201 research outputs found

    Sentinel-1 InSAR coherence for land cover mapping: a comparison of multiple feature-based classifiers

    Get PDF
    This article investigates and demonstrates the suitability of the Sentinel-1 interferometric coherence for land cover and vegetation mapping. In addition, this study analyzes the performance of this feature along with polarization and intensity products according to different classification strategies and algorithms. Seven different classification workflows were evaluated, covering pixel- and object-based analyses, unsupervised and supervised classification, different machine-learning classifiers, and the various effects of distinct input features in the SAR domainโ€”interferometric coherence, backscattered intensities, and polarization. All classifications followed the Corine land cover nomenclature. Three different study areas in Europe were selected during 2015 and 2016 campaigns to maximize diversity of land cover. Overall accuracies (OA), ranging from 70% to 90%, were achieved depending on the study area and methodology, considering between 9 and 15 classes. The best results were achieved in the rather flat area of Doรฑana wetlands National Park in Spain (OA 90%), but even the challenging alpine terrain around the city of Merano in northern Italy (OA 77%) obtained promising results. The overall potential of Sentinel-1 interferometric coherence for land cover mapping was evaluated as very good. In all cases, coherence-based results provided higher accuracies than intensity-based strategies, considering 12 days of temporal sampling of the Sentinel-1 A stack. Both coherence and intensity prove to be complementary observables, increasing the overall accuracies in a combined strategy. The accuracy is expected to increase when Sentinel-1 A/B stacks, i.e., six-day sampling, are considered.Peer ReviewedPostprint (published version

    Change Detection Techniques with Synthetic Aperture Radar Images: Experiments with Random Forests and Sentinel-1 Observations

    Get PDF
    This work aims to clarify the potential of incoherent and coherent change detection (CD) approaches for detecting and monitoring ground surface changes using sequences of synthetic aperture radar (SAR) images. Nowadays, the growing availability of remotely sensed data collected by the twin Sentinel-1A/B sensors of the European (EU) Copernicus constellation allows fast mapping of damage after a disastrous event using radar data. In this research, we address the role of SAR (amplitude) backscattered signal variations for CD analyses when a natural (e.g., a fire, a flash flood, etc.) or a human-induced (disastrous) event occurs. Then, we consider the additional pieces of information that can be recovered by comparing interferometric coherence maps related to couples of SAR images collected between a principal disastrous event date. This work is mainly concerned with investigating the capability of different coherent/incoherent change detection indices (CDIs) and their mutual interactions for the rapid mapping of "changed" areas. In this context, artificial intelligence (AI) algorithms have been demonstrated to be beneficial for handling the different information coming from coherent/incoherent CDIs in a unique corpus. Specifically, we used CDIs that synthetically describe ground surface changes associated with a disaster event (i.e., the pre-, cross-, and post-disaster phases), based on the generation of sigma nought and InSAR coherence maps. Then, we trained a random forest (RF) to produce CD maps and study the impact on the final binary decision (changed/unchanged) of the different layers representing the available synthetic CDIs. The proposed strategy was effective for quickly assessing damage using SAR data and can be applied in several contexts. Experiments were conducted to monitor wildfire's effects in the 2021 summer season in Italy, considering two case studies in Sardinia and Sicily. Another experiment was also carried out on the coastal city of Houston, Texas, the US, which was affected by a large flood in 2017; thus, demonstrating the validity of the proposed integrated method for fast mapping of flooded zones using SAR data

    ๊ฐ„์„ญ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ ์—ฐ๊ตฌ์™€ ๋‹จ์ผ ๋ฐ ๋‹ค์ค‘ ํŽธํŒŒ SAR ์˜์ƒ์„ ํ™œ์šฉํ•œ ์ž์—ฐ ์žฌํ•ด ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2017. 8. ๊น€๋•์ง„.์ž์—ฐ ์žฌํ•ด์— ๋Œ€ํ•œ ๋น ๋ฅธ ๋Œ€์‘๊ณผ ๋ณต๊ตฌ๋ฅผ ์œ„ํ•ด์„œ๋Š” ํ”ผํ•ด ์ง€์—ญ์— ๋Œ€ํ•œ ํ‰๊ฐ€๊ฐ€ ์„ ํ–‰๋˜์–ด์•ผ ํ•˜๋ฉฐ, ๊ทธ๋Ÿฐ ์˜๋ฏธ๋กœ ํ”ผํ•ด ์ง€์—ญ์„ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. SAR ์‹œ์Šคํ…œ์€ ๊ธฐ์ƒ์  ์กฐ๊ฑด๊ณผ ์ฃผ์•ผ์— ๋ฌด๊ด€ํ•˜๊ฒŒ ์˜์ƒ์„ ํš๋“ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ๋ณ€ํ™” ํ˜น์€ ํ”ผํ•ด ์ง€์—ญ์„ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ํšจ์œจ์ ์ธ ๋ฐฉ๋ฒ•์ด๋ผ๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋˜ํ•œ SAR ์‹œ์Šคํ…œ์„ ํ†ตํ•˜์—ฌ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ธด๋ฐ€๋„ (coherence)๋Š” ์ง€ํ‘œ์˜ ์‚ฐ๋ž€์ฒด์˜ ์›€์ง์ž„ ํ˜น์€ ์œ ์ „์  ์„ฑ์งˆ์— ๋ณ€ํ™”์— ๋งค์šฐ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ”ผํ•ด๋ฅผ ํƒ์ง€ํ•˜๊ธฐ์— ์ ํ•ฉํ•˜๋‹ค๊ณ  ํ‰๊ฐ€๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธด๋ฐ€๋„๋ฅผ ์ด์šฉํ•œ ์ž์—ฐ์žฌํ•ด์˜ ํ”ผํ•ด ํƒ์ง€์—๋Š” ์–ด๋ ค์›€์ด ์กด์žฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ํƒ์ง€ํ•˜๊ณ ์ž ํ•˜๋Š” ์ž์—ฐ์žฌํ•ด๋กœ ์ธํ•œ ํ”ผํ•ด์™€ ๋น„, ๋ˆˆ, ๋ฐ”๋žŒ๊ณผ ๊ฐ™์€ ๊ธฐ์ƒํ˜„์ƒ, ํ˜น์€ ์‹์ƒ์˜ ์ž์—ฐ์ ์ธ ๋ณ€ํ™”๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ๊ธด๋ฐ€๋„์—์„œ๋Š” ์œ ์‚ฌํ•˜๊ฒŒ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๊ฒƒ์€ ๋ ˆ์ด๋” ์‹ ํ˜ธ์˜ ๊ธด๋ฐ€๋„๊ฐ€ ๋ฏธ์„ธํ•œ ๋ณ€ํ™”์—๋„ ๋ฏผ๊ฐํ•˜๊ฒŒ ๋ฐ˜์‘ํ•˜๋Š” ํŠน์ง•์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ž์—ฐ ํ˜„์ƒ์œผ๋กœ๋ถ€ํ„ฐ ๋ฐœ์ƒํ•˜๋Š” ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์€ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ์˜คํƒ์ง€์œจ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ์›์ธ์ด ๋˜๋ฉฐ, ์ž์—ฐ ์žฌํ•ด์˜ ์˜ํ–ฅ๊ณผ ๋ถ„๋ฆฌํ•ด์•ผ ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๋‹ค์–‘ํ•œ ์ง€ํ‘œ ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ํ”ฝ์…€๋“ค์€ ์ž์—ฐ ํ˜„์ƒ์— ๋Œ€ํ•œ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๊ธด๋ฐ€๋„ ํŠน์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ™•ํ•œ ํ”ผํ•ด ํƒ์ง€๋ฅผ ์œ„ํ•ด์„œ๋Š” ๊ฐ ํ”ฝ์…€๋“ค์—์„œ์˜ ๋…๋ฆฝ์ ์ธ ํ‰๊ฐ€๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๊ธด๋ฐ€๋„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์š”์ธ๋“ค์ด ๋‹ค์–‘ํ•˜๊ณ  ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ•ด์„์— ์–ด๋ ค์›€์ด ์žˆ๋‹ค๋Š” ์  ์—ญ์‹œ ๊ธด๋ฐ€๋„ ๊ธฐ๋ฐ˜ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•œ๊ณ„์ ์ด๋‹ค. ํŠนํžˆ ์‹์ƒ์ด ์กด์žฌํ•˜๋Š” ์ง€์—ญ์—์„œ์˜ ๊ธด๋ฐ€๋„์˜ ๋ณ€ํ™”๋Š” ๋”์šฑ ๋ณต์žกํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ์ด์œ ๋Š” ์œ ์ „์  ์„ฑ์งˆ์„ ์ง€๋‹ˆ๊ณ  ์žˆ๋Š” ์‚ฐ๋ž€์ฒด๋“ค์ด ์‹์ƒ์—์„œ๋Š” ์ˆ˜์ง์ ์œผ๋กœ ๋ถ„ํฌํ•˜๋ฉฐ, ํŒŒ์žฅ์ด ๊ธด ๋ ˆ์ด๋” ์‹ ํ˜ธ๊ฐ€ ์ด๋ฅผ ํˆฌ๊ณผํ•จ์— ๋”ฐ๋ผ ์‹์ƒ์˜ ์ƒ์ธต๋ถ€๋ถ€ํ„ฐ ํ•˜์ธต๋ถ€ ๋˜ํ•œ ์ง€ํ‘œ๋ฉด๊นŒ์ง€ ๋„๋‹ฌ๋˜์–ด ์‚ฐ๋ž€๋˜์–ด ๊ธด๋ฐ€๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์ฒด์  ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ(volume decorrelation) ๋•Œ๋ฌธ์ด๋‹ค. ํš๋“ ์‹œ๊ฐ„์ด ๋™์ผํ•˜์ง€ ์•Š์€ ๋‘ ์žฅ์˜ SAR ์˜์ƒ์„ ์‚ฌ์šฉํ•˜๋Š” repeat-pass ๊ฐ„์„ญ๊ธฐ๋ฒ•์—์„œ๋Š” ๊ฐ ์‹์ƒ์˜ ๊ฐ ๋ถ€๋ถ„์—์„œ ๋ฐœ์ƒ๋˜๋Š” ๋ณ€ํ™” ์ •๋ณด(temporal decorrelation)๋„ ๋™์‹œ์— ๊ธฐ๋ก๋˜๊ธฐ ๋•Œ๋ฌธ์— ํ•ด์„์€ ๋”์šฑ ์–ด๋ ค์›Œ์ง„๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์ค‘ ์‹œ๊ธฐ ๊ธด๋ฐ€๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž์—ฐ ํ˜„์ƒ์„ ํ•ด์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์ž‘ํ•˜๊ณ  ์ด๋ฅผ ๋ณ€ํ™” ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ํ™•์žฅํ•˜์—ฌ, ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ •๋ฐ€ํ•œ ํ”ผํ•ด ์ง€์—ญ์„ ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์ฒซ ๋ฒˆ์งธ๋กœ๋Š” ๊ฐ„์„ญ ๊ธฐ๋ฒ•์—์„œ์˜ ์‹œ๊ฐ„ ์ฐจ์ด(temporal baseline)์ด ๊ธธ ๋•Œ, ๋‹ค์ค‘ ์‹œ๊ธฐ ๊ธด๋ฐ€๋„(multi-temporal coherence)๋ฅผ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ๋Š” ๋‹จ์ผ ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ SAR ์˜์ƒ์—์„œ ๊ด€์ธก๋˜๋Š” ๊ธด๋ฐ€๋„๋ฅผ ํ•ด์„ํ•˜๊ณ , ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜๋ฉฐ, ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ”ผํ•ด๋ฅผ ํƒ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์„ ๊ธฐ์ˆ ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ๋Š” ๋‹ค์ค‘ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ SAR ์˜์ƒ์— ๋Œ€ํ•œ ํ•ด์„ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์˜€๋‹ค. 2์žฅ์—์„œ๋Š” ๊ธด๋ฐ€๋„์˜ ์ธก์ •๊ณผ ๊ธด๋ฐ€๋„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋Œ€ํ‘œ์  ์š”์ธ์— ๋Œ€ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๊ณ  ์‹œ๊ณ„์—ด ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ๋ชจ๋ธ์„ ์ˆ˜์‹ํ™”ํ•˜์˜€๋‹ค. ๊ธด๋ฐ€๋„ ์š”์ธ ์ค‘ ์ฒซ ๋ฒˆ์งธ๋Š” ์—ด์žก์Œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ(thermal decorrelation)๋กœ์„œ, ์—ด ์žก์Œ (thermal noise)๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธ๋˜๋ฉฐ, ๊ฐ ์‚ฐ๋ž€์ฒด์˜ ์‹ ํ˜ธ๋Œ€ ์žก์Œ๋น„(signal-to-noise ratio)์™€ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์ด ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ๊ธฐํ•˜ํ•™์  ๋น„์ƒ๊ด€์„ฑ(geometric decorrelation)์œผ๋กœ, ๋‘ ์„ผ์„œ๊ฐ€ ๋‹ค๋ฅธ ์œ„์น˜์—์„œ ์‹ ํ˜ธ๋ฅผ ์†ก์ˆ˜์‹ ํ•  ๋•Œ ์ง€์ƒ์— ํˆฌ์˜๋˜๋Š” ํŒŒ์ˆ˜์˜ ์ŠคํŽ™ํŠธ๋Ÿผ์ด ์ด๋™ํ•จ์— ๋”ฐ๋ผ ๋ฐœ์ƒํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ ์š”์ธ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ (volume decorrelation)์ด๋ผ ์–ธ๊ธ‰๋˜๋Š” ๊ฒƒ์œผ๋กœ ์ง€์ƒ์˜ ๋งค์งˆ ์•ˆ์— ์‚ฐ๋ž€์ฒด๊ฐ€ ๋žœ๋คํ•˜๊ฒŒ ๋ถ„ํฌํ•˜๊ณ  ์ „์žํŒŒ๊ฐ€ ์ด๋ฅผ ํˆฌ๊ณผํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์œ„์ƒ์ฐจ์ด์— ์˜ํ•˜์—ฌ ๋ฐœ์ƒ๋œ๋‹ค. ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์€ ์‹์ƒ์—์„œ ์ฃผ๋กœ ๊ด€์ฐฐ๋˜๋ฉฐ, ์ด๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ RVoG ๋ชจ๋ธ์ด ์ œ์•ˆ๋˜๊ธฐ๋„ ํ•˜์˜€๋‹ค. RVoG ๋ชจ๋ธ์€ ์‹์ƒ์˜ ์žŽ์„ ํฌํ•จํ•˜๋Š” ์ฒด์  ๋ ˆ์ด์–ด์™€ ์‹์ƒ ํ•˜๋ถ€์˜ ์ง€ํ‘œ ๋ ˆ์ด์–ด๋ฅผ ํฌํ•จํ•˜๋Š” ๋ชจ๋ธ๋กœ์„œ, ๋‘ ๋ ˆ์ด์–ด์—์„œ ๊ฒฐ์ •๋˜๋Š” ๊ฐ„์„ญ๊ธฐ๋ฒ•์˜ ์œ„์ƒ ๋ฐ ๊ธด๋ฐ€๋„๋ฅผ ์„ค๋ช…ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰ ์š”์ธ์€ ๋‘ ์˜์ƒ ์‚ฌ์ด์— ์‚ฐ๋ž€์ฒด๊ฐ€ ๋ณ€ํ™”ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ(temporal decorrelation)์ด๋‹ค. ํ”ฝ์…€ ์•ˆ์˜ ์‚ฐ๋ž€์ฒด๊ฐ€ ๋น„๊ท ์งˆํ•˜๊ฒŒ ์ด๋™ํ•˜๊ฑฐ๋‚˜, ์œ ์ „์ฒด์˜ ์„ฑ์งˆ์ด ๋ณ€ํ™”ํ•  ๊ฒฝ์šฐ ๋ฐœ์ƒํ•œ๋‹ค. ์ผ๋ฐ˜์ ์ธ repeat-pass ๊ฐ„์„ญ๊ธฐ๋ฒ•์˜ ๊ฒฝ์šฐ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์ด ๋งค์šฐ ์šฐ์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์œผ๋ฉฐ, ์‹์ƒ์˜ ๊ฒฝ์šฐ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ๊ณผ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์ด ๋™์‹œ์— ์šฐ์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์‹์ƒ์—์„œ ๊ด€์ฐฐ๋˜๋Š” ์ฒด์  ๋น„์ƒ๊ด€์„ฑ๊ณผ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋™์‹œ์— ์„ค๋ช…ํ•˜๋Š” RMoG ๋ชจ๋ธ์ด ์ œ์•ˆ๋œ ๋ฐ” ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๊ธด ์‹œ๊ฐ„ ์ฐจ์ด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” repeat-pass ๊ฐ„์„ญ๊ธฐ๋ฒ•์—์„œ ๊ด€์ธก๋˜๋Š” ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋‹ค๋ฃจ๋Š” RMoG ๋ชจ๋ธ์€ ๋‘ ์˜์ƒ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ํฌ์ง€ ์•Š์„ ๊ฒฝ์šฐ, ์‚ฐ๋ž€์ฒด์˜ ์ด๋™์ด ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ์ฃผ๋œ ์š”์ธ์ด๋ผ๋Š” ๊ฐ€์ •ํ•˜์— ์ œ์ž‘๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ฐ˜์ ์ธ ์ธ๊ณต์œ„์„ฑ SAR๋Š” ์ˆ˜ ์ผ ์ด์ƒ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๋‹ค์ค‘ ์‹œ๊ธฐ์˜ SAR ์˜์ƒ์„ ๋‹ค๋ฃฐ ๊ฒฝ์šฐ, ๊ฐ๊ฐ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๋Š” ์ƒ์ดํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ด ๊ฒฝ์šฐ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ์„ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ์š”์ธ์„ ์‚ฐ๋ž€์ฒด์˜ ์ด๋™๋งŒ์œผ๋กœ ์„ค๋ช…ํ•˜๋Š” ๊ธฐ์—๋Š” ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ณ ์•ˆ๋œ ๋ชจ๋ธ์€ ์ง€ํ‘œ์—์„œ์˜ ๋ณ€ํ™”๋ฅผ ์‚ฐ๋ž€์ฒด์˜ ์ด๋™๊ณผ ์œ ์ „์ฒด์˜ ์„ฑ์งˆ ๋ณ€ํ™”๊ฐ€ ๊ฒฐํ•ฉ๋œ ์ƒํƒœ๋กœ ๊ฐ€์ •ํ•˜์˜€์œผ๋ฉฐ, ์‹์ƒ์˜ ์ฒด์  ๋ถ€๋ถ„์€ ์‚ฐ๋ž€์ฒด์˜ ์›€์ง์ž„์ด ์ฒด์ ์—์„œ์˜ ์‹œ๊ฐ„ ๊ธด๋ฐ€๋„๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ์ฃผ๋œ ์š”์ธ์œผ๋กœ ์ƒ๊ฐํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‹ค์ค‘ ์‹œ๊ธฐ์˜ SAR ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ๊ณ„์‚ฐ๋œ ๊ธด๋ฐ€๋„๋Š” ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ธด๋ฐ€๋„๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ํ˜„์ƒ์„ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์ง•์€ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ธธ ๊ฒฝ์šฐ ๋งค์šฐ ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์ง€๋งŒ, ์ด์ „์˜ ๋ชจ๋ธ์€ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์งง์€ ๊ฒฝ์šฐ๋ฅผ ๊ฐ€์ •ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ๊ทธ ์˜ํ–ฅ์ด ์ค‘์š”ํ•˜์ง€ ์•Š์•˜๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ๋ชจ๋ธ์—์„œ๋Š” ๊ธฐ์กด ๋ชจ๋ธ๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ ๋‘ ์˜์ƒ์˜ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ธด๋ฐ€๋„๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ํ˜„์ƒ์„ ์„ค๋ช…ํ•˜๊ณ ์ž ์ง€์ˆ˜ ํ˜•ํƒœ์˜ ํ•จ์ˆ˜๋ฅผ ์ง€ํ‘œ ์™€ ์ฒด์  ๋ ˆ์ด์–ด์— ๊ฐ๊ฐ ๋„์ž…ํ•˜์˜€๊ณ  ์ด๋ฅผ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„(temporally-correlated coherence). ์ฆ‰, ์ฒด์ ๊ณผ ์ง€ํ‘œ์˜ ๋‘ ๋ ˆ์ด์–ด ์ƒ์—์„œ ๊ฐ๊ฐ์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ผ์„œ ๊ฐ์†Œํ•˜๊ฒŒ ๋˜๋ฉฐ, ์ด๋Š” ํŠน์ •ํ•œ ์‹œ๊ฐ„ ์ฐจ์ด์—์„œ ๊ธด๋ฐ€๋„๊ฐ€ ํ˜•์„ฑ๋˜์—ˆ์„ ๋•Œ ํŠน๋ณ„ํ•œ ํ˜„์ƒ์ด ์—†์„ ๊ฒฝ์šฐ ์˜ˆ์ธก๋  ์ˆ˜ ์žˆ๋Š” ๊ฐ’์œผ๋กœ ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ์˜ˆ์ธก๋˜๋Š” ๊ฐ’๊ณผ ์‹ค์ œ ๊ด€์ธก๊ฐ’๊ณผ๋Š” ์ฐจ์ด๊ฐ€ ์กด์žฌํ•˜๋ฏ€๋กœ ์ด๋Š” ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„(temporally uncorrelated-coherence)๋กœ ํ•ด์„ํ•˜์˜€๋‹ค. ์ฒด์ ๊ณผ ์ง€ํ‘œ์˜ ์‹œ๊ฐ„ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์€ ์ „์ฒด ๊ธด๋ฐ€๋„์— ์˜ํ–ฅ์„ ์ฃผ๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฅผ ์ง€ํ‘œ์™€ ์ฒด์ ์˜ ๋น„๋ฅผ ๋„์ž…ํ•˜์—ฌ, ๊ฐ๊ฐ์˜ ํšจ๊ณผ๊ฐ€ ์ „์ฒด ๊ธด๋ฐ€๋„์— ์ฃผ๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•˜์—ฌ ์ •๋Ÿ‰ํ™”ํ•˜์˜€๋‹ค. 3์žฅ์—์„œ๋Š” ์ œ์•ˆ๋œ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹จ์ผ ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ SAR ์˜์ƒ์— ๋Œ€ํ•˜์—ฌ ๊ธด๋ฐ€๋„ ๋ณ€ํ™” ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ•ด์„์ด ๊ณ ์•ˆ๋˜์—ˆ๋‹ค. ๋ณธ ๋ฐฉ๋ฒ•์€ ์ผ๋ณธ์˜ ํ‚ค๋ฆฌ์‹œ๋งˆ ํ™”์‚ฐ์˜ 2011๋…„ ํ™”์‚ฐ ํญ๋ฐœ๋กœ ๋ฐœ์ƒํ•˜์˜€๋˜ ํ™”์‚ฐ์žฌ๋ฅผ ํƒ์ง€ ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜์˜€์œผ๋ฉฐ, ๋ณธ ๋ชฉ์ ์„ ์œ„ํ•˜์—ฌ ๋‹จ์ผ ํŽธํŒŒ์˜ ALOS PALSAR ์˜์ƒ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. SAR ์˜์ƒ์„ ์ด์šฉํ•˜์—ฌ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ๋‹ค์–‘ํ•˜๊ฒŒ ๊ธด๋ฐ€๋„๊ฐ€ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์‚ฌ์šฉํ•œ multi-looking์€ 32 look์œผ๋กœ ๊ธด๋ฐ€๋„์˜ ๋ฐ”์ด์–ด์Šค๊ฐ€ ๋น„๊ต์  ์ž‘์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ๋˜ํ•œ ํ”ฝ์…€์˜ ๋Œ€๋ถ€๋ถ„์—์„œ์˜ ์—ด์  ๋น„์ƒ๊ด€์„ฑ(thermal decorrelation)์€ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ์„ ์ •๋„๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๊ธฐํ•˜ํ•™์  ๋น„์ƒ๊ด€์„ฑ(geometric decorrelation)์€ common-wave spectral filtering์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ์†Œ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ๋Œ€์ƒ ํ™”์‚ฐ์€ ์‹์ƒ์ด ๋ถ„ํฌํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ฒด์  ๋น„์ƒ๊ด€์„ฑ(volume decorrelation)์„ ์ตœ์†Œํ™”ํ•˜์—ฌ์•ผ ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์€ ์‹์ƒ์˜ ๋†’์ด, ์‹์ƒ์˜ ์ˆ˜์ง์ ์ธ ๊ตฌ์กฐ, ๋‘ ๋ ˆ์ด๋” ์„ผ์„œ์˜ ๊ธฐ์„ ๊ฑฐ๋ฆฌ(spatial baseline)๋“ฑ์— ์˜ํ•˜์—ฌ ๊ฒฐ์ •๋œ๋‹ค. ์‹์ƒ์˜ ๋ฌผ๋ฆฌ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋Š” ์—ฐ๊ตฌ์—์„œ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋ณ€์ˆ˜๊ฐ€ ์•„๋‹Œ ๋ฐ˜๋ฉด, ๋‹ค์ค‘ ์‹œ๊ธฐ์—์„œ ๋งŒ๋“ค์–ด ์ง„ ์˜์ƒ์€ ๋‹ค์ˆ˜์˜ ๊ธฐ์„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์„ ๊ฑฐ๋ฆฌ์— ๋Œ€ํ•œ ์กฐ๊ฑด์ด ์„ค์ •ํ•จ์œผ๋กœ์จ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์„ ์ตœ์†Œํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค. RVoG ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ„์‚ฐ๋œ ๊ฒฐ๊ณผ ALOS PALSAR์˜ ๊ฒฝ์šฐ ์•ฝ 1000m์˜ ๊ธฐ์„ ๊ฑฐ๋ฆฌ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์„ ๋•Œ ์ฒด์  ๊ธด๋ฐ€๋„๋Š” ์•ฝ 0.94 ์ด์ƒ์ด ๋จ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ฒด์  ๊ธด๋ฐ€๋„๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์•„๋„ ๋จ์„ ์˜๋ฏธํ•œ๋‹ค. ์•ž์„œ 2์žฅ์—์„œ ์ œ์•ˆ๋œ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ถ”์ถœ์„ ์œ„ํ•˜์—ฌ ์ž๋ฃŒ๋Š” ํ™”์‚ฐ ํญ๋ฐœ ์ „์˜ ๊ฐ„์„ญ์Œ๊ณผ ํ™”์‚ฐํญ๋ฐœ ์ „ํ›„์˜ ๊ฐ„์„ญ์Œ์˜ ๋‘ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„์–ด์กŒ๋‹ค. ์šฐ์„  ํ™”์‚ฐ ํญ๋ฐœ ์ด์ „์˜ ๊ธด๋ฐ€๋„์— ๋Œ€ํ•œ ํ•ด์„ ๋ฐ ์ดํ•ด๋ฅผ ์œ„ํ•˜์—ฌ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ์—์„œ ์ค‘์š”ํ•œ ๊ฒƒ์€ ๋ชจ๋ธ์— ํฌํ•จ๋˜์–ด ์žˆ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์ˆ˜์™€ ๊ด€์ธก ๊ฐ’์˜ ์ˆ˜๋กœ, ๊ด€์ธก๊ฐ’์ด ์ถฉ๋ถ„ํ•  ๊ฒฝ์šฐ์—๋งŒ ์ •ํ™•ํ•œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹จ์ผ ํŽธํŒŒ์˜ ๋‹ค์ค‘ ์‹œ๊ธฐ ์˜์ƒ์„ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ ๋ฏธ์ง€์ˆ˜์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋” ๋งŽ๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ™•ํ•œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์€ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจ๋ธ์˜ ํŠน์„ฑ์„ ์ด์šฉํ•œ ๊ฐ€์ •์„ ๋ฐ”ํƒ•์œผ๋กœ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์˜ ์ฒซ ๋ฒˆ์งธ๋Š” ์ง€ํ‘œ๋Œ€ ์ฒด์ ๋น„ ๋ฐ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์˜ ์ถ”์ •์œผ๋กœ ์ด๋Š” ๋‘ ์ง€์ˆ˜ ํ˜•ํƒœ์˜ ๊ณก์„  ์ ํ•ฉ(curve fitting)์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ๊ฐ ํ”ฝ์…€์˜ ํŠน์ง•์  ์‹œ๊ฐ„ ์ƒ์ˆ˜(characteristic time constant)๋Š” ๊ทธ ํ”ฝ์…€์ด ์‹œ๊ฐ„์˜ ๋ณ€ํ™”์— ๋”ฐ๋ผ ๊ธด๋ฐ€๋„์˜ ์•ˆ์ •์„ฑ์„ ๋ณด์ด๋Š” ์ƒ์ˆ˜๋กœ, ๋†’์„์ˆ˜๋ก ๊ธด ์‹œ๊ฐ„ ์ฐจ์ด์—๋„ ๊ธด๋ฐ€๋„๊ฐ€ ๋†’์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ธ๊ณต์ ์ธ ๊ตฌ์กฐ๋ฌผ์ด๋‚˜, ์‹์ƒ์ด ์—†๋Š” ๋‚˜์ง€(bare soil)์—์„œ ๋†’์€ ๊ฐ’์„ ๋ณด์ž„์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฐ˜๋ฉด ์‹์ƒ์ด ์žˆ๋Š” ํ”ฝ์…€์€ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ์€ ๊ฐ’์„ ๋ณด์˜€๋‹ค. ์ถ”์ •๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋ฅผ ์ถ”์ •ํ•˜์˜€์œผ๋‚˜, ์ด ๋•Œ ๋ฏธ์ง€์ˆ˜๊ฐ€ ๊ด€์ธก ๊ฐ’์˜ ๊ฐœ์ˆ˜๋ณด๋‹ค ๋งŽ์œผ๋ฏ€๋กœ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์— ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ง€ํ‘œ์™€ ์ฒด์ ์—์„œ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์˜ ๋น„๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ ํ”ฝ์…€ ๋ฐ ๊ฐ ์‹œ๊ฐ„์ฐจ์ด๋ฅผ ๊ฐ–๋Š” ๊ธด๋ฐ€๋„์—์„œ ์ฒด์ ๊ณผ ์ง€ํ‘œ์˜ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ ์ค‘ ์šฐ์„ธํ•œ ํ˜„์ƒ์„ ํƒ์ง€ํ•˜์—ฌ ์šฐ์„ธํ•˜์ง€ ์•Š์€ ํ˜„์ƒ์„ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๋‹ค. ์ฆ‰, ๋งŒ์•ฝ ์ง€ํ‘œ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๊ฐ€ ์ฒด์ ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๋ณด๋‹ค ๊ทธ ํšจ๊ณผ๊ฐ€ ํฌ๋‹ค๋ฉด, ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๊ฐ€ ์ฃผ๋กœ ์ง€ํ‘œ๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธ๋œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‹์ƒ์˜ ๊ธด๋ฐ€๋„๋Š” ์ง€ํ‘œ์˜ ๊ธด๋ฐ€๋„์™€ ์ฒด์ ์˜ ๊ธด๋ฐ€๋„์˜ ์˜ํ–ฅ์ด ๋ณตํ•ฉ์ ์œผ๋กœ ์ž‘์šฉํ•˜์—ฌ ๊ฒฐ์ •๋œ๋‹ค. ์ด ๋•Œ ์ฒด์ ์˜ ๊ธด๋ฐ€๋„์˜ ๋ฐ”๋žŒ์— ์˜ํ•˜์—ฌ์„œ๋„ ์‰ฝ๊ฒŒ ๋ณ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๊ทธ ์˜ํ–ฅ์ด ๊ฑฐ์˜ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ์งง์„ ๊ฒฝ์šฐ ์‹์ƒ์ด ๊ธด๋ฐ€๋„์— ์ฃผ๋„์ ์œผ๋กœ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์ง€๋งŒ, ์‹œ๊ฐ„ ์ฐจ์ด๊ฐ€ ๊ธด ๊ฒฝ์šฐ ์ง€ํ‘œ๊ฐ€ ์šฐ์„ธํ•˜๊ฒŒ ๊ธด๋ฐ€๋„์— ์˜ํ–ฅ์„ ์ค€๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ฐ€์ •์„ ํ†ตํ•˜์—ฌ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋ฅผ ์ถ”์ถœํ•˜์˜€๋‹ค. ๊ฐ ํ”ฝ์…€์—์„œ ๊ด€์ฐฐ๋˜๋Š” ๊ธด๋ฐ€๋„์˜ ํ˜„์ƒ์„ ํ†ต๊ณ„์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ž์—ฐ ์žฌํ•ด๊ฐ€ ํฌํ•จ๋˜์ง€ ์•Š์€ ์ž๋ฃŒ์˜ ์‹œ๊ฐ„ ์ข…์†์  ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ํžˆ์Šคํ† ๊ทธ๋žจ์„ ์ œ์ž‘ํ•˜์˜€๊ณ , ์ด๋ฅผ ๊ธฐ๋ฐ˜์˜ ์ž์—ฐ ์žฌํ•ด๊ฐ€ ๊ธฐ์กด์— ๋ฐœ์ƒํ•˜์˜€๋˜ ์ž์—ฐ ํ˜„์ƒ์ด ๊ฐ€๋Šฅ์„ฑ์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋ฐ˜๋Œ€๋กœ ์ด ์ˆ˜์น˜๋Š” ์ž์—ฐ ํ˜„์ƒ์ด ์•„๋‹ ํ™•๋ฅ ์„ ์˜๋ฏธํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ALOS ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ™”์‚ฐ์žฌ๊ฐ€ ์Œ“์—ฌ์žˆ์„ ํ™•๋ฅ ๋„๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์˜ ๊ฒ€์ฆ์€ ์‹ค์ œ ํ˜„์žฅ ์กฐ์‚ฌ๋ฅผ ํ†ตํ•˜์—ฌ ํš๋“๋œ ํ™”์‚ฐ์žฌ์˜ ๋‘๊ป˜์™€ ์˜์—ญ ๋ฐ€๋„ (area density)์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•˜์—ฌ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๊ฒ€์ฆ ๊ฒฐ๊ณผ๋Š” ๋‘๊ป˜๋กœ ์•ฝ 5 cm ์ด์ƒ, ์˜์—ญ ๋ฐ€๋„๋กœ ์•ฝ 10 kg/m2 ์ด์ƒ์˜ ํ™”์‚ฐ์žฌ๊ฐ€ ์Œ“์ธ ์ง€์—ญ์—์„œ ์ƒ๊ด€์„ฑ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ์žฌํ•ด์— ๋Œ€ํ•œ ๋ณ€ํ™”๋ฅผ ํƒ์ง€ํ•˜์˜€์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. 4์žฅ์—์„œ๋Š” ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์ค‘ ์‹œ๊ธฐ์˜ ๋‹ค์ค‘ ํŽธํŒŒ SAR ์˜์ƒ์„ ํ™œ์šฉํ•˜์—ฌ ์ž์—ฐ ์žฌํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ ์šฉ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•˜์—ฌ 2009๋…„๋ถ€ํ„ฐ 2015๋…„๊นŒ์ง€์˜ 15์žฅ์˜ UAVSAR ์ž๋ฃŒ๊ฐ€ ํ™œ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ๋ฏธ๊ตญ ์บ˜๋ฆฌํฌ๋‹ˆ์•„ ์ฃผ์—์„œ ๋ฐœ์ƒํ•œ 2015๋…„์˜ ์‚ฐ๋ถˆ ์ค‘ ํ•˜๋‚˜์ธ Lake fire์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๊ธด๋ฐ€๋„ ์˜์ƒ์—์„œ ์‚ฐ๋ถˆ์— ์˜ํ•œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์ง€๋งŒ, ์‹์ƒ ์ง€์—ญ์˜ ์ž์—ฐ ํ˜„์ƒ์— ์˜ํ•œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ๊ณผ ๋ณตํ•ฉ์ ์œผ๋กœ ๋ฐœ์ƒํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ํ•ด์„์— ์–ด๋ ค์›€์ด ์žˆ์—ˆ๋‹ค. ์˜์ƒ์˜ ์ง„ํญ ์˜์ƒ์„ ์ด์šฉํ•œ ์ž์—ฐ ์žฌํ•ด ํƒ์ง€์—๋„ ์‚ฐ๋ถˆ ํƒ์ง€ํ•  ๋งŒํผ ๋ฏผ๊ฐ๋„๊ฐ€ ์ถฉ๋ถ„ํ•˜์ง€ ์•Š์•˜๋‹ค. 3์žฅ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ณธ ์—ฐ๊ตฌ ์ง€์—ญ์—์„œ ๊ธด๋ฐ€๋„๋‚˜ ์ง„ํญ๋งŒ์„ ์‚ฌ์šฉํ•ด์„œ๋Š” ์ •ํ™•ํ•œ ํ”ผํ•ด ์ง€๋„๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ค์› ์œผ๋ฉฐ, ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๊ธด๋ฐ€๋„ ๋ชจ๋ธ์„ ์ ์šฉํ•œ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•  ํ•„์š”์„ฑ์ด ์žˆ์—ˆ๋‹ค. 3์žฅ์—์„œ ์ œ์•ˆ๋œ ๋ชจ๋ธ ํ•ด์„ ๋ฐฉ๋ฒ•๊ณผ๋Š” ์ฐจ์ด์ ์ด ์žˆ๋Š”๋ฐ, ๊ทธ๊ฒƒ์ธ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋˜๋Š” UAVSAR ์ž๋ฃŒ๊ฐ€ ๋‹ค์ค‘ ํŽธํŒŒ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ๊ณต๊ฐ„ ๊ธฐ์„  ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊น๋‹ค๋Š” ํŠน์ง•์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋‹จ์ผ ํŽธํŒŒ ์ž๋ฃŒ์—์„œ๋Š” ๋งค๊ฐœ ๋ณ€์ˆ˜์˜ ๊ฐ’์ด ๊ด€์ธก๊ฐ’๋ณด๋‹ค ๋งŽ์•˜์ง€๋งŒ, ๋‹ค์ค‘ ํŽธํŒŒ์˜ ๊ฒฝ์šฐ ๊ด€์ธก๊ฐ’์ด ๋” ๋งŽ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์— ํ•„์š”ํ–ˆ๋˜ ๊ฐ€์ •์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ๋˜ํ•œ ๊ณต๊ฐ„ ๊ธฐ์„ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฑฐ์˜ 0์— ๊ฐ€๊น๋‹ค๋Š” ๊ฒƒ๋„ ์ฒด์  ๋น„์ƒ๊ด€์„ฑ์„ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๊ด€์ธก๋œ ๊ธด๋ฐ€๋„๋Š” ๊ฑฐ์˜ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ๊ณผ ๊ด€๋ จ ์žˆ๋‹ค๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ 3๊ฐ€์ง€๋กœ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ๋Š” ์ง€ํ‘œ์™€ ์ฒด์ ์— ๋Œ€ํ•œ ๊ธด๋ฐ€๋„ ์˜ํ–ฅ์„ ๋ถ„๋ฆฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์šฐ์„ ์ ์œผ๋กœ ๊ธด๋ฐ€๋„ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์ค‘ ์‹œ๊ธฐ ์˜์ƒ๋งˆ๋‹ค ๋‹ค๋ฅธ ์ตœ์ ํ™” ๋ฒกํ„ฐ๋ฅผ ์ƒ์ •ํ•˜๋Š” MSM ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด ๊ณผ์ •์„ ํ†ตํ•˜์—ฌ ๊ด€์ธกํ•  ์ˆ˜ ์žˆ๋Š” ๊ธด๋ฐ€๋„๊ฐ€ ์ตœ๋Œ€์น˜๊ฐ€ ๋˜๊ฒŒ ๋งŒ๋“œ๋Š” ํŽธํŒŒ์™€ ๊ทธ์™€ ์ˆ˜์งํ•˜๋Š” ํŽธํŒŒ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ชจ๋ธ ํ•ด์„๊ณผ ์—ฐ๊ด€์‹œ์ผฐ์„ ๋•Œ ์ตœ๋Œ€์น˜๊ฐ€ ๋˜๋Š” ๊ธด๋ฐ€๋„๋Š” ์ง€ํ‘œ์˜ ๋ณ€ํ™”์—, ์ตœ์†Œํ™”๋˜๋Š” ๊ธด๋ฐ€๋„๋Š” ์ฒด์ ์˜ ๋ณ€ํ™”์™€ ๊ด€๋ จ๋˜์–ด ์žˆ๋‹ค๊ณ  ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์— ํ•ด๋‹นํ•˜๋Š” ๋ณ€์ˆ˜์ธ ํŠน์ง•์  ์‹œ๊ฐ„ ์ƒ์ˆ˜๋ฅผ ์ถ”์ถœํ•˜์˜€์œผ๋ฉฐ, ์ง€ํ‘œ๋Œ€ ์ฒด์ ๋น„ ์—ญ์‹œ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋‹จ์ผ ํŽธํŒŒ ์ถ”์ • ๋ฐฉ๋ฒ•๊ณผ ๋‹ค๋ฅด๊ฒŒ ๋‹ค์ค‘ ํŽธํŒŒ ์˜์ƒ์—์„œ๋Š” ๋ชจ๋“  ํŽธํŒŒ์˜ ๊ธด๋ฐ€๋„๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฒด์ ๊ณผ ์ง€ํ‘œ์—์„œ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ์„ธ๋ฒˆ์งธ ๋‹จ๊ณ„์—์„œ๋Š” ์ฒด์ ๊ณผ ์ง€ํ‘œ์—์„œ์˜ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋ฅผ ๋™์‹œ์— ์ถ”์ •ํ•˜๋ฉฐ 3์žฅ๊ณผ๋Š” ๋‹ค๋ฅธ ๊ฒƒ์€ ์ด ๊ณผ์ •์—์„œ ๊ฐ€์ •์ด ํ•„์š”ํ•˜์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ๊ณผ์ •์„ ํ†ตํ•˜์—ฌ ์ถ”์ •๋œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ค‘ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„๋Š” ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„๋กœ๋ถ€ํ„ฐ ์„ค๋ช…๋˜์ง€ ์•Š๋Š” ๋ถ€๋ถ„์„ ์ถ”๊ฐ€์ ์œผ๋กœ ์„ค๋ช…ํ•˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ์จ ๊ฐ‘์ž‘์Šค๋Ÿฝ๊ฒŒ ์ผ์–ด๋‚˜๋Š” ๋ณ€ํ™”๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ ํ”ฝ์…€์—์„œ ๊ณผ๊ฑฐ ๋™์•ˆ ๋ฐœ์ƒํ•˜์˜€๋˜ ์ž์—ฐ ํ˜„์ƒ์ด ๊ธด๋ฐ€๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‚ฐ๋ถˆ์€ ๋น„๊ต์  ๊ฐ•ํ•œ ๊ธด๋ฐ€๋„ ๊ฐ์†Œ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๊ธฐ ๋•Œ๋ฌธ์— ํ†ต๊ณ„์ ์ธ ์ ‘๊ทผ์„ ํ†ตํ•˜์—ฌ ํ™•๋ฅ ์ ์ธ ํ”ผํ•ด ๊ฐ€๋Šฅ์„ฑ์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‚ฐ๋ถˆ์˜ ๊ฒฝ๊ณ„ ๋ถ€๋ถ„์˜ ์ž๋ฃŒ์™€์˜ ์ƒ๋Œ€์ ์ธ ๋น„๊ต๋ฅผ ํ†ตํ•œ ๊ฒ€์ฆ ๊ฒฐ๊ณผ์„ ํ†ตํ•˜์—ฌ ๊ธด๋ฐ€๋„๋งŒ์„ ์ด์šฉํ•˜์—ฌ ํ”ผํ•ด ์ง€์—ญ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ณด๋‹ค ์˜คํƒ์ง€๋ฅ ์„ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. 4์žฅ์—์„œ ์‚ฌ์šฉ๋œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ • ๊ฒฐ๊ณผ์˜ ๊ฒ€์ฆ์„ ์œ„ํ•˜์—ฌ ์ด์ „์˜ ๊ฒ€์ฆ์ด ์ง„ํ–‰๋˜์–ด ์™”๋˜ RMoG ๋ชจ๋ธ๊ณผ ์ƒ๋Œ€ ๋น„๊ต๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. RMoG์˜ ์ฒด์ ๊ณผ ์ง€ํ‘œ ๋ถ€๋ถ„์˜ ์‹œ๊ฐ„ ๋น„์ƒ๊ด€์„ฑ ํ•จ์ˆ˜๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ๋ชจ๋ธ์˜ ์‹œ๊ฐ„ ์ข…์†์  ๊ธด๋ฐ€๋„์™€ ์‹œ๊ฐ„ ๋…๋ฆฝ์  ๊ธด๋ฐ€๋„์˜ ๊ณฑ์œผ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋‹ค. ๋น„๊ตํ•œ ๊ฒฐ๊ณผ๋Š” ๋†’์€ ์ƒ๊ด€์„ฑ์„ ๋ณด์ด๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ๋‹จ์ผ ํŽธํŒŒ์™€ ๋‹ค์ค‘ ํŽธํŒŒ๋ฅผ ์‚ฌ์šฉํ•œ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ • ๊ฒฐ๊ณผ์™€ ์žฌํ•ด ํƒ์ง€ ๊ฒฐ๊ณผ๋„ ๋น„๊ตํ•˜์˜€๋‹ค. ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •์˜ ๊ฒฝ์šฐ, ๋‹จ์ผ ํŽธํŒŒ์—์„œ ์ถ”์ •๋œ ๊ฒฐ๊ณผ๊ฐ€ ๋‹ค์†Œ ์ž‘์Œ์ด ํ™•์ธ๋˜์—ˆ์œผ๋ฉฐ, ์ด๊ฒƒ์€ ๋‹จ์ผ ํŽธํŒŒ(HH)๊ฐ€ ์ง€ํ‘œ์™€ ์ฒด์  ์‚ฌ์ด์˜ ์‚ฐ๋ž€ ์ค‘์‹ฌ์—์„œ ๊ธฐ๋ก๋œ ๊ฒƒ์œผ๋กœ ๊ทธ ์›์ธ์„ ์ถ”์ •ํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ”ผํ•ดํƒ์ง€ ๋ฐฉ๋ฒ•์—์„œ์˜ ์ •ํ™•๋„๋Š” ๋‹ค์ค‘ ํŽธํŒŒ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์— ์šฐ์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์ง€๋งŒ, ๊ฑฐ์˜ ์œ ์‚ฌํ•œ ์ •๋„์˜ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ํ”ผํ•ด ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž์—ฐ ํ˜„์ƒ์—์„œ ๋น„๋กฏ๋˜๋Š” ๊ธด๋ฐ€๋„ ๊ฐ์†Œ ํ˜„์ƒ์„ ๋ถ„์„ํ•˜์—ฌ ์ž์—ฐ ์žฌํ•ด๋กœ๋ถ€ํ„ฐ ๋ฐœ์ƒํ•˜๋Š” ํ˜„์ƒ์„ ๊ตฌ๋ณ„ํ•˜์—ฌ ํ”ผํ•ด๋กœ ๊ทœ์ •ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๊ธฐ์กด์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ณด๋‹ค ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋‹ค์ค‘ ํŽธํŒŒ ๊ฐ„์„ญ๊ณ„ SAR ์ž๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ๋‹ค์ค‘ ํŽธํŒŒ์— ๊ธฐ๋ก๋˜์–ด ์žˆ๋Š” ๋‹ค๋ฅธ ์‚ฐ๋ž€ ์ค‘์‹ฌ์—์„œ์˜ ๋ณ€ํ™”๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฒด์  ๋ฐ ์ง€ํ‘œ์—์„œ์˜ ๋ณ€ํ™”๋ฅผ ๋…๋ฆฝ์ ์œผ๋กœ ํ‰๊ฐ€ํ•˜์—ฌ ํ”ผํ•ด๋ฅผ ํƒ์ง€ํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‹ค์ˆ˜์˜ ์ž์—ฐ ์žฌํ•ด์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ฐ ํ”ฝ์…€์˜ ๊ธด๋ฐ€๋„ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ์ง€ํ‘œ ํƒ€์ž…์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋˜ํ•œ ๋ฌผ๋ฆฌ์ ์ธ ํ•ด์„์„ ๋ณ‘ํ•ฉํ•˜์—ฌ ํ”ผํ•ด์˜ ์‹ฌ๊ฐ๋„๋ฅผ ์ •๋Ÿ‰ํ™” ํ•  ์ˆ˜ ์žˆ์€ ๊ฐ€๋Šฅ์„ฑ ์—ญ์‹œ ์กด์žฌ ํ•˜๋ฉฐ, ํ–ฅํ›„ ๋ฐœ์‚ฌ๋  ์ธ๊ณต์œ„์„ฑ์˜ ๋ฏธ์…˜์—์„œ๋„ ์ ์šฉ๋  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณธ ์—ฐ๊ตฌ์˜ ์˜์˜๊ฐ€ ํฌ๋‹ค๊ณ  ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค.For rapid response and efficient recovery, the accurate assessment of damaged area caused by the natural disaster is essential. SAR system has been known as a powerful and effective tool for estimating damaged area due to its imaging capability at night and cloudy days. One of the damage assessment methods is based on interferometric coherence generated from two or more SAR images, namely coherent change detection. The interferometric coherence is a very sensitive detector to subtle changes induced by dielectric properties and positional disturbance of scatterers. However, the conventional approaches using the interferometric coherence have several limitations in understanding the damage mechanism caused by natural disasters and providing the accurate spatial information. These limitations come from the complicated mechanism determining the coherence. A number of sources including the sensor geometry, radar parameters, and surface conditions can induce the decorrelation. In particular, the interpretation complexity of the interferometric coherence is severe over the vegetated area, due to the volumetric decorrelation and temporal decorrelation. It is a remaining problem that the decorrelation caused by the natural phenomena such as the wind, rain, and snow can come along the decorrelation caused by natural disaster. Therefore, a new accurate approach needs to be designed in order to interpret the decorrelation sources and discriminate the effect of natural disaster from that of natural phenomena. This research starts from the development of the temporal decorrelation model to interpret the interferometric coherence observed in multi-temporal SAR data. Then, the coherence model is extended to be applied to the damage mapping algorithm for single- and fully-polarimetric SAR data for detecting the damaged area caused by volcanic ash and wildfire. The coherence model is designed so that it explains the coherence behavior observed in the multi-temporal SAR data. The noticeable characteristic is that the interferometric coherence tends to decrease as the time-interval increases. Also, the coherence for multi-layer is determined by the different contributions of each layer. For example, the volume and ground layer can affect the total coherence observed in the forest area. In order to reflect the realistic condition and physically interpret the coherence, the coherence model proposed in this research includes several decorrelation sources such as temporally correlated dielectric changes, temporally uncorrelated dielectric changes and the motions in the two layersi.e. ground and volume layer. According to the proposed model, the coherent behavior of each layer is explained by exponentially decreasing coherence (temporally-correlated coherence), and the difference between the observed coherence and the temporally-correlated coherence is interpreted as the temporally-uncorrelated coherence. The ground-to-volume ratio plays an important role to determine the contributions of temporal decorrelations in ground and volume layer. Suggested model is applied into the coherent change detection for multi-temporal and single-polarized SAR data. The method is evaluated for detection of volcanic ash emitted from Kirishima volcano in 2011 using ALOS PALSAR data. The criterion of the spatial baseline is calculated based on the Random Volume over Ground model to minimize the volumetric decorrelation. The model parameters are extracted under the several assumptions, and then the historical coherence behavior is analyzed using kernel density estimation method. By comparing the changes of model parameters between the reference pairs and event pairs, the probability of surface changes caused by volcanic ash is defined. The in-situ data, which measure the depth and area density of volcanic ash, is compared with the calculated probability maps for determining the threshold and evaluating the performance. The correlation is found over the area where the depth of the volcanic ash is more than 5 cm and the area density is more than 10 kg/m2. The temporal decorrelation model is also used for change detection using multi-temporal and fully-polarimetric interferometric SAR data. By introducing polarimetric and interferometric SAR data, the assumptions used in the method for single-polarized SAR data are reduced and the changes of two layer can be estimated separately. The approach is applied to detect the burnt area caused by the Lake fire, in June 2015 using UAVSAR data. Even though, coherence analysis shows the loss of coherence due to the fire event, the temporal decorrelation caused by the natural changes is mixed with the signal of the event. In order to apply the coherence model and extract the model parameter, here, the three steps are proposedcoherence optimization, temporally-correlated coherence estimation, and temporally-uncorrelated coherence estimation. Then, the extracted model parameters are used for the damage assessment using the probability determination based on the history of natural phenomena. The final generated damage map shows higher performance than the damage mapping method using coherence only. Also, the comparison result with the RMoG model shows high agreement, which implies the extraction of the model parameters is reliable. One of the advantages of the proposed algorithm is that the more accurate delineation of damage area can be expected by isolating the decorrelation caused by the natural disaster from the effect of natural phenomena. Moreover, a distinguishable benefit can be obtained that the changes over ground and volume layers can be assessed separately by utilizing the multi-temporal full-polarimetric SAR data.Chapter 1. Introduction 1 1.1. Brief overview of SAR and its applications 1 1.2. Motivations 5 1.3. Purpose of Research 8 1.4. Outline 10 Chapter 2. Estimation of complex correlation and decorrelation sources 11 2.1. Estimation of complex correlation 11 2.2. Decorrelation sources 14 2.3. Derivation of coherence model assuming two layers for repeat-pass interferometry 35 Chapter 3. Damage mapping using temporal decorrelation model for single-polarized SAR data : A case study for volcanic ash 51 3.1. Description of study area 51 3.2. Data description 55 3.3. Extraction of temporal decorrelation parameters 61 3.4. Probability map generation 68 3.5. Mapping volcanic ash 73 3.6. Discussion 76 Chapter 4.Damage mapping using temporal decorrelation model for multi-temporal and fully-polarized SAR data 78 4.1. Description of Lake Fire and UAVSAR data 79 4.2. Brief analysis of SAR amplitude and interferometric coherence 82 4.3. Damage mapping algorithm using coherence model 89 4.4. Applicable conditions of damage mapping algorithm using coherence model 114 4. 5. Comparison of model inversion results and damage mapping algorithm results 120 4. 6. Discussion and conclusion 129 Chapter 5. Conclusions and Future Perspectives 132 Abstract in Korean 140 Bibliography 147Docto

    Mapping the 2021 October Flood Event in the Subsiding Taiyuan Basin By Multi-Temporal SAR Data

    Get PDF
    A flood event induced by heavy rainfall hit the Taiyuan basin in north China in early October of 2021. In this study, we map the flood event process using the multi-temporal synthetic aperture radar (SAR) images acquired by Sentinel-1. First, we develop a spatiotemporal filter based on low-rank tensor approximation (STF-LRTA) for removing the speckle noise in SAR images. Next, we employ the classic log-ratio change indicator and the minimum error threshold algorithm to characterize the flood using the filtered images. Finally, we relate the flood inundation to the land subsidence in the Taiyuan basin by jointly analyzing the multi-temporal SAR change detection results and interferometric SAR (InSAR) time-series measurements (pre-flood). The validation experiments compare the proposed filter with the Refined-Lee filter, Gamma filter, and an SHPS-based multi-temporal SAR filter. The results demonstrate the effectiveness and advantage of the proposed STF-LRTA method in SAR despeckling and detail preservation, and the applicability to change scenes. The joint analyses reveal that land subsidence might be an important contributor to the flood event, and the flood recession process linearly correlates with time and subsidence magnitude.This work was financially supported by the National Natural Science Foundation of China (grant numbers 41904001 and 41774006), the China Postdoctoral Science Foundation (grant number 2018M640733), the National Key Research and Development Program of China (grant number 2019YFC1509201), and the National Postdoctoral Program for Innovative Talents (grant number BX20180220)

    Towards a 20m global building map from Sentinel-1 SAR Data

    Get PDF
    This study introduces a technique for automatically mapping built-up areas using synthetic aperture radar (SAR) backscattering intensity and interferometric multi-temporal coherence generated from Sentinel-1 data in the framework of the Copernicus program. The underlying hypothesis is that, in SAR images, built-up areas exhibit very high backscattering values that are coherent in time. Several particular characteristics of the Sentinel-1 satellite mission are put to good use, such as its high revisit time, the availability of dual-polarized data, and its small orbital tube. The newly developed algorithm is based on an adaptive parametric thresholding that first identifies pixels with high backscattering values in both VV and VH polarimetric channels. The interferometric SAR coherence is then used to reduce false alarms. These are caused by land cover classes (other than buildings) that are characterized by high backscattering values that are not coherent in time (e.g., certain types of vegetated areas). The algorithm was tested on Sentinel-1 Interferometric Wide Swath data from five different test sites located in semiarid and arid regions in the Mediterranean region and Northern Africa. The resulting building maps were compared with the Global Urban Footprint (GUF) derived from the TerraSAR-X mission data and, on average, a 92% agreement was obtained.Peer ReviewedPostprint (published version

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Advanced pixel selection and optimization algorithms for Persistent Scatterer Interferometry (PSI)

    Get PDF
    Tesi amb diferents seccions retallades per dret de l'editorPremi Extraordinari de Doctorat, promociรณ 2018-2019. ร€mbit de les TICGround deformation measurements can provide valuable information for minimization of associated loss and damage caused by natural and environmental hazards. As a kind of remote sensing technique, Persistent Scatterer Interferometry (PSI) SAR is able to measure ground deformation with high spatial resolution, efficiently. Moreover, the ground deformation monitoring accuracy of PSI techniques can reach up to millimeter level. However, low coherence could hinderthe exploitation of SAR data, and high-accuracy deformation monitoring can only be achieved by PSI for high quality pixels. Therefore, pixel optimization and identification of coherent pixels are crucial for PSI techniques. In this thesis, advanced pixel selection and optimization algorithms have been investigated. Firstly, a full-resolution pixel selection method based on the Temporal Phase Coherence (TPC) has been proposed. This method first estimates noise phase term of each pixel at interferogram level. Then, for each pixel, its noise phase terms of all interferograms are used to assess this pixelโ€™s temporal phase quality (i.e., TPC). In the next, based on the relationship between TPC and phase Standard Deviation (STD), a threshold can be posed on TPC to identify high phase quality pixels. This pixel selection method can work with both Deterministic Scatterers (PSs) and Distributed Scatterers (DSs). To valid the effectiveness of the developed method, it has been used to monitor the Canillo (Andorra) landslide. The results show that the TPC method can obtained highest density of valid pixels among the employed three approaches in this challenging area with X-band SAR data. Second, to balance the polarimetric DInSAR phase optimization effect and the computation cost, a new PolPSI algorithm is developed. This proposed PolPSI algorithm is based on the Coherency Matrix Decomposition result to determine the optimal scattering mechanism of each pixel, thus it is named as CMD-PolPSI. CMDPolPSI need not to search for solution within the full space of solution, it is therefore much computationally faster than the classical Equal Scattering Mechanism (ESM) method, but with lower optimization performance. On the other hand, its optimization performance outperforms the less computational costly BEST method. Third, an adaptive algorithm SMF-POLOPT has been proposed to adaptive filtering and optimizing PolSAR pixels for PolPSI applications. This proposed algorithm is based on PolSAR classification results to firstly identify Polarimetric Homogeneous Pixels (PHPs) for each pixel, and at the same time classify PS and DS pixels. After that, DS pixels are filtered by their associated PHPs, and then optimized based on the coherence stability phase quality metric; PS pixels are unfiltered and directly optimized based on the DA phase quality metric. SMF-POLOPT can simultaneously reduce speckle noise and retain structuresโ€™ details. Meanwhile, SMF-POLOPT is able to obtain much higher density of valid pixels for deformation monitoring than the ESM method. To conclude, one pixel selection method has been developed and tested, two PolPSI algorithms have been proposed in this thesis. This work make contributions to the research of โ€œAdvanced Pixel Selection and Optimization Algorithms for Persistent Scatterer InterferometryLes mesures de deformaciรณ del sรฒl poden proporcionar informaciรณ valuosa per minimitzar les pรจrdues i els danys associats causats pels riscos naturals i ambientals. Com a tรจcnica de teledetecciรณ, la interferometria de dispersors persistents (Persistent Scatter Interferometry, PSI) SAR รฉs capaรง de mesurar de forma eficient la deformaciรณ del terreny amb una alta resoluciรณ espacial. A mรฉs, la precisiรณ de monitoritzaciรณ de la deformaciรณ del sรฒl de les tรจcniques PSI pot arribar a arribar a nivells del milยทlรญmetre. No obstant aixรฒ, una baixa coherรจncia pot dificultar lโ€™explotaciรณ de dades SAR i el control de deformaciรณ dโ€™alta precisiรณ nomรฉs es pot aconseguir mitjanรงant PSI per a pรญxels dโ€™alta qualitat. Per tant, lโ€™optimitzaciรณ de pรญxels i la identificaciรณ de pรญxels coherents sรณn crucials en les tรจcniques PSI. En aquesta tesi sยฟhan investigat algorismes avanรงats de selecciรณ i optimitzaciรณ de pรญxels. En primer lloc, s'ha proposat un mรจtode de selecciรณ de pรญxels de resoluciรณ completa basat en la coherรจncia temporal de fase (Temporal Phase Coherence, TPC). Aquest mรจtode estima per primera vegada el terme de fase de soroll de cada pรญxel a nivell dโ€™interferograma. A continuaciรณ, per a cada pรญxel, s'utilitzen els termes de la fase de soroll de tots els interferogrames per avaluar la qualitat de fase temporal d'aquest pรญxel (รฉs a dir, TPC). A la segรผent, basant-se en la relaciรณ entre el TPC i la desviaciรณ estร ndard de fase (STD), es pot plantejar un llindar de TPC per identificar pรญxels de qualitat de fase alta. Aquest mรจtode de selecciรณ de pรญxels es capaรง de detectar tant els dispersors deterministes (PS) com els distribuรฏts (DS). Per validar lโ€™eficร cia del mรจtode desenvolupat, sโ€™ha utilitzat per controlar lโ€™esllavissada de Canillo (Andorra). Els resultats mostren que el mรจtode TPC pot obtenir la major densitat de pรญxels vร lids, comparat amb els mรจtodes clร ssics de selecciรณ, en aquesta ร rea difรญcil amb dades de SAR de banda X. En segon lloc, per equilibrar lโ€™efecte dโ€™optimitzaciรณ de fase DInSAR polarimรจtrica i el cost de cร lcul, es desenvolupa un nou algorisme de PolPSI. Aquest algorisme proposat de PolPSI es basa en el resultat de la descomposiciรณ de la matriu de coherรจncia per determinar el mecanisme de dispersiรณ รฒptim de cada pรญxel, de manera que es denomina CMD-PolPSI. CMDPolPSI no necessita buscar solucions dins de lโ€™espai complet de la soluciรณ, per tant, รฉs molt mรฉs eficient computacionalment que el mรจtode clร ssic de mecanismes dโ€™igualtat de dispersiรณ (Equal Scattering Mechanism, ESM), perรฒ amb un efecte dโ€™optimitzaciรณ no tant รฒptim. D'altra banda, el seu efecte d'optimitzaciรณ supera el mรจtode BEST, el que te un menor cost computacional. En tercer lloc, s'ha proposat un algoritme adaptatiu SMF-POLOPT per al filtratge adaptatiu i l'optimitzaciรณ de pรญxels PolSAR per a aplicacions PolPSI. Aquest algorisme proposat es basa en els resultats de classificaciรณ PolSAR per identificar primer els pรญxels homogenis polarimรจtrics (PHP) per a cada pรญxel i, alhora, classificar els pรญxels PS i DS. Desprรฉs d'aixรฒ, els pรญxels DS es filtren pels seus PHP associats i, a continuaciรณ, s'optimitzen en funciรณ de la mรจtrica de qualitat de la fase d'estabilitat de coherรจncia; els pรญxels classificats com PS no es filtren i s'optimitzen directament en funciรณ de la mรจtrica de qualitat de la fase DA. SMF-POLOPT pot reduir simultร niament el soroll de la fase interferomรจtrica i conservar els detalls de les estructures. Mentrestant, SMF-POLOPT aconsegueix obtenir una densitat molt mรฉs alta de pรญxels vร lids per al seguiment de la deformaciรณ que el mรจtode ESM. Per concloure, en aquesta tesi sโ€™ha desenvolupat i provat un mรจtode de selecciรณ de pรญxels, i sโ€™han proposat dos algoritmes PolPSI. Aquest treball contribueix a la recerca en "Advanced Pixel Selection and Optimization Algorithms for Persistent Scatterer Interferometry"Postprint (published version

    The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle

    Get PDF
    We describe the state of the art of scientific research on the earthquake cycle based on the analysis of Synthetic Aperture Radar (SAR) data acquired from satellite platforms. We examine the achievements and the main limitations of present SAR systems for the measurement and analysis of crustal deformation, and envision the foreseeable advances that the Sentinel-1 data will generate in the fields of geophysics and tectonics. We also review the technological and scientific issues which have limited so far the operational use of satellite data in seismic hazard assessment and crisis management, and show the improvements expected from Sentinel-1 dat

    Detection of temporarily flooded vegetation using time series of dual polarised C-band synthetic aperture radar data

    Get PDF
    The intense research of the last decades in the field of flood monitoring has shown that microwave sensors provide valuable information about the spatial and temporal flood extent. The new generation of satellites, such as the Sentinel-1 (S-1) constellation, provide a unique, temporally high-resolution detection of the earth's surface and its environmental changes. This opens up new possibilities for accurate and rapid flood monitoring that can support operational applications. Due to the observation of the earth's surface from space, large-scale flood events and their spatiotemporal changes can be monitored. This requires the adaptation of existing or the development of new algorithms, which on the one hand enable precise and computationally efficient flood detection and on the other hand can process a large amounts of data. In order to capture the entire extent of the flood area, it is essential to detect temporary flooded vegetation (TFV) areas in addition to the open water areas. The disregard of temporary flooded vegetation areas can lead to severe underestimation of the extent and volume of the flood. Under certain system and environmental conditions, Synthetic Aperture Radar (SAR) can be utilized to extract information from under the vegetation cover. Due to multiple backscattering of the SAR signal between the water surface and the vegetation, the flooded vegetation areas are mostly characterized by increased backscatter values. Using this information in combination with a continuous monitoring of the earth's surface by the S-1 satellites, characteristic time series-based patterns for temporary flooded vegetation can be identified. This combination of information provides the foundation for the time series approach presented here. This work provides a comprehensive overview of the relevant sensor and environmental parameters and their impact on the SAR signal regarding temporary open water (TOW) and TFV areas. In addition, existing methods for the derivation of flooded vegetation are reviewed and their benefits, limitations, methodological trends and potential research needs for this area are identified and assessed. The focus of the work lies in the development of a SAR and time series-based approach for the improved extraction of flooded areas by the supplementation of TFV and on the provision of a precise and rapid method for the detection of the entire flood extent. The approach developed in this thesis allows for the precise extraction of large-scale flood areas using dual-polarized C-band time series data and additional information such as topography and urban areas. The time series features include the characteristic variations (decrease and/or increase of backscatter values) on the flood date for the flood-related classes compared to the whole time series. These features are generated individually for each available polarization (VV, VH) and their ratios (VV/VH, VV-VH, VV+VV). The generation of the time series features was performed by Z-transform for each image element, taking into account the backscatter values on the flood date and the mean value and standard deviation of the backscatter values from the nonflood dates. This allowed the comparison of backscatter intensity changes between the image elements. The time series features constitute the foundation for the hierarchical threshold method for deriving flood-related classes. Using the Random Forest algorithm, the importance of the time series data for the individual flood-related classes was analyzed and evaluated. The results showed that the dual-polarized time series features are particularly relevant for the derivation of TFV. However, this may differ depending on the vegetation type and other environmental conditions. The analyses based on S-1 data in Namibia, Greece/Turkey and China during large-scale floods show the effectiveness of the method presented here in terms of classification accuracy. Theiv supplementary integration of temporary flooded vegetation areas and the use of additional information resulted in a significant improvement in the detection of the entire flood extent. It could be shown that a comparably high classification accuracy (~ 80%) was achieved for the flood extent in each of study areas. The transferability of the approach due to the application of a single time series feature regarding the derivation of open water areas could be confirmed for all study areas. Considering the seasonal component by using time series data, the seasonal variability of the backscatter signal for vegetation can be detected. This allows for an improved differentiation between flooded and non-flooded vegetation areas. Simultaneously, changes in the backscatter signal can be assigned to changes in the environmental conditions, since on the one hand a time series of the same image element is considered and on the other hand the sensor parameters do not change due to the same acquisition geometry. Overall, the proposed time series approach allows for a considerable improvement in the derivation of the entire flood extent by supplementing the TOW areas with the TFV areas
    • โ€ฆ
    corecore