Figure 18.  Strain Data for 2-Axle Vehicle (Filtered) 
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3.4. Integration and Implementation of  Computer Vision and Condition Index in the 

Laboratory 

A very novel characteristic of this study is the fact that structural responses 

obtained by means of sensors are synchronized with the moving load which is determined 

by using video processing and computer vision algorithms.  Detection, classification and 

tracking of the loads are shown and explained in the following. 

3.4.1 Detection of the Vehicles 

First, background subtraction is performed as explained in section 3.1. Results are 

shown in Figure 19.  A background model is created by using 99 frames and standard 

deviation and mean image (Figure 19a) are calculated.  Then for every new input frame 

(Figure 19b) Background subtraction is performed (Figure 19c).  Threshold for pixel 

differences is applied; connected component algorithm allows detecting different possible 

interest objects by finding interconnected pixels. Objects are now thresholded size-wise. 

Any object lying outside of the region of interest (bridge deck) is discarded (Figure 19d).  

Morphological filtering is applied to fill holes and define the shape of the remaining 

object (Figure 19e).  Finally, a bounding box is drawn in the input frame to show detected 

object (Figure 19f).  Size (in pixels) and image coordinates of the box (es) are saved in a 

file for each one of the studied frames, corresponding to the vehicle(s) in motion. 
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a) Background model b) Input Frame

c) Background Subtraction d) Threshold & Conn. Comp

e) Morphological Filtering f) Detected Vehicle

a) Background model b) Input Frame

c) Background Subtraction d) Threshold & Conn. Comp

e) Morphological Filtering f) Detected Vehicle  
Figure 19.  Vehicle Detection Results 

3.4.2 Classification of the Two Trucks Used in the Laboratory 

As explained before, the goal of this task is to classify each vehicle as belonging 

to a certain group.  In this way, the approximated load transmitted to the structure can be 
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estimated.  For this case study, two different vehicles were used and the exact number 

and weight per axle for each vehicle were known. For a real life application, a program 

was developed and tested in the laboratory, using a video camera perpendicular to the 

traffic and computer vision techniques.  This program, based on pattern matching, is able 

to determine the size, number of axles, and distance between axles as shown in Figure 20 

and Figure 21.  If the exact weight per axle is required, weight in motion can be added as 

part of the system. 
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Figure 20.  Characteristics of 2-Axle Vehicle Determined using Computer Vision. 
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Figure 21.Characteristics of  5-Axle Vehicle Determined using Computer Vision. 

3.4.3 Tracking of the Moving Vehicles on the Laboratory Bridge 

A set of known points on the structure is used as reference (10 points for this 

example).  These beacon points can be either selected by a user (Figure 22a) or detected 

automatically using pattern matching algorithms. Once the vehicle is detected, position in 

the image of the vehicle lower-leftmost pixel is determined and its distance imaged to the 

line S is calculated by using Equation 5.  This distance is entered in Equation 6, obtaining 

the position of the vehicle (moving load) on the structure. Tracking is performed by 

matching the moving objects in two consecutive frames based on size, color, common 

motion and speed. Figure 22b shows the path of the vehicle while moving over the 
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structure, calculated using the described procedure. Figure 23 shows calculated 

instantaneous speed for both test vehicles. One of the advantages when using this method 

is that if by any reason, such as excessive wind, the camera moves and loses its 

calibration, recalibration can be performed in an automated way by detecting the   

reference points and correlating the image coordinates again with the corresponding real 

world.  

 
                 a) Reference Points             b) Path followed by Vehicle 

Figure 22.  Tracking of the 2-Axle Vehicle 
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Figure 23.  Calculated Instantaneous Speed for the Test Vehicles. 
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3.5. Load Location And Response Synchronization 

Data image from the video camera can be decomposed in individual frames, each 

one captured in a particular time instant. As shown in Figure 24. 
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Figure 24.  Video Image Frame Sequence with Time Stamp 

The final goal is to obtain a direct correlation between the different locations of 

the vehicle over the bridge and the corresponding responses.  By using computer vision 

algorithms, the vehicle is detected and classified as explained previously. The position of 

the front axle (and hence all other axles) is determined for each frame. Now, location of 

the front axle while vehicle is crawling over the bridge is determined with a time stamp.  

Finally, a MATLAB algorithm matches the time stamps of the location with those of the 
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sensors, relating the distance with responses.  Figure 25 shows the strain readings from 

sensor SG2 for two different trucks.  Each data point represents the response when the 

front axle is at that particular location on Lane 1.  Due to the different truck load and axle 

configurations, the magnitudes and the truck position creating the maximum response are 

different.  
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Figure 25.  Strain vs. Distance for L1-SG2 (Both Vehicles with Minimum Load 
Capacity) 

3.6. Identifying Unit Influence Lines from the Monitoring Data in the Laboratory  

UIL provides a signature with a normalized bridge response for the critical 

locations instrumented by any type of sensor. One of the main advantages of using the 

method described in this study for condition assessment is the fact that with every vehicle 

crossing over the bridge, comparison between the previously obtained UIL and the most 



 

  49

recent one can be done.   

To verify the synchronization of image data with measured responses, static tests 

were conducted by moving the front axis of the vehicle by one foot increments, recording 

the responses corresponding to them, and calculating the UIL for each case (Figure 26 

and Figure 27). For this static test, the positions of the trucks were pre-determined and 

the structural responses were tagged with respect to these positions. 
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Figure 26.  Unit Influence Line sensor L1-SG2 for 2-Wheel -Axle Vehicle. Manual 
Procedure 
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Figure 27. Unit Influence Line sensor L1-SG2 for 5-Wheel -Axle Vehicle. Manual 
Procedure 

 

Subsequently, the computer vision system was used to determine the UIL by 

calculating the distances as the vehicles crawled over the bridge. The structure response 

was correlated with the input force and location by means of synchronized computer 

image data as shown in Figure 28 and Figure 29. 
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Figure 28.Unit Influence Line sensor L1-SG2 for 2-Wheel -Axle Vehicle. Automated 

Computer Vision Method 
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Figure 29.Unit Influence Line sensor L1-SG2 for 5-Wheel -Axle Vehicle. Automated 

Computer Vision Method 
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Both the static load test data and the load test with computer vision 

synchronization are analyzed to obtain UIL, as well as for different trucks.  It should be 

emphasized that the exact location and type of vehicles are determined using computer 

vision algorithms.  Locations are manually recorded for the static case. Figure 30 shows 

excellent agreement between static and dynamic cases.  In addition, it is seen that UIL as 

a normalized index is identified almost identically for two different truck types. 

UIL Obtained by Using Manual and 
Computer Vision Methods
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Figure 30. UIL Results for all Studied Cases 
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3.7. Summary 

In this chapter, a conceptual damage index is formulated using the computer 

image and the sensor data for tracking the structural response under various load 

conditions. An experimental laboratory bridge model is utilized to demonstrate the 

application of video imaging and traditional sensor data for SHM along with the analysis 

methods. Video images and computer vision techniques are used to detect, classify, and 

track two different types of vehicles crawling over the bridge while sensors measure the 

corresponding responses. It is shown that a successful integration of computer vision 

techniques and sensor data on a four span bridge model loaded with different vehicles is 

achieved. With this method, a normalized response, Unit Influence Line (UIL), is 

obtained for each sensor location as function of the vehicle position that are determined 

using computer vision algorithms simultaneously with the sensor data. It should be noted 

that the vehicle type in terms of number of axles are also determined by computer vision 

algorithms as discussed in this chapter. Laboratory studies show a very good correlation 

between the UIL extracted using pre-determined load positions and those identified by 

computer vision. The algorithms, approaches and results given in this chapter, present 

very promising results for the application of the computer vision and UIL method on a 

real-life bridge as well as for using this information for damage detection and condition 

assessment for decision making. 
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4. CHAPTER FOUR: COMPUTER VISION AND SENSOR DATA 

ANALYSIS FOR DAMAGE DETECTION 

The previous chapter presented the formulation of a conceptual damage index 

called Unit Influence Line (UIL), which is obtained by using the computer image and the 

sensor data for monitoring the structural response under different load conditions. Video 

images and computer vision techniques are used to detect, classify, and track vehicles on 

the bridge (input loads) while strain and tilt data are simultaneously collected as the 

structure response (output). In this chapter, UILs are obtained and used as features for 

damage identification.  Statistical analysis is performed as outliers detection algorithms 

identify and localize induced damage on the UCF 4-span bridge model. 

4.1. Statistical Analysis  - Outliers Detection. 

An outlier is an observation with an abnormal distance from other values in a 

random sample from a population.  Outlier detection is one of the most common methods 

used in SHM to detect variations from measured structural behavior. In this paper a new 

approach for using UIL as damage feature is developed along with Mahalanobis distance-

based outlier detection algorithm. Introduced by P. C. Mahalanobis in 1936, the 

Mahalanobis distance is based on correlations between variables by which different 

patterns can be identified and analyzed. It is a useful way of determining similarity or 

difference of an unknown sample set to a known one. It takes into account the covariance 

among the variables in calculating distances, hence it is scale invariant.  A larger distance 

from the rest of the sample population of points indicates more dissimilarity. The 

Mahalanobis distance (Md) of a multivariate vector ),...,,( 21 nxxxx =
r  to a distribution 

http://en.wikipedia.org/wiki/P._C._Mahalanobis�
http://en.wikipedia.org/wiki/Correlation�
http://en.wikipedia.org/wiki/Sample_set�
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with mean ),...,,( 21 nμμμμ =
r  and covariance matrix nxnS   is defined in (11). 

Md 1nx
T

iinxn
1

xn1ii )(xS)(x μμ −−= −          (11) 
 

If Md is greater than a pre-set threshold level, the vector is considered to be an 

outlier. For this study, the Mds of the UIL populations are compared against each other to 

determine the outliers that represent the change due to damage. The threshold is set for 

each sensor as the minimum Md value that includes all the extracted UIL within the set 

for t0<t< t1 . This will be explained in more detailed in the following sections. 

4.2. Description of the Experiments 

Two different remote controlled vehicles were used for this experiment, each one 

under two loading scenarios as shown in Figure 31. Every vehicle crawled over the 

undamaged structure for a total of 15 times for each load case to simulate monitoring 

over long term and collecting large data sets.  In this way, a total of 60 UIL could be 

extracted, ensuring a sufficient number of feature vectors (UILs) for the analysis before 

the structure was damaged. Then, same procedure was repeated for the damaged 

structure. 

   

Axis 1 Axis 2 Total Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Total 

2.02 2.00 4.02 1.26 0.98 0.98 0.71 0.71 4.64

7.18 7.89 15.07 1.83 3.22 3.22 3.72 3.72 15.71

Weight per Axis (kg)Weight per Axis(kg)

EMPTY EMPTY

LOADEDLOADED
 

Figure 31.  Loading Scenarios 
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4.2.1 Damage Scenarios   

Different damage scenarios were considered and implemented on the UCF-4-span 

bridge as shown in Figure 32.  These cases were chosen because they represent some of 

the most common damages affecting bridge performance based on our private 

conversations with the Department of Transportation (DOT) engineers.  The first three 

cases (Figure 32a, b, and c) involve changes in boundary conditions corresponding to a 

case usually found when rollers or pinned supports of the bridge (Figure 33a) become 

corroded or blocked by cinders and the structural configuration of the bridge changes. 

These alterations cause stress redistribution, affecting the different structural elements 

and may subject them to additional forces. In the bridge model, this case was simulated 

by fixing the supports as shown in Figure 33b. Missing bolts and section stiffness 

reduction are also cases presented by DOT engineers.  Cases 4 and 5 simulate the loss of 

connectivity between composite sections and also can generate localized stiffness 

reduction.  For case 4, only four bolts were loosened (Figure 32d) while for case 5, eight 

bolts were released (Figure 32e).  Figure 33d shows the bridge model when bolts were 

retired for testing. Case 6 is another example of changes in boundary conditions.  Here, 

the rollers at the central support were change from roller to elastomeric pad (Figure 32 f 

and Figure 33 c).  
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Figure 32. Studied Damage Cases 
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Figure 33.  Simulated Damage Cases 
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4.3. Damage Detection Using a Statistical Distribution of UIL Vectors as Damage 

Feature 

4.3.1 Unit Influence Lines Extraction 

As previously explained, data is typically collected in time domain. In order to 

use measured vehicle responses to extract UILs, a direct correlation between responses 

and load location is needed. The raw data for the measured responses are a combination 

of static and dynamic responses, and noise  (Figure 34a). Static responses have to be 

determined filtering out the other components. As explained previously, filtering is 

performed by changing the time domain data into frequency domain using Fourier 

Transformation (Figure 34b).  The resultant signal is converted back to the time domain 

by applying the Inverse Fourier Transformation as shown in Figure 34c.  Subsequently, 

the computer vision algorithm is used to detect and track each one of the test vehicles by 

calculating the location versus time as the vehicles crawl over the bridge (Figure 34d). 

Finally, the structure response is correlated with the input force and location by means of 

synchronized computer image data and UIL are extracted as shown in Figure 34e  [37]. 
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t=9.80 s t=18.89 st=18.89 s

t=23.11 st=23.11 s t=25.39 st=25.39 s

a) Raw Data (Response Vs Time) b) Conversion to Frequency Domain for Filtering

c) Filtered Data (Response Vs Time) d) Detection & Tracking (Distance Vs Time)

e) Unit Influence Line (Response Vs Distance)

t=9.80 s t=18.89 st=18.89 s

t=23.11 st=23.11 s t=25.39 st=25.39 s

a) Raw Data (Response Vs Time) b) Conversion to Frequency Domain for Filtering

c) Filtered Data (Response Vs Time) d) Detection & Tracking (Distance Vs Time)

e) Unit Influence Line (Response Vs Distance)  
Figure 34. Procedure for  Unit Influence Line Extraction  

4.3.2 Overview of Outlier Detection from UIL Population for Damage Detection 

In this section, the theoretical basis of the proposed method is introduced.  First, 

video images are used to detect, classify and track the vehicles (input loads) crawling 

over the bridge model while sensor data (responses) is captured and correlated with the 

loading position.  A set of UIL is extracted for an initial time interval (t0< t < t1) where 
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the structure is undamaged. Out of this first set of UIL (represented in Figure 35 as yij), 

the mean for each UIL points (mi) and covariance matrix for the whole set (S) are 

calculated.  For each UIL, Mahalanobis distance is calculated to determine the variation 

of the set with respect to the rest of the feature sets, and a threshold is established in such 

a way that all UILs within the initial set ‘y’ are inliers.   Then, at a new time interval (t1< t 

< t2) where damage is assumed to occur, a new set of UILs is extracted (xij), Mahalanobis 

distance is calculated and thresholded to detect possible damage on the structure. In 

Figure 35 a summary of the process is shown where  yij and xij denote unit influence line 

coefficients obtained at two different times;   “i” identifies the test number and  “j” refers 

to the load location. 
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Figure 35.  Overview of the Methodology 
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4.4. Outliers Detection-Clustering 

After applying and processing the different damage cases, influence lines were 

obtained as explained in the previous section.  Mahalanobis distance was calculated and 

results are plotted in Figures 36-41.  In general, it can be seen that almost every sensor 

show some kind of variation with respect to the baseline data set population collected at 

t0 < t < t1.  It is also noticeable that the sensors closer to the damaged area show a greater 

Mahalanobis distance than those farther away. Even though strain gages provide a 

localized response,  the method shows sufficient information for the different channels to 

determine the damage location from the relative distances from the thresholds. 
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Figure 36. Damage Case 1:  Rusted Rollers (First Support) 

In Figure 36 the outlier near the vicinity of the first support (where damage is 

induced  (t1 < t < t2) indicates that the change in structural behavior is greater compared to 

others.  When damage progresses by fixing the middle support also (Figure 37), it is seen 

that outliers start to separate with greater distances for the middle location sensors as 

well.   
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Figure 37. Damage Case 2:  Rusted Rollers (First and Second Support) 

In Figure 38 presence of significant amount of outliers for all sensors can also be 

seen.  The distances these outliers are plotted from the threshold show how much the 

readings deviate from the undamaged case at t0 < t < t1. This approach is an efficient 

means of handling large sets of data in a very rapid way.  Once the thresholds are 

exceeded, it is an indication of a change and further evaluation of UIL that indicates this 

change can be evaluated to determine the effect of this change (e.g., stress response due 
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to a design truck applied to UIL) on the bridge. 
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Figure 38. Damage Case 3:  Rusted Rollers (Second Support) 
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Figure 39.  Damage Case 4:  Missing Bolts (One Location) 



 

  66

L1-SG1 L1-SG2 L1-SG3 L1-SG4 L1-SG5 L1-SG6 L1-SG7 L1-SG8 L1-SG9 L1-SG10

L2-SG1 L2-SG2 L2-SG3 L2-SG4 L2-SG5 L2-SG6 L2-SG7 L2-SG8 L2-SG9 L2-SG10

L1-TILT 1 L1-TILT 2

*Damage Location 
(Missing Bolts)

Missing Bolts

Pin

Regions Affected the Most 

*

Pin Roller

*

L1-SG1 L1-SG2 L1-SG3 L1-SG4 L1-SG5 L1-SG6 L1-SG7 L1-SG8 L1-SG9 L1-SG10

L2-SG1 L2-SG2 L2-SG3 L2-SG4 L2-SG5 L2-SG6 L2-SG7 L2-SG8 L2-SG9 L2-SG10

L1-TILT 1 L1-TILT 2

*Damage Location 
(Missing Bolts)
Damage Location 
(Missing Bolts)

Missing BoltsMissing Bolts

Pin

Regions Affected the Most 

*

Pin Roller

*

 
Figure 40.  Damage Case 5:  Missing Bolts (Two Locations) 

Missing bolts causes loss of connectivity between deck and girder, affecting the 

composite section behavior and inducing a stiffness reduction of the structure in those 

localized regions.  For most occasions, if only few bolts are missing, the structure 

properties may not be expected to change significantly, making it difficult to detect. 

However, as the damage progresses the structural integrity can be compromised rapidly. 
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Figures 39 and 40 present the results for case 4 (4 removed bolts) and case 5 (8 

missing bolts) respectively.  The application of the proposed detection algorithm shows 

that even for the case 4, with only four missing bolts, significant variation of the UILs 

feature vectors was detected and shown trough the outliers plots.   In Figure 40 the 

separation of outliers from threshold line becomes more apparent in the vicinity of the 

damage. 
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Figure 41. Damage Case 6:  Worn or not Fully Settled Pads (Elastomeric Pads) 

Substitution of central rollers for elastomeric pads simulates those situations 

where support pads are worn or not fully settled (Case 6).  This is also one difficult case 

to detect; however, in Figure 41 one can observe that outliers are present and their 

number as well as their distance from the threshold increase for those sensors closer to 

the affected region showing change of structural behavior along with some type of 
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location and intensity information.  

4.5. A New Method for Identification of Damage 

In the previous section, Mahalanobis distance-based outlier detection algorithm is 

presented with figures (Figures 36-41) showing the sensors which are more affected by a 

particular damage case.  Although the inspection and evaluation of outliers provides 

valuable information, it might be tedious in some cases.  As a result, it is more desirable 

to find a more effective method to not only show differences between different sets of 

measurements but also better pinpoint the approximate area where damage exists.  Since 

Mahalanobis distance (Md) is scale invariant, it is possible to plot all sensors in a single 

representative graph.  First, the mean of the Md values for the   set   corresponding to 

t0<t<t1  and the mean of all outliers for the set t1<t<t2 are calculated (Figure 42).  If all of 

the calculated Mds from the set (t1<t<t2) are outliers, the distance between their mean 

divided by the mean of the Md set for t0<t<t1 can be considered as the normalized change, 

a new index which can be denoted as dN   Therefore, dN  is a normalized indicator 

between Mds calculated for UIL sets obtained at two different times (t0<t<t1 and t1<t<t2) 

during the monitoring of the structure. 
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Figure 42.  Distance Between two UIL Sets 

 

If there is any inlier within the UIL set (t1<t<t2), as shown in  

Figure 42, then the normalized distance dN   has to be affected by the relation 

between the number of outliers (mo) and the total number of points within the set (m) as 

written in Equation 12. 
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Figure 43 through Figure 49 show the plots of index 
dN  for all sensors and for all 

damage cases studied.  The sensor locations are shown in the figures along with the 

damage location and types.  The bar diagram shown on the top of the bridge and its 

instrumentation figure corresponds to dN  for each sensor.  As discussed before, the first 

damage case corresponds to changes in the boundary conditions due to rust in the rollers.  
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This damage case was simulated by fixing the supports accordingly. By simply 

inspecting Figures 43-49 it can be noticed that the plot for dN distance shows the 

approximate area where the damage occurred.  

As can be seen from Figure 43, when the boundary conditions are fixed, the dN  

corresponding at the boundary location UIL set indicate major separation from the initial 

case (set t0 < t < t1 corresponding to roller boundary conditions).  We also notice that the 

two dN s at the support location have different level of effect due to changes at the 

boundary conditions.   
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Figure 43. Damage Identification for Case 1 (Rusted Rollers on Left Support) 

 

A closer look at Figure 43 (damage Case 1) shows that the tiltmeter 2 (close to the 

central support) presents more variation than the one located at the vicinity of the left 

support, where the damage was induced.  At this point, it is important to analyze the 
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reason for this outcome and evaluate if this corresponds to a physical case or it is a 

shortcoming of the proposed method.   

Figure 44 shows the influence lines obtained for the undamaged and damaged 

case 1.  The variation in the UILs for both sensors is shown as the shaded grey area. It 

can be easily seen that even though the induced damaged happened at the left support, the 

change in UIL is greater for the tiltmeter located at the central support.  The tiltmeter 1 

senses a greater change while the moving load is on the first span, closer to it.  However,   

once the load crosses the central support, the variation for the measured rotations is small. 

Tiltmeter 2 detects changes happening as the load moves through both spans of the 

continuous structure, hence dN  appears greater for this sensor.  
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Figure 44. UIL for Tiltmeters 1 and 2 (Undamaged Case and Case 1) 
 

Also, it is evident in Figure 43 that Girder 1 shows more relative change than 

Girder 2.  The reason for this is that all UILs were obtained when the vehicles were 

crawling on top of Girder 1.  The small values for strain and rotation on Girder 2 as well 
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as all uncertainties described before, affect Girder 2, revealing damage only at the 

vicinity of damage with relatively less dN  magnitude compared with the dN  magnitude 

or Girder 1 as shown in the bar chart in Figure 43. 
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Figure 45. Damage Identification for Case 2 (Rusted Rollers on Left  and Central  

Support) 

Figure 45 shows the dN  plot for the case where damage was induced by fixing 

the left and the central support (Case 2).  Same as before, the height of the bars 

corresponding to the strain sensors increases as their location is closer to the damage 

region.  Also, similar behavior as that of Case 1 is observed for the tiltmeters, where the 

magnitude of dN  is larger for the intermediate tiltmeter measurement. 

In Figure 46 the bar diagram for index dN  at Girder 1 shows a distribution that 

can be easily determined and located around the central support.  Once again, both 

tiltmeters present significant change which is expected due to the global nature of the 
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rotational response when corresponding degree of freedom is restrained.  For Girder 2, it 

also can be inferred that some change has occurred but its location is not as clear. 
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Figure 46. Damage Identification for Case3 (Rusted Rollers Central Support) 

 

Figures 47-48 correspond to damage cases 4 and 5.  As previously described, 

these cases simulate missing bolts causing loss of connectivity between composite 

sections with the corresponding stiffness reduction.  For case 4, only four bolts were 

disconnected and 8 bolts were retired for case 5.  Once again, by simple inspection, the 

plot of dN allows to detect the approximate region where the damage is present. 
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Figure 47. Damage Identification for Case 4 (4-Missing Bolts ) 
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Figure 48. Damage Identification for Case 5 (8-Missing Bolts ) 
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Finally Figure 49 shows the results of the damage detection method for changed 

boundary conditions.  Worn or not fully settled pads of the supports are simulated by 

replacing the central roller with elastomeric pads as shown previously.  Even though this 

is a challenging case for detection, here it is also identified the approximate region where 

the damage is present, leading to conducting further and more extensive examination and 

analysis. 
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Figure 49. Damage Identification for Case 6 (Worn/Not Fully Settled Pads ) 
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4.6. Summary 

The Integration of computer imaging with traditional sensing technology provides 

a method to monitor the structures continuously by using UIL as a normalized bridge 

response for the critical locations instrumented by any type of sensor.  The UIL sets can 

further be employed for statistical analysis for each measurement location using a 

Mahalanobis distance based outlier detection algorithm.  In this chapter, a new method 

was also proposed to more effectively identify, localize and quantify (in a relative sense) 

induced damage. 

The results presented in this chapter show that the methodology discussed herein 

was able to sense changes on the experimental test set-up.  Even small and localized 

damage cases like missing bolts (Case 4) were successfully detected. It should be noted 

that the sensor spatial resolution is also important to capture the behavior. Damage 

detection was also possible by calculating and plotting a new index, normalized 

distance dN .  With these plots, by simple inspection, the possible area where the damage 

occurred can be identified and more rigorous analysis can be prescribed.   

Based on the analysis of strain and rotation data, it is observed that tiltmeters 

showed a clear indication of structural variations for all the studied cases.  Due to its 

global nature, UILs for rotation proved to be more sensitive than strain even when 

loading and damage were not very close to the tiltmeters.  However, their use for damage 

localization by using dN could lead to misinterpretation if employed alone. On the other 

hand, UILs for strain provide a more localized response making it possible to be used as a 

more efficient measurement to pinpoint damage. Although structural changes can be 
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detected with a few sensors, the method for damage localization improves if exists a 

dense spatial resolution for the strain gages. 
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5. CHAPTER FIVE: REAL LIFE APPLICATIONS 

One of the objectives of this dissertation was the validation of the methods and 

algorithms first in the laboratory and for real life structures.  Our research group is 

currently conducting a research project on developing methods and technologies for 

structural health monitoring of a movable bridge (Sunrise Bridge) located in Fort 

Lauderdale, Florida. Movable bridges are unique structures due to the complex 

interaction of their structural, mechanical and electrical systems. These mechanisms 

provide versatility to movable bridges; however, their intricate interrelations combined 

with the harsh environmental effects also produce some inherent drawbacks. Movable 

bridges are reported to have experienced significantly higher maintenance costs than 

regular fixed bridges, due to their special operational demands, structural designs, and 

interaction of different systems.   

This chapter presents the real life implementation and results of a monitoring 

system where the data analysis and damage identification methods are demonstrated. 

Video images are analyzed by means of computer vision techniques to detect and track 

vehicles crossing the bridge.  Traditional sensor data is correlated with computer images 

to extract Unit Influence Lines (UIL), which are used as index for load rating analysis 

and damage detection. For load rating, truck tests are commonly carried out to obtain 

more reliable load rating for decision-making by bridge owners. In this chapter, a 

practical method for this test and analysis is presented using UIL and operating traffic to 

obtain a more reliable load rating. For the damage detection, the several commonly 

observed conditions that are of concern for maintenance and operation were simulated on 
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the bridge temporarily. The results from these conditions are presented.  

5.1. A Review of the Structural Health Monitoring System of a Movable Bridge  

Heavy movable structures involve large machinery in which most operational 

speeds are low and critical forces are large. Bascule type movable bridges, which this 

study focuses on, are probably one of the most common types. A movable bridge is a 

structure, which has been designed to have two alternative positions and which can be 

moved back and forth between those positions in a controlled manner as a way for land 

traffic to cross a waterway while ensuring a path for the waterborne traffic [49, 50]. The 

main advantage of this type of structure is that because of its moving condition, the 

bridge can be constructed with little vertical clearance, avoiding the expense of high piers 

and long approaches. Moving components of movable bridges are operated by various 

types of machinery to open the passageway for waterborne traffic. Mechanical and 

electrical components fuse with the structural elements, creating a very unique type of 

structure often referred to as kinetic architecture. 

The very same moving condition that gives its versatility to a movable bridge is 

the main responsible for significant drawbacks and problems associated with the 

operation, and performance [51]. First, deterioration is an issue since movable bridges are 

subject to harsh conditions. They are located over waterways, and often close to the 

coast, which constitute conditions suitable for corrosion, causing section losses. Also, 

wind forces are significantly higher in the coastal regions. Another important reason for 

the deterioration observed in movable bridges is that movement causes friction and wear 

of the structural and mechanical components. Fatigue is also one of the problems due to 
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the reversal or the fluctuation of stresses as the spans open and close. Any member or 

connection subject to such stress variations should be carefully inspected for fatigue 

failure [52]. Even with regular maintenance, continuous downgrading of movable bridges 

is inevitable.  

The second major concern is the unexpected breakdowns, which cause problems 

for both, land and maritime traffic. Another concern is the high maintenance costs 

associated with the complex operation system, mechanical parts requiring special 

expertise, and with deterioration causing more extensive repair. In Florida, it is estimated 

that the unit maintenance cost of a movable bridge can be up to 100 times that of a fixed 

bridge [51]. Almost all parts need to be frequently checked and maintained. Also, 

unexpected failures increase the life cycle cost of the movable bridges. Difficulty in 

repair is an issue for movable bridges. Even a minor malfunction of any component can 

cause an unexpected failure of bridge operation. Electrical and mechanical problems may 

require experts and may be difficult as well as time consuming to fix. Due to the complex 

mechanisms of the movable system, repairs may be very costly. Consequently, a small 

movable bridge population owned by an agency may require considerable maintenance 

budget. Timely repair of the bridge is of major importance since the malfunction of the 

bridge would disrupt traffic, blocking either one or both transportation routes. 

Coupled with analytical models, the SHM paradigm offers an automated method 

for tracking the health of a structure by combining damage detection algorithms with 

structural monitoring systems. Such a system can monitor the structural, mechanical and 

even electrical components of a movable bridge and generate warning flags to indicate a 

worsening in certain conditions. Infrastructure owners may use these flags as a 
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mechanism to monitor/assess maintenance performance. The data may be used by the 

contractors in scheduling preventive maintenance to maximize the service life of the 

equipment and the structure. In addition, the root causes of the structural and mechanical 

problems can be determined, and future designs can be improved using the information 

generated by the monitoring system. 

5.1.1 Description of the Structure  

Florida has a large population of movable bridges due to the waterways and 

coastal topography. Most of these bridges are owned by the Florida Department of 

Transportation (FDOT). The FDOT has an inventory of 98 movable bridges including 3 

lift type, 94 bascule type, and 1 swing type bridges. 

Bascule bridges constitute by far the majority of movable bridge types. Based on 

this analysis and interaction with FDOT structures and maintenance engineers, a bascule 

bridge in Fort Lauderdale known as ‘Sunrise Bridge’, was selected for monitoring since it 

belongs to the largest class within the population with representative geometry and 

condition of movable bridges in Florida (Figure 50). 
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Figure 50. Sunrise Bridge 

The structure 860466 is the Westbound span of two parallel spans on SR 838 

(Sunrise Bridge), crossing the Inter Coastal water way in Fort Lauderdale, FL. This span 

was constructed in 1989. It has double bascule leaves, each 73’10” (22.49m) long 

approximately, and 53’4” (26.15 m) wide, carrying three traffic lanes and opening about 

15 times a day.  

Sunrise Bridge is of the most common bascule type, with a rack-and-pinion 

mechanism. The bascule leaves are lifted horizontally at the point of the trunnions, which 

are the pivot points on the main girders. The weight of the span is balanced with a 

counterweight that minimizes the required torque to lift the leaf. The counterweight is 

made of cast-in-place concrete. In the closed position, the girder rests on a support called 
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‘Live Load Shoe’, or LLS, on the pier and traffic loads are not transferred to the 

mechanical system. The movable bridge also involves fixed components, such as 

reinforced concrete piers and approach spans. The counterweight of the main girder stays 

below the approach span deck in the closed position. When the bridge is opening, the 

leaves rotate upwards, and the counterweight goes down. The driving torque is generated 

by an electrical motor, which is then distributed to the drive shafts via the gear box. The 

gear box involves an assembly of gears operating similar to automobile differentials, and 

provides equal lifting of both sides. The drive shafts transmit the torque to the final gear 

called the pinion, engages the rack assembly which is directly attached to the main girder. 

5.1.2 Design of the Sensor Network  

As a part of the on-going research project for FDOT, main issues for the 

maintenance of electrical, mechanical and structural components of the movable bridge 

were identified. Based on these, an extensive sensor network is designed and 

implemented to monitor various parts of the bridge. A total of 168 sensors are deployed 

to the bridge for monitoring the electrical, mechanical and structural components as well 

as collecting environmental data [40]. The electrical and mechanical components are 

monitored with accelerometers, strain rosettes, tiltmeters, microphones, infrared 

temperature sensors, ampmeters, video cameras, and pressure gages. Structural 

components are mainly monitored with accelerometers, high speed strain gages and slow 

speed vibrating wire strain gages. Video cameras and a weather station are also part of 

the monitoring system. The detail of the installed sensors is as follows. 

Accelerometers: A total of 40 PCB accelerometers are installed. Sixteen sensors 
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are placed on the main girders to measure vertical (12) and horizontal (4) acceleration. 

Another six on each gearbox and four accelerometers  on the electric motors to monitor 

alignment and vibrations to reflect the performance of the mechanical and electrical 

components. Also, two accelerometers are installed  on each rack and pinion base for 

detecting excessive vibration and checking the base integrity.  

Dynamic strain gages: 36 Hitec weldable dynamic strain gages have been 

attached to main girders, floor beams, and stringers.  

Vibrating wire strain gages (VWSG): 36 Geokon VWSG are strategically 

distributed on main girders, floor beams, and stringers; continuously collecting slow 

speed temperature and strain data. Figure 51  shows the location of some of the strain 

gages used in this study.  For identification of the sensors a number was added to the end 

of the denomination:  1 means the sensor is installed in the top flange of the main girder, 

2 for the botton flange (main girder) In the same way, 3 and 4 are for top and bottom 

respectively in the case of either stringers or floor beams.  

Strain Rosettes: 22 Hitec strain rosettes are used in total. Four of these sensors are 

placed on girders at the live-load shoe locations to correlate with traffic, another two at 

the receiving encasing for the span locks for checking alignment and integrity, and eight 

sensors at the trunnions vicinities for studying the shear on these critical regions. Eight 

rosettes at the main shafts allow correlating with tiltmeters and monitoring the torque, 

balance, and friction number on each opening/closing operation.  

Tiltmeters: A total of eight 801 uniaxial Tuff tiltmeters are used. Four are located 

at the trunnion regions to measure inclination angle during opening/closing and another 
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four are placed one at the tip of each girder for checking the alignment of both leaves. 

Pressure gages: Four TPS sensors are placed at the span-lock hydraulic system for 

checking variations in the oil pressure which can indicate problems related to alignment 

between the span-lock bar and the receiver.  

Infrared Temperature sensors: Two non-contact IT Omega transmitters are 

installed for detecting abnormal levels of heat on the motor brakes.  

Amperage meters: Six current sensors are installed to monitor the amperage 

consumption of the motors during the opening/closing operations, serving at the same 

time as triggers for data capture.  

Microphones:  4 microphones are installed to detect acoustic print of possible lack 

of lubrication issues of gear boxes and trunnions. 

Video cameras: Two fire wire cameras collect video stream data; one is dedicated 

to monitor the traffic and the other to detect corrosion on the open gears.  

Weather station: an Orion weather station is also installed to monitor ambient 

temperature, humidity, rain intensity, rain duration, wind intensity, and wind direction to 

correlate with all the other measurements. Figure 52 shows the installed monitoring 

system.  
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Figure 51.  Location for Some of the Strain Gages 
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Figure 52.  Monitoring System 

Development of the finite element model (FEM), shown in Figure 53, provided 

the possibility of investigating different damage scenarios and determining 

instrumentation locations. 

  
Figure 53. Finite Element Model 
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Figure 54 shows a typical sensor installation as well as the video camera position 

and traffic direction.  

 
Figure 54. Strain Gage Location and Video Camera. 

5.1.3 Instrumentation and Data Collection  

As stated before, instrumentation include structural, mechanical, and electrical 

components. Data is recorded during every opening and closing of the bridge leaves. For 

each opening/closing event, shaft torsion, leaf angle, strain, acceleration, current of the 

motors, and temperature of the breaks are collected using the DAQ and stored in the 

computers located at each side. Also, video cameras monitor the open gear for signs of 

corrosion, lack of lubrication and/or indentations. Therefore, real-time acquisition and 



 

  89

tracking of the bridge balance for each opening and closing event is possible, providing 

the bridge owners immediate information on the status of the mechanical system. 

Deterioration can be controlled by applying preventive maintenance before the machinery 

sustains excessive wear, hence, being able to predict damage. When the bridge is closed, 

in normal operation, traffic is also monitored by a firewire video camera.  At the same 

time, structural strain gages and accelerometers are collecting data from the traffic 

induced effects.  Both, vision and sensor data are correlated and Unit Influence Lines 

(UIL) are extracted to be used as a feature for damage detection and load rating.   

5.1.4 Data Acquisition System Configuration 

The data acquisition system requires a special design for proper collection of the 

data. An analog filter of 100 Hz is applied to all strain gages and a 2.5 kHz analog filter is 

applied to acceleration data. A digital bandstop-butterworth 5th order filter with a lowpass 

cutoff frequency of 58 Hz and a high pass cutoff frequency of 62 Hz are applied as well 

to all measurements to account for 60 Hz electricity noise. Data is collected at 256 Hz for 

all channels.   

5.1.5 Field Installation 

SHM of large structures involves much more than laboratory tests where issues 

such as coordination, access, redundancy are relatively easy to control. The technical 

challenges associated with field implementation of a SHM program for bridges are 

commonly related to installation, operation, and maintenance of the various components 

of the monitoring system as well as the coordination and cooperation with the bridge 

owners. In addition, the distance between sensors and the DAQ system creates a complex 
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wiring issue; how to effectively relay the signal from sensor to computer. In this project, 

a multi conductor cable with individually shielded, twisted, and grounded pairs protected 

by a PVC outer jacket was used. The PVC outer jacket was rated for outdoor use and 

both sunlight and oil resistive; providing confidence for long-term use in a harsh 

environment.  

Another major challenge in the implementation of SHM system in real life is the 

coordination of fieldwork with infrastructure owners in such a way that installation 

process impacts the land and maritime traffic minimally. Figure 55 shows a typical 

installation of sensors using a snooper truck. 

 
Figure 55: Sensor Installation on Girders 

 

5.1.6 Data Transmission and Synchronization 

Since two leaves of the movable bridge are physically separated from each other, 
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it is necessary to provide data transmission across the waterway to monitor both spans of 

the bridge simultaneously. For the first reason, separate DAQs are used for each side, 

collecting the data from the corresponding sensors. A Digital Subscriber Line (DSL) 

internet connection was established at the East side of the bridge. This connection is 

terminated in a wireless access point. The West side gains connection to this access point 

by using a standard 802.11 PCI wireless card.  A static IP address is provided by the DSL 

vendor ensuring a consistent internet presence. For the initial phase, standard Microsoft 

Remote Desktop is used to communicate and full control of both computers.   

Communication and transmittal of data between the two separated DAQ systems is 

accomplished through a combined 4-port switch plus RangeBooster type G wireless 

router. Figure 56  illustrates the data transmission.  For security, this network is password 

protected.  

 
Figure 56:  Scheme for Data Transmission 

As stated before, one of the main issues of working on this movable bridge is the 

data transmission and synchronization.  First, both computers are coarse-grained 

synchronized by using a standard Network Time Protocol (NPT).  This NTP continuously 

measures the wireless network latency between both computers located at each side of 

the bridge, compensating the subrogated slave computer to the master in real time .  This 
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procedure allows a starting point where the timing offset is in the order of 4ms.  

Further refining is obtained by using a Global Positioning System (GPS) timing 

receiver at each side.  The receiver is a full 12-channel, parallel tracking, embeddable 

GPS receiver designed to provide precise GPS or UTC time which is needed for 

synchronization. The timing accuracy provides plenty of headroom for future 

requirements. Rather than sharing time from a single timing source, with the resultant 

delays and loss of accuracy, precise time (synchronization) at every location can be 

achieved regardless of how isolated or remote the location of the monitoring system is.  

These GPS not only provide location information but also supply a global time 

reference accurate up to the micro second order of magnitude. Every second, each GPS 

outputs a pulse whose leading edge is synchronized.  These signals are captured 

simultaneously with other sensor data and embedded within the data files.  By matching 

pulses on both computers, desired synchronization is achieved.  

5.2. Data Analysis from Operational Traffic for Load Rating 

Bridges are the critical links of the transportation networks. Any damage or 

collapse of a bridge not only results in loss of property and human fatalities but also has 

severe effects on the regional economy.  Deterioration of civil infrastructures in North 

America, Europe and Japan has been well documented and publicized.  In United States, 

50% of all the bridges were built before 1940 and approximately 42% of those, present 

structural deficiency [53, 54].  

Some of those bridges may be strengthened or rehabilitated, while others simply 

need to be replaced.  Load rating analysis is a commonly used approach to evaluating live 
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load carrying capacity of bridges, and decision-making such as load posting or 

replacement. Most of the time, load rating analysis is performed using a simplified 

analysis or more detailed analysis such as using Finite Element Models.  In addition, 

truck load test based load rating is also conducted on the structure to more accurately 

assess its load carrying capacity. In such a case, the structure is instrumented with a 

variety of sensors, and a heavy vehicle of known load is positioned for pre-identified load 

conditions and also crosses the bridge at crawl speed. The structure response is 

continuously monitored during several of these passages, along with the position of the 

vehicle.  Results are analyzed and also used to calibrate numerical models which help to 

predict the behavior of the structure under different loading configurations. 

A manual for bridge rating through load testing was published previously [55] 

through a National Cooperative Highway Research Program (NCHRP) project as a guide 

for the nondestructive load testing of bridges for improved rating. In this guide, two types 

of nondestructive load testing are described for the purpose of bridge load rating: 

diagnostic and proof. Diagnostic load testing involves loading the bridge in question with 

a known truck load at set positions and measuring the bridge response. Proof load testing 

is performed by setting a limit or goal for the bridge while vehicle loading is increased 

gradually until the target is reached. Both types involve mobilization of load trucks as 

well as lane closures. 

One of the most desirable characteristics of any bridge monitoring system is the 

ability to continuously verify the structure safety with minimum or no interference to the 

normal operation. This section explains and demonstrates a new application for 

performing experimental bridge load rating by using operational traffic without the 
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necessity of neither bridge closures nor using any particular type of vehicle. This 

approach does not require a Weigh-in-motion (WIM) system, which might be costly in 

terms of the equipment and its installation. The incorporation of imaging and optical 

devices to a traditional SHM system, allows detecting, tracking, and identifying vehicles 

from captured video sequences. At the same time, these moving loads are synchronized 

with sensor data to extract Unit Influence Lines which are used to predict the bridge 

response under the AASHTO HL-93 rating truck, which is a standard truck used for load 

rating. Here, operating and inventory load rating are calculated. The complete process is 

explained in the following. 

5.2.1 Detection 

As explained before, detection was performed by using background subtraction, 

where each video frame (Figure 57b) is compared against a reference or background 

model (Figure 57a).  Pixels in the current frame that deviate significantly from the model 

are considered to be moving objects and belonging to the foreground (Figure 57c). This 

pixel based information is then clustered to identify regions, filtered, and also to label as 

well as to classify objects (Figure 57d).  A detailed explanation as well as all formulation 

used for the authors can be found in previous sections of this dissertation as well as in  

[37, 38]. For the load rating analysis, the data during the crossing of the passenger bus 

given in Figure 57b is used to extract UIL and then obtain HL93 based load rating. 
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Figure 57. Background Subtraction and Filtering 

5.3. Classification 

Classification was performed by following the procedure explained before.  Once 

the vehicle type has been identified, the number of axis, distance between them, and 

weight per axle empty and loaded are obtained from the data base. Figure 58 illustrates 

the process. The bus that is detected, is then identified as the a Riverside Transit Agency 

(RTA) passenger bus with axle and load data as given in the following. 
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Figure 58. Classification of Vehicles 

5.4. Tracking 

Figure 58 shows the tracking algorithm detecting and following a bus while 

crossing the bridge. Tracking is critical to synchronize the measured responses with the 

location of the vehicle when obtaining the Unit Influence Lines.  
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Figure 59. Results from the Tracking Algorithm 

5.4.1 Load Location and Response Synchronization 

Once the strain data is collected in time domain, filtering is applied by changing 

the raw data into frequency domain using Fourier Transformation. Then, dynamic and 

high frequency noise components are cut out while static component is kept and 

transformed back into time-domain. Vehicle is identified and location versus time of the 

moving load is obtained by means of computer vision algorithms. Figure 60 shows 

filtered responses of the vehicle and the FEM simulated strain values correlated with the 

front axle location of the identified bus (assuming is fully loaded) for the critical section 

under investigation.   
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Figure 60. Measured Responses and FEM Simulation 

5.4.2 Unit Influence Lines Extraction 

Once the response of the bridge is obtained and correlated with the location of the 

vehicle, UIL can be extracted. One important fact is that the real bus loading is unknown.  

For this reason, two calculations can be performed.  The first one assumes that the bus is 

empty and the second one with the bus fully loaded. Based on both assumptions, UILs 

are extracted as shown in Figure 61.  

 



 

  99

 
Figure 61. Unit Influence Lines for Bus (Assuming Empty and Fully Loaded Bus) 

 

In Figure 61, the two UILs are plotted for the empty and the full bus assumptions.  

It is noticeable that the UIL for the empty bus has greater coefficients than the one for the 

loaded case.  The reason is that both UILs have been extracted for the same measured 

response, hence, the UIL corresponding to the smaller load has to be larger and vice 

versa.  

5.4.3 Rating Truck Response Prediction 

Once UILs are obtained by using operational traffic, Equation (10) can be used 

again to obtain the predicted response of the bridge due to the rating vehicle HL-93.  This 

time, [w] is formed with the axis weight and distance information corresponding to the 
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vehicle HL-93. Figure 62 shows the obtained results in the form of three curves: the first 

one represents the predicted moment response of the bridge for the HL-93, calculated by 

using the UIL generated from the bus assumed empty (strain values are also shown); the 

second curve shows the expected bridge response by using the UIL extracted from the 

bus assumed fully loaded, and the third curve shows the FEM simulation for the bridge 

response under HL93 vehicle.  Due to the uncertainty of the real bus loading, two bounds 

are formed and the actual response should be in between these limits. FEM results show a 

very good correlation with the experimental data.  

 

 
Figure 62. Predicted Responses for HL-93 by using UILs Obtained with the Operational 

Traffic 
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5.4.4 Load Rating Results 

Load rating of the movable bridge was calculated for the indicated section 

following the AASHTO Guide [56]. Bending capacity, including lateral torsional 

buckling effect, and shear capacity were calculated as deterministic values. Predicted 

maximum and minimum moment values coming from the strain at the selected location 

were used. The load rating can be expressed as the factor of the critical live load effect to 

the available capacity for a certain limit state. The general formula for the rating factor is; 

( )IM1LL
PDWDCC

RF
L

pDWDC

+γ

γ±γ−γ−
=  (13) 

Where C is the factored moment capacity, DC is the moment produced by the 

dead load of structural components, DW is the moment produced by the load of the 

wearing surface, P is a dead load concentrated at a single point, LL is the live load effect, 

IM is the impact factor, and γ’s are the safety factors.  The load factors change according 

to the type of load rating, i.e., inventory or operating load rating. The load ratings for the 

girder were calculated at the section FB-A, located at the Live Load Shoe (LLS) in the 

bottom part of the top flange as indicated in Figure 63.  
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Figure 63. Studied Location and Section Properties 

The capacity of the sections was calculated based on the ultimate moment 

capacity; 

xyu ZFM =      (14)  

where Mu is the ultimate moment capacity; Fy represents specified yield strength 

and Zx  is the plastic section modulus. The yield strength of the steel was given as 36.0 

ksi. The plastic modulus was calculated from section sizes in the drawings. Then, 

applying Formula (14), the section moment capacity was found to be Mu=158072 kips-in. 

Moments at the studied section due to Dead Load and Lane Load were 

determined using the Finite Element Model of the bridge as MDL=15409.33 kips- in  and  

MLL-LANE =9794.73 Kips-in  respectively. Since the experimental data collected at the 

critical response location for this example is strain, it has to be converted to moment 

values in order to apply the load rating equation.  By using the strain-stress relationship 
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Eσε =  and the flexural stress formula  IcM /.=σ  , then it can be established; 

   cEIM ε=                        (15) 

whereε  represents the experimental strain at the critical section,  c is the distance from 

the centroid to the studied location, I is the moment of inertia of the section and E is the 

modulus of elasticity. The dynamic impact factor is used as 33% for both inventory and 

operating ratings. The load factors change according to the rating type as shown in Table 

below.  

    Table 1 – Load Factors 

Load Rating Case Load Factor 
(γL) Inventory Operating 

DC 1.25 1.25 

DW 1.25 1.25 

LL+IM 1.75 1.35 

According to the condition of the structural members of the bridge based on 

condition state or sufficiency rating, the condition factor allows for a reduction in the 

load rating up to 15%. Due to the latest inspections to the bridge, the condition factor, γc, 

is 1.0. The system factor (γs ) was also taken as 1.0. By applying Equation (13), the load 

rating capacity of the section FB-A was calculated for each position of the truck.  Figure 

64 shows the results for inventory load rating as the truck crosses the bridge.  Three 

curves are shown: The first for the maximum load rating, calculated by using the 

predicted behavior of the bridge for the HL-93 truck, determined with the experimental 

UIL assuming the bus was fully loaded.  The second curve represents the minimum load 
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rating by using the predicted bridge response under the HL-93 assuming that the bus was 

empty.  The third curve shows the FEM simulation for the HL-93. Results for the most 

critical truck location show an experimental inventory load rating ranging from 2.07 and 

2.37 and a FEM inventory load rating of 2.08.  Operating Load Rating was also 

calculated in the same way and critical values are also shown.   

 

Figure 64. Load Rating Capacity for Section FB-A with respect to Truck Location 

5.5. Damage Detection on a Movable Bridge 

In this section, real life damage detection studies are conducted on the movable 

bridge by temporarily inducing structural alterations. As part of the previously mentioned 

ongoing project [40] , some of the most common maintenance problems were identified, 
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and implemented on the bridge with the support of the FDOT engineers. 

The first condition corresponds to a case that occurs when the Live Load Shoes 

(LLS) are not fully seated and a gap exists between the LLS and resting support pads.  

This causes misalignment, and problems for proper opening and closing of the leaves.  

Also, due to the inadequate support conditions, bouncing occur in the girders creating 

additional stressed due to impact as well as stress redistribution subjecting the structure to 

non desirable forces. 

The second issue is similar to the first one but in this case, it happens when the 

Span Lock bar (SL) connecting the leaves at the center is not perfectly shimmed and a 

gap exists between the SL and the receiver.  Once again, this situation causes a loss of 

connectivity between the two leaves as well as possible dynamic impact and stress 

redistribution. 

Before continuing, a brief explanation of the LLS and SL is presented with the 

aim of facilitating the comprehension of the further analysis. 

5.5.1 Live Load Shoes 

Live load shoes are support blocks that the girders rest on while in the closed 

position. The live load shoes can be located forward of the trunnions, holding the main 

girder up, or behind the trunnions resisting the upward movement of the counterweight 

(Figure 65). The former type is the most common type, and is the type used for the 

Sunrise Bridge. Cracking and wear are rarely seen on the live load shoe, but mainly the 

operational problems such as full contact are of concern.  If misaligned or improperly 

balanced, the bridge may not fully sit on the live load shoe. In that case, the dead load 
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and traffic load are transferred to the gears and shafts, which cause damage on 

mechanical assemblies. Small gaps also lead to the girders pounding on the live load 

shoes, which results in further misalignment, additional stresses, fatigue damage and 

excessive wear.   

 
 

Figure 65. Live load shoe (LLS) 

5.5.2 Span Locks 

Span locks on double-leaf bascule spans are used to connect the tip ends of two 

cantilevered bascule leaves together.  In this way, both leaves are forced to deflect 

equally and prevent a discontinuity in the deck as traffic crosses the span. Most span 

locks consist of a rectangular lock bar supported by a pair of guides on one leaf that 

engages a single receiver on the opposite leaf. During operation, the lock bar slides across 

bronze shoes mounted in the rectangular guide and receiver housings. The coupling has 

to be loose enough to allow it to happen but at the same time the gap between the bar and 

the receiver has to be small enough to ensure the adequate connection. This is achieved 

by placing metallic sheets (or shims)to adjust this space according to the needs. The 
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housings are usually mounted to the side of the bascule girders or in the webs of the floor 

beams (Figure 66). Lock bars are typically driven or retracted directly using a linear 

actuator that can be electric, hydraulic or mechanical (Figure 67). Span locks are one of 

the members that fail the most.  Most of the time, the shims are lost or destroyed due to 

deterioration, or incorrect operation, in other occasions the bar itself or the actuator 

mechanism fail, preventing the appropriate functioning. The alignment and the stresses 

on the locking bar should be monitored to ensure the locks are in order. 

 
Figure 66. Span Lock Compartment 

 
 

Figure 67. Typical Span Lock 
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Strain gages at the tip of the girders can indicate continuity between two leaves as 

a result of span lock connectivity. It may be possible to monitor lock bar also. Stresses on 

the locking bar will indicate whether the lock is on or off and also inform span lock 

failure. This component is planned to reduce span lock failures due to overloading or the 

bridge operator overriding the opening action while the lock is in place, assuming a limit 

switch failure. Further on-site investigation need to be carried out for gage installation, 

running cables and access requirements. 

5.6. Damage Scenarios 

Based on the collaboration with FDOT engineers, girder not fully seated on the 

LLS (Case 1), and slightly increasing the gap between the SL bar and the receiver (Case 

2) conditions were recreated at the bridge. Both conditions were induced progressively, 

i.e., first the some of the LLS shims were removed and the bridge was monitored during 

normal traffic operation (Case 1). Then shims of the SL housing were retired and vehicles 

were allowed to cross the bridge while the system was monitoring the structural 

responses (Case 2). 

One of the main goals of any structural monitoring system is to detect the damage 

or malfunction at early stages in such a way that can be promptly corrected.  For this 

reason, it was decided to just slightly alter the structural condition.  Some of the shims 

used to ensure the appropriate contact between the LLS and the support pads were retired 

to create a gap of approximately only 1/8” up to 3/16” on South West LLS (Figure 68).  

This was performed by the FDOT contractors under the research team supervision 

(Figure 69). 
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Figure 68.  Induced Damage in LLS 

 

Figure 69.  FDOT Contractor Removing Some of the Shims 
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For case of the Span Lock, some of the shims were also removed to create a gap 

of approximately only 1/8” up to 3/16” on South West Span Lock (Figure 70).   

 

Figure 70. FDOT Contractors Removing Some of the Shims from the SL 

Receiver 
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5.7. Extraction of the Unit Influence Line for Damage Conditions  

The bridge was monitored continuously before, during and after the induction of 

the previously discussed damage scenarios.  Traffic information regarding detection and 

tracking was obtained by the images and the computer vision analysis performed.  

Classification provided the information corresponding to weight and separation of each 

axis.  Initially, bridge raw response is captured in time domain and filtered as explained 

in previous chapters.  Figure 71 shows results from this process applied the strain gage 

ES3-SG1. 
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Figure 71. Raw (Dynamic) and Filtered (Static) Response for ES3-SG1 under Fire 

Truck 
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Once the data is filtered, correlation with the position is obtained by using the 

tracking computer vision algorithm.  Responses are now presented as a function of the 

front axis as shown in Figure 72 for different type of vehicles. 
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Figure 72. Responses vs. Location of the Front Axis (ES3-SG1) 

After response correlation with distance is obtained, UILs are determined for each one of 

the sensors and for every vehicle.   Figure 73 shows the extracted UILs for the Fire Truck 

and the RTA bus for the indicated location (ES3-SG2).  As previously explained in 

Section 5.4.2, the actual loads transmitted by the bus axis to the bridge vary depending on 

the passenger occupancy.  Two UILs are presented for the bus, one considering it to be 

empty and the other one assuming it is fully loaded.  For the Fire Truck case, the exact 

axis loads are known from its specifications.  It can be seen that the UIL corresponding to 
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the empty RTA bus assumption correlates very good with the one extracted from the Fire 

Truck for the same sensor. 
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Figure 73.  Unit Influence Lines for Fire  Truck and RTA Passenger Bus 

 

Figures 74 to 77 show examples of the UILs extracted from  several strain gages. Three 

curves are presented in each figure:  One for the bridge before damage was induced 

(Baseline), another for the case of the damaged Live Load Shoe (Case 1), and the last one 

for the case when shims were removed from the LLS as well as Span Lock (Case 2). It 

should also be mentioned that these UILs are obtained from averaging the results from 

three different data sets. 
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Figure 74. UILs for WS3-DSG2 (before and after damage) 
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Figure 75. UILs for WN3-DSG2 (before and after damage) 



 

  115

Figure 74 shows the sensor located at the bottom flange of the main girder in the 

vicinity of the West South LLS, where the alteration was induced.  It is shown that 

creates a clear change between the baseline UIL and UILs of Case 1 and Case 2.  

However, the change is not as obvious between the Case 1 and Case 2.  The damage 

induced in the LLS is masking the effect of the span lock because it is significantly closer 

to the sensor WS3-DSG2.  Also, the UIL for the damaged cases show smaller values than 

the baseline.  This is probably due to the fact that by creating a small gap between the 

LLS and the support, the West South girder is not resting appropriately on this point 

causing the occurrence of a stress redistribution within the different structural 

components of the bridge. An inspection of the Figure 75 reflects that in this location, the 

effect of damage cases is more differentiable since the two plots for Case 1 and Case 2 

can be identified independently.  Also, it can be noticed that the UILs corresponding to 

damage cases show greater values than those of the baseline due to the stress 

redistribution.   
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Figure 76.  UILs for ES3-DSG2 (before and after damage) 
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Figure 77. UILs for EN3-DSG2 (before and after damage) 
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In Figures 76 and 77 the difference between the baseline UIL with the Case 1 and Case 2 

is clearly identifiable.  It can be also noticed that the strain gage ES3-DSG2 experience a 

greater strain than the EN3-DSG2 because the damage scenarios were created on the 

South girder and the vehicles inducing the load for the UILs crawl over the South lane. 
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Figure 78. UILs for ES1-DSG1 (before and after damage) 

 

Figure 78  illustrates the effects of both damage cases on the sensor ES1-DSG1, which is 

located close to the South span lock (where the gap between the bar and the receiver was 

created). It is observable that the different effects are captured by the sensor as reflected 

in the corresponding UILs.  Also, the UIL for the case when span lock continuity was 
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altered shows a small bouncing effect due to the impacts produced by spanlock bar over 

the receiver when traffic crossed over the South lane. 

5.8. Damage Identification 

In the previous section, UILs are extracted and examples are presented with 

figures (Figures 74-78). The slight modifications on the boundary conditions of the LLS 

and SL caused significant changes in the UILs that are easily observable. Also, it was 

shown that the sensors are affected differently by a particular damage case with respect to 

their location.  In the following, the demonstration of the new index dN  is presented for 

the same damage scenarios. Figures 79 and 80 show the plots of  dN   obtained for all 

sensors for the two cases studied.  Type and location of the damage is shown in each 

figure along with the sensor locations. As in Chapter 4, the bar diagram shown on the top 

of the bridge and its instrumentation figure corresponds to dN  for each sensor. 

WS3

WN3

WS2

WN2WN1

ES1

Induced Damage: South West Live Load Shoe

WS3

WN3

WS2

WN2WN1

ES1

Induced Damage: South West Live Load Shoe  

Figure 79.  Damage Index for Case 1 with 1/8”-3/16” Gap created between LLS and 

Support. 
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As can be seen from  

Figure 79 (damage was induced by creating a gap between the LLS and the 

support), the dN  bar corresponding at this location (WS3) indicates a great separation 

from the baseline corresponding to the undamaged case (Case 0). Also a big change can 

be identified for the position WS2 which is relatively close to the LLS. The location ES1 

shows a variation as well, indicating that the response at the Span Lock is changing due 

to the modification induced at the LLS.  The North girder, presents some identifiable 

variations for WN3, WN2 and WN1 positions.   
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Figure 80. Damage Index for Case 2 with Gap Created between LLS and Support plus 

Some Shims Removed from SL Receiver 
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Figure 80, represents the plot for dN  when shims are removed from LLS and SL 

as well. Here, the dN  bar corresponding to the LLS remains practically the same.  This 

corroborates with the information presented in Figure 74.  However, the dN  at the span 

lock location (ES1) shows a significant increase as well as for the location WN1 (North 

Span Lock).  The approximate location of the damage is signaled and also the relative 

magnitude of the change, proving the viability of the method.    

5.9. Summary 

This chapter introduces a real life monitoring project conducted at a movable 

bridge in Ft. Lauderdale, Florida.  Description of the bridge as well as the monitoring 

system is presented. The bridge was monitored under regular traffic load to extract the 

UIL feature vectors explained in Chapter 4. This UIL vectors obtained directly from 

operational traffic video and sensor data are used for damage detection and bridge load 

rating. One of the novel aspects of the study is that a load test can be conducted with the 

traffic on the bridge, without any lane closure or special vehicles as well as any Weigh-

in-motion device. Any heavy vehicle crossing the bridge can be employed for load testing 

as they are detected using the cameras, can be tracked over the bridge while synchronized 

sensor data collection provides the bridge response at the measurement locations. The 

classification of the vehicle gives information in terms of axle spacing and empty and 

fully loaded weight of the vehicle, which are used to obtain upper and lower bound 

normalized UIL responses. These UILs can be employed to determine the load rating 



 

  121

under commonly used American Association of State Highway Transportation Officials 

(AASHTO) HL93 truck as well as any other given vehicle. Load Rating results for the 

HL93 truck are presented along with the corresponding Finite Element Model (FEM) 

simulations, which are conducted for verification purposes.  

In addition, slight structural alterations that represent the most common 

maintenance problems are induced on the bridge with the collaboration of the FDOT. The 

bridge is monitored under regular traffic load and also after inducing the damage. Two 

damage cases are considered.  The first one consists on creating a gap (1/8”-3/16”) on the 

West South Live Load Shoe.  The second case adds up and extra alteration to the first 

case by removing some of the shims from the South Span Lock receiver to create a gap of 

the same size approximately. 

The UILs are extracted as discussed in the previous chapters for the undamaged 

and damaged condition of the bridge. The results are presented in a comparative fashion.  

The new index dN  is calculated and plotted showing the validity of the method by 

pinpointing the approximate damaged location. 
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6. CHAPTER SIX: SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

The main objective of this dissertation is to investigate the development and 

integration of novel methods and techniques using sensor networks, computer vision, 

modeling for damage indices and statistical approaches for Structural Health Monitoring 

(SHM) of bridges.  The dissertation can be summarized in five parts:  1) review of some 

of the methods and procedures involving the analysis of images, currently used for 

damage detection methods on structures as well as the presentation of a proposed SHM 

framework for bridges,  2) the explanation of  some of the computer vision tools used 

within this study as well as some common issues and practical solutions for SHM of 

bridges, 3) demonstration of technologies and methods on a laboratory, and presentation 

of procedures for the extraction of Unit Influence Line (UIL) obtained by means of 

correlating video images with synchronized traditional sensor data, 4) explanation and 

demonstration of a new index (Nd) for damage identification that makes use of the UILs 

as feature vectors for damage identification with the application of statistical techniques, 

and 5) implementation and validation of the methods on a real life structure. 

6.1. Structural Health Monitoring Applications and Needs 

Methods and procedures currently used for damage detection on structures are 

presented. Visual inspections, benefits and shortcomings are discussed as well. It is 

presented that there is a need for practical and conceptual methods and techniques for 

inspection and assessment of Civil Infrastructure Systems (CIS). Structural Health 

Monitoring (SHM) is expected to close the gap between the current needs and the use of 



 

  123

available technologies.  A review of various research studies dedicated to the use of video 

images for SHM and damage detection is also presented. This review shows that the 

implementation of computer vision based methods presents limited results for condition 

assessment of structures with conceptual damage indices. As a result, an SHM framework 

that also incorporates computer vision components is presented and discussed. This 

framework for bridges takes advantage of synchronized video streams and traditional 

sensor data, which is discussed in more detail and its feasibility is demonstrated. 

6.2. Implementation of Computer Vision for Structural Health Monitoring  

Computer vision is a major research area with advanced methods for various 

applications such as medical imaging, activity recognition, personal identification. Here, 

the specific application to civil infrastructure systems with emphasis on bridge 

monitoring is discussed. Some of the computer vision techniques considered for the 

application on SHM of bridges may have some shortcomings and issues due to the nature 

of the problem. Some simplified solutions are possible to overcome these challenges. The 

techniques known as background subtraction, tracking, and classification are explained 

and demonstrated on a real life structure. In the case of background subtraction, 

theoretical solutions about how to handle changing of illumination by adjusting the 

threshold, for SHM of bridges, are suggested. A simplified classification of the vehicles, 

based on size and wheel base distance is evaluated.  Further parameters as shape and 

traffic distribution are suggested to be incorporated into the classification algorithm. 

Traditional computer vision techniques for tracking and conversion of image-to-world 

coordinate system are summarized along with a simplification used within this research 
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in the laboratory as well as in real life structures. 

6.3. Computation of Unit Influence Line Using Video Stream and Sensor Data  

Laboratory demonstrations of technologies and methods are very important since 

validation in a controlled environment is needed before the real life implementations. As 

a result, an experimental laboratory setup, the UCF 4-span bridge, was designed and built 

for this research. Although the structure is not a scaled down bridge model, its responses 

are representative of typical response values for most small to medium span bridges This 

setup is a four span bridge-type structure consisting of two approach (end) spans and two 

main spans with a steel deck supported by two girders. Supports were designed in such a 

way that they could be easily changed to roller, pin or fixed boundary conditions. It is 

designed in such a way that girder and deck can be connected together by using bolts at 

different locations to modify the stiffness of the system and to simulate damage.  Radio 

controlled vehicles can crawl over the deck with different loading conditions. Wheel axis 

distance and speed are also variable to simulate real traffic data.  A video camera is used 

to identify and track the vehicle, a set of strategically located sensors collects the 

synchronized data to be correlated with the video stream in real-time.  

The structure response is monitored and tracked under various load conditions by 

using a conceptual damage index called Unit Influence Line (UIL). The UIL is a 

normalized index extracted from the response of a structure due to moving loads. It is an 

inverse analysis to obtain the response due to a unit load. Benefits and uncertainties of 

this index are discussed. A demonstration of this method is presented where two different 

types of vehicles with different loads and wheel bases are driven over the UCF 4-span 
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bridge while computer vision techniques are utilized to detect, classify and track the 

vehicles (input loads) as traditional sensors measure the structural response (output).  

Synchronization of the video images of the vehicles and the sensor data is achieved 

allowing obtaining the structure response with respect to the vehicles location. Finally, 

UIL are extracted and compared for different types of vehicles, loads and speeds.  The 

results of the UIL line obtained from computer vision based analysis show very good 

correlation with results from static tests as well as finite element analysis.  

6.4. Data Analysis for Damage Detection  

The use of UILs as a feature vectors for damage detection is proposed and 

presented. An outlier detection algorithm based on Mahalanobis distance between the 

UILs feature vectors is used to identify change between feature vector sets for damage 

detection. Also, it is shown that handling of large data sets by statistical analysis of these 

feature vectors can be done efficiently. To demonstrate the effectiveness and efficiency 

of damage detection, six of the most common damage conditions on real bridges are 

simulated and induced to the UCF 4-span bridge. Two vehicles carrying different loads 

are used for this experiment.  Each vehicle runs over the bridge 15 times for a total of 60 

passes. This is done to simulate real traffic and to obtain a valid statistical sample. 

Vehicles are detected, tracked and classified while synchronized data are collected and 

correlated.  UILs are extracted for each case.  

A new index, dN , is also formulated by calculating normalized distance based on 

the inliers and outliers from continuous monitoring data. This index is shown with simple 

plots and by rapid inspection, damage can be identified and localized. The methodology 
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discussed in this part is able to sense and detect changes on the experimental test set-up.  

Even small and localized damage cases like four missing bolts (Case 4) are successfully 

detected. It should be noted that the sensor spatial resolution is also important to capture 

the behavior. For the demonstration of the method, strain and rotation data are presented. 

It is observed that tiltmeters show a clear indication of structural variations for all the 

studied cases. Due to its global nature, UILs for rotation proved to be more affected than 

strains even when loading and damage are not very close to the tiltmeters.  However, the 

use of tiltmeters for damage localization could lead to misinterpretation if they are not 

evaluated in combination with additional information provided by the analysis of data 

from other sensors such as strain gages. On the other hand, it is shown that the bar plot 

for the dN s generated from UILs extracted from strain data provides a more localized 

response which leads to an easier identification of the damage. 

6.5. Field Demonstration on a Movable Bridge  

One of the main goals of this study is the field demonstration and validation of the 

technologies and methods that have been developed and implemented in the laboratory. 

The field demonstration is carried out on a movable bridge located in Fort Lauderdale, 

Florida. On this bridge, the Structures and Systems Research Group of the University of 

Central Florida is conducting a SHM project which is sponsored by the Florida 

Department of Transportation (FDOT) and Federal Highway Administration (FHWA). 

Especially the support and coordination of the FDOT have been a very important non-

technical aspect of the project. 

The technologies and methods are demonstrated by using the video stream and 
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sensor data from the traffic for bridge load rating as well as for damage detection, which 

are critical for decision-making. 

First, a new approach for obtaining the field monitoring based load rating of 

bridges is discussed and results are presented along with the corresponding Finite 

Element Model (FEM) simulations, conducted for verification purposes. For this, 

operational traffic is utilized as follows. By using the video cameras, a Riverside Transit 

Agency (RTA) passenger bus is detected and tracked over the bridge, while synchronized 

sensor data collection provides the bridge response at the measurement locations. The 

information regarding weight per axle in full and empty occupancy conditions, as well as 

the wheelbase distance (axle spacing) is known. With this information, normalized UIL 

responses are extracted, defining an upper and a lower bound. The two UILs are used to 

predict the response of the bridge under the commonly used AASHTO HL93 truck. Load 

rating results for the HL93 truck is presented with the FEM simulations showing a very 

good correlation. One of the novel aspects of the study is that a load test can be 

conducted with the operational traffic on the bridge, without any lane closure or special 

loading vehicles as well as any Weigh-in-motion device. 

The movable bridge is also utilized to prove the damage detection potential of the 

new methods and the index previously tested on the laboratory set-up. For this reason, 

slight structural alterations that represent the most common maintenance problems are 

induced on the bridge with the collaboration of the FDOT.  Two damage cases are 

considered: The first one consists of creating a gap (1/8”-3/16”) on the West South Live 

Load Shoe.  The second case simulates a progression of the damage by including the 

elimination of some of the shims from the South Span Lock receiver to create also a gap, 
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of the same size approximately. The bridge is monitored under regular traffic load before 

and after the creation of the damage scenarios. Video and sensor data are collected before 

inducing any damage to the structure and UILs are extracted. This data is considered as 

the baseline. It is important to indicate that in the case of existing real life structures 

establishing a baseline can be a challenging task. This bridge has been in operation since 

1989 and is expected to have certain deterioration and damage with respect to its brand 

new condition. In this study, the baseline is considered as the condition of the bridge 

before inducing the predetermined damages.  

Modifications are induced as explained before and data is collected. The UILs 

corresponding to Baseline, Case 1, and Case 2 are extracted and analyzed for several 

sensors. Results show a clear variation between de UILs before and after damage.  Also, 

the internal load distribution can be observed by means of the SHM system when there is 

a change or damage on the structure. In this study, it is seen that alterations cause a 

distinct change in UILs not only in the vicinity of damage but also at other measurement 

locations due to internal load redistribution.  

Finally, the new index, dN , is also tested and presented with bar charts. For Case 

1 (induced damage in the Live Load Shoe (LLS), the bar corresponding to damage 

location indicates a great separation from the baseline with respect to the undamaged case 

(Baseline). The location corresponding to the South Span Lock (SL), shows a variation as 

well, pointing out that this area is also changing due to the modification induced at the 

LLS. For Case 2, the dN  bar corresponding to the LLS remains practically the same, 

showing that damage exists in this area.  In addition, the dN  at the South SL location 
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shows a significant increase as well as for the North SL. Based on the results of the field 

application, it is shown that the proposed method is very promising for damage detection 

implementation in the context of SHM.  

One immediate step for the future research is the verification of the proposed 

methodology with different laboratory and real life structures. Also, the effect of multiple 

vehicles driving simultaneously over various lanes of the bridge should be studied. 

Vehicle classification algorithm has to be improved by including extra features 

such as incorporation of statistical studies on the traffic distribution analysis of the bridge 

location. The use of neural networks can also be considered and studied for classification 

purposes. 

Special hardware that also incorporates the various algorithms should be 

explored. This will increase the computational speed which will allow the system to work 

in real-time. In addition, the system setup and operation will be more efficient. 

After improving the method and making sure that it can be used for a variety of 

structures under different loading and environmental conditions, the methodology can be 

implemented to a wireless sensor network, avoiding the complicated and expensive task 

of cabling. 
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