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Abstract 

 
For rapid response and efficient recovery, the accurate assessment of damaged 

area caused by the natural disaster is essential. SAR system has been known as a 

powerful and effective tool for estimating damaged area due to its imaging capability 

at night and cloudy days. One of the damage assessment methods is based on 

interferometric coherence generated from two or more SAR images, namely 

coherent change detection. The interferometric coherence is a very sensitive detector 

to subtle changes induced by dielectric properties and positional disturbance of 

scatterers. However, the conventional approaches using the interferometric 

coherence have several limitations in understanding the damage mechanism caused 

by natural disasters and providing the accurate spatial information. These limitations 

come from the complicated mechanism determining the coherence. A number of 

sources including the sensor geometry, radar parameters, and surface conditions can 

induce the decorrelation. In particular, the interpretation complexity of the 

interferometric coherence is severe over the vegetated area, due to the volumetric 

decorrelation and temporal decorrelation. It is a remaining problem that the 

decorrelation caused by the natural phenomena such as the wind, rain, and snow can 

come along the decorrelation caused by natural disaster. Therefore, a new accurate 

approach needs to be designed in order to interpret the decorrelation sources and 

discriminate the effect of natural disaster from that of natural phenomena. This 

research starts from the development of the temporal decorrelation model to interpret 

the interferometric coherence observed in multi-temporal SAR data. Then, the 

coherence model is extended to be applied to the damage mapping algorithm for 

single- and fully-polarimetric SAR data for detecting the damaged area caused by 

volcanic ash and wildfire.  

The coherence model is designed so that it explains the coherence behavior 
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observed in the multi-temporal SAR data. The noticeable characteristic is that the 

interferometric coherence tends to decrease as the time-interval increases. Also, the 

coherence for multi-layer is determined by the different contributions of each layer. 

For example, the volume and ground layer can affect the total coherence observed in 

the forest area. In order to reflect the realistic condition and physically interpret the 

coherence, the coherence model proposed in this research includes several 

decorrelation sources such as temporally correlated dielectric changes, temporally 

uncorrelated dielectric changes and the motions in the two layers; i.e. ground and 

volume layer. According to the proposed model, the coherent behavior of each layer 

is explained by exponentially decreasing coherence (temporally-correlated 

coherence), and the difference between the observed coherence and the temporally-

correlated coherence is interpreted as the temporally-uncorrelated coherence. The 

ground-to-volume ratio plays an important role to determine the contributions of 

temporal decorrelations in ground and volume layer.  

Suggested model is applied into the coherent change detection for multi-

temporal and single-polarized SAR data. The method is evaluated for detection of 

volcanic ash emitted from Kirishima volcano in 2011 using ALOS PALSAR data. 

The criterion of the spatial baseline is calculated based on the Random Volume over 

Ground model to minimize the volumetric decorrelation. The model parameters are 

extracted under the several assumptions, and then the historical coherence behavior 

is analyzed using kernel density estimation method. By comparing the changes of 

model parameters between the reference pairs and event pairs, the probability of 

surface changes caused by volcanic ash is defined. The in-situ data, which measure 

the depth and area density of volcanic ash, is compared with the calculated 

probability maps for determining the threshold and evaluating the performance. The 

correlation is found over the area where the depth of the volcanic ash is more than 5 

cm and the area density is more than 10 kg/m2.  



 

 iii 

The temporal decorrelation model is also used for change detection using multi-

temporal and fully-polarimetric interferometric SAR data. By introducing 

polarimetric and interferometric SAR data, the assumptions used in the method for 

single-polarized SAR data are reduced and the changes of two layer can be estimated 

separately. The approach is applied to detect the burnt area caused by the Lake fire, 

in June 2015 using UAVSAR data. Even though, coherence analysis shows the loss 

of coherence due to the fire event, the temporal decorrelation caused by the natural 

changes is mixed with the signal of the event. In order to apply the coherence model 

and extract the model parameter, here, the three steps are proposed; coherence 

optimization, temporally-correlated coherence estimation, and temporally-

uncorrelated coherence estimation. Then, the extracted model parameters are used 

for the damage assessment using the probability determination based on the history 

of natural phenomena. The final generated damage map shows higher performance 

than the damage mapping method using coherence only. Also, the comparison result 

with the RMoG model shows high agreement, which implies the extraction of the 

model parameters is reliable.  

One of the advantages of the proposed algorithm is that the more accurate 

delineation of damage area can be expected by isolating the decorrelation caused by 

the natural disaster from the effect of natural phenomena. Moreover, a 

distinguishable benefit can be obtained that the changes over ground and volume 

layers can be assessed separately by utilizing the multi-temporal full-polarimetric 

SAR data.  

 

Keyword: Interferometric coherence, coherence model, Change detection, SAR 

interferometry, Polarimetric SAR interferometry, damaged area detection  
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Chapter 1.  
Introduction 

 

 

1.1. Brief overview of SAR and its applications 
 

During the last few decades, the advanced techniques for remote sensing have 

been dramatically developed and have been used in numerous earth science fields. 

Synthetic aperture radar (SAR) is one of the promising and powerful systems for 

remote sensing and its applications involve hydrology, oceanography, glaciology, 

geology, and volcanology, etc.  

Since SAR utilizes an active sensor which transmits the microwave signal and 

receives the backscattered signal from the targets, it can image in daylight or at night. 

Also, because the microwave is not less affected by the meteorological conditions, 

the SAR system has advantages that it can acquire the data anytime. Moreover, the 

images acquired from SAR sensors have unique information related to the dielectric 

and morphological properties of target media which are different illumination from 

the optical sensing measurement. Thus, the SAR measurement has been applied to a 

number of earth science fields and plays an important role as a complementary 

measurement with the other remotely sensed data. For this reasons, the needs of SAR 

sensors have been dramatically increasing, and consequently, a number of SAR 

satellites have been launched and successfully operated. Accordingly, a huge amount 

of robust and innovative techniques have been developed.  

One of the main techniques of SAR system is interferometry, namely “InSAR”, 

which utilizes the phase differences between received signals by two or more SAR 

sensors. The phase components of complex values of SAR image is related to the 

distance to the target and scattering phase of the target. However, because the phase 

of one image of SAR sensor is effectively summation of each scatterer in a 
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resolutions cell, the sole phase is shown as a uniform probability density function 

and does not give any information of distance. The interference of two SAR images 

acquired at slightly different geometry cancels the scattering phase of the target 

recorded in each SAR images and measures the angular differences between the 

sensors and target at a certain height by applying simple trigonometry. The 

interferometer can estimate the topographic height by using the relationship between 

the topographic height and estimated angle difference angle and geometry of SAR 

sensors such as perpendicular baseline, the altitude of sensors and look angle. The 

concept of interferometry is first introduced to estimate the topographic height of 

Earth by Graham (Graham, 1974). The representative missions for generation of 

global digital-elevation-model (DEM) are Shuttle Radar Topography Mission 

(SRTM) and TanDEM-X mission (Jordan, 1997; Krieger et al., 2007; Moreira et al., 

2004; J. J. Van Zyl, 2001). Both utilize InSAR techniques and provide DEMs with 

30m x 30m and 15m x 15m spatial resolutions, respectively. 

The major advance of InSAR system is designed to estimate surface displacement 

which is referred as differential SAR interferometry, DInSAR. The surface 

movement could be estimated by using conventional scheme by estimating the 

offsets between images when the target moves more than a resolution cell and its 

accuracy is the order of meters. However, DInSAR technique uses phase differences 

of SAR images. If the position of the target at revisit time is shifted compared to the 

initial position at first acquisition, it induces the phase shift in a resolution cell. 

Typical wavelength of the microwave which recent SAR satellites use range from 

2cm (X-band) to 24 cm (L-band). The phase difference measurement can be orders 

of millimeter or centimeter, so its accuracy is much higher than the conventional 

scheme. DInSAR technique has been widely applied to measure the displacement 

caused by diverse natural phenomena such as earthquakes, volcanic activities, and 

land subsidences (Amelung et al., 1999; Galloway et al., 1998; Massonnet et al., 
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1995; Massonnet et al., 1993). The recently developed time-series interferometric 

techniques using multi-temporal data acquired at multiple times have improved the 

accuracy of displacement estimation by extracting the error sources such as 

tropospheric phase delay, orbital ramps, DEM error. The representative methods are 

persistent scatterer interferometry (PSInSAR), small baseline subset algorithm 

(SBAS), and Stanford method for persistent scatterer (StaMPS) (Berardino et al., 

2002; Ferretti et al., 2001; Hooper, 2008; Jung et al., 2014).  

Despite the robustness of InSAR and DInSAR techniques, the measurement 

accuracy can be degraded where the contribution of the phase noise in pixels is 

severe. As mentioned above, the phase of complex value is related to the distance 

and scattering characteristics of the resolution cell. If the scattering phase is identical 

at different acquisition time and the acquisition position is exactly identical, the 

scattering phase in target media can be perfectly canceled in interferometry and the 

phase is reliable. This state is called “coherent”. However, this case is unusual 

because the states of the scatterers are perturbed due to the meteorological changes 

such as the wind, rain, and snow, etc. and artificial changes such as agricultural 

activities, construction, and the collapse of man-made structures. If the state of the 

target is totally changed, the measurement of displacement fails. The similarity 

degree of complex values of two observations can quantitatively be estimated, which 

is referred as “coherence”. Thus, high coherence ensures high reliability, meanwhile 

the low coherence implies the inaccurate measurement. In this perspective, the low 

coherence could be a weakness of InSAR system for the purpose of measuring the 

displacement. Meanwhile, the applications using this characteristic of the coherence 

have been proposed, hence, the coherence involves the information related how the 

scatterers in resolution cells respond to the natural phenome such as the wind, and 

soil moisture change. Consequently, the land cover classification methods based on 

the coherence have been suggested. (J. Askne et al., 1993; Bruzzone et al., 2004). 
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Also, the coherence can be used to assess the change detection and damage detection. 

The phase is disturbed even by the subtle morphological and positional changes. 

Hence, this change can be captured in phase disturbance estimator, coherence. Some 

researchers reported that the track made by the vehicle can be detected using 

interferometric coherence, and it demonstrated the sensitivity of coherence as change 

detector (Corr et al., 1998; Preiss & Stacy, 2006). Similarly, the damage maps have 

been derived after disasters such as flood, and earthquake (Fielding et al., 2005; 

Geudtner et al., 1996; Hoffmann, 2007; Yonezawa et al., 2001). 

As the development of SAR system is accelerating, currently developed airborne 

and spaceborne SAR systems have been designed to acquire the full-polarimetric 

SAR (PolSAR) images which play the key roles to reveal the propagation and 

scattering mechanism. The polarimetric SAR is invaluable to decompose the 

observed scattering mechanism to the elementary components such as surface, 

double, and volume scattering. The applications based on PolSAR include the image 

classification, change detection, image segmentation (Shane R Cloude et al., 1997; 

J.-S. Lee et al., 1994; Park et al., 2013; Sato et al., 2012; J. Van Zyl et al., 1992).  

The two main SAR applications can be combined to solve the uncertainty of 

physical and morphological properties of natural media. The techniques utilizing 

both interferometry and polarimetry are referred as “Polarimetric SAR 

interferometry (PolInSAR)”. The interferometer which uses more than two SAR data 

can measure the topographic height using phase of complex values. However, the 

conventional interferometric system operating with a single-polarization and a 

single-frequency is difficult to extract the scattering mechanism which the 

microwave interacts the scatterers of the scenes because the number of the 

measurement is not enough to extract the parameters associated with the scattering 

process. Also, the interferometric observations using single-polarization do not 

explain the exact location of scattering phase center of the target which depends on 
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polarization and wavelength of a system parameter and physical structure and 

geometrical parameters. To overcome the limitations of the conventional 

interferometry, the PolInSAR data is one of the promising ways because it increases 

the number of observations which relevant to scattering process of the target. A 

number of innovative approaches utilizing PolInSAR techniques have been 

suggested to extract the model parameters of forest and glacier having multi-layers 

(S. R. Cloude et al., 1998; Lavalle et al., 2012; Maxim Neumann et al., 2010; 

Konstantinos P Papathanassiou et al., 2001).     

After the first launch of spaceborne SAR sensor (SEASAT), a number of space-

borne and airborne SAR systems have been developed and operated. Depending on 

the goal of the mission, they use different frequencies and operating strategies. The 

innovative experiments have been conducted to measure the natural phenomena and 

understand the physical mechanisms. Therefore, the continuously the techniques to 

utilize the SAR system need to be designed and improved.  

 

1.2. Motivations 
 

 
Natural disasters can cause serious massive damage to the property, social 

infrastructure, natural resources, and heavy casualties. For the rapid response to the 

disaster event and efficient recovery, the accurate and timely delivered information 

of damage is essential. Consequently, the technique to accurately detect the damaged 

area using remote sensing data has been one of the main issues in Earth and 

Environmental science field.  

Disaster detection using remote sensing data is key techniques for the generation 

of global-scale damage maps after natural hazards (Yonezawa & Takeuchi, 2001, 

Gamba, et al., 2007, Matsuoka & Yamazaki, 2004(Yun et al., 2015)). In the past 

decades, several approaches of change detection using visible and near-infrared data 
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have been proposed (Collins et al., 1996; Singh, 1989). These approaches, however, 

have not always been successful in detecting changes in the presence of canopy cover 

because optical sensors measure primarily the surface reflectivity. Also, the cloud 

cover can limit the availability of proper data. Conversely, synthetic aperture radars 

(SARs) microwaves can penetrate forest canopies and obtain structural information 

about the underlying surface, especially at longer wavelengths. In addition, remote 

sensing with radars has several advantages, such as independence of acquisition from 

cloud cover and sun illumination. These advantages are critical in many practical 

situations because they extend the temporal and spatial applicability of SAR-based 

change detection techniques and play an invaluable role as a complementary tool to 

the other remote sensing data.  

Change detection approaches using SAR data are categorized into incoherent 

and coherent (Preiss, Douglas, et al., 2006). Incoherent change detection involves 

comparison of backscattering amplitude between SAR data, generally by 

interpreting the difference or ratio of the SAR intensity acquired before and after the 

event to be detected (Dekker, 1998; Gong et al., 2012; Giovanni Nico et al., 2000; 

Rignot et al., 1993). In order to enhance the changed area, log ratio and amplitude 

normalized differences were also introduced (Bovolo et al., 2005; G. Nico et al., 

2000). Also, incoherent change detection was performed with a filtering method in 

order to reduce false alarms (Dekker, 1998; White et al., 1990). These efforts were 

further developed into unsupervised change detection techniques that automatically 

determine the threshold value (Moser et al., 2006b).  

On the other hand, coherent change detection (CCD) techniques utilize the 

interferometric correlation estimated between interferometric pairs of SAR images 

(Azzedine Bouaraba et al., 2012; Grey et al., 2003; Novak, 2005; Oishi et al., 2009; 

Yonezawa & Takeuchi, 2001). Analysis of cross-correlation is able to provide 

information about changes in scattering properties, including dielectric and structural. 
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Many CCD techniques have produced excellent results in detecting subtle changes 

induced by natural hazards and human activities (A Bouaraba et al., 2012; Geudtner 

et al., 1996; G. Nico et al., 2000; Preiss, Douglas, et al., 2006). These techniques 

were based on the statistics of the coherence and difference in the coherence 

magnitude (A Bouaraba et al., 2012; Grey et al., 2003). Some researchers have 

proposed change estimation based on hypothesis testing with likelihood-ratio-based 

statistics (Newey et al., 2012). This method has been further extended into 

polarimetric coherence cases (Barber, 2015). Furthermore, the coherences generated 

from three-pass data have been used to reduce the false alarm rate induced by 

vegetation (Barber et al., 2012). Other researchers have adopted multispectral land-

cover classification in CCD using a Bayesian approach (Yu et al., 2014). In (Wahl et 

al., 2016), a new estimator was proposed to account for false alarms associated with 

a low cluster-to-noise ratio.  

So far, however, the physical process that affects the statistics of the 

interferometric phase has not been fully considered in CCD techniques. Coherence 

is affected by a variety of components such as radar geometry, radar parameters, and 

surface conditions. Temporal decorrelation, in particular, is a mixture of natural 

changes and changes possibly associated with disaster events. Thus, ambiguities in 

conventional CCD techniques still remain where temporal decorrelation caused by 

natural phenomena is dominant such as over vegetated areas, which are likely 

affected by the wind or seasonal changes. When decorrelation caused by a certain 

event is coupled with temporal decorrelation from wind or rain, isolating the two 

different decorrelation sources is difficult and leads to poor change detection 

performance. Therefore, it is necessary to understand the effect of temporal 

decorrelation on the interferometric coherence of both natural processes and major 

events for isolating the natural changes from changes caused by the major event.  

Also, the damage delineation method mainly utilized the single threshold to 
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detect the damaged area because they implement the spatial information only using 

one or two interferometric pairs. However, the uncertainty can arise when the 

scatterers with different physical properties react differently to the natural disasters. 

The high false alarm and low true detection can be severe if input images contain a 

variety of surface types. The problem cannot be overlooked even in the forested area, 

because the canopy height, spatial density of tree, and attenuation of microwave also 

affect the interferometric coherence. Therefore, the strategy to set different criteria 

in pixel by pixel is required. 

Recently advanced SAR system can obtain the full-polarimetric SAR images 

which are also used in interferometry. The change detection techniques using multi-

polarization SAR data successfully estimated to change by focusing on the on the 

image magnitude (Moser et al., 2006a; Rignot & Zyl, 1993). Meanwhile, analysis 

using the complex correlation of multi-temporal SAR data for quad-polarimetric 

SAR data is not fully exploited even though it has potential to detect changes 

successfully. In addition, the full-polarimetric interferometric SAR data measure the 

different phase centers with different polarization. Therefore, a new technique using 

multi-temporal and full-polarimetric data for change detection needs to be evaluated.  

 

1.3. Purpose of Research 
 

In the previous subsection, the possible reasons were outlined to degrade the 

performance of damage mapping using only coherence. To overcome the problems 

and obtain the desired result might be relied on what information can be derived and 

how to apply them. The main concept of this study starts from that the additional 

information to discriminate the contribution of damage and natural phenomena can 

be found in the multitemporal dataset. The historical behavior of coherences 

involved in multi-temporal data before the disaster can provide the statistical 

distribution of value which is associated with the natural phenomena. However, the 
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exploitation of decorrelation sources in multi-temporal data is fundamentally 

preceded before the damage assessment. The coherence is determined by diverse 

decorrelation sources. In particular, the temporal decorrelation severely affects the 

coherence in the multitemporal dataset which has a long temporal baseline (i.e. a few 

days to a few years). Therefore, the temporal decorrelation model for multi-temporal 

data should be formulated to explain the coherence behavior. Then, the proposed 

model will be extended to the application of change detection. At the same time, the 

potential of the coherence model to extend to the polarization issue is also taken into 

consideration. 

This research aims to estimate the damaged area caused by the disaster based 

on the coherence calculated from single-polarimetric and full-polarimetric SAR data 

using temporal decorrelation model. Firstly, the coherent behavior will be interpreted 

based on the model, then, the inversion process for the extraction of the parameters 

will be designed for single-polarized data. For a case study, changed area by the 

volcanic ash deposit which was emitted due to the eruption of Kirishima volcano in 

January 2011 will be estimated. Secondly, the coherent changes will be analyzed for 

multi-temporal and full-polarimetric SAR data. Then, the inversion of the temporal 

decorrelation model and change detection method will be designed. The study will 

focus on the Lake fire which occurred in July 2015 in California, USA. 

The main objectives can be summarized as followings 

 Formulation of the temporal decorrelation model for the multitemporal 

dataset which has a long temporal baseline 

 Development of coherence change detection technique for multi-temporal 

and single-polarized SAR data 

 Development and evaluation of coherence change detection for multi-

temporal and quad-polarized SAR data.  
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1.4. Outline 
 

This research addresses the three main topics: coherence model, damage 

detection using single-polarization and multi-temporal data and damage detection 

using fully-polarized multi-temporal data. Each topic is organized as follows.  

In Chapter 2, the interferometric decorrelation sources are reviewed and a 

temporal decorrelation model to interpret coherence observations from multi-

temporal and single-polarization SAR data is proposed.  

In Chapter 3, how to estimate the model parameters of the temporal 

decorrelation model for coherence change detection is described. The strategy is 

evaluated using Japan Aerospace Exploration Agency’s (JAXA’s) ALOS-PALSAR 

data acquired before and after the eruption of the Kirishima volcano in Japan in 2011. 

Using in-situ data, validation of result and discussion about the limitations of the 

approach is explained.  

In Chapter 4, the damage mapping algorithm using coherence model for the 

multi-temporal and full-polarized data. Accordingly, the inversion method and 

damage assessment are discussed. The approach was applied to the UAVSAR data 

for detection of burnt area by Lake Fire, 2015 which occurred in California, US.  

In Chapter 5, the study is summarized and the future study is discussed. 
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Chapter 2.  
Estimation of complex correlation and 
decorrelation sources 

 

2.1. Estimation of complex correlation  
 

The complex correlation is defined as 

γ =
〈𝑠1 𝑠2

∗〉

√〈𝑠1 𝑠1
∗〉〈𝑠2 𝑠2

∗〉
= |𝛾| exp(𝑗𝜙0)                        (2.1) 

where 𝑠1 and 𝑠2 are the complex pixel values of two SAR images, and the angular 

brackets denote ensemble averaging (Zebker et al., 1992). The magnitude of the 

complex correlation coefficient, with 0≤ |𝛾| ≤ 1, is often called simply “coherence”. 

The coherence is used as the estimator of phase noise. The argument of γ is the 

effective phase difference which contains the flat-earth, topographic, displacement 

and atmospheric phase delay contributions.  

The properties of complex correlation can be understood using the statistical 

approach because the complex values of SAR images, including the real and 

imaginary part of complex values, usually have circular Gaussian distribution. The 

joint probability density function of the interferometric phase 𝜙 and amplitude 𝑎 

can be written as (Touzi et al., 1999) 

𝑝𝑑𝑓(𝑎, 𝜙)

=
2𝐿(𝐿𝑎)𝐿

𝜋𝜍𝐿+1(1 − |γ|2)Γ(𝐿)
exp (

2|γ|𝐿𝑎 cos( 𝜙 −  𝜙0) 

𝜍(1 − |γ|2)
)  𝐾𝐿−1 (

2𝐿𝑎

𝜍(1 − |γ|2)
) (2.2) 

 

where 𝜍 = √𝐸(𝑠1)𝐸(𝑠2)  and  𝐾𝐿−1() is the modified Bessel function. Γ is the 

gamma function for the looks, L. By integrating over amplitude, a, the marginal 

probability density function of the phase, 𝑝𝑑𝑓(𝑎, 𝜙), can be obtained as  
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Fig. 2. 1. Probability density function of interferometric phase for coherence and the 

number of looks. Coherence levels range from 0.9, 0.7, 0.5, 0.3, and 0.1. The 

narrowest distribution corresponds to 0.9 coherence. 

𝑝𝑑𝑓(𝜙) 

=
(1 − |γ|2)𝐿

2𝜋
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1
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1
2
)
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1
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Γ(𝐿 − 1)
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(1 − 𝛽2)𝑟+2

𝐿−2

𝑟=0

]                                (2.3) 

 

𝛽 = |γ| cos( 𝜙 −  𝜙0)                                          (2.4) 

 

Then, the probability density function of interferometric phase, 𝜙, for variables γ, 

L,  𝜙0 can be plotted as shown in Fig. 2.1. The variance of interferometric phase 

can be calculated based on the probability density function as 
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Fig. 2. 2. Phase standard deviation for coherence and number of looks. 

 

∫ [𝜙 − 𝐸(𝜙)]2𝑝𝑑𝑓(𝜙)𝑑𝜙
𝜋

−𝜋

                                    (2.5) 

Based on the probability density functions of interferometric phase, the increase of 

the number of looks makes the shape of distribution narrow. Hence, by applying the 

sufficient looks, the measured phase is expected to be close to true phase. Also, the 

high coherence value tends to yield narrow distribution, and it implies that the phase 

is sufficiently reliable. Similarly, the phase standard deviation increase as the 

coherence decrease as shown in Fig.2.2. For the distributed target of single look 

images, the phase standard deviation is relatively high, even though the coherence is 

high. Therefore, the coherence is an indicator or a measure for the accuracy of 

interferometric phase having a nonlinear relationship between the phase standard 

deviation and coherence. 

The estimator of coherence could have a bias if the sufficient number of looks is 

not used. The bias in the coherence magnitude d can be described:  
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Fig. 2. 3. Biased coherence versus true coherence for a various number of looks. 

 

E(d) =
Γ(L)Γ (1 +

1
2
)

Γ (L +
1
2
)

∙3 𝐹2 (
3

2
, 𝐿, 𝐿; 𝐿 +

1

2
; 1; 𝐷2) (1 − 𝐷2)𝐿     (2.6) 

where D is the unbiased coherence (true coherence), and L is the number of looks 

(Touzi et al., 1999). Fig 2.3. shows the relation between the unbiased coherence and 

the biased coherence with regarding the number of looks. It is clearly observed that 

the estimation of coherence is more biased at the lower coherence or the smaller 

estimation window. Thus, the efficient way to estimate the coherence correctly is the 

use of the sufficient number of looks.  

 

2.2. Decorrelation sources  
 
 

In general, the coherence ranges between 0 and 1. For completely coherent 

scatterers, γ = 1; however, this condition is extremely uncommon in repeat-pass 

interferometry owing to a variety of decorrelation effects. Decorrelation can be 

divided into four components: geometric, volumetric, temporal, and thermal 
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decorrelation (Bamler et al., 1995; Wei et al., 2010; Zebker & Villasenor, 1992). 

γ = γ𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐γ𝑡ℎ𝑒𝑟𝑚𝑎𝑙γ𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙&𝑣𝑜𝑙𝑢𝑚𝑒                       (2.7) 

 

2.2.1. Thermal decorrelation  

 

Thermal decorrelation is determined by thermal noise in the interferometric 

instrument. Thermal noise is typically assumed to have Circular-Gaussian statistics. 

The scattered signal consists of signal parts and noise parts, such as  

𝑠1 = 𝑐 + 𝑛1     𝑠2 = 𝑐 + 𝑛2               (2.8) 

The coherence determined by only thermal decorrelation can be described as 

(Bamler & Just, 1995; Zebker & Villasenor, 1992),  

γ𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 
〈𝑐𝑐∗ + 𝑐𝑛2

∗ + 𝑐∗𝑛1 + 𝑛1𝑛2
∗〉

√〈𝑐𝑐∗ + 2𝑐𝑛1
∗ + 𝑛1𝑛1

∗〉〈𝑐𝑐∗ + 2𝑐𝑛2
∗ + 𝑛2𝑛2

∗〉
            (2.9) 

Then the noise parts are assumed to be uncorrelated and the signal is uncorrelated 

with the noise parts,  

𝐸(n) = 𝐸(𝑛1) = 𝐸(𝑛2)                                     (2.10) 

γ𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 
〈𝑐𝑐∗〉

√〈(𝑐𝑐∗ + 𝑛𝑛∗)2
〉

=
|𝑐|2

|𝑐|2 + |𝑛|2
                      (2.11) 

The signal to noise ratio is |𝑐|2/|𝑛|2 and thermal decorrelation can be written as  

γ𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
1

1 + 𝑆𝑁𝑅−1
                                      (2.12) 

Consequently, the thermal decorrelation is related to the signal-to-noise ratio 

(SNR) of the scatterers illuminated by radar signal (Wei & Sandwell, 2010; Zebker 

& Villasenor, 1992). The variance of the interferometric phase depends on the SNR. 

Thus, pixels with high SNR generally exhibit high coherence. Because the 

magnitude of the returned SAR signal varies depending on the response of the 

scatterers, the thermal decorrelation also varies pixel by pixel. The SNR can be 
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Fig. 2. 4. Thermal decorrelation as a function of SNR. 

 

estimated by dividing the radar backscattering coefficient (0) by the noise 

equivalent sigma zero (NESZ) (Sun et al., 2010).  

  

2.2.2. Geometric decorrelation 

 

Geometrical decorrelation is caused by the shift of wavenumber spectra when data 

acquired at different incidence angle from different acquisition positions of two 

sensors (Gatelli et al., 1994). The relative shift of the ground wavenumber is related 

to the baseline, and the local slope angle. If let α be local slope angle, the ground 

range wavenumber 𝑘𝑦 can be described as,  

𝑘𝑦 =
4𝜋

𝜆
sin(𝜃 − 𝛼) =

4𝜋𝑓

𝑐
sin(𝜃 − 𝛼)                     (2.13) 

Then, its deviation can explain the variation of 𝑘𝑦 as a change of the look angle, 

𝛥𝜃.  
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Fig. 2. 5. Geometry of SAR sensor (left) and geometric decorrelation for a function 

of baseline and slope angle in the case of ALOS PALSAR, FBS mode. 

 

Δ𝑘𝑦 =
4𝜋𝑓Δ𝜃

𝑐
cos(𝜃 − 𝛼)                                    (2.14) 

The ground wavenumber shift can be expressed as the expression of equivalent 

frequency shift, Δ𝑓. This can be obtained by differentiation of above equation.  

Δ𝑓 = −
𝑓Δ𝜃

tan(𝜃 − 𝛼)
= −

c𝐵𝑛

𝑟0𝜆 tan(𝜃 − 𝛼)
                        (2.15) 

The expression means that the backscattered signal contained the shifted spectral 

components. The scattered signal of two images acquired at different positions is 

totally uncorrelated, as the frequency shift Δ𝑓 equal to bandwidth, 𝑊. Based on 

this, the critical baseline is determined as (Gatelli et al., 1994),  

|𝐵𝑐𝑟𝑖𝑡.| = |
𝑊𝑟0𝜆 tan(𝜃 − 𝛼)

𝑐
|                                    (2.16) 

Additionally, the spatial resolution of range direction is determined the bandwidth 

of the chirp signal of SAR sensor. Thus, the critical baseline can be expressed as a 

function of resolution, ρ𝑟.  

|𝐵𝑐𝑟𝑖𝑡.| = |
𝑟0𝜆 tan(𝜃 − 𝛼)

2ρ𝑟
|                                        (2.17) 

Now, the geometrical decorrelation can be defined using the calculated critical 

baseline (Gatelli et al., 1994; Zebker & Villasenor, 1992).  
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Fig. 2. 6. Geometric decorrelation for a function of slope angle with perpendicular 

baseline, in the case of ALOS PALSAR, FBS mode. 

 

γ𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = 1 −
𝐵⊥

𝐵𝑐𝑟𝑖𝑡
                                         (2.18) 

The formulated geometrical decorrelation is determined by the geometric parameter 

such as distance to the target, incidence angle, and local slope angle, and the system 

parameters such as wavelength, and bandwidth. Thus, the geometrical decorrelation 

is different depending on the SAR sensors and location of scatterers. In the case of 

ALOS PALSAR, the fine beam single (FBS) and fine beam double (FBD) mode are 

usually used for SAR interferometry. The bandwidths of FBS and FBD are 28 MHz 

and FBD 14 MHz, respectively. Thus, the critical baselines are ~ 14km and 7 km for 

FBS and FBD modes. The geometric decorrelation of FBS mode was plotted in Fig. 

2.5. As expected, the longer baseline results in the lower coherence. Since the 

geometric decorrelation is sensitive to the slope angle as well, the effect of the 

geometric decorrelation varies on the locations. Also, the geometric decorrelation 

can be plotted as a function of slope angle as shown in Fig. 2.6. When the vector of 

the line of sight is normal to the plane of the slope, 𝜃 = 𝛼  , the geometric 

decorrelation dramatically affect the coherence so that coherence become zero. In 

contrast when the line of sight vector is parallel to the slope plane, the geometric 
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coherence is almost 1. However, if the slope angle is less than 𝜃 − 90 , the 

transmitted signal of SAR sensor cannot reach the surface. This is known as “shadow 

effect”, which is present in SAR images. It should be taken into account for analysis 

of geometric decorrelation. Therefore, coherence can be estimated in the range of 

slope angle, 𝜃 − 90 <  𝛼 < 𝜃 . The common band filtering, which filter out the 

uncorrelated frequency parts of the two scenes, and utilize the only common parts 

(Wei & Sandwell, 2010).  

 

2.2.3. Volumetric decorrelation 

 

Volumetric decorrelation originates from the scattering of radar microwaves 

within a volume such as forest canopies (J. I. Askne et al., 1997; Treuhaft et al., 2000; 

Zebker & Villasenor, 1992). For simplicity of the model, here the volume layer is 

assumed as uniformly distributed and randomly oriented scattering elements with an 

underlying surface. If the vertical coordinate is denoted as 𝑧, it can be assumed that 

the surface layer is located at 𝑧 = 𝑧0 and the height of the volume layer can be 𝑧 =

𝑧0 + ℎ𝑣 , where ℎ𝑣  is the canopy height. When the sensor illuminates the target 

media with slightly different distance (or angular angle), the interferometric complex 

coherence in the volume layer can be formulated by using the structure function, 

𝑝(𝑧) as:  

𝛾𝑣 =
〈𝑠1 𝑠2

∗〉

√〈𝑠1 𝑠1
∗〉〈𝑠2 𝑠2

∗〉
=

∫〈𝜌1(𝑧)𝜌2
∗(𝑧)〉𝑑𝑧

√∫〈𝜌1(𝑧)𝜌1
∗(𝑧)〉𝑑𝑧 ∫〈𝜌2(𝑧)𝜌2

∗(𝑧)〉𝑑𝑧
 

=
∫ 𝑝(𝑧)𝑒𝑖𝑘𝑧𝑧𝑑𝑧

ℎ𝑣

0

∫ 𝑝(𝑧′) 𝑑𝑧
ℎ𝑣

0

                                                  (2.19) 

𝜌2(𝑧) = 𝜌1(𝑧)𝑒
𝑖𝑘𝑧𝑧                                            (2.20) 

where 𝜌1(𝑧) and 𝜌2(𝑧) are the complex reflectivity per unit length. Here, 𝑘𝑧 is 

the vertical wavenumber:  
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𝑘𝑧 =
4𝜋∆𝜃

𝜆 sin 𝜃
=

4𝜋𝐵𝑝𝑒𝑟𝑝

𝜆𝑅0 sin 𝜃
                                        (2.21) 

In Eq. (2.21), 𝜆 is the wavelength of radar signal, 𝜃 is the mean look angle, and ∆𝜃 

is the difference between two look vectors of the interferometric pair, which is a 

function of the slant range distance from the sensor to the target, 𝑅0 , and the 

perpendicular baseline, 𝐵𝑝𝑒𝑟𝑝 . The structure function, 𝑝(𝑧),  which physically 

means the attenuated backscatter per vertical unit length, is determined by the mean 

backscatter density of the volume layer, 𝑚𝑣, the attenuation of wave propagation in 

the volume layer and thickness of volume layer.  

In order to understand the effects of the volume layer only, here, the ground 

scattering contribution is ignored first, and later the model will contain the ground 

effect also. In order to depict the vertical structure function, one frequently assumes 

the uniform profiles and exponential profiles. If the uniform profile is introduced, 

the Eq.(2.19) is rewritten as:  

𝛾𝑣 =
𝑒𝑖ℎ𝑣𝑘𝑧 − 1

𝑖ℎ𝑣𝑘𝑧
= e

𝑖ℎ𝑣𝑘𝑧
2

sin (
ℎ𝑣𝑘𝑧

2
)

ℎ𝑣𝑘𝑧
2

= e
𝑖ℎ𝑣𝑘𝑧

2 sinc (
ℎ𝑣𝑘𝑧

2
)        (2.22) 

The model is simplified as the simple Sinc function which has two variables of 

volume canopy height and vertical wavenumber. This model is beneficial in the 

estimation of canopy height when the quantity of independent parameter is limited 

as in single-pol space-borne SAR system (Balzter, 2001; Olesk et al., 2015; Praks et 

al., 2012). 

If the exponential profile is assumed for the attenuation, the structural function 

can be expressed as a one-way extinction coefficient, 𝜎𝑒:  

𝑝𝑣(𝑧) = 𝑚𝑣 exp(2𝜎𝑒(𝑧
′ − ℎ𝑣)sec𝜃),                             (2.23) 

The numerator in Eq (2.19) is rearranged as:  
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∫ 𝑝(𝑧′)𝑒𝑖𝑘𝑧𝑧
′
𝑑𝑧′

ℎ𝑣

0

= ∫ 𝑚𝑣𝑒
2𝜎𝑒(𝑧′−ℎ𝑣)

cos𝜃 𝑒𝑖𝑘𝑧𝑧
′
𝑑𝑧′

ℎ𝑣

0

 

=
𝑚𝑣

2𝜎𝑒
cos 𝜃

+ 𝑖𝑘𝑧 
[𝑒𝑖𝑘𝑧ℎ𝑣 − 𝑒

−2𝜎𝑒ℎ𝑣
cosθ   ]                          (2.24) 

Also, the denominator is rewritten as:  

∫ 𝑝(𝑧′) 𝑑𝑧′
ℎ𝑣

0

= ∫ 𝑚𝑣 exp(2𝜎𝑒(𝑧
′ − ℎ𝑣)sec𝜃)  𝑑𝑧′

ℎ𝑣

0

 

= 𝑚𝑣

cos 𝜃 

2𝜎𝑒
[1 − 𝑒

−
2𝜎𝑒ℎ𝑣
cos𝜃 ]                                     (2.25) 

Thus, the interferometric complex coherence of volume can now be:  

𝛾𝑣 =
2𝜎𝑒 sec 𝜃

2𝜎𝑒𝑠𝑒𝑐𝜃 + 𝑖𝑘𝑧 
[
𝑒𝑖𝑘𝑧ℎ𝑣 − 𝑒

−2𝜎𝑒ℎ𝑣
cosθ   

1 − 𝑒
−

2𝜎𝑒ℎ𝑣
cos𝜃

]                  (2.26) 

Now, the volumetric coherence in volume layer is determined by the wavenumber, 

 
Fig. 2. 7. Volume coherence for functions of extinction coefficient and canopy 

height. The volume coherence at 0 dB/m is coincident to the case that structure 

function is assumed as constant.  

Volume coherence vs canopy height ( = 0.1)

0.75  dB/m

0.3    dB/m

0.125 dB/m

0    dB/m (uniform profile)
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canopy height, and extinction coefficient, and incidence angle. As shown in Fig. 2. 

7, the volume coherence model shows slowly decreasing trend as the canopy height 

increase at high extinction coefficient. This is because the transmitted signal from 

radar less penetrated the target media, and the interferometric phase does not 

significantly vary along the vertical direction. Meanwhile, at the zero-extinction or 

uniform profiles, the interferometric phases from bottom to top evenly contribute the 

volume coherence, thus, the volume coherence decreases fast. This result implies 

that in real nature, the volume decorrelation is more severe in the forest with sparse 

branches than the dense branches.  

The wave with long wavelength (i.e. L-band and P-band) often penetrates the 

volume layer and reaches to the rough surface. The Radom Volume over Ground 

(RVoG) model depicts the coherence model including volume and ground layers (S. 

R. Cloude & Papathanassiou, 1998; Konstantinos P Papathanassiou & Cloude, 2001). 

In the case of the ground layer, the complex coherence is described as:  

𝛾𝑔 = 𝑒𝑖𝑘𝑧𝑧0                                                         (2.27) 

Hence, the magnitude of the coherence of ground layer does not change, but the 

phase is determined by the altitude of the ground lever and vertical wavenumber.  

 

Fig. 2. 8. Schematic representation of random volume over ground model. (a) 

Actual geometry of sensors and forest, and (b) simplified two layers model.  
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Fig. 2. 9. Volumetric decorrelation changes for a function of ground-to-volume ratio, 

extinction coefficient, baseline and volumetric height.  

The coherence depicted in RVoG model is explained as two contributions of ground 

and volume layer. Thus, the structure function now has the term related to the ground 

layer. 

𝑝𝑔𝑣(𝑧) = 𝑚𝑣𝑒
(2𝜎𝑒(𝑧′−ℎ𝑣)sec𝜃) + 𝑒

−2𝜎𝑒ℎ𝑣
cos𝜃 𝑚𝑔𝛿(𝑧 − 𝑧0)             (2.28) 

Thus, the final two-layer coherence model for the volume decorrelations can be 

expressed as follows: 

 𝛾(𝑤) = 𝑒𝑖𝑘𝑧𝑧0
𝑚0𝑣(𝑤)𝛾𝑣𝑒−𝑖𝑘𝑧𝑧0 + 𝑝𝑔𝑚𝑔(𝑤)

𝑚0𝑣(𝑤) + 𝑝𝑔𝑚𝑔(𝑤)
= 𝑒𝑖𝑘𝑧𝑧0

𝛾𝑣𝑒−𝑖𝑘𝑧𝑧0 + 𝜇(𝑤)

1 + 𝜇(𝑤)
  (2.29) 

𝑝𝑔 = 𝑒−2𝜎𝑒ℎ𝑣/ cos𝜃                                                 (2.30) 

where 𝛿(𝑧 − 𝑧0) is delta function. 𝑚𝑔 indicates the attenuated scattering from  

𝑚0𝑣(𝑤) = (
cos 𝜃0

2𝜎𝑒
(1 − 𝑒

−
2𝜎𝑒ℎ𝑣
cos𝜃 ))𝑚𝑣(𝑤).                   (2.31) 



 

 ２４ 

𝜇(𝑤) =
𝑝𝑔𝑚𝑔(𝑤) 

𝑚0𝑣(𝑤)
=

2𝜎𝑒𝑒
−

2𝜎𝑒ℎ𝑣
cos𝜃 𝑚𝑔(𝑤)

cos 𝜃0 (1 − 𝑒−2𝜎𝑒ℎ𝑣/ cos𝜃) 𝑚𝑣(𝑤) 
 .         (2.32) 

As a result, the volumetric decorrelation assuming two simplified layers have the 

structure parameters such as extinction coefficient, and volumetric height, system 

parameters such as the wavelength of the sensor, and geometric parameters such as 

baseline, and distance to the target from the sensor. Here, 𝑤  represents the 

polarimetric scattering mechanism. Note that 𝑚𝑣  and 𝑚𝑔  are the polarization-

dependent scattering cross-section of volume and ground layer respectively, 

meanwhile the extinction coefficient of volume layer, 𝜎𝑒 , does not change with 

polarization. Accordingly, the ground-to-volume ratio 𝜇, which is a function of 𝑚𝑣 

and 𝑚𝑔 , is polarization-dependent parameter. Hence, the coherence observed in 

forest area is effectively determined by the each contribution of the surface and 

volume layer. This characteristic is discriminatory property with the model 

considering only the volume layer.  

The difference of incidence angle between two geometries at acquisitions is a 

function of the distance from sensor to target in slant range plane and the spatial 

baseline, B. The expected volumetric decorrelation based on the RVoG model can 

be simulated with the deterministic parameters such as extinction coefficient, canopy 

height, baseline, and ground-to-volume ratio as shown in Fig 2.9.    
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 Fig. 2. 10 shows the relationship between the volume coherence and ground-

to-volume ratio. High ground-to-volume ration indicates the ground contribution is 

dominant, meanwhile, low ground-to-volume ratio represents the volume-dominant. 

It is worth noting that the amplitude of the coherence does not monotonically 

increase as the ground-to-volume ratio increase. When the volume contribution is 

dominant, the coherence decrease as a ground-to-volume ratio increase. Under the 

 
Fig. 2. 10. Volume coherence versus Ground-to-volume ratio with (a) extinction 

coefficients assuming the canopy height is 15 m and (b) canopy height assuming 

the extinction coefficient is 0.15 dB/m.  
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condition that ground contribution is similar to the volume contribution, the 

coherence become low. Consequently, the minimum value is observed at some value 

between high and low ground-to-volume ratio. This is because the ground 

component make the effective phase center moves to the ground, and consequently, 

the complex coherence of ground and volume layer is mixed. After the order of the 

ground component is similar to the volume layer, the ground component is stronger 

as the ground-to-volume ratio increase. Hence, the coherence of two-layer model 

increases.  

Also, it is important that a high extinction coefficient induces high coherences 

at the low ground-to-volume ratio, however, it leads to the low coherences at the 

high ground-to-volume ratio. As mentioned above, the high extinction represents 

that the signal is likely to return at top of the forest. Hence, the interferometric phase 

is less varied, the coherence is high. In contrast, the interferometric phase is more 

diverse when the extinction coefficient is low due to the high penetration. Adding 

the more ground components, the signal from the surface is stronger. It implies that 

interferometric phase is more varied along the vertical direction. The volume layer 

with high extinction is still influent on the coherence, thus, the coherence is relatively 

low. However, since the ground contribution is strong at low extinction, the 

coherence is mainly determined by the ground component, hence, the coherence 

could be high.  

In Fig. 2. 10. (b), the coherence is depicted as the ground-to-volume ratios 

increase with the canopy height. The higher canopy height induces the more 

variation of coherence with the changes of the ground-to-volume ratio.  

Recent research efforts using polarimetric SAR interferometry aim at retrieving 

the structural parameters of forests using a two-layer model in which the properties 

of coherence and interferometric phase are sensitive to forest vertical structure and 

height (S. R. Cloude & Papathanassiou, 1998; Konstantinos P Papathanassiou & 
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Cloude, 2001). The number of the unknowns used in the RVoG model is four 

(hv, 𝜎𝑒 , 𝑧0, 𝜇1) and the number of observable is two in the case of acquisition of 

single-pol and single-pass interferometry. By incorporating the fully polarimetric 

and single-pass interferometric system, the two additional unknowns ( 𝜇2, 𝜇3) 

corresponding to the newly added polarizations are involved the model, while the 

four additional observables are available. Thus, the RVoG model is able to interpret 

the volumetric decorrelation in polarimetric SAR interferometry (S. Cloude et al., 

2003). However, the applications have been limited for only airborne SAR campaign 

experiments so far, because of the temporal decorrelation. The temporal 

decorrelation indicates the amount of decorrelation related to the physical, 

morphological, and dielectric changes of target scatterers. If the temporal 

decorrelation present, the coherence is also affected and the model parameters tend 

to be overestimated. It will be more discussed in the next subsection. If the temporal 

baseline is sufficiently short, such that temporal decorrelation is negligible as in the 

case of single-pass interferometry, the model can be used for estimation of the 

canopy height and other physical parameters. Temporal decorrelation can be 

controlled in the airborne-SAR campaign, thus, many studies describes the 

approaches with the airborne SAR data (M. Neumann et al., 2010; Konstantinos P 

Papathanassiou & Cloude, 2001). The current space-borne system to minimize the 

temporal decorrelation is TanDEM-X which operates the two coincident X-band 

SAR sensors with few temporal baseline (Krieger et al., 2007). Since TanDEM-X 

provides only single- and dual- polarization data, PolinSAR techniques using Dual-

polarization have been proposed and demonstrated (Kugler et al., 2014) 

In single-polarization SAR interferometry, since the quantity of the parameters 

exceeds that of observations, the RVoG model parameter cannot be accurately 

retrieved. The single-pol and single-pass interferometric pair measures the location 

of a phase center which is effectively determined by the systematic, geometric, and  
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Fig. 2. 11. Coherence change using Random-Volume-over-Ground (RVoG) model 

for a variety of forest parameters: (a) As a function of wavenumber and extinction 

coefficient 𝒌𝒆 assuming canopy height 𝒉𝑽 = 20 m. (b) As a function of wavenumber 

and canopy height assuming vertical extinction 0.1 dB/m. 

 

structural parameters. The conventional interferometric pair with single-polarization 

provides only one measurement, and it implies the interpretation is restricted and has 

an ambiguity without the prior information of forest.  

If one is interested in the remaining decorrelation except for the volume 

decorrelation, the volume coherence needs to be estimated and compensated. As 

mentioned above, the accurate amount of volume decorrelation can be retrieval 
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under the case of single-pass interferometry with more than dual-polarizations. 

Alternatively, the conditions to minimize the volume coherence can be priory 

searched. In order to minimize the volumetric decorrelation, several assumptions can 

be incorporated into the RVoG model, depending on the properties of the forest and 

the characteristics of the interferometer. One of the robust ideas is to find the 

bounding conditions of perpendicular baseline. In practical, the forest parameter is 

unknown and uncontrollable unless the prior knowledge is given, meanwhile, the 

baseline is controllable. In this study, the volumetric decorrelation was bounded 

which is observed by ALOS-PALSAR to minimal value so that the observed total 

coherence is dominated by temporal decorrelation, which is key to estimating the 

changes in the imaged scenes. The RVoG coherence versus the perpendicular 

baseline for different values of canopy extinction coefficient and canopy height was 

plotted in Fig. 2. 11. The figure shows that the volumetric coherence is higher than 

0.94 for perpendicular baselines smaller than 1 km assuming 20 m canopy height 

and 0.1 dB/m extinction coefficient. Therefore, in order to neglect the contribution 

of the volumetric decorrelation in the total observed coherence, use of an 

interferometric baseline shorter than 1 km (i.e., an interferometric wavenumber 

smaller than 0.10 rad/m) is recommended. 

 

2.2.4. Temporal decorrelation 

 

. Temporal decorrelation is related to the alteration of the position and dielectric 

changes of the scatterers, typically caused by wind, rain, snow, or other natural 

events (Rosen et al., 2000; Zebker & Villasenor, 1992). In single-pass interferometry, 

where two or more images are acquired simultaneously, there are no effects related 

to changes in scattering characteristics such as the motion of the scatterers and 
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biological growth; thus, temporal decorrelation is negligible. However, in repeat-

pass interferometry, where images are acquired at different times and look angles, 

the physical changes of scatterers over the time period, the temporal decorrelation 

could be observed.  

The physical sources inducing the temporal decorrelation could be categorized 

into two groups. One is the decorrelation induced by the positional changes of 

scatterers, which is also known as motion-induced decorrelation (Lavalle et al., 2012; 

Zebker & Villasenor, 1992). The other is associated with the dielectric properties 

changes including soil moisture change, roughness changes, vertical structure 

profiles changes, and etc. (De Zan et al., 2014; Hajnsek et al., 2008; Morrison et al., 

2011; Nesti et al., 1998; Zwieback et al., 2015). The former alters only the 

interferometric phase but does not induce the backscattering amplitude changes. 

Therefore, the coherence can be a good indicator to identify the motion-induced 

decorrelation. Meanwhile, the latter leads to the loss of coherence and may change 

the amplitude as well. 

The explanation of the temporal decorrelation induced by the positional changes 

 

 

Fig. 2. 12. Schematic representation of scatterer motion for temporal decorrelation. 
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usually adopts the Gaussian-static motions (Zebker & Villasenor, 1992). Let X, Y, 

and Z represent along-track, cross-track, and vertical axis, respectively and O 

represents the center of resolution cell. Then, the distance between antenna and 

resolution cell is assumed to be r. Let assume a target in resolution cell, and its 

coordinate as (𝑥, 𝑦, 𝑧). The phase variation of the pixels at the signal can be described 

as  

𝑠1 = ∭𝑓1(𝑥, 𝑦, 𝑧) exp {−𝑖 
4𝜋

𝜆
(𝑟 + 𝑦 sin 𝜃 − 𝑧 cos 𝜃)} × 𝑊(𝑥, 𝑦)𝑑𝑥𝑑𝑦𝑑𝑧 (2.33) 

where 𝑓1(𝑥, 𝑦, 𝑧) is the complex backscatter density, 𝜆 is the wavelength, 𝜃 is 

the incidence angle, and 𝑊(𝑥, 𝑦) is the system impulse response. In revisited time, 

if the scatterers change their positions to other position, the signal from the second 

antenna can be written as  

𝑠2 = ∭𝑓2(𝑥, 𝑦, 𝑧) exp {−𝑖 
4𝜋

𝜆
(𝑟 + 𝑦 sin 𝜃 − z cos 𝜃)} × 𝑊(𝑥, 𝑦)𝑑𝑥𝑑𝑦𝑑𝑧 (2.34) 

If the backscatter density changes its position without the changes of dielectric 

properties, the backscatter density at second acquisition can be written as  

𝑓2(𝑥, 𝑦, 𝑧) = 𝑓1(𝑥, 𝑦, 𝑧) exp [𝑖
4𝜋

𝜆
{𝑑𝑦 sin 𝜃 + 𝑑𝑧 cos 𝜃}]       (2.35) 

where 𝑑𝑦  and 𝑑𝑧  are displacement of elements along the y and z axis. The 

correlation between the signals is  

𝑠1𝑠2
∗ = ∭∭𝑓1(𝑥, 𝑦, 𝑧)𝑓1(𝑥, 𝑦, 𝑧)∗ exp {−𝑖 

4𝜋

𝜆
(𝑑𝑦 sin 𝜃 + 𝑑𝑧 cos 𝜃)}

× 𝑊(𝑥, 𝑦)𝑊(𝑥, 𝑦)𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑥𝑑𝑦𝑑𝑧                                            (2.36) 

If the uniform system response and the independent probability distributions, 

𝑝𝑦(𝑑𝑦) and 𝑝𝑧(𝑑𝑧), which are the motions displacement along y and z, are assumed, 

after averaging the equation is simplified as  

< 𝑠1𝑠2
∗ >= ∭∬𝜌(𝑥, y, 𝑧) exp {−𝑖 

4𝜋

𝜆
(𝑑𝑦 sin 𝜃

+ 𝑑𝑧 cos 𝜃)} 𝑝𝑦(𝑑𝑦)𝑝𝑧(𝑑𝑧)𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑑𝑦 𝑑𝑑𝑧                         (2.37) 
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The 𝜌(𝑥, y, 𝑧) is the structure function of back scatter density, thus its integration 

may be written as 

∭𝜌(𝑥, y, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝜎0.                              (2.38) 

where 𝜎0  is averaged backscatter density. If the probability density function is 

assumed Gaussian distribution, the temporal decorrelation is described as,  

γ𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = exp {−
1

2
(
4𝜋

𝜆
)
2

(𝜎𝑦
2 sin 𝜃2 + 𝜎𝑧

2 cos 𝜃2)}           (2.39) 

where 𝜎𝑦  and 𝜎𝑧  are standard deviations of displacement at y and z axis. The 

formulated temporal decorrelation is a function of standard deviation of 

displacements of elements in y and z directions. If the variation of the motion is same 

along the all direction, i.e. 𝜎𝑦
2 = 𝜎𝑧

2 = 𝜎𝑟
2, the temporal decorrelation is simplified 

again,  

𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = exp {−
1

2
(
4𝜋

𝜆
)
2

𝜎𝑟
2}                           (2.40) 

So, phenomena increasing the standard deviation, which could be interpreted as 

inhomogeneous movements of elements, could yield loss of coherence. The response 

of the temporal decorrelation could vary on the sensors, which utilize different 

wavelength as shown in Fig. 2. 13. 
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Fig. 2. 13. Theoretical temporal decorrelation induced by motions of scatters for 

three frequencies. L-band (1.27 GHz, 23.4cm), C-band (5.405 GHz, 5.56 cm), and 

X-band (10.25 GHz, 2.94cm). (a) When only horizontal motions exist and (b) when 

horizontal and vertical motions are present.  
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In the forested area, the temporal decorrelation could be different along the 

vertical direction. The temporal coherence behavior has been explained in the 

literature. In this case, the structure function of backscattered signal can be a function 

of volumetric height.  

∭𝜌(𝑥, y, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝜎0 ∫𝜌(𝑧)𝑑𝑧                         (2.41) 

Here, the distribution of backscatter density is assumed homogeneous along the 

range and azimuth direction. Also, by setting the 𝑑𝑧 = 𝑑𝑦 and a new parameter, 

𝑑𝑟 = 𝑑𝑦 sin 𝜃 + 𝑑𝑧 cos 𝜃, which represents the displacement along the line of sight 

direction, the correlation between two signals can be expressed as,  

〈𝑠1𝑠2
∗〉 = 𝜎0 ∬𝜌(𝑧) exp {−

4𝜋𝑑𝑟

𝜆
} 𝑝𝑟(𝑑𝑟 , 𝑧)𝑑𝑧𝑑𝑑𝑟                 (2.42) 

After normalizing the temporal decorrelation along the vertical direction is 

formulated as,  

𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
∬𝜌(𝑧) exp {−

4𝜋𝑑𝑟
𝜆

} 𝑝𝑟(𝑑𝑟 , 𝑧)𝑑𝑧𝑑𝑑𝑟

∫𝜌(𝑧)𝑑𝑧
           (2.43) 

If the Gaussian distribution is assumed about probability density function 𝑝𝑟(𝑑𝑟 , 𝑧), 

the equation is simplified,  

𝛾𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =
∫𝜌(𝑧) exp {−(

4𝜋𝜎𝑟(𝑧)
𝜆

)2} dz

∫ 𝜌(𝑧)𝑑𝑧
                 (2.44) 

The temporal decorrelation in a forested area is a function of standard deviations of 

displacement of elements in the line of sight direction. The formulations of temporal 

decorrelations assuming forested area differ from the normal case in terms of the 

vertical structure of the forest. Thus, the temporal decorrelation could vary along the 

vertical direction of the forest. The expression of temporal decorrelation is described 

only when acquired SAR data have zero baselines. In the presence of rather long 

spatial baseline, the volumetric decorrelation also affects the total coherence. The 

volumetric decorrelation explained in the previous chapter is also the function of 
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height. Then, the temporal and volumetric decorrelation are combined along the 

vertical direction and are difficult to be separated. In that case, the more complicated 

model is required.  

In Addition, it is worth noting that the temporal decorrelation describes only 

phenomena related to the movement of elements. In the real case, the dielectric 

properties of elements in a resolution cell can be affected and changed by a variety 

of natural phenomena. For instance, changes in soil moisture can yield the different 

states of dielectric properties and change the penetration depth, heterogeneously. 

Also, the loss of coherence versus time interval between image acquisition times has 

been reported in the literature (Lombardini et al., Jul. 1998; Rocca, 2007). Therefore, 

the decorrelation induced by motions is appropriate to explain the temporal behavior 

in the dataset which acquired with short temporal baseline (i.e. a few minutes to 

hours). However, for the multitemporal dataset which is acquired with rather long 

temporal baseline (i.e. a few days to months), the temporal decorrelation is not fully 

understood. Therefore, the formulation of the temporal decorrelation model is 

required in use of the multi-temporal coherences. For this, the temporal decorrelation 

model for multitemporal dataset will be explained.  

 

2.3. Derivation of coherence model assuming two layers 
for repeat-pass interferometry 

 
 

Temporal decorrelation is associated with changes in the dielectric and structural 

properties of the scatterers (Lavalle et al., 2015; Zebker & Villasenor, 1992). These 

changes are more likely to occur over longer interferometric time intervals, which 

are typical of the space-borne interferometer. Among the various land covers, 

vegetated areas are more affected by temporal decorrelation owing to the motion of 

leaves and dielectric changes associated with natural growth and leave falling. All 
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these effects change the complex reflectivity in the radar resolution cell and cause 

decorrelation in interferometric radar signals.  

Here, a temporal decorrelation model to describe the coherence behavior 

observed in the repeat pass acquisition strategies with temporal baseline on the order 

of months or years will be formulated. Temporal decorrelation for the forested area 

is decomposed into several terms depending on where the temporal decorrelation 

occurs, i.e., volume or ground, and what induces the temporal decorrelation, i.e., 

motion or dielectric changes. The multiple targets having different behaviors in a 

resolution cell effectively determine the coherence. The vegetated area has the 

distinct and discriminated properties in volume layer and underlying ground layers. 

Hence, the coherence is rather stable even in the long temporal baseline, meanwhile, 

the coherence decreases faster in short temporal baseline (Wei & Sandwell, 2010). 

Motion-induced temporal decorrelation occurs when the scatterers change their 

positions during the time between the acquisitions of two interferometric images 

(Zebker & Villasenor, 1992). Leaves and branches are likely to be randomly 

rearranged by the wind, and their positions are uncorrelated with the initial positions. 

Thus, the motion in the canopy can occur even within timescales of seconds. The 

dielectric properties change includes soil-moisture change, and the structure profiles 

change. They can be observed in rather long timescales of hours or days.  

 

2.3.1. General coherence model involving temporal decorrelation 

 

A widely-used model of the polarimetric-interferometric coherence for 

vegetation employs a volume layer, which comprises uniformly distributed and 

randomly oriented scattering elements, and an underlying surface that represents the 

ground. If the vertical coordinate is denoted by 𝑧, the location of the surface is at 

𝑧 = 𝑧0 and the location of the top of the volume layer at 𝑧 = 𝑧0 + ℎ𝑣, where ℎ𝑣  
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Fig. 2. 14. Schematic representation of random motion over ground 

model. (a) Actual geometry of sensors and forest with motion, and (b) 

simplified two layers model with motion.  
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is the canopy height. In the case of the ground layer, the repeat-pass complex 

coherence is described by the effective temporal decorrelation of the surface, 𝛾𝑡
𝑔

, 

and interferometric coherence: 

γg = 𝛾𝑡
𝑔
𝑒𝑖𝑘𝑧𝑧0                                                     (2.45) 

The temporal decorrelation component in the volume layer, 𝛾𝑡
𝑣(𝑧), as:  

𝛾𝑣 =  𝑒𝑖𝑘𝑧𝑧0
∫ 𝛾𝑡

𝑣(𝑧′)𝑝(𝑧′)𝑒𝑖𝑘𝑧𝑧
′
𝑑𝑧′ℎ𝑣

0

∫ 𝑝(𝑧′) 𝑑𝑧′ℎ𝑣

0

                               (2.46) 

If the exponential profile is assumed for the attenuation, the structure function can 

be expressed as a one-way extinction coefficient, 𝜎𝑒 in Eq. (2. 47) 

𝛾𝑣 =  𝑒𝑖𝑘𝑧𝑧0
𝑚𝑣 ∫ 𝛾𝑡

𝑣(𝑧′)𝑒
2𝜎𝑒(𝑧′−ℎ𝑣)

cos𝜃 𝑒𝑖𝑘𝑧𝑧
′
𝑑𝑧′ℎ𝑣

0

𝑚𝑣 ∫ 𝑒
2𝜎𝑒(𝑧′−ℎ𝑣)

cos𝜃 𝑑𝑧′ℎ𝑣

0

=
𝑒𝑖𝑘𝑧𝑧0𝑚𝑣

𝑚0𝑣
∫ 𝛾𝑡

𝑣(𝑧′)𝑒
2𝜎𝑒(𝑧′−ℎ𝑣)

cos𝜃 𝑒𝑖𝑘𝑧𝑧
′
𝑑𝑧′

ℎ𝑣

0

    (2.47) 

where, 𝑚0𝑣(𝑤) = (
cos𝜃0

2𝜎𝑒
(1 − 𝑒−

2𝜎𝑒ℎ𝑣
cos𝜃 ))𝑚𝑣(𝑤)  

Here, 𝑤 represents the polarimetric scattering mechanism. Eqs. (1) and (6) can be 

combined for a typical forest area if the radar signal penetrates the canopy of forest 

and interaction between ground and canopy is sufficiently strong. Thus, the final 

two-layer coherence model containing the volumetric and temporal decorrelations 

can be expressed as follows: 

 𝛾(𝑤) = 𝑒𝑖𝑘𝑧𝑧0
𝑚0𝑣(𝑤)𝛾𝑣𝑒−𝑖𝑘𝑧𝑧0 + 𝑝𝑔𝑚𝑔(𝑤)𝛾𝑡

𝑔

𝑚0𝑣(𝑤) + 𝑝𝑔𝑚𝑔(𝑤)
= 𝑒𝑖𝑘𝑧𝑧0

𝛾𝑣𝑒−𝑖𝑘𝑧𝑧0 + 𝜇(𝑤)𝛾𝑡
𝑔

1 + 𝜇(𝑤)
     (2.48) 

where, 𝑝𝑔 = 𝑒−2𝜎𝑒ℎ𝑣/ cos𝜃 ,                                                                                         (2.49) 

and 𝜇(𝑤) =
𝑝𝑔𝑚𝑔(𝑤) 

𝑚0𝑣(𝑤)
=

2𝜎𝑒𝑒
−

2𝜎𝑒ℎ𝑣
cos 𝜃 𝑚𝑔(𝑤)

cos𝜃0(1−𝑒−2𝜎𝑒ℎ𝑣/ cos 𝜃) 𝑚𝑣(𝑤) 
 .                                         (2.50) 

Based on the two-layer coherence model, many modifications have been applied to 

extract the physical parameters of forest depending on the strategies of data 
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acquisitions. If the temporal baseline is sufficiently short, such that temporal 

decorrelation is negligible as in the case of single-pass interferometry, the model will 

be coincident with the RVoG used to estimate canopy height and other physical 

parameters. For the case in which the volume temporal decorrelation is a function of 

canopy height and motions of scatterers, the form of the model will be reformulated 

to RMoG (Lavalle & Hensley, 2015; Lavalle et al., 2012). For a scenario with a long 

temporal baseline (i.e., a few months to years) and a near-zero spatial baseline (the 

UAVSAR repeat tracks remain within a 5-m tube), different assumptions for the 

temporal decorrelation can be applied.   

 

2.3.2. Coherence model for zero-spatial baseline and long temporal baseline 

 

For polarimetric interferometric pairs with zero spatial baselines (𝑘𝑧 = 0), the 

volumetric decorrelation component in Eq. (2. 47) vanishes and Eq. (2. 47) becomes 

(Lavalle & Hensley, 2015; Lavalle et al., 2012). 

𝛾(𝑤) =

𝑚𝑣
𝑚0𝑣

∫ 𝛾𝑡
𝑣(𝑧′)𝑒

2𝜎𝑒(𝑧′−ℎ𝑣)
cos𝜃 𝑑𝑧′ℎ𝑣

0
+ 𝜇(𝑤)𝛾𝑡

𝑔

1 + 𝜇(𝑤)
                    (2.51) 

In Eq. (2. 51), the temporal decorrelation of the volume layer 𝛾𝑡
𝑣(𝑧′) is indicated 

as a height-dependent parameter to highlight a general relationship between canopy 

height and motions of scatterer (Lavalle & Hensley, 2015; Lavalle et al., 2012). This 

relationship can be simplified by using the mean-value theorem (Jung et al., 2016). 

According to the mean-value theorem, given two continuous functions, f(x) and g(x), 

within interval (a, b), the definite integral of ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 can be rewritten 

as 𝑓(𝑐) ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
, where mean value “c” is defined on [a, b]. Thus, Eq. (2.51) can 

be rewritten as (Jung et al., 2016) 
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𝛾(𝑤) =

𝑚𝑣
𝑚0𝑣

𝛾𝑡
𝑣(ℎ𝑣0) ∫ 𝑒

2𝜎𝑒(𝑧′−ℎ𝑣)
cos𝜃 𝑑𝑧′ℎ𝑣

0
+ 𝜇(𝑤)𝛾𝑡

𝑔

1 + 𝜇(𝑤)
=

𝛾𝑡
𝑣 + 𝜇(𝑤)𝛾𝑡

𝑔

1 + 𝜇(𝑤)
        (2.52) 

where ℎ𝑣0 is an arbitrary intermediate height in the interval [0, ℎ𝑣]. Note that the 

modification from Eq. (2.48) to Eq. (2.52) reduces the number of variables. This 

algebraic manipulation implies that the phase of the complex coherence for the long-

temporal repeat-pass interferometric pairs is related to the displacement of the 

surface, and the atmospheric phase delay rather than the topographic phase. Also, 

the complex value can be induced by the soil moisture change (De Zan et al., 2014; 

Nolan & Fatland, 2003; Nolan, Fatland, et al., 2003; Zwieback et al., 2015). 

Meanwhile, the amplitude of the observed coherence can be explained mainly by the 

temporal decorrelation and ground-to-volume ratio without volumetric decorrelation. 

Thus, the Eq. (2.52) would be useful for exploiting the temporal decorrelation 

because the volumetric decorrelation and associated physical parameters do not need 

to be taken into consideration.  

For the long temporal baseline, not only wind-induced motion but also dielectric 

changes including soil moisture changes can occur. Modeling dielectric changes in 

the forested area is a challenging task. In order to keep the model with a small 

number of unknowns while capturing the sensitivity of the coherence over long 

temporal intervals, the temporal decorrelation parameter 𝛾𝑡
𝑔

 is assumed to be 

dominated by soil moisture induced dielectric changes whereas the temporal 

decorrelation parameter 𝛾𝑡
𝑣 is assumed to be mainly driven by wind. The rationale 

behind this choice is that soil tends to remain wet for several hours (or days) after 

precipitations, in contrast to canopy elements that tend to dry out faster and be more 

subject to positional changes. Under this assumption,  𝛾𝑡
𝑔

 is complex-valued and 

has dependency on the polarization, meanwhile  𝛾𝑡
𝑣  is real-valued a and 

polarization-independent parameter (Hajnsek et al., 2009). One of the coherence 

behaviors observed in a repeat-pass interferometry scenario with long temporal 
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baselines is that the amplitude of coherence decreases as the time-span of 

interferometric pair increases. This coherence behavior is observed clearly in data 

sets acquired by repeat-pass space-borne SAR systems. The phenomenon is 

explained by the Brownian motion, hence, non-consistent scattering conditions after 

meteorological events such as rain, snow, and wind. This model is a function of the 

temporal baseline and has been adopted to quantify the coherence behavior 

(Lombardini et al., 1998; Rocca, 2007). Indeed, the measured coherences cannot be 

explained by only exponentially decayed model, because the scattering condition 

often changes regardless of time intervals. Consequently, it is necessary to formulate 

the temporal decorrelation using two terms: the temporally correlated changes, 

𝛾𝑡_𝑐𝑜𝑟𝑟 , and temporally uncorrelated (random) changes, 𝛾𝑡_𝑟𝑎𝑛𝑑 , for volume or 

ground layers:  

𝛾𝑡
𝑔

= 𝛾𝑡_𝑐𝑜𝑟𝑟
𝑔

𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

= 𝑒𝑥𝑝 [−
𝛥𝑇

𝜏𝑔

] |𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

|𝑒𝑥𝑝 (𝑖𝜙𝛾𝑡
𝑔)                   (2.53) 

γ𝑡
v = γt_corr

v 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣 = 𝑒𝑥𝑝 [−

𝛥𝑇

𝜏𝑣
] |𝛾𝑡_𝑟𝑎𝑛𝑑

𝑣 |                          (2.54) 

Decomposition of the temporal decorrelation implies that observed coherence of 

every pixel has its unique time-characteristic constants, 𝜏𝑣  or 𝜏𝑔 , to define the 

exponentially decayed line, and that the differences between the line and the 

observed coherence can be interpreted as the temporally uncorrelated changes, 

𝛾𝑡_𝑟𝑎𝑛𝑑. Further, the temporally uncorrelated changes 𝛾𝑡_𝑟𝑎𝑛𝑑 explain the randomly 

generated decorrelation such as rain, snow, strong wind and the collapse of manmade 

structures. Decorrelation caused by sudden events have been reported in the 

literature, and these phenomena were often observed in coherence maps(A Bouaraba 

et al., 2012; G. Nico et al., 2000). The different coherence values are usually 

observed even though the temporal baselines of interferometric pairs are same over 

the same scatterers. According to the proposed model, these coherent differences are 

interpreted as an effect of the temporally uncorrelated dielectric change.  
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Fig. 2. 15. (a) Temporally correlated coherence behavior versus temporal 

baseline when the characteristic time constants are 8000, 4000, 2000, 1000, and 

500 days. (b) Coherence modeled in two layers when characteristic time 

constants of the ground and volume are 5000 and 300 days and the ground-to-

volume ratios are 10, 0, and 10 dB. The lines represent the hypothetical envelopes 

defined by the temporally correlated coherence. The points are the coherences of 

two-layer model for three different ground-to-volume ratios assuming Gaussian 

distributions with 0.85 and 0.4 means and 0.1 and 0.2 standard deviations for 

ground and volume layers, respectively. 
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The temporally uncorrelated term 𝛾𝑑.𝑟𝑎𝑛𝑑  can be divided into 𝛾𝑑,𝑟𝑎𝑛𝑑
𝑔

 and 𝛾𝑑,𝑟𝑎𝑛𝑑
𝑣  

depending on where decorrelation happens. Consequently, the final form used to 

model temporal decorrelation for zero-spatial baseline and long temporal baseline 

case can be formulated as:  

𝛾(𝑤) =

𝑒𝑥𝑝 [−
𝛥𝑇
𝜏𝑣

] |𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣 | + 𝜇(𝑤) 𝑒𝑥𝑝 [−

𝛥𝑇
𝜏𝑔

] |𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

|𝑒𝑥𝑝 (𝑖𝜙𝛾𝑡
𝑔)

1 + 𝜇(𝑤)
         (2.55) 

The coherence model, which is a function of wave polarization, indicates that the 

observed coherence is different depending on the scattering position determined by 

the radar cross section of wave polarization. Thus, the estimated coherence could 

vary depending on the physical properties of forest and surface types even though 

pixels have the same amount of temporal decorrelation in ground and volume layers. 

Also, the formulated model can explain the coherence behavior in a timescale of 

months to years due to the existence of the temporally correlated coherence. If the 

interferometric data is acquired within a timescale of seconds to minutes (i.e. ∆𝑇 ≈

0 ), the contribution of temporally correlated change is almost negligible and 

temporal decorrelation can be interpreted as the result of motion of scatterers. 

Therefore, the form of the model becomes the RMoG model with zero spatial 

baseline, potentially enabling retrieval of the motion standard-deviation (Lavalle & 

Hensley, 2015; Lavalle et al., 2012). However, in Eq. (2. 55), the direct conversion 

from temporal decorrelation to the standard-deviation of motions is ambiguous 

because the dielectric changes should be considered in long-temporal repeat-pass 

scenario.  

The temporally correlated change terms, 𝛾𝑡_𝑐𝑜𝑟𝑟
𝑔,   𝑣

, are defined as functions of the 

characteristic time constants, 𝜏𝑔 and 𝜏𝑣. These variables represent how sensitively 

the scatterers in a resolution cell respond to the natural changes. In Fig. 2. 51(a), the 

envelops of the temporally correlated changes are plotted versus the temporal 

baseline for characteristic time constants of 8000, 4000, 2000, 1000, and 500 days. 
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A high value indicates that the dynamic and dielectric properties of scatterers are 

unlikely to change with time, and consequently, the coherence slowly drops toward 

zero as shown in Fig. 2. 51(a). Fig. 2. 51(b) shows the simulated coherences versus 

the temporal baseline for distinct values of ground to volume ratio. In this figure, the 

characteristic time constants of the ground and volume are 5000 and 300 days for 

three candidates of ground-to-volume ratios, -10, 0, and 10 dB. The temporally 

uncorrelated (random) coherences of the ground or volume, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣,   𝑔

, are given as 

real value so that they have Gaussian distributions with 0.85 and 0.4 means and 0.1 

and 0.2 standard deviations, respectively. According to the formulated coherence 

model Eq. (2. 55), the different observed magnitudes of coherence can be attributed 

to the ground-to-volume ratio at arbitrary polarization, even though the physical 

parameters such as characteristic time constants and temporally-uncorrelated 

coherence are the same. Because of this sensitivity of coherence to the ground-to-

volume ratio corresponding the certain polarization, this study can better constrain 

the model parameters by introducing additional polarization in the inversion process.  

 

2.3.3. Comparison of coherence model for zero-baseline and long temporal 

baseline with RVoG and RMoG 

The coherence model proposed in the previous section is for the long-temporal 

baseline and zero-spatial baseline. The recently developed coherence models such 

as RVoG, RVoG+VTD, and RMoG model were designed for different purposes, 

under the several assumptions. In this section, the models will be compared 

regarding the assumptions they used and the circumstances they can be applied, and 

resulting behaviors in coherence.  

As summarized in Table 2.1, the RVoG, RMoG, and RVoG+VTD models were 

designed for the forest parameter extraction, in particular, the canopy height 

estimation. Thus, the spatial baseline should be longer than zero. However, the model  
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Table. 2. 1. Model comparison 

 RVoG RMoG RVoG+VTD This study 

Purpose 

Forest 

parameter 

extraction 

Forest 

parameter 

extraction 

Forest 

parameter 

extraction 

Change or 

Damage 

detection 

Spatial baseline Non-zero 
Non-zero or 

zero 
Non zero 

Zero or Near 

zero 

Temporal baseline 

Almost zero 

(a few seconds 

or minutes) 

a few seconds~ 

a few days 

a few seconds~ 

a few days 

a few 

seconds~ a 

few months 

Decorrelation in 

volume 

Volume 

decorrelation 

Volume 

decorrelation + 

temporal 

decorrelation 

Volume 

decorrelation + 

temporal 

decorrelation 

temporal 

decorrelation 

Temporal 

decorrelation 

source in ground 

-  Motion - 
Dielectric 

change 

 

proposed in this study is for damage assessment, thus there are no reasons for a 

spatial baseline to be a non-zero value. In contrast, the zero-spatial baseline is more 

beneficial by minimizing the irrelevant decorrelation sources.  

Since the RVoG model considers the volumetric decorrelation only, the temporal 

baseline should be small enough to be negligible. The terms compensating the 

temporal decorrelation have been later added in RVoG+VTD model and RMoG 

model. The temporal decorrelation source there model mainly consider is the 

dominant positional changes. Accordingly, the choice of available data should be 

careful unless it has significant dielectric changes. In general, the interferometric pair 

with the short temporal baseline is related to the motion-induced decorrelation, thus, 

the RMoG and RVoG+VTD could be suitable for the repeat pass scenario with short 

temporal baseline. The proposed model has terms describing the temporally 

correlated and uncorrelated change which can be found in the long temporal baseline. 

In Fig. 2. 16, the coherence changes are plotted as a function of the ground-to-

volume ratio for comparison of cases with zero and nonzero spatial baselines. For 
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the coherence with volumetric decorrelation (nonzero spatial baseline), the 

parameters commonly used are 𝜃 = 35°, 𝑘𝑧 = 0.1 𝑚−1 , 𝜎𝑒 = 0.12 𝑑𝐵𝑚−1 , and 

ℎ𝑣 = 25 𝑚. Also, 𝛾𝑡
𝑔

 and 𝛾𝑡
𝑣  can be set so that the temporal coherence of the 

ground layer is higher than the volume layer |𝛾𝑡
𝑔
| > |𝛾𝑡

𝑣|. As the ground-to-volume 

ratio increases, the coherence with nonzero spatial baseline shows a minimum value 

for a mixed contribution of the canopy and ground (gray circles and purple 

diamonds). This indicates the minimum of observed coherences is neither ground 

layer nor volume layer. The coherence in RMoG model with a zero spatial baseline 

changes monotonically (yellow plus). Then, without loss of generality, we can 

 

Fig. 2. 16. Coherence behavior calculated from the RVoG model, RMoG model 

and the coherence model used in this study by varying the ground-to-volume 

ratios. The coherence involving the volumetric coherence might be non-

monotonic, while the coherence changes monotonically when the volumetric 

coherence is zero in RMoG model. The coherence in the proposed model is 

monotonic only in the certain condition (i.e. |𝜸𝒈
𝒕 | > |𝜸𝒗

𝒕 |/ 𝐜𝐨𝐬𝝋𝜸𝒕
 𝒈). In the case 

of no volume layer, then the coherences of two-layer model is governed by only 

temporal decorrelation of ground regardless of the volumetric decorrelation (red 

triangles and green circles.). 
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consider the minimum amplitude of coherence as volume dominant layer (low 

ground-to-volume ratio) and the maximum as the ground-dominant layer (high 

ground-to-volume ratio). The proposed model in Eq. (2. 55) has a different behavior 

depending on the amplitude conditions of temporal decorrelation function of ground 

and volume layers. Hence, if the condition, |𝛾𝑔
𝑡| > |𝛾𝑣

𝑡|/ cos𝜑𝛾𝑡
 𝑔, is satisfied, the 

amplitude of complex coherence increase monotonically increase (upside-down 

triangles). However, the other case, the minimum moves non-monotonically (red 

asterisks). Thus, the phase induced by dielectric change, 𝜑𝛾𝑡
 𝑔 , can affect the 

coherence behavior associated with ground-to-volume ratio. In other words, when 

the phase induced by the dielectric change is not large, the similar interpretation 

concept can be applied as the RMoG model with a zero-spatial baseline. In order to 

make the estimation problem tractable, in this study it is assumed that the temporal 

decorrelation of the ground is moderate. This assumption entails that the amplitude 

of the complex coherence changes monotonically, which is important in the model 

parameter inversion because the observed coherences at different polarization can be 

simply linked to the ground-dominant and volume-dominant layers. Note that when 

this assumption does not hold for a particular pair, temporal decorrelation is expected 

anyway to be severe and the overall coherence very low, which suggests that the pair 

can be disregarded from the set of available pairs and the proposed algorithm can 

still be applied. 
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Fig. 2. 17. Coherence loci in a complex plane. The RVoG model and the RMoG 

model that incorporates the volumetric decorrelation are illustrated. Meanwhile, the 

RMoG for a zero spatial baseline is observed in the line intersecting the origin. For 

the long-temporal and zero-spatial baseline case, the line between 𝝁 = 𝟎 and 𝝁 =
∞  does not need to pass through the origin. 

The coherence loci derived from coherence models are illustrated in a complex plane 

in Fig. 2.17. The ends of the solid line segments represent theoretical points at which 

the ground-to-volume ratio is infinite or zero. For the RVoG (volumetric coherence 

only) model, since the ground-to-volume ratio is the only wave-polarization 

dependent parameter, the coherence is located along the line as the polarization 

changes. The magnitude and phase of the complex coherence are determined by the 

physical parameters of forest and the radar parameters. In the RMoG model 

(volumetric + temporal coherence), the temporal decorrelation shifts the RVoG 

model line to another line. Not only the physical parameter of vegetated terrain and 

radar parameters but also the dynamic processes of scatterers relate to the length and 

angle of the line (Lavalle & Hensley, 2015). Without the consideration of the 

temporal decorrelation, the topographic height is misinterpreted as 𝜙0.𝑝𝑠𝑒𝑢𝑑𝑜 not 
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𝜙0. Accordingly, the angle between 𝜙0 and the complex correlation value at 𝜇 =

0 is changed and the estimation strategy of volumetric height yields the ambiguous 

height (S. K. Lee et al., 2013; K. P. Papathanassiou et al., 2003).  

 Meanwhile, if the case of zero baselines is considered for the RMoG model (no 

volume decorrelation), the coherence locus is located along the line passing through 

the origin by varying the ground-to-volume ratio. The phase angle of the line 

segment is not taken into consideration anymore for the zero spatial baseline and 

small temporal baseline because temporal decorrelation induced by the motion is 

mainly observed (Lavalle et al., 2012).  

For the scenario of repeat-pass interferometric and zero spatial baseline, the phase is 

related to the deformation, atmospheric phase delay (APD) and dielectric properties 

change (i.e. soil moisture change). The phase induced by deformation, and APD is 

normally polarization-independent. In Eq. (2. 55), if 𝜑𝛾𝑡
𝑔 is non-zero, the coherence 

locus does not pass through the origin. Also, if the 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 is assumed to be 

polarization independent, the complex coherence vary along a line depending on the 

ground-to-volume ratio. However, if the polarization dependency is enough strong, 

the coherences are located in a certain region as polarization changes (Flynn et al., 

2002).  

By analyzing the distribution of the complex coherences in the complex plane, the 

strategy of coherence optimization can be designed. Depending on the amount of the 

volumetric coherence, the angles of the ends of the line is widened. Since the line 

defined by the volumetric coherence does not need to intersect the origin, the 

distance between the ends is important. Accordingly, the coherence optimization 

method to estimate the maxima of the distance between ends is appropriate. 

Meanwhile, if the volumetric decorrelation is negligible and the temporal 

decorrelation is dominant, the maxima and minima of magnitude of complex 

coherence have a close relationship to the model. Therefore, the coherence 
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optimization algorithm to find the magnitude maximum in the distribution need to 

be introduced. The coherence optimization algorithm is discussed more in Chapter 

4. 
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Chapter 3.  

Damage mapping using temporal decorrelation 

model for single-polarized SAR data 

: A case study for volcanic ash  
 

 

Change detection technique is one of the main applications in the remote sensing 

area. In particular, coherent change detection (CCD) utilizing coherence of 

interferometric pair is a unique approach achievable only in SAR data. As explained 

in Chapter 2, since the coherence, the main material of CCD, is determined by 

diverse sources, the temporal decorrelation model essentially needs to be applied for 

the interpretation. 

Currently operating space-borne SAR system has collected interferometry-

capable and multi-temporal SAR images. A number of single-polarized images have 

been accumulated for past decades over the whole area of Earth. Therefore, the 

method for multi-temporal interferometric data which are usually acquired at single-

polarized data should be primarily designed.  

In this Chapter, the CCD technique using the temporal decorrelation model will 

be applied for detection of volcanic ash of Kirishima volcano in 2011 as a case study. 

Also, the interpretation of the temporal decorrelation model is performed using Japan 

Aerospace Exploration Agency’s (JAXA’s) ALOS-PALSAR which acquired for 

single-polarized interferometric data.  

 

3.1. Description of study area 
 

Kirishima volcano, located in Kyushu, Japan, is a volcanic cluster consisting of 

more than 10 basaltic-andesite volcanoes which were active during the 22,000 years. 
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Shinmoedake is a stratovolcano, one of the volcanoes of Kirishima volcano cluster, 

and the several small and big eruptions have been reported. The phreatic eruptions 

were observed in 2008 and 2010 and the magmatic eruptions started in January 2011. 

After a small phreatomagmatic event on January 19, 2011, a sub-plinian event started 

on January, 26. During the eruptions, effusion of lava inside the summit crater was 

observed and a strong shock wave and an explosion earthquake are recorded by 

tiltmeters and GPS. A thick layer of volcanic ash was deposited on the southeastern 

part of the volcano (Miyabuchi et al., 2013).  

According to the land-use map (ver. 2014.04) provided by JAXA(Takahashi et al., 

2013), the peak and the area around the rim of the Shinmoedake volcano mainly 

consist of bare soil. The Kirishima volcano cluster is surrounded by evergreen and 

deciduous forest as shown in Fig. 3.2. Thus, the volcanic ash emitted in 2011 mainly 

fell on bare soil and vegetated areas. As stated in Chapter 2, the decorrelation caused 

by the volcanic eruption event may appear on top of the temporal decorrelation 

caused by the natural background change. Such temporal decorrelation caused by 

the natural change may be misinterpreted as the contribution of the major event. In 

particular, this misinterpretation might be severe in forests because vegetated areas 

are prone to temporal decorrelation. Therefore, understanding and predicting the 

coherence behavior using a temporal decorrelation model are essential for accurate 

interpretation of coherence.  

Kirishima city was chosen for comparison of change detection results in order to 

evaluate the performance of the change detection method. This area is not severely 

affected by the volcanic ash in 2011. The city is a type of suburban which consists 

of man-made structures, cropland, and bare soil.  
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Fig. 3. 1. Topographic map of Kyushu, Japan (Top), and shade relief map of 

Kirishima volcano cluster (Bottom). 
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Fig. 3. 2. Landsat images acquired March 5, 2008, and April 13, 2013. Land-use 

maps provided by JAXA for Kirishima volcano and Kirishima city. 
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Fig. 3. 3. Sigma 0 and SNR distributions for diverse land uses.  

 

3.2. Data description 
 

 
In this study, 21 ALOS-PALSAR datasets were used with HH polarization of the 

study area acquired from January 2007 to April 2011 (about 4.2 years) in descending 

orbit at a 38° incidence angle. The interferometric pairs were separated into pre-

eruption and co-eruption pairs. Only two images were acquired after the volcanic 

eruption in January 2011 (March 05, 2011 and April 20, 2011). The coherence maps 

generated using pre-eruption data was assigned as the reference pairs, and these 

coherence maps were used to interpret the temporal behaviors of natural phenomena 

via a temporal decorrelation model. The coherence maps generated using co-eruption 

data were assigned to the event pairs. Interferometric coherence estimation was 

performed after 32 multi-looking, common band filtering, and removal of flat-earth 

and the topographic phase. Thus, the bias of coherence and geometrical decorrelation 

were assumed insignificant. The SNRs were estimated by dividing sigma zero (°) 

by NESZ(Sun et al., 2010). The minimum NESZ was approximately – 23 dB in HH 

polarization of FBS and FBD modes(Shimada et al., 2009). The acquired data set 

showed a high SNR for the forest and urban areas, specifically, > 12, and a low SNR 
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in the sea area, specifically < 8 as shown in Fig. 3.3. The thermal decorrelation of 

the forest and urban areas was less than 0.07; thus, thermal noise may not have been 

the cause of the major decorrelation in those areas. However, the areas with a low 

SNR, such as the sea and rivers, are prone to thermal decorrelation. Therefore, areas 

consisting of the sea were masked out and the analysis was mainly performed on 

bare soil, urban area, and forest, which have high SNR.  

For minimization of the volumetric decorrelation, the interferometric pairs within 

1000m were chosen as listed in Table 3.1. As described in Chapter 2, the volumetric 

decorrelation may be over 0.94 for interferometric pairs within 1000m in the case of 

ALOS PALSAR. Thus, the volumetric decorrelation is assumed not to be major 

contributions of the decorrelations.  

Under criteria described, the coherence maps can be assumed to be affected by 

only the temporal decorrelation. Generated coherence maps were visualized in Fig 

3.4-6. The overall coherences tend to decrease as the temporal baseline is longer. Its 

behavior will be explained in next sections. The coherence maps shown in Fig. 3.6 

have information of volcanic ash because these are generated from event pairs. The 

signature of volcanic ash is observed, but not clearly. In event pair with 46 temporal 

baselines, the low coherence value is observed around Shinmoedake volcano. Even 

though the volcanic ash was mainly deposited over the southeastern slope of the 

volcano, the low coherence is also observed in northwestern slope. Another 

misinterpretation could result in the coherence map with 1012 temporal baseline. 

Since the overall area over the whole scene shows low coherences, the separation 

between the natural changes and event is difficult. In next section, the algorithm will 

be discussed for the accurate interpretation, and change detection using temporal 

decorrelation model.  
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Table 3. 1. Interferometric pairs used in this study 
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Fig. 3. 4. Averaged coherence maps of reference pairs with time intervals from 46 days to 368 days. The interferometric pairs are listed in Table 

3.1.  
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Fig. 3. 5. Averaged coherence maps of reference pairs with time interval from 411 days to 828 days. The interferometric pairs are listed in Table 

3.1. 
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Fig. 3. 6. Coherence maps of event pairs. Jan.18.2011 - Mar.05.2011 (left), Dec.03 – Mar. 05.2011(Middle), and Aug. 27.2008 – Mar.05.2011. 

(Right)   
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3.3. Extraction of temporal decorrelation parameters 

 

If N interferometric pairs (sum of the number of reference and event pairs) are 

available, the number of model parameters become 2N + 3 in multi-temporal and 

single-polarization interferometer, because 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣  (N) and 𝛾𝑡_𝑟𝑎𝑛𝑑

𝑔
 (N) are pair-

variant variables and 𝜇 , 𝜏𝑔 , and  𝜏𝑣  are pair-invariant variables. Consequently, 

extracting the model parameters is a challenging task. Despite the analytic limitation, 

it is possible to estimate the model parameters of the proposed temporal 

decorrelation model under several realistic assumptions as described hereafter.  

In the first step, the highest coherence values were identified in each time interval 

in the reference pairs. An exponential curve envelope can be fitted for the highest 

coherence values. The highest coherence values indicate that the coherence is most 

likely unaffected by temporally uncorrelated temporal decorrelation, which means 

that 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣 and 𝛾𝑡_𝑟𝑎𝑛𝑑

𝑔
 are almost equal to one. This assumption is beneficial to 

simplification of the temporal decorrelation model to, 

𝛾𝑡
ℎ𝑖𝑔ℎ

=
1

1 + 𝜇
exp (−

Δ𝑇

𝜏𝑣
) +

𝜇

1 + 𝜇
exp (−

Δ𝑇

𝜏𝑔
)                     (3.1) 

The second step is to estimate the ground-to-volume ratio μ and the characteristic 

time on the ground, 𝜏𝑔, and in the volume, 𝜏𝑣. This procedure was performed using 

curve fitting to the highest points. The curve fitting was applied so that the fitted 

curve was closest and higher than the selected highest coherences, as shown in Fig. 

3.7. In addition, the model parameters, 𝜏𝑣, 𝜏𝑔, and 𝜇, all should be greater than zero 

so that they reflect realistic conditions. The highest points are used for curve fitting 

because any changes in their structural and dielectric properties would result only in 

decorrelation. Further, corresponding model parameters, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣  and 𝛾𝑡_𝑟𝑎𝑛𝑑

𝑔
, are 

constrained in the range zero to one. If the coherence points are located over the  
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Fig. 3. 7. Estimation of the temporally correlated changes in temporal decorrelation 

using exponential curve fitting. Coherence distribution along the time axis for (a) 

man-made structure (denoted B in Fig. 3.8) and (b) forest area (denoted D in Fig.3.8). 

Squares and circles are the measured coherence. Red lines indicate the decorrelation 

related to the temporally correlated dielectric changes. 

 

envelope, the model parameters are out of the range and the possible explanation 

about the physical meaning does not exist.  

The accuracy of estimation using maxima is deeply related to the number of 

available pairs and time intervals. Because (3.1) assumes no 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣  and 𝛾𝑡_𝑟𝑎𝑛𝑑

𝑔
, 

this assumption can be successful when there are sufficient numbers of scenes and 

pairs. Further, the number of maxima is important, because the shape of the envelope 
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is determined by maxima values. Therefore, long temporal baselines or many time 

intervals are also keys to more accurate estimation. In this study, although coherence 

maps with baseline within 5000 m were generated, most cases showed that 

coherences within 1000 m are closer to the envelope. In addition, the model 

parameters extracted from coherence showed high correlation with those with 1000 

m. Therefore, the basis of the coherences with baseline within 1000 m tends to be 

representative of all coherence maps. 

As shown in Fig. 3.8 and Table 3.2, the extracted parameters have different 

characteristic time and ground-to-volume ratios depending on the surface type. A 

high μ means that coherence is determined by one dominant scattering (ground), 

and 𝜏𝑣 is not important in the analysis. The high 𝜇 value is mainly observed in the 

bare soil and the manmade structures (areas A and B in Fig. 3.8). The 𝜏𝑔 value is 

higher in the manmade structures than in the bare soil because they are less affected 

by natural changes. Further, an interesting observation is that the values of 𝜇, 𝜏𝑔, 

and 𝜏𝑣 are different even in the same surface type, i.e., evergreen forest denoted as 

C and D in Fig. 6. Because the ground-to-volume ratio is related to not only surface 

type but also the properties of the canopy, a vegetated area could have a high 𝜇 

value if the forest is not dense. 

 

 

 

Table 3. 2. Extracted model parameter labeled in Fig. 3.8 
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Fig. 3. 8. Estimated ground-to-volume ratio, 𝛍, for (a) Kirishima volcano and (b) 

Kirishima city.  
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Fig. 3. 9. Characteristic time constant of the ground layer for (a) Kirishima volcano, 

and (b) Kirishima city. 
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Fig. 3. 10. Characteristic time constant of the volume layer for (a) Kirishima volcano, 

and (b) Kirishima city 
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The third step is calculation of the portion (or contribution) of coherence between 

ground, 𝛼𝑔 = 𝛾𝑡_𝑐𝑜𝑟𝑟
𝑔

/(𝛾𝑡_𝑐𝑜𝑟𝑟
𝑔

+ 𝛾𝑡_𝑐𝑜𝑟𝑟
𝑣 ), and volume, 𝛼𝑣 = 1 − 𝛼𝑔, in each time 

interval, based on the estimated 𝜇, 𝜏𝑔, and 𝜏𝑣. Even though the parameters, 𝜏𝑔, 𝜏𝑣, 

and, 𝜇 were already extracted in the preceding step two, the number of unknown 

variables is 2N, which exceeds the number of coherence maps, N. Therefore, another 

assumption needs to be applied to reduce the number of variables. In this study, 𝛼𝑔 

is a key factor in solving the problem. Portion 𝛼𝑔 is a timespan variant variable. In 

the general case, 𝛼𝑔 increases in temporally correlated coherence as the timespan 

increases because 𝜏𝑔 is higher than 𝜏𝑣. The targets such as manmade structures and 

bare soil have high 𝜇, thus, the ground contribution is assumed to be dominant in 

every timespan.  

The fourth step is estimation of the random (temporally uncorrelated) coherence 

changes of ground, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

. In the pixels with a high proportion of the ground 

component, the temporal decorrelation is determined by only ground-dominant 

scattering, that is (3.1) is reformulated as, 

 

𝑖𝑓  𝛼𝑔 > 0.9,   𝛾𝑡
ℎ𝑖𝑔ℎ

= exp (−
Δ𝑇

𝜏𝑔
)                            (3.2) 

𝛾𝑑,𝑟𝑎𝑛𝑑
𝒈

=
𝛾𝑜𝑏𝑠

[exp (−
Δ𝑇
𝜏𝑔

)]
                                          (3.3) 

 

Thus, it is necessary to find ground-scattering dominant pixels before performing 

(3.3). The decorrelation components, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

, are related to the changes in the 

dielectric properties induced by rain, snow, and seasonal changes. Therefore, the 

extracted parameters, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝒈

, can be used to explain loss of coherence and statistical 

analysis of natural phenomena on ground-scattering dominant pixels. It is worth 
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noting that pixels with high 𝛼𝑔 and 𝜇 are usually less affected by the contribution 

of the volume. This implies that the perpendicular baseline criterion is unnecessary, 

and that pairs with higher baseline are available for extracting 𝛾𝑡_𝑟𝑎𝑛𝑑
𝒈

. 

The fifth step is the extraction of the model parameters, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝒈

, and 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣 , in 

the pixels where the effects are coupled (𝛼𝑔 ≤ 0.9). According to the proposed 

temporal decorrelation model, each decorrelation caused by the temporally 

uncorrelated changes starts from each coherence level of the temporally correlated 

changes. Thus, the logical implication that “if one of the temporally correlated 

changes is dominant, then the corresponding temporally uncorrelated changes is 

dominant” is reliable. For the pixels with 0.9 ≥ 𝛼𝑔 > 0.5, the ground contribution is 

more dominant than the volume effect. In order to solve the equation, 𝛾𝑡_𝑟𝑎𝑛𝑑 
𝑣 is thus 

assumed to be negligible. Likewise, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝒈

 should be ignored. This approach 

should be performed in each pixel and in each pair, because pixels have 

different 𝜏𝑔, 𝜏𝑣 , and 𝜇, and 𝛼𝑔 and 𝛼𝑣 are different in every timespan. 

 

𝑖𝑓 0.9 ≥ 𝛼𝑔 > 0.5, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

=
𝛾𝑜𝑏𝑠  −  

1
1 + 𝜇

exp (−
Δ𝑇
𝜏𝑣

)

𝜇
1 + 𝜇

exp (−
Δ𝑇
𝜏𝑔

)
          (3.4) 

𝑖𝑓 𝛼𝑔  ≤ 0.5, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣 =

𝛾𝑜𝑏𝑠  −  
𝜇

1 + 𝜇
exp (−

Δ𝑇
𝜏𝑔

)

1
1 + 𝜇

exp (−
Δ𝑇
𝜏𝑣

)
                  (3.5) 

 

3.4. Probability map generation 

 
In Chapter 3.2 and Chapter 3.3, the temporal decorrelation model was presented 

and the procedure for extracting the model parameters was described from multi-

temporal data having single-polarization. In this section, the procedure to estimate 
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the changed area using model parameters will be outlined. Firstly, it is worth noting 

that the decorrelation effects are concentrated near the estimated envelope, as shown 

in Fig. 3.7. This implies that the decorrelation related to random natural changes 

typically induce coherence that is concentrated at a certain level. Therefore, it can be 

assumed that 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 and 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣  are non-uniformly distributed. A major event, 

such as volcanic ash, building collapse, or landslide, has a stronger contribution to 

the loss of coherence than the usual decorrelation related to natural phenomena. 

Accordingly, a major event usually results in lower 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 and 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣  (brown 

bars in Fig. 3.11). A cumulative distribution function (CDF) of reference pairs (black 

lines in Fig. 3.11) offers statistical information about how strong and often the 

natural phenomena usually affect the observed coherence. Therefore, if these model 

parameters extracted from the event pair set are located at the tail of the probability 

density function (PDF), they can be assigned as “changed pixels,” as indicated by 

the red rectangles in Fig. 3.11.  

However, the PDF of the model parameters is undefined, the shape of the function 

is unknown, and the sample is also finite. Kernel density estimation (KDE) is an 

appropriate method for estimating unknown probability density functions by 

smoothing the finite and discrete samples(Bowman et al., 1997). Thus KDE can be 

applied to estimate the PDF and then the continuous CDF of 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 and 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣  

of reference pairs can be built.  

The statistics of model parameters was analyzed depending on the dominant 

scattering because the numbers of available pairs are different. For example, when 

pixels are assigned as ground-dominant pixels (𝛼𝑔 > 0.9,), the interferometric pairs  

can be chosen without consideration of perpendicular baseline. In this study, a 

histogram of 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 using 196 pairs (166 reference pairs and 30 event pairs) below 

5000 m was generated to estimate PDF using the KDE method (Fig. 3.11(a)). When 

the pixels are affected by the ground-volume-coupled effect (𝛼𝑔  ≤ 0.9 ), then 
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estimation of the CDF has to be performed separately. Further, when 𝛼𝑔 is greater 

than 0.5, the 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 of reference pairs is used to estimate CDF, as shown in Fig. 3. 

11(b.1). Otherwise, 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣  is used, as shown in Fig. 3.11(b.1). Consequently, two 

CDFs can exist in the coupled effect pixels. It is also worth noting that the number 

of interferometric pairs used in CDF is smaller than the number of ground-dominant 

pixels owing to the limitation of the baseline (<1000 m). In this case, 47 reference 

pairs and three event pairs were generated.  

On the basis of the estimated cumulative density function from the reference pair 

set, the probability of a region having changed can be calculated using event pairs. 

Because two ALOS-PALSAR scenes were acquired after the volcanic eruption, it is 

obvious that they include the decorrelation caused by volcanic ash. Among all 

coherence maps generated using event pairs, only three interferometric pairs met the 

required baseline criterion, as shown in Fig 3.6. One thing to keep in mind when 

interpreting the estimated probability is that the high probability results not only 

from volcanic ash, but also other factors including heavy rain, strong wind, and other 

temporary changes. One simple and effective way to mitigate such short-lived events, 

compared to volcanic ash fall, is to average the probability of all pairs spanning the 

event. Averaging the probability plays an important role in enhancing the 

contribution of the interesting event, which is volcanic ash. Fig. 3.12 (a) shows the 

averaged probability map, on which the effect of volcanic ash is clearly observed 

near the southeast of the Shinmoedake volcano. Further, significantly high 

probability values are sparsely distributed in Kirishima city (Fig. 3.12(b)). This 

implies that Kirishima city was not affected by regional changes such as volcanic 

ash. Therefore, the result of Kirishima city clearly proves that the method proposed 

in this research effectively discriminates changed regions from unchanged regions. 
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Fig. 3. 11. (a) Histograms (blue bar) of 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 in ground-dominant pixels and (b) 

𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 and 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣  in ground-and-volume-coupled pixels. Brown histograms 

indicate corresponding value in event pair. Black lines are the estimated cumulative 

density functions using KDE, and red boxes are probability of event. This analysis 

was performed in the area denoted as A and D in Fig. 3. 8 
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Fig. 3. 12. Calculated probability change map for (a) Kirishima volcano and (b) Kirishima city. 
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3.5. Mapping volcanic ash 

 
To map volcanic ash, the probability maps, the in-situ measurement and the 

contour lines created from in-situ data were compared(Miyabuchi et al., 2013; 

Technology, 2011). According to(Miyabuchi et al., 2013), the tephra plumes after 

eruption were dispersed by the wind and deposited southeast of the Shinmoedake 

volcano. Further, the thickness of volcanic ash deposits reached 4.5 to 25 cm in the 

proximal area. A comparison between the depth of the volcanic ash deposit and the 

probability map generated from this analysis showed a high probability over 2 cm, 

which corresponds to approximately 75%. For comparison with the contour lines, 

the probability values, which are located between the contour line and the next level 

of the contour line, were averaged. Accordingly, the values at the x-axis in Fig. 

3.13(d) represent the levels between two contour lines. The analysis with the area 

density show a high correlation over 10 kg/𝑚2. This result does not mean that the 

calculated probability is directly related to the depth or the area density of the 

volcanic ash. In general, thicker volcanic deposit might cause more phase alteration 

and thus strong temporal decorrelation. In addition, the probabilities at manmade 

structures are higher than other areas over 10 kg/𝑚2. The estimated probability is 

determined by the temporal behavior of coherence of the scatterers. If the scatterers 

are less affected by the natural phenomena, the historical coherence tends to be 

concentrated on a certain level. If a small amount of volcanic ash induces relatively 

low coherence, it can result in a high probability. This implies that even though the 

same amount of volcanic ash was deposited, the sensitivity of change detection could 

be different. In the forest area, the random motion of volume and temporally 

uncorrelated dielectric changes are coupled in a complicated manner. This area is 

prone to decorrelation, and the coherence is concentrated in the low values. Thus, 

the decorrelation caused by a small amount of the volcanic ash may be hidden or 
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unclear owing to the strong natural changes.  

The analysis also shows that volcanic ash deposit below 10 kg/𝑚2 is uncorrelated 

with the probability. In order to mask out uncorrelated probability, 75% level was 

selected as the threshold because 1σ (standard deviation) of uncorrelated probability 

reaches a maximum of 75%. Finally, the change detection maps caused by the 

deposit of volcanic ash can be generated, as shown in Fig. 3.13 (a). 
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Fig. 3. 13. (a) Estimated probability map over 75% and (b) the predicted distributed map of the volcanic ash and location of in-situ depth data. 

Comparison between estimated probability and (c) the depth of volcanic deposits and also between (d) area densities. 
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3.6. Discussion  

 
In this study, the temporal decorrelation model is proposed for coherence maps 

generated by multi-temporal and single-polarimetric data to identify regions changed 

as a result of the deposit of ash that follows volcanic eruptions. The proposed 

temporal decorrelation model uses the ground-to-volume ratio, random motion of 

volume, temporally correlated dielectric changes in volume and ground, and 

temporally correlated changes in volume and ground. Because the number of 

variables involved in the temporal decorrelation exceeds the number of available 

equations, several plausible assumptions were made. Also, pixels with many 

scatterers have different temporal decorrelation behaviors depending on the 

temporally correlated dielectric changes and ground-to-volume ratio. In addition, the 

temporally uncorrelated dielectric changes and random motion of volume were also 

estimated based on analysis of the portion of ground and volume coherence. To 

identify the coherence changes related to alterations in natural conditions, such as 

seasonal changes and meteorological phenomena, the KDE method was used to 

estimate the CDF for each pixel. Extreme changes caused by unexpected events such 

as deposition of volcanic ash, which yield abnormal values in the coherence map, 

were successfully extracted based on the CDF.  

The proposed temporal decorrelation model was applied into CCD and used it to 

estimate the physical parameters of the forest. The model carries out quantitative 

analysis involving physical parameters, which is not a common approach in CCD 

techniques. Consequently, it is very useful in areas with a variety of decorrelation 

sources. The special significance of the proposed method is that the model considers 

most of the decorrelation effects in order to be useful for many realistic and complex 

change detection applications. Also, the extracted parameters from the temporal  
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Fig. 3. 14. (a and c) Two examples of coherence covariance matrix and (b and d) 

𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 matrices. (a) and (b) show the temporal behavior of bare soil, denoted A in 

Fig. 3.6, and (c) and (d) are denoted B in Fig. 3.6. 

 

decorrelation, which contains one of the natural change information, can enhance its 

event information by reducing the effect of the temporally correlated changes as 

shown in Fig 3.14. This advantage makes the technique detect the event better. 

However, the several assumptions used to solve the main equation could still be 

controversial. Fortunately, recently developed fully polarimetric and interferometric 

SAR sensors onboard UAVSAR and ALOS-2 could reduce the effect of the 

assumptions or even render them more realistic. Further research using these sensors 

can show the usefulness of the temporal decorrelation model for the extraction of 

reliable physical parameters, and generate more robust damage detection maps. 
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Chapter 4.  

Damage mapping using temporal decorrelation 

model for multi-temporal and fully-polarized SAR 

data  
 

 

SAR system and its applications have been dramatically developed during past 

decades. Recently advanced SAR systems can obtain fully-polarized images which 

can be applied to the interferometric techniques, which is called as Polarimetric and 

Interferometric SAR (PolInSAR). The development of SAR system has introduced 

the innovative applications of remote sensing and Earth system science studies. Also, 

the PolInSAR system is able to overcome the limitation of the conventional 

interferometry which has an uncertainty of phase center by providing the sensitive 

information of vertical distribution related to scattering mechanism. Based on this 

advance, the applications of PolInSAR can estimate accurately the physical 

parameters of forest including the canopy height.  

However, the coherence change detection and damage mapping using 

PolInSAR, which is major subjective of remote sensing studies, is not fully studied. 

Firstly, the many applications for change detection utilize the amplitudes which have 

information of scattering mechanism. PolInSAR techniques measure not only the 

amplitude of scatterers but also the phase information related to the distance. For this 

advantage, more information could be exploited. Secondly, since the existence of the 

temporal decorrelation is not fully understood and may restrict the application by 

yielding the ambiguity of the physical interpretations. Thus, the temporal 

decorrelation involved in PolInSAR needs to be studied for better interpretation.  

In the previous Chapter 2, a temporal decorrelation model was formulated to 

explain the coherence behaviors observed in time-series data with long temporal 
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baselines and single polarized data (Jung et al., 2016). The damage detection was 

successful, even in vegetated areas, using a temporal decorrelation model estimated 

from the historical statistics of natural change. However, the estimation uncertainty 

of model parameters still remained, because parameter extraction from single 

polarization data required several assumptions due to the unmatched number of 

observations and unknowns. 

In contrast to Chapter 3, here fully-polarimetric-interferometric Uninhabited 

Aerial Vehicle SAR (UAVSAR) data will be used to address the uncertainty in the 

temporal decorrelation of the ground and volume layers. The remainder of this 

chapter is organized as follows. In Chapter 4.1, Lake Fire in California (2015) and 

the UAVSAR data used in this study are introduced. Chapter 4.2 address the 

conventional methods for change detection and evaluate the performance. The 

limitations of these methods are also revealed. In Chapter 4.3, the damage mapping 

algorithm proposed in this study will be explained in detail. Furthermore, the damage 

mapping result is evaluated. Chapter 4.4 explains the applicable conditions that this 

algorithm can be applied. In Chapter 4.5, the quantitative comparison between the 

damage mapping algorithms in Chapter 4 and Chapter 3 is carried out. Finally, the 

key finding and the potential issue in this study is summarized in Chapter 4.6.  

 

4.1. Description of Lake Fire and UAVSAR data 
 

UAVSAR is an airborne SAR system developed and operated by the Jet 

Propulsion Laboratory (JPL) (Hensley et al., 2008). The UAVSAR instrument is 

mounted on a Gulfstream-III aircraft and employs a full quad polarimetric L-band 

system with a bandwidth of 80 MHz. Accordingly, the theoretical slant range 

resolution is 1.87 m and the azimuth resolution is about 0.8 m. The mean flight 

altitude is 12.5 km and look angle ranges from 28° to 66°. One benefit of using the  
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Fig. 4. 1. A burnt area map of Lake fire. The image is provided from the Incident 

Information System (http://inciweb.nwcg.gov/).  

 
UAVSAR system is that the position of UAVSAR can be controlled precisely to 

within 5 m diameter tube of the designed flight track, making it suitable for repeat-

pass interferometry with the assumption of zero spatial baselines. A specification of 

UAVSAR is summarized in Table. 1. 

In this study, a stack of 15 repeat-pass polarimetric UAVSAR images acquired 

from 2009 to 2015 over the San Bernardino National Forest in California, United 

States, is used in order to evaluate the potential of the coherence model to delineate 

the damaged area. The natural disaster event this study focused on is the wildfire 

Lake Fire, which burned more than 31,350 acres from June 17, 2015, to July 21, 

2015. The UAVSAR instrument was deployed on June 29, 2015, during the wildfire 

in coordination with NASA headquarters and the UAVSAR team at JPL. Due to this 

effort, 14 scenes before the event, and 1 scene during the event were able to be 

collected. For simplicity, hereafter the interferometric pairs acquired before the event 

are referred as the reference set, and those acquired spanning the event as the event 

set. Each acquisition date is listed in Table. 2. The minimum and maximum temporal 
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baselines were 43 and 2,258 days, respectively, which can be categorized as 

interferometric pairs with a long temporal baseline. The spatial interferometric 

baseline for all flights of the reference and event sets was within 5 m. The limiting 

value of 5m for the spatial baseline corresponds to a vertical wavenumber of 0.04 

rad/m and 0.01 rad/m in near and far range, respectively. Assuming a reference tree 

height of 30m, the volumetric decorrelation calculated from a conservative SINC 

model is 0.94 and 0.99, respectively (S. R. Cloude, 2010). Thus, it is reasonable to 

assume that the geometric and volumetric decorrelations were negligible and that the 

estimated coherence carries only the effects of temporal decorrelation.  

 

 

 

Table 4. 1. Sensor parameters of UAVSAR system. 

parameter Value 

Frequency 
L-Band 1217.5 to 1297.5 MHz 

Bandwidth 80 MHz 

Resolution 
1.67 m Range, 
0.8 m Azimuth 

Polarization Full Quad-Polarization 

ADC Bits 2,4,6,8,10 & 12 bit selectable BFPQ, 180Mhz 

Waveform 
Nominal Chirp/ 

Arbitrary Waveform 

Antenna Aperture 
0.5 m range 

/1.5 azimuth (electrical) 

Azimuth Steering 
Greater than ±20° 

(±45° goal) 

Transmit Power > 3.1 kW 

Polarization Isolation <-25 dB (<-30 dB goal) 

Swath Width > 23 km 
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Table 4. 2. UAVSAR data used in this study. 

Index Acquisition date Index Acquisition date 

1 2009.04.23 9 2012.04.27 

2 2009.09.18 10 2013.05.31 

3 2010.03.03 11 2014.01.17 

4 2010.04.15 12 2014.10.23 

5 2010.10.14 13 2015.01.08 

6 2010.12.07 14 2015.05.11 

7 2011.07.08 15 2015.06.29 

8 2011.10.28   

 

4.2. Brief analysis of SAR amplitude and interferometric 
coherence 

 
According to the land cover data, the west part of the image contains Pinyon-

Juniper Woodland, Dry-mesic Mixed Conifer Forest, and Jeffrey Pine-(Ponderosa 

Pine) Woodland (Homer et al., 2007). In contrast, the desert scrub and outcrop area 

are mainly observed over the east part of the scene. The different land cover yields 

the different signature of polarimetric SAR images. As observed in Fig. 4. 3, which 

is constructed using Pauli basis, the relatively strong volume scattering is observed 

in western part, while the surface scattering is dominant in eastern parts.  

One of the simple and robust change detection methods is to generate the 

difference or ratio of the amplitude of SAR images acquired before and after the 

event, which is categorized as the incoherent change detection. The studies to 

evaluate the amplitude or intensity changes due to the fire has been proposed in the 

literature (Bourgeau‐Chavez et al., 2007; Goodenough et al., 2012; Florian Siegert 

et al., 2000; F Siegert et al., 2000). For testing the potential of the incoherent 
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Fig. 4. 2. Land cover maps of Study area provided from National Gap Analysis 

Program. 

 

Fig. 4. 3. UAVSAR image acquired on April 23, 2009. The color composite image 

was reconstructed using Pauli basis. R: HH-VV, G: 2HV, B: HH+VV.  
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Fig. 4. 4. Amplitude ratio between images acquired on May 11, 2015, and June 29, 

2015, for (a) HH, (b) HV, and (c) VV polarizations.  

 
change to detect the damaged area, the amplitudes of the scene with HH, HV, and 

VV polarization acquired on May 11, 2015, were simply divided by the polarimetric 

amplitude acquired on June 29, 2015. The results are illustrated as log scale in Fig. 

4. 4. According to the study exploiting the backscattering change after fire, the 
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Fig. 4. 5. ROC curve for amplitude ratio in Fig. 4. 4. 

 

backscattering signal decrease, especially in HV polarization (Goodenough et al., 

2012; Siegert & Ruecker, 2000). Similarly, the burnt area located in the center of 

images shows high value due to the decreased backscattered signal. However, the 

burnt scar cannot be discriminated accurately on the left side of images. The receiver 

operating characteristic (ROC) curve shows the quantitative potential to discriminate 

the burnt area from the unburnt area. However, the amplitudes in all polarization 

have poor sensitivity to the damage caused by fire, although HV polarization 

amplitude ratio is slightly more sensitive.  

The polarimetric characteristics of elements in the resolution cell affect not only 

the scattering mechanism of polarimetric SAR but also yield different coherence 

behaviors. As mentioned, the coherences generated from the interferometric 

approaches is determined by the thermal and temporal decorrelation only. If the SNR 

is assumed high enough to ignore the thermal decorrelation, the temporal 

decorrelation is the only main determinants of the coherence. Under this assumption, 

the averaged coherence using SAR data acquired before the event shows relatively 

low coherence (0.3~0.5) in western area where the volume scattering is strong. The 

possible explanation is that the resolution cell with vegetated area is prone to be 
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Fig. 4. 6. Averaged coherence maps using HH, VV, and HV images (a) acquired before the fire and (b) acquired crossing the fire.
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Fig. 4. 7. Color composite image using coherence maps generated from 

interferometric pairs acquired before the fire. R: VV coherence G: HV coherence B: 

HH coherence. 

 

 

 

Fig. 4. 8. Coherence maps generated from the interferometric pairs acquired on May 

11, 2015, and June 29, 2015, for HH, VV, and HV polarization. The Lake fire started 

on June 17, 2015.  
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affected by biological growth, and motions of volume layer such as leaves or 

branches caused by the wind. The eastern area which the only low vegetation exist 

shows high coherence (0.6~0.9) in HH, HV, VV image comparing the western site. 

The high coherence implies the area has high phase stability in time because of low 

precipitation and low contribution of vegetation. 

The effect of the changes caused by Lake Fire can be analyzed via the coherence 

changes analysis before and after the event. Two interferometric pairs were chosen, 

i.e. 2015.01.08 ~ 2015.05.11 and 2015.05.11 ~ 2015.06.29. As expected, the 

coherence of all polarizations decreased after the event where the fire occurred. The 

significant decrease is observed in HV polarization because the leaves to be sensitive  

to volume scattering is prone to be affected by the fire. However, the low coherence 

in area A does not fit to the predefined burnt area, while the low coherence in area B 

shows good agreement. The reason why the area A shows the discordance with the 

actual fire area could be that the area is less affected by the fire. A few coherent 

changes can be enhanced by differentiating the coherence maps before the events 

(2015.05.11 ~ 2015.06.29) with that across the event (2015.01.08 ~ 2015.05.11). 

This approach has been applied to extract the damaged area caused by the natural 

hazard. The coherence calculated from the interferometric pairs before the event 

contains the information of natural changes. If the similar amount of the natural 

changes is assumed in two interferometric pairs, the difference of two coherence 

maps means the stronger decorrelation caused by the event. The results show higher 

agreements with the predefined fire area comparing the method using only coherence. 

However, the method may have two critical limitations. Firstly, the assumption that 

the decorrelation caused by the natural change is same in the coherence maps should 

be satisfied in pixel by pixel. The temporal decorrelation of vegetated area is 

determined by the motions of leaves, and dielectric changes caused by natural  
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Fig. 4. 9. Coherence difference maps. The reference coherences are generated from 

the interferometric pair acquired on January 08, 2015 and May 11, 2015. The event 

coherence maps are calculated from the interferometric pair between May 11, 2015, 

and June 29, 2015. The black area means lowered coherence with respect to the 

reference coherence.  

 

changes. However, the case is hardly satisfied. In addition, since the temporal 

baselines are different in the scene by scene, the effect of temporal decorrelation 

could be different. Also, the physical interpretation of the coherence differences is 

difficult even though the approach is simple and sometimes robust. Therefore, the 

coherence maps need to be interpreted using temporal decorrelation, then it should 

be extended to the applications.  

 

4.3. Damage mapping algorithm using coherence model 

 
In this chapter, the damage mapping algorithm using coherence model will be 

presented. The procedure for this algorithm consists of main three steps. The first is 

coherence optimization. Before the parameter inversion, the coherence is optimized 
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in order to find the best polarization to explain the temporal decorrelation. Then, in 

the second step, the temporally-correlated coherence estimation is carried out. In the 

third step, the randomly occurring events in coherence stack are calculated. Finally, 

the probability related to the natural disaster is calculated.  

 

4.3.1. Coherence optimization 

 

Polarimetric SAR interferometry (PolInSAR) leads to the separation of scattering 

centers within a resolution by compromising the polarimetric and interferometric 

information. If the scattering matrix of one polarization basis is defined, the different 

orthogonal-basis can be generated by varying the polarization state. As the 

polarimetric basis changes, the unitary complex vectors can be obtained to optimize 

the coherence values and scattering mechanism (Qong, 2005). The conventional 

polarizations have separable phase centers and different coherences, but they are not 

optimized. The optimization process makes it possible to resolve the formulated 

 
Fig. 4. 10. Flow chart for damage mapping. 
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model as the algorithm provides the three independent scattering mechanisms  

The basic observable of PolInSAR data is 6x6 coherency matrix, and can be 

described as,  

〈𝑘𝑘∗𝑇〉 = [
𝑇11 Ω12

Ω21 𝑇22
]                                            (4.1) 

 

Here, k means Pauli-vector of polarimetric radar observable.  
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1 + 𝑆𝑣𝑣
1 )(𝑆ℎℎ

1 − 𝑆𝑣𝑣
1 )

∗
〉 2〈(𝑆ℎℎ

1 + 𝑆𝑣𝑣
1 )𝑆ℎ𝑣

1 ∗
〉

〈(𝑆ℎℎ
1 − 𝑆𝑣𝑣

1 )(𝑆ℎℎ
1 + 𝑆𝑣𝑣

1 )
∗
〉 〈|𝑆ℎℎ

1 − 𝑆𝑣𝑣
1 |

2
〉 2〈(𝑆ℎℎ

1 − 𝑆𝑣𝑣
1 )𝑆ℎ𝑣

1 ∗
〉

2〈𝑆ℎ𝑣
1 (𝑆ℎℎ

1 + 𝑆𝑣𝑣
1 )

∗
〉 2〈𝑆ℎ𝑣

1 (𝑆ℎℎ
1 − 𝑆𝑣𝑣

1 )
∗
〉 〈|4𝑆ℎ𝑣

1 |
2
〉 ]
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[𝑇22]

=

[
 
 
 〈|𝑆ℎℎ

2 + 𝑆𝑣𝑣
2 |

2
〉 〈(𝑆ℎℎ

2 + 𝑆𝑣𝑣
2 )(𝑆ℎℎ

2 − 𝑆𝑣𝑣
2 )∗〉 2〈(𝑆ℎℎ

2 + 𝑆𝑣𝑣
2 )𝑆ℎ𝑣

2 ∗
〉

〈(𝑆ℎℎ
2 − 𝑆𝑣𝑣

2 )(𝑆ℎℎ
2 + 𝑆𝑣𝑣

2 )∗〉 〈|𝑆ℎℎ
2 − 𝑆𝑣𝑣

2 |
2
〉 2〈(𝑆ℎℎ

2 − 𝑆𝑣𝑣
2 )𝑆ℎ𝑣

2 ∗
〉

2〈𝑆ℎ𝑣
2 (𝑆ℎℎ

2 + 𝑆𝑣𝑣
2 )∗〉 2〈𝑆ℎ𝑣

2 (𝑆ℎℎ
2 − 𝑆𝑣𝑣

2 )∗〉 〈|4𝑆ℎ𝑣
2 |

2
〉 ]
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[Ω12]

= [

〈(𝑆ℎℎ
1 + 𝑆𝑣𝑣

1 )(𝑆ℎℎ
2 ∗

+ 𝑆𝑣𝑣
2 ∗

)〉 〈(𝑆ℎℎ
1 + 𝑆𝑣𝑣

1 )(𝑆ℎℎ
2 − 𝑆𝑣𝑣

2 )∗〉 2〈(𝑆ℎℎ
1 + 𝑆𝑣𝑣

1 )𝑆ℎ𝑣
2 ∗

〉

〈(𝑆ℎℎ
1 − 𝑆𝑣𝑣

1 )(𝑆ℎℎ
2 + 𝑆𝑣𝑣

2 )∗〉 〈(𝑆ℎℎ
1 − 𝑆𝑣𝑣

1 )(𝑆ℎℎ
2 − 𝑆𝑣𝑣

2 )∗〉 2〈(𝑆ℎℎ
1 − 𝑆𝑣𝑣

1 )𝑆ℎ𝑣
2 ∗

〉

2〈𝑆ℎ𝑣
1 (𝑆ℎℎ

2 + 𝑆𝑣𝑣
2 )∗〉 2〈𝑆ℎ𝑣

1 (𝑆ℎℎ
2 − 𝑆𝑣𝑣

2 )∗〉 〈4𝑆ℎ𝑣
1 𝑆ℎ𝑣

2 ∗
〉

] 

(4.5) 
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where subscription 1 and 2 represents the measurement at two acquisitions. 𝑇 

matrix is coherency matrix which has information of scattering mechanism. Ω 

matrix is polarimetric and interferometric matrix which its components have 

information of distance at each polarization. By introducing the unitary vector 𝜔𝑖 

and 𝜔𝑗, the generalized complex correlation is written as, 

 

𝛾𝑖𝑗(𝜔𝑖 , 𝜔𝑗) =
𝜔𝑖

∗Ω𝑖𝑗𝜔𝑗

√𝜔𝑖
∗𝑇𝑖𝑖𝜔𝑖𝜔𝑗

∗𝑇𝑗𝑗𝜔𝑗

                                             (4.6) 

where i ∈ [1,2,3,…N] , j ∈ [1,2,3,…N] and 0 ≤ |𝛾𝑖𝑗(𝜔𝑖 , 𝜔𝑗)| ≤1. Depending on 

choice of the arbitrary vectors 𝜔𝑖 and 𝜔𝑗, the coherence changes on the defined 

basis.  

For the optimization problem, the several approaches can be applied depending 

on the assumptions of unitary vectors (S. R. Cloude, 2010; Neumann et al., 2008; 

Qong, 2005). Here, the two representative methods are introduced by assuming two 

different unitary vectors or common unitary vectors.  

  

Multi-scattering mechanism 

The coherence optimization problem can be dealt with two cases; single baseline and 

multi-baseline data. If the available data is acquired at single baseline, the 

optimization process is confined with only finding the eigenvectors for two 

scattering mechanisms. The coherence optimization can be achieved by introducing 

the Lagrangian L and multipliers 𝜆𝑖 and 𝜆𝑗.  

 

𝐿 =  𝜔𝑖
∗Ω𝑖𝑗𝜔𝑗 − 𝜆𝑖(𝜔𝑖

∗𝑇𝑖𝑖𝜔𝑖 − 1) − 𝜆𝑗(𝜔𝑗
∗T𝑗𝑗𝜔𝑗 − 1)                 (4.7) 
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The optimization of the Lagrangian problem is solved using its partial derivatives 

with respect to the variables.  

𝜕𝐿

𝜕𝜆𝑖
= 𝜔𝑖

∗𝑇𝑖𝑖𝜔𝑖 − 1 = 0                                   (4.8) 

𝜕𝐿

𝜕𝜆𝑗
= 𝜔𝑗

∗𝑇𝑗𝑗𝜔𝑗 − 1 = 0                                   (4.9) 

𝜕𝐿

𝜕𝜔𝑖
∗ = Ω𝑖𝑗𝜔𝑗 − 𝜆𝑖𝑇𝑖𝑖𝜔𝑖 = 0                              (4.10) 

𝜕𝐿

𝜕𝜔𝑗
∗ = Ω𝑖𝑗𝜔𝑖 − 𝜆𝑗𝑇𝑗𝑗𝜔𝑗 = 0                              (4.11) 

 

Then, two 3 x 3 complex eigenvalue problem is obtained with common eigenvalues.  

𝑇𝑗𝑗
−1Ω𝑖𝑗

∗ 𝑇𝑖𝑖
−1Ω𝑖𝑗𝜔𝑖 = 𝜐𝜔𝑗                                     (4.12) 

𝑇𝑖𝑖
−1Ω𝑖𝑗𝑇𝑗𝑗

−1Ω𝑖𝑗
∗ 𝜔𝑖 = 𝜐𝜔𝑖                                     (4.13) 

𝜐 = 𝜆𝑖𝜆𝑗                                                        (4.14) 

The eigenvectors corresponding to eigenvalues can project the scattering vectors of 

each SAR images onto the new vectors to derive the optimized coherence.  

𝑛𝑘𝑖.𝑜𝑝𝑡 = 𝜔𝑖.𝑜𝑝𝑡
∗ 𝑘𝑖                                              (4.15) 

𝑛𝑘𝑗.𝑜𝑝𝑡 = 𝜔𝑗.𝑜𝑝𝑡
∗ 𝑘𝑗                                            (4.16) 

The procedure is valid for the extraction of two scattering mechanisms of one 

polarimetric SAR interferometric pair. If the multi-temporal or multi-baseline data 

is available, the optimized coherences of each pair can be obtained by iterating the 

same procedure to each pair, independently. Let the number of images is N, then 

N(N+1)/2 interferometric pairs can be generated. The optimization process based on 

the single-baseline multi-scattering-mechanism (SB MSM) yields N-1 vectors for 

one reference image with respect to the remaining images. It is worth noting that the 

absolute phase of the vectors is not uniquely defined using eigenvalue problem. The 

interferometric phase is required so that  
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Fig. 4. 11. Interferometric coherence optimization scheme using single-baseline 

multi-scattering mechanism.  

 

 
arg (𝜔𝑖.𝑜𝑝𝑡

∗ 𝜔𝑗.𝑜𝑝𝑡) = 0                                          (4.17) 

Thus, the additional compensation may be required as  

𝜙 = arg(𝜔𝑖.𝑜𝑝𝑡
∗ 𝜔𝑗.𝑜𝑝𝑡)                                         (4.18) 

𝜔𝑗.𝑜𝑝𝑡
′ = 𝜔𝑗.𝑜𝑝𝑡exp(−𝑖𝜙)                                         (4.19) 

If more than 2 data are needed for the coherence optimization, another approach can 

be taken into the consideration, which calculates coherence using all available data. 

This procedure is called as multi-baseline multi-scattering-mechanism (MB MSM) 

The Lagrangian problem is written as 

L = ∑ ∑ 𝜔𝑖
∗Ω𝑖𝑗𝜔𝑗

𝑁

𝑗=1≠𝑖

+ ∑𝜆𝑖(𝜔𝑖
∗T𝑖𝑖𝜔𝑖 − 1)

𝑁

𝑖=1

𝑁

𝑖=1

                    (4.20) 

Then, partial derivatives of Lagrangian problem is rewritten as,  
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Fig. 4. 12. Interferometric coherence optimization scheme using multi-baseline 

multi-scattering mechanism. 

 

L

𝜔𝑖
∗ = ∑ Ω𝑖𝑗𝜔𝑗

𝑁

𝑗=1≠𝑖

+ 𝜆𝑖T𝑖𝑖𝜔𝑖 = 0                            (4.21) 

[

0 Ω12

Ω21 0
⋯ Ω1𝑁

⋯ Ω2𝑁

⋮ ⋮
Ω𝑁1 Ω𝑁2

⋱    ⋮    
… 0

] [

𝜔1

𝜔2

⋮
𝜔𝑁

]         

= 𝜆 [

T11 Ω12

Ω21 T22

⋯ 0
⋯    0   

   ⋮      ⋮   
0 0

⋱    ⋮    
… T𝑁𝑁

] [

𝜔1

𝜔2

⋮
𝜔𝑁

]               (4.22) 

 

The partial derivative of the Lagrangian problem yields the generalized eigenvalue 

problems. By solving the generalized eigenvalue problem, the largest eigenvalue can 

be obtained and it equals to the optimized coherence. If the data consist of N multi-

temporal or multi-baseline images, this approach yields one eigenvector of one 

reference image with respect to the remaining images. In optimization process, the 

eigenvector is calculated to the overall coherence of remaining images, which means 

effectively averaged coherence of remaining images, not individual images. Thus, 

the coherence based on extracted vector is closest to the weighted optimized 

coherence rather than largest coherence.  
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Fig. 4. 13. Interferometric coherence optimization scheme using single-baseline 

equal-scattering mechanism. 

 

Equal-scattering mechanism 

In contrast with MSM, the scattering mechanism could be preserved, thus, T𝑖𝑖 is 

similar between data sets. This is a reliable assumption when data have a small 

temporal baseline and spatial baseline. If the different scattering mechanisms is not 

necessary, the equal scattering mechanism, which has the same vector to project the 

optimized plane, can be used, and it is called as “Equal-scattering-mechanism”. For 

optimum of coherence, the following matrix can be defined.   

 

Π𝑖𝑗 = 𝑇𝑠
−1/2

Ω𝑖𝑗𝑇𝑠
−1/2

                                          (4.23) 

𝛾𝑖𝑗(𝜔) =
𝜔∗Ω𝑖𝑗𝜔

√𝜔∗𝑇𝑠𝜔
                                             (4.24) 

𝑇𝑠 =
1

𝑁
∑𝑇𝑖

𝑁

𝑖=1

                                                  (4.25) 
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Fig. 4. 14. Interferometric coherence optimization scheme using multi-baseline 

equal-scattering mechanism. 

The coherence corresponding the change of basis is defined as,  

 

𝛾𝑖𝑗(𝜔) = 𝜔∗Π𝑖𝑗𝜔                                          (4.26) 

 

By iteratively changing its basis, corresponding range of the matrix, r(Π𝑖𝑗), changes, 

then the maximum of the coherence is obtained.  

 

 𝑟(Π𝑖𝑗) = max{|𝜔∗Π𝑖𝑗𝜔|: 𝜔∗𝜔 = 1}                            (4.27) 

 

The approach to finding the optimum using two data assuming the common 𝜔 is 

called as single baseline equal scattering mechanism (SB ESM). In the process, the 

process to find 𝜔 of the two data is repeat using each pairs as shown in Fig. 4. 10. 

However, for the multi-baseline case, the common 𝜔 should be defined for the all 

data. For this, estimate of the coherence optimum can be obtained.  

H = ∑ ∑ Π𝑖𝑗 exp(−𝑖𝜃𝑖𝑗)

𝑁

𝑗=1≠𝑖

𝑁

𝑖=1

                                  (4.28) 

Hw = λw                                                    (4.29) 

The optimal vector, w, is calculated from the eigenvalue problem.  
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Comparison of optimized coherences 

In order to optimize the interferometric coherence, the four methods could be 

applied, as mentioned in the previous section. Since the described methods have 

different physical meaning, the appropriate approach is required before the 

optimizations. In procedure assuming Single-baseline (or single-temporal-baseline), 

the optimization is repeated for the all possible pairs. Thus, the extracted vectors 

corresponding to the optimum vary depending on the selected pairs. The highest 

coherence values could be extracted via this approaches because it mathematically 

calculated highest coherence value. However, it is not easy to find the interpretation 

of the physical meaning for changing vector with respect to the other scenes. 

Meanwhile, the approach using multi-baseline (or multi-temporal) assumption 

results in the unique vector for pixels of one scene. The vectors to optimize the 

coherence describes the polarimetric state at the acquisition of the image. Thus, 

physical interpretation is reasonable even though the coherence values could be 

lower than single baseline case.  

Also, the assumption about the scattering mechanism should be taken into 

account. The multi-scattering-mechanism (MSM) assume the different scattering 

mechanism in optimization. Thus, the vectors to define the optimum are different for 

the different scenes. Meanwhile, the resolution cells of different scenes share a 

common vector to define the optimum coherence in equal-scattering-mechanism 

(ESM) method. These two methods were evaluated using real data using multi-

baseline approach. As shown in Fig. 4. 12, the overall coherence of MSM is higher 

than ESM. In outcrop area denoted as A, the coherence values are similar. In contrast, 

the forested area denoted as B, the coherence is much higher in MSM cases. This 

differences may indicate the forested area could be not optimized if ESM is applied. 

The possible explanation is that the common vectors used in EMS cannot represent 

the scattering mechanism of the vegetated area because the forested area is likely to 
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be affected by the temporal decorrelation.  

The temporal comparison is also performed for the several test area denoted in 

Fig. 4. 12. The area denoted as A is mainly covered by outcrop or desert bush. The 

areas denoted as B, C, and D are the forested area, and area C and D were burnt due 

to Lake fire. The MSM shows high coherences for the outcrop area over entire time 

spans. Similarly, the ESM also yields high coherences, even though lower 

coherences are observed in some time-spans. For the coherence covariance matrices 

of forested area, two approaches show different coherence trends along the time span, 

hence, the coherence of MSM is higher than ESM. The results support that MSM 

approach could higher coherences than ESM similarly with the spatial analysis.  

The spatial and temporal analysis imply that the dataset affected by the temporal 

decorrelation could be optimized using MSM approach for the higher coherence. If 

the temporal decorrelation is not present in the data, both approaches may yield 

similar coherence values.  
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Fig. 4. 15. Optimized coherence using multi-baseline (a-b) multi-scattering-

mechanism and (c-d) equal-scattering mechanism. After optimization, the coherence 

was obtained for interferometric pairs (a, c) January. 08.2015-May.11.2015 and (b, 

d) May.11.2015-June.29.2015. 
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Fig. 4. 16. Coherence covariance matrices using multi-baseline multi-scattering-

mechanism. (a) outcrop area, (b) unburnt forested area, (c) burnt forested area, and 

(d) burnt forested area which are denoted as A, B, C, and D in Fig. 4.12. 

 

 
Fig. 4. 17. Coherence covariance matrices using multi-baseline equal-scattering-

mechanism. (a) outcrop area, (b) unburnt forested area, (c) burnt forested area, and 

(d) burnt forested area which are denoted as A, B, C, and D in Fig. 4.12. 
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4.3.2. Temporally correlated coherence estimation 

 

According to the model formulated in Chapter 2, the coherence model for 

UAVSAR data (zero-spatial baseline, multi-temporal, and quad-polarimetric SAR 

images) can be formulated as 

𝛾(𝑤) =

𝑒𝑥𝑝 [−
𝛥𝑇
𝜏𝑣

] |𝛾𝑡𝑟𝑎𝑛𝑑

𝑣 | + 𝜇(𝑤) 𝑒𝑥𝑝 [−
𝛥𝑇
𝜏𝑔

] |𝛾𝑡𝑟𝑎𝑛𝑑

𝑔
| exp (𝑖𝜙𝛾𝑡

𝑔)

1 + 𝜇(𝑤)
   (4.30) 

In order for the inversion to be successful, the number of observations must match 

the number of unknowns. Throughout this chapter, let N be a number of scenes for 

multitemporal SAR data with a single-polarization channel, then the number of 

interferometric pairs is N(N-1)/2. In a multi-temporal polarimetric interferometric 

scenario, the additional polarimetric channel increases the number of new 

observations by a factor of N(N-1)/2. The formulated coherence model in Eq. (4.30), 

which has a zero-spatial baseline, and long temporal baseline, has 6 unknown 

parameters ( μ , τg , τ𝑣 , , 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

, 𝜑𝛾𝑡
 𝑔 ,  𝛾𝑡_𝑟𝑎𝑛𝑑

𝑣 ) for a single-polarization 

interferometric pair. However, the number of unknowns changes depending on 1) 

characteristics of model parameter, 2) additionally available polarizations, and 3) the 

number of available data. 

As described in Chapter 2, the temporally-uncorrelated changes have different 

characteristics depending on the physical source inducing the decorrelation. If wind-

induced motions are assumed, hence 𝜑𝛾𝑡
𝑔 is zero, then 𝛾𝑡_𝑟𝑎𝑛𝑑

𝑔
 becomes real-valued 

and polarization-independent. Consequently, the numbers of 𝛾𝑡
𝑣  and 𝛾𝑡

𝑔
, become 

N(N-1)/2 and N(N-1)/2. Also, the total number of unknowns is N(N-1)+3, where the 

ground-to-volume ratio and the two characteristic time constants of the volume and 

ground layers are pair-independent parameters. An additional polarization introduces 

one unknown ground-to-volume ratio corresponding to the newly added polarization. 

If three-polarizations are available, the total numbers of unknowns and observables 
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are N(N-1)+5 and 3N(N-1)/2. 

However, if 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑔

 is polarization-dependent and complex valued (i.e. 𝜑𝛾𝑡
𝑔 ≠

0), not only the amplitude of complex coherence, but also the phase information 

needs to be accounted for. Hence, in the case of three-polarization, the 3N(N-1)/2+5 

real parameters are mapped onto the 3N(N-1)/2 complex coherences. Thus, the 

number of the observations can be matched unknowns. In this section, the detailed 

inversion procedure and the extracted model parameter from UAVSAR data are 

discussed. 

In order to estimate the model parameters, the optimized coherences were 

linked to the model parameters. The five unknown parameters, three ground-to-

volume ratios (𝜇𝑜𝑝𝑡1
, 𝜇𝑜𝑝𝑡2

, 𝜇𝑜𝑝𝑡3
) corresponding to the optimized coherences, and 

two temporally correlated coherence (𝛾𝑡_𝑐𝑜𝑟𝑟
𝑔

,  𝛾𝑡_𝑐𝑜𝑟𝑟
𝑣 ), which are pair-independent 

parameters, can be estimated first. If the temporally uncorrelated changes of the 

ground and volume layers are negligible, i.e., 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣 ,   𝑔

= 0, the equation can be 

rewritten as: 

𝛾𝑖𝑗.𝑛𝑜_𝑟𝑎𝑛𝑑
𝑜𝑝𝑡𝑚 =

exp [−
∆𝑇𝑖𝑗

𝜏𝑣
] + 𝜇(𝜔𝑜𝑝𝑡𝑚) exp [−

∆𝑇𝑖𝑗

𝜏𝑔
]

1 + 𝜇(𝜔𝑜𝑝𝑡𝑚)
              (4.31) 

Eq. (4.31) indicates hypothetical envelope line to describe the coherence determined 

by the temporally correlated changes (Jung et al., 2016). Thus, the hypothetical 

envelope can be estimated in the subspace between 1 and the maxima of coherence 

values plotted as a function of temporal baseline. Furthermore, the curve is expressed 

as the sum of two exponential functions of the temporal baseline and an 

exponentially decayed envelope. Thus, the nonlinear unknown parameters are Thus, 

the nonlinear unknown parameters are estimated to satisfy min (‖𝐷‖) and D>0, 

where ‖…‖ indicates the Euclidean vector norm:  

 



 

 １０４ 

𝐷 =

[
 
 
 𝛾𝑖𝑗,𝑛𝑜_𝑟𝑎𝑛𝑑

𝑜𝑝𝑡1

𝛾𝑖𝑗,𝑛𝑜_𝑟𝑎𝑛𝑑
𝑜𝑝𝑡2

𝛾𝑖𝑗,𝑛𝑜_𝑟𝑎𝑛𝑑
𝑜𝑝𝑡3

]
 
 
 

− [

𝛾𝑜𝑝𝑡1

𝛾𝑜𝑝𝑡2

𝛾𝑜𝑝𝑡3

]                                    (4.32) 

In the estimating procedure, note that the temporal decorrelation components of the 

ground and volume layers are assumed to be polarization invariant; thus, the 

coherence from each polarization is associated with the ground-to-volume-ratio. In 

addition, it is necessary to preserve the physical range of the model parameters 

(i. e.  0 ≤ 𝛾𝑡_𝑟𝑎𝑛𝑑
𝑣 & 𝑔

≤ 1). Accordingly, the following constraints can be set for the 

estimation of the ground-to-volume-ratios: 

𝜇1̃

1 + 𝜇1̃
≥

𝜇2̃

1 + 𝜇2̃

𝛾𝑖𝑗
𝑜𝑝𝑡1

𝛾𝑖𝑗
𝑜𝑝𝑡2

≥
𝜇3̃

1 + 𝜇3̃

𝛾𝑖𝑗
𝑜𝑝𝑡1

𝛾𝑖𝑗
𝑜𝑝𝑡3

                        (4.33) 

𝜇1̃

1 + 𝜇1̃
≥

𝜇2̃

1 + 𝜇2̃
(
𝛾𝑡𝑐𝑜𝑟𝑟

𝑣 − 𝛾𝑖𝑗
𝑜𝑝𝑡1

𝛾𝑡𝑐𝑜𝑟𝑟

𝑣 − 𝛾𝑖𝑗
𝑜𝑝𝑡2

) ≥
𝜇3̃

1 + 𝜇3̃
(
𝛾𝑡𝑐𝑜𝑟𝑟

𝑣 − 𝛾𝑖𝑗
𝑜𝑝𝑡1

𝛾𝑡𝑐𝑜𝑟𝑟

𝑣 − 𝛾𝑖𝑗
𝑜𝑝𝑡3

)   (4.34) 

for the case of 𝛾𝑖𝑗
𝑜𝑝𝑡1 ≥ 𝛾𝑖𝑗

𝑜𝑝𝑡2 ≥ 𝛾𝑖𝑗
𝑜𝑝𝑡3 . If the above constraints are not taken into 

consideration, the remaining parameters have physically unexplainable values. 

Therefore, the estimation of parameters under constraints is a notable point in this 

approach. The obtained characteristic time constants are linked to the ground or 

volume layers. Here, it is assumed that the ground is more stable than the volume in 

terms of coherence, i.e.,τg > 𝜏𝑣 . This is a reasonable assumption because the 

temporally correlated changes represent the expected amount of coherence change 

and the volume is more likely to be affected than ground by wind or tree growth.  

Starting from the optimized coherence images obtained UAVSAR, the characteristic 

time constants of the ground and volume layers were estimated as shown in Fig. 4. 

18 (a) and (b). In the case of the ground layer, high values were observed over bare 

soil area on the right side of the Fig. 4. 18 (a), which means that the coherence in this 

area could be high, even over a long time span. In contrast, the left side of Fig. 4. 18 

shows relatively low values because the ground was covered by forest. A possible 
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Fig. 4. 18. Characteristic time constants of (a) ground and (b) volume layers. High 

values of characteristic time constant mean the high coherence can be expected even 

in long temporal baseline. 

 

explanation might be that the surface underlying forest is affected by fall of leaves 

or frequent precipitation. 

 

4.3.3. Estimation of temporally uncorrelated coherence 

Assuming no response from the ground at one optimized coherence (i.e. 𝜇𝑜𝑝𝑡3
= 0), 

the numbers of pair-dependent parameters, 𝛾𝑖𝑗.𝑡_𝑟𝑎𝑛𝑑
𝑔

 and 𝛾𝑖𝑗,t_𝑟𝑎𝑛𝑑
𝑣 , are now N(N-

1) in complex domain and N(N-1)/2 in real domain, while the number of 

observations is 3N(N-1)/2 in complex domain. Thus, the inversion problem has 
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Fig. 4. 19. Model parameter extraction for the ground layer. (a) Optimized coherence before the fire. (b) Optimized coherence during the fire. The 

temporally correlated coherence of ground layer for (c) 710 days and (d) 759 days. The temporally uncorrelated coherence of ground layer (e) 

before the fire and (f) during the fire. For the pair before the fire, the scenes acquired on May 31, 2013, and May 11, 2015, are used.  
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Fig. 4. 20. Model parameter extraction for volume layer. (a) Optimized coherence before the fire. (b) Optimized coherence during the fire. The 

temporally correlated coherence of volume layer for (c) 710 days and (d) 759 days. The temporally uncorrelated coherence of volume layer (e) 

before the fire and (f) during the fire. For the pair before the fire, the scenes acquired on May 31, 2013, and May 11, 2015, are used.
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unique solution. Theoretically, both 𝛾𝑖𝑗.𝑡_𝑟𝑎𝑛𝑑
𝑔

 and 𝛾𝑖𝑗,t_𝑟𝑎𝑛𝑑
𝑣  can be inverted by 

finding the minimum as Eq. (4.35)  

𝑚𝑖𝑛 ‖‖

[
 
 
 𝛾𝑖𝑗

𝑜𝑝𝑡1

𝛾𝑖𝑗
𝑜𝑝𝑡2

𝛾𝑖𝑗
𝑜𝑝𝑡3

]
 
 
 

− [

𝛾(𝜇𝑜𝑝𝑡1
, 𝜏𝑣, 𝜏𝑔, 𝛾𝑖𝑗,t𝑟𝑎𝑛𝑑

𝑣 , 𝛾𝑖𝑗,𝑜𝑝𝑡1,t𝑟𝑎𝑛𝑑

𝑔
) 

𝛾(𝜇𝑜𝑝𝑡2
, 𝜏𝑣, 𝜏𝑔, 𝛾𝑖𝑗,t𝑟𝑎𝑛𝑑

𝑣 , 𝛾𝑖𝑗,𝑜𝑝𝑡2,t𝑟𝑎𝑛𝑑

𝑔
)

𝛾(𝜇𝑜𝑝𝑡1
, 𝜏𝑣, 𝛾𝑖𝑗,t𝑟𝑎𝑛𝑑

𝑣 )

]  ‖‖     (4.35) 

Fig. 4. 19 and 20 show the coherences and decomposed coherences for the pair 

acquired on May 31, 2013, and June 29, 2015. This pair contains information of the 

Lake Fire, and its temporal baseline was 759 days. The fire scar caused by the Lake 

Fire was observed on the left to the middle of the coherence image, as shown in Fig. 

5(a) and (b). However, the boundaries were unclear because of the strong temporal 

decorrelation of the forest area. Based on the characteristic time constants in Fig. 4. 

18 and the temporal baseline of this pair (759 days), the temporally correlated 

coherence values were estimated as shown in Fig. 4. 19 (d) and 20 (d). These 

coherence images were the expected values when the pair has the temporal baseline 

of 759 days without any temporally uncorrelated changes. These values would be 

the same for all pairs with the same temporal baseline. As expected, the damage 

caused by the fire was observed in the temporally uncorrelated changes because such 

an event is categorized as the temporally uncorrelated coherence. In comparison with 

the optimized coherences in Fig. 4. 19 (a) and (b) and Fig. 4. 20 (a) and (b), the effect 

of damaged area in the temporally uncorrelated coherence was enhanced, such that 

it was possible to identify the periphery of the burn scar. The histograms of coherence 

images shown in Fig. 6 also support the effectiveness of the approach. The mean 

coherences of 𝛾𝑜𝑝𝑡1  of damaged and undamaged area are 0.34 and 0.69, 

respectively. The mean values of 𝛾𝑜𝑝𝑡1,t𝑟𝑎𝑛𝑑

𝑔
 are 0.53 and 0.93 in damaged and 

undamaged area. Hence, the differences between the changed and unchanged areas 

in the temporally uncorrelated coherence is higher than in the observed coherence. 

Similarly, the differences of 𝛾𝑜𝑝𝑡3  and 𝛾t𝑟𝑎𝑛𝑑

𝑣  is 0.33 and 0.4. Therefore, applying  
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Fig. 4. 21. Histograms of total coherence (gray), the coherence of damaged area 

(pink), the coherence of undamaged area (green), the temporally uncorrelated 

coherence of damaged area (red curve), and temporally uncorrelated coherence of 

undamaged area (black curve) for (a) the ground and (b) the volume layer. 

the coherence model is beneficial not only to the interpretation of the physical status 

of the scatterers but also to the damage mapping by widening the distance between 

undamaged and damaged values.  

 

4.3.4. Damage probability calculation 

One of the critical limitations in CCD is that the coherence images contain not 

only the decorrelation caused by the natural disaster but also the decorrelation due 

to natural changes of scatterers. In particular, delineating the perimeter of a damage 

of a forested area often appears on top of natural changes. In this section, this study 

aim to distinguish the natural disaster event from natural changes.  

According to the model used in this study, the decorrelation caused by a disaster 

event is considered temporally uncorrelated changes because it occurs randomly in 

time. The temporally uncorrelated decorrelation before the event contains the effect 

of randomly occurring natural phenomena such as rain, snow, and wind. The effect 

of the event on the coherence is contained in the coherence generated from pairs 

acquired before and after the event. Thus, the probability of the event was estimated 

by comparing the temporally uncorrelated coherence of reference with those of the 

event. To do this, the probability density function, 𝑝(𝑡), was constructed using the 



 

 １１０ 
 

 
Fig. 4. 22. Damage probability calculation. The histograms can be built using 

history of the temporally uncorrelated coherence of ground (upper) and volume 

(lower) layer, respectively. 
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temporally uncorrelated changes of the volume and ground layers from pairs before 

the event (reference set), which represents statistical character of natural changes. 

Then, the probability of the event can be calculated from the pairs before and after 

event by comparing the built probability density functions: 

Pr(𝛾𝑚𝑛.𝑡𝑟𝑎𝑛𝑑

𝑔&𝑣
) = 1 − ∫ 𝑝𝑔&𝑣(𝑡)

𝛾𝑚𝑛.𝑡𝑟𝑎𝑛𝑑

𝑔,   𝑣

0

𝑑𝑡                     (4.36) 

where Pr indicates the probability. The indices of the scene, m, and n indicate the 

scene acquired before the event and after the event, respectively. Because the 

probability is calculated based on the probability density function of natural changes, 

the decorrelation caused by an event should be stronger than that induced by natural 

changes. Thus, this damage mapping algorithm is effective when the scatterers have 

suffered moderate temporal decorrelations caused by the natural changes. If the 

scatterers are prone to the decorrelation or the effect of the natural change is too 

strong, the decorrelation induced by the event cannot be distinguished.  

From Eq. (4. 36), the multiple probability maps were generated corresponding 

to the event pairs in Fig. 7(a) and (b). In practical, the number of event pairs is 14. 

Some event pairs might have strong decorrelation caused by natural change, such as 

heavy rain, in a region where the event has not occurred, because coherence is 

defined as the relative difference of scatterer status. Averaging the stack of the 

probability maps is one way to mitigate this effect, because every event pair has the 

decorrelation of the event, while only a few event pairs have the decorrelation of 

strong natural changes. The final products of the averaged probability maps of the 

ground and volume layers are shown in Fig. 4. 23, respectively. It is worth note that 

the damaged area can be estimated in volume and ground layer separately.  

To evaluate the damage mapping performance, the ancillary boundary line 

information provided from California Department of Forestry and Fire Protection 

(CAL FIRE) was rasterized in accordance with the resolution of the probability maps 
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Fig. 4. 23. The calculated damage probability for (a) ground layer and (b) 

volume layer. The multiple probability maps of ground and volume layer can 

be averaged to reduce the effect of natural phenomena. 

 

(c) Averaged probability map of ground

(d) Averaged probability map of volume

0 % 100%

0 % 100%

(b) Probability map of volume

0 % 100%

(a) Probability map of ground

0 % 100%
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Fig. 4. 24. Performance evaluation of damage mapping algorithm. (a) reference 

damage map and (b) ROC curve. (c and d) The binary image of the ground layer 

when the false alarms are 0.01 and 0.05, respectively. (e and f) The binary image of 

volume layer when false alarms are 0.01 and 0.05.  

and coherences. Since the boundary line of the damaged area exceeded the boundary 

of the SAR imaging swath, only the overlapped areas were compared. In addition, 

the low coherence areas due to shadow, water, and flat surfaces were also masked 

out. Thus, the white area was only used for comparison (Fig. 4. 24 (a)). A receiver 

operating characteristic (ROC) curve has been widely used for evaluating 

performance in change detection research. The ROC curve results show that the best 

performance can be obtained when the averaged probability maps (Fig. 4. 23. (c) and 

(d)) are used. Their probabilities of detections (PD) are 0.81 and 0.80 when the 

probability of false alarms (PF) is 0.05. Meanwhile, PDs are 0.58 and 0.57 when PF 

is 0.05 in the case of the first and third optimized coherences (Fig. 4. 19 (b) and Fig. 

4 .20 (b)), respectively. The PDs using the probability map of the ground and volume 

layers (Fig. 4.23 (a) and (b)) are 0.64 and 0.65. These prove the proposed approach 

effective in damage mapping.  
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4.4. Applicable conditions of damage mapping algorithm 
using coherence model  
 

4.4.1. Coherence condition  

 

So far, the damage mapping algorithm using coherence model has been 

introduced. The main concept of this algorithm is that the history of the coherence 

behavior which is not affected by the natural disaster can emphasize the effect of the 

natural disaster. To do this, the reliable coherences before the event need to be 

available in order to generalize the coherence behavior for each pixel. Generally, the 

immoderate changes including the soil moisture change and vertical profiles change 

can induce not only the phase disturbance but also the amplitude of the scattering 

change. If the pixels have been suffering excessive dielectric change, the coherence 

is almost zero and the incoherent approach is more proper rather than coherent 

approach. Thus, it is necessary to find the certain conditions which enable this 

algorithm applicable.  

In non-zero spatial baseline case, the phase of volumetric coherence has a 

dependency on the ground-to-volume ratio, canopy height, and extinction coefficient 

because the integral term in RVoG model results in the complex values. Accordingly, 

the interferometric phase varies on the arbitrary polarization when the spatial 

baseline is nonzero. In contrast, the coherence model exploiting the temporal 

decorrelation without the volume decorrelation is explained under the assumption 

that the temporal decorrelations of ground and volume layers are complex and real 

values, respectively. If the significant amount of the temporal decorrelation in 

volume layer, which is related to the vertical profiles changes, the temporal 

decorrelation in volume layer can be complex. Then the accurate extraction of the 

model parameter may fail. Thus, the temporal decorrelation of volume layer needs 

to be ensured whether it is complex or not. Unfortunately, the verification of 
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Fig. 4. 25. (a and b) The interferometric phase of optimized coherence before the fire. 

(c) The phase difference between two optimized coherence (i.e. (a) and (b)). (d and 

e) The interferometric phase of optimized coherence during the fire. (f) The phase 

difference between two optimized coherence (i.e. (d) and (e)). 

the properties of temporal decorrelation is difficult because the parameter cannot be 

retrieved without the prior knowledge. Instead, the significant amount of the 

dielectric change can be identified by searching phase differences of each 

polarizations, indirectly.  

The UAVSAR dataset used in this study are acquired with the zero-spatial 

baseline and for repeat pass scenarios. Hence, the phase associated with the 

topographic elevation and canopy height is ignorable. The interferometric phase can 

be interpreted as the contributions of the displacement of surface and atmospheric 

phase delay. Fig .4. 25 show the interferometric phase generated from the optimized 

complex coherences. Since the surface displacement and atmospheric phase delay 

are independent to the polarization, the interferometric phases induced by both 

effects are coincident at arbitrary polarizations. The differences between 
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Fig. 4. 26. The absolute value of phase difference in Fig. 4. 25. (a) Before fire. (b) 

During fire.  

 

Fig. 4. 27. Histograms of phase differences in (a) unburnt area and (b) burnt area. 

 

interferometric phases can be considered as the phase induced by the temporal 

decorrelation. Fig. 4. 25 (c) shows the phase differences between the first and third 

optimized coherences from the pair of May.31.2013 and May. 11. 2015. Almost 

pixels shows near zero value of phase, which indicates the phase difference between 

two optimized complex coherence is not severe. In terms of the physical 

interpretation, this implies that the temporal decorrelation event inducing the 

complex coherence value is not severe. However, the pair which is acquired before 

and after the event shows the non-zero value where the wildfire occurred. In order 

to emphasize this effect, and compare the non-event pair, the absolute values of 

phase difference are illustrated in Fig. 4. 26. In particular, the non-zero values are 

clearly observed over the damaged area. Hence, the certain event such as wildfire 

disturb the vertical structures of the target media, and accordingly, this event induced 

the complex value. Histograms of the phase differences over the unburnt area also 

verify that phase differences maintain their distribution regardless of conditions 
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(temporal baseline and natural condition at acquisition time). As a result, the 

coherence model can be applied to the pairs before the event, and the extraction of 

the model parameters is possible. Also, the damage mapping method can be 

successful by comparing the historical coherence behavior with the phenomena 

induced by the event.   

 

 

 

 

 

 

Fig. 4. 28. Complex correlation plotted in the complex plane. (a) outcrop area, (b) 

unburnt forested area, (c) burnt forested area, and (d) burnt forested areas which are 

denoted as A, B, C, and D in Fig. 4.12. 
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4.4.2. Number of available scenes and interferometric pairs 

 
The key to reliable estimation of the model parameter and successful delineation 

of damage area is the number of the available data. In order to build the historical 

change belonging to the natural phenomena, the enough data to characterize the 

coherence behavior is required. The UAVSAR data used in this study consists of 14 

scenes before the disaster event, and one scene after the event. To find out the 

minimum number of the scenes and the interferometric pairs can be achieved by the 

changing the scene list for processing, and evaluating their performances.  

Tests were carried out for the step to calculate the probability by building the 

histograms involving the natural changes. Starting from 2 scenes, the number of the 

scene which will be used for histogram were increased to 14 scenes. The 

performance is evaluated at each time using ROC curve analysis. As shown in Fig. 

4. 29, the true detection, which is accuracy of the damage detection, increase as the 

number of scenes increases. The increasing trend of the accuracy is observed up to 

7 scenes. After 7 scenes are available, the accuracy does not increase dramatically. 

This indicates that if 7 scenes are available, the reliable information about the 

influence of the natural phenomena on the coherence can be obtained. In order to 

confirm this finding, the analysis was carried out for the interferometric pairs. The 

maxima of the interferometric pairs which can be generated from the 14 scenes is 91 

pairs. The performance was recalculated by repeatedly increasing the interferometric 

pairs. Up to 25 pairs, the accuracy is gradually improved. Over the 25 pairs, the 

accuracy improvement is not seen. This result coincides to the analysis for the 

available scenes. If 7 scenes are available, the maxima number of the pairs is 21 pairs. 

The damage mapping algorithm assumes that the every interferometric pairs have 

only information of the temporal decorrelation. If the spatial baseline is non-zeros as 

in the space-borne SAR system, the interferometric pairs with the long spatial 

baseline should be excluded. Then, the more than 7 scenes may be required.  
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Fig. 4. 29. Performance evaluation for different number of available scenes and 

interferometric pairs. Red line and squares indicate the true positive changes at 0.15 

false positive. Blue line and squares represent the true positive change at 0.1 false 

positive.  
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4. 5. Comparison of model inversion results and damage 
mapping algorithm results  
 
 

In Chapter 2, the recently developed temporal decorrelation models assuming two 

layers were presented such as RMoG and RVoG+VTD models. In order to 

discriminate the temporally decreasing coherence, the model is extended and 

reformulated to have the terms describing the exponential function. Also, the 

temporal decorrelation sources are different from the RMoG and RVoG+VTD 

models by setting the complex coherence change related to the soil moisture change. 

Accordingly, the model parameter inversion adopted a different approach. Thus, it is 

worth quantitatively comparing the result derived from the RMoG model and the 

model formulated in this study.    

In addition, the damage mapping algorithm using single-polarized SAR data 

was addressed in Chapter 3. In contrast, Chapter 4 is focusing on the damage 

mapping approach using full-polarized SAR. Both methods were separately 

evaluated and demonstrated successfully their performance. This subsection will 

present the quantitative comparison in terms of the model parameter inversion and 

damage mapping performance.  

 

4.5.1. Comparison with RMoG model  

 
The RMoG model is designed to extract the physical parameter of forest from 

polarimetric interferometric data. Hence, the RMoG model is applicable even in the 

case of the non-spatial baseline. The form of the model can be described as:  

γRMoG = 𝑒𝑖𝜙𝑜
𝛾𝑣𝑡

𝑣 𝑒−𝑖𝜙0 + 𝜇𝛾𝑡𝑔
  

𝜇 + 1
                                     (4.37) 

where  

γ𝑣𝑡
v = 𝑒𝑖𝜙𝑜𝛾𝑡𝑔

𝑝1[𝑒
(𝑝2+𝑝3)ℎ𝑣 − 1]

(𝑝2 + 𝑝3)(𝑒
𝑝1ℎ𝑣 − 1)

                            (4.38) 
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𝛾𝑡𝑔 = 𝑒𝑥𝑝[−
1

2
(
4𝜋

𝜆
)

2

𝜎𝑔
2]                                              (4.39) 

𝑝1 =
2𝜎𝑒

cos 𝜃
                                                      (4.40) 

𝑝2 = 𝑝1 + 𝑖𝑘𝑧                                                  (4.41) 

𝑝3 = −
(𝜎𝑣

2 − 𝜎𝑔
2)

2ℎ𝑟
(
4𝜋

𝜆
)
2

                                  (4.42) 

Here, σg and σv is the motion standard deviations of the scatterer of ground and 

at an arbitrary height hr. Under the zero-spatial baseline case (kz = 0), the RMoG 

model can be written as  

γRMoG𝑧𝑒𝑟𝑜
=

𝛾𝑣𝑡0
𝑣 + 𝜇𝛾𝑡𝑔

𝜇 + 1 
                                       (4.43) 

γvt0
v = 𝛾𝑡𝑔

𝑝1[𝑒
(𝑝1+𝑝3)ℎ𝑣 − 1]

(𝑝1 + 𝑝3)(𝑒
𝑝1ℎ𝑣 − 1)

                             (4.44) 

The basic forms of the RMoG and the model used in this study is similar because 

both models assume the coincident the structure of the forest, i.e. two layers model. 

However, the model in this study splits the temporal decorrelation functions of 

ground and volume layers into the temporally-uncorrelated and temporally-

correlated coherence functions. In addition, the main physical sources to induce the 

temporal decorrelation is motion only in RMoG model. Hence, comparison of the 

amount of decorrelation is more reasonable rather than the extracted physical 

parameters. Also, the temporal decorrelation function 𝛾𝑣𝑡0
𝑣  of RMoG model is 

coincident to the 𝑒𝑥𝑝 [−
𝛥𝑇

𝜏𝑣
] |𝛾𝑡_𝑟𝑎𝑛𝑑

𝑣 | of the model in this study. Hence, the total 

amount of the temporal decorrelation need to be compared.  

    Fig. 4. 29 shows the correlation between the RMoG model and the model 

formulated in this study. These results demonstrate that the temporal coherence of 

volume and ground, 𝛾𝑣𝑡0
𝑣  and γtg

g
, extracted from RMoG model has similar amount 

of the temporal coherence estimated from the model in this study. The high 
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correlations are observed not only in the short temporal baseline (49 days), but also 

in long temporal baseline (759 days). The temporally-correlated coherence in long 

temporal baseline is smaller than that in short temporal baseline. Thus, the 

contribution is lager in long temporal baseline in terms of temporal decorrelation. 

The fact that the correlation between the two models is similar implies that the 

extraction performance is also similar regardless of the temporal baseline. Also, the 

inversion approach adopted in RMoG model finds the minimum between model 

value and observables. Meanwhile, the inversion in this study first estimate ground-

to-volume ratio and the temporally-correlated coherence by finding the closest 

exponential envelope to the observables. The high correlation value also 

demonstrates the inversion method reliable.  

 

Fig. 4. 30. Temporal coherence comparisons between RMoG model and the 

coherence model used in this study. Temporal coherence of (a) ground and (b) 

volume layers for a pair 2015/05/11-2015/06/29 (49 days). Temporal coherence of 

(c) ground and (d) volume layers for a pair 2013/5/31-2015/06/29 (759 days) 
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4.5.2. Comparison with damage mapping algorithm using single-

polarization data  

 
The advantages in the use of the full-polarization are that the extraction of the model 

parameters is possible without the assumptions used in the approach using single-

polarization, and consequently, the analysis of each layer (i.e. ground and volume 

layers) is independently possible. In Chapter 3 and 4, the both damage mapping 

algorithms using single- and full- polarizations have been introduced and validated 

with in-situ data. However, the comparison between both algorithms has not been 

fully performed. Here, in order to quantitatively assess the both algorithm in terms 

of extraction of the model parameters and performance of the damage mapping, the 

results is compared.  

   For this purpose, the algorithm proposed in Chapter 3 was independently applied 

to the dataset with the each polarization (HH, HV, and VV). The calculated 

characteristic time constants of ground and volume layers, τg and τv, are shown in 

Fig. 4. 30, 31, and 32. The high values are observed on the right side of the images, 

where the bare soil and low and sparse vegetation dominantly exist. In contrast, the 

lower value of τg  and  τv  is mainly observed on the left side where high and 

relatively dense trees exist. This spatial features of τg and τv values are coherently 

found in the analysis using full-polarization (Fig. 4. 18). However, the obtained 

values from single-polarization dataset tend to be underestimated through the 

comparison in Fig. 4. 33. These tendencies are found in the characteristic time 

constants of both ground and volume layers. Indeed, the underestimated value of τg 

is easily expected from the interpretation of coherence characteristics. The HH, VV, 

and HV simultaneously have the contributions of the ground and volume layers. It 

was possible to maximize the coherence and isolate the ground effect from the 

volume effect by the coherence optimization procedure. Thus, the optimized 

coherences can have the more ground contributions than coherence generated from 
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HH, VV and HV polarizations. In the same perspective, the higher value of τv is 

expected in the single-polarization dataset. However, the obtained result is opposite 

to the expectation, because the range of the ground-to-volume ratio is set based on 

the criteria of temporally-uncorrelated coherence (Eq. (4.33) and (4.44)).  

 

 

 

 

 

 

Fig. 4. 31. Characteristic time constant of (a) ground layer and (b) volume layer 

calculated from HH polarization data. 
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Fig. 4. 32. Characteristic time constant of (a) ground layer and (b) volume layer 

calculated from HV polarization data 

 

Fig. 4. 33. Characteristic time constant of (a) ground layer and (b) volume layer 

calculated from HH polarization data. 
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Fig. 4. 34. Comparisons of characteristic time constant of ground layer extracted 

from full-polarization data with (a) HH, (b) HV and (c) VV polarizations. 

Comparisons of characteristic time constant of volume layer extracted from full-

polarization data with (d) HH, (e) HV and (f) VV polarizations. 
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In terms of the performance of damage mapping, the ROC curve is plotted 

coherently with the analysis of Full-polarization dataset. Through the ROC curve 

analysis, the most effective method was the damage map of the ground layer using 

full polarization. Interestingly, the performance of damage mapping using single-

polarization is slightly lower than the approach using full-polarization, especially in 

HV and VV polarization, despite the underestimated parameters. The damage map 

of volume layer using full-polarization only prevails the effectiveness in the range 

from 0.03 to 0.2 of false alarm rate. This founding somehow reveals that the 

proposed method using single-polarization can be effective even though the model 

parameters are less accurate. However, it does not imply that the introduction of the 

polarization does not help to obtain the damage mapping. One of the main benefits 

in use of the polarization is that separate analysis of volume and ground layer is 

possible. This may be most effective when the only one layer is affected by the 

natural disaster such as the surface fire. In the case of the single-polarization, the 

damaged area can be generated but which layer is affected is not clear.  
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Fig. 4. 35. Damage probability maps derived from the damage mapping algorithm 

using multi-temporal single polarization data (Chapter 3).  
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Fig. 4. 36. ROC curves for coherence and damage mapping algorithm using single-

polarizations and full-polarization 

Table 4. 3. The probability of detection on various damage mapping methods. 

 Probability of False Alarm  
0.01 0.05 0.1 

HH coherence 0.433 0.629 0.727 

HV coherence 0.376 0.618 0.727 

VV coherence 0.398 0.583 0.691 

HH single-pol analysis 0.533 0.748 0.830 

HV single-pol analysis 0.641 0.803 0.876 

VV single-pol analysis 0.641 0.813 0.868 

Full-pol ground 0.691 0.833 0.883 

Full-pol volume 0.541 0.819 0.882 

 

4. 6. Discussion and conclusion 
 

This study demonstrated the usefulness of polarimetric and interferometric 

SAR (PolInSAR) data for mapping damage caused by a wildfire. Challenges of 

coherence-based damage mapping are that the interpretation of coherence behavior 

is not easy and that the decorrelation caused by the damage occurs on top of natural 

changes. To overcome these limitations, this study first formulated a coherence 

model to interpret multi-temporal PolInSAR data with zero spatial baselines and long 
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temporal baselines using UAVSAR data. The coherence model incorporates 

temporally correlated change related to the decreasing of coherence as the time span 

increases and temporally uncorrelated changes induced by randomly occurring 

natural phenomena such as rain, snow, and the wind. The unique property of the 

model used in this study is that it has a term describing the exponentially decaying 

coherence with the temporal baseline. Also, the model was designed to interpret the 

decorrelation induced by dielectric property changes in ground layer and the 

positional changes in volume layer.    

The limitations associated with the use and interpretation of PolInSAR data 

arise from the balance between the number of observations and unknown parameters. 

In this case, the full-polarizations and multi-temporal data were essential in solving 

the coherence model. The three-step parameter estimation approach was also 

introduced. Before estimation of the model parameters, the complex coherence is 

optimized. Then, pair-independent parameters (i.e. the ground-to-volume ratios and 

the characteristic time constants of the ground and volume layers) were estimated. 

The difference between the expected coherence from the envelope estimated from 

the temporally correlated coherence and the actual coherence estimated was 

interpreted as the temporally uncorrelated coherence. Thus, the temporally 

uncorrelated coherence could be estimated by finding minimize the actual coherence 

and the expected coherence.  

To solve the problem regarding the mixed contributions from the natural 

changes and the event, the probability map was estimated by comparing the 

temporally uncorrelated coherence of the event set with the probability density 

function built from the reference set. The final probability maps of the ground and 

volume layers for the event were generated by an averaging stack of the probability 

maps of the event set.  

Through the application to the 2015 Lake Fire, California, using UAVSAR data, 
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it is proved that the proposed approach can assist quantitatively interpretation of 

coherence and effective damage mapping. The result that the damage caused by the 

Lake Fire was included in the temporally uncorrelated coherence implies that the 

decorrelation caused by randomly occurring phenomena can be isolated. The 

analysis using the ROC curve verified that the method successfully reduced the false 

alarms.  

This approach is meaningful because it is the first trial that the coherence model 

applied to the damage mapping using multitemporal PolInSAR data. Furthermore, 

the advantage that changes in the ground and volume layers can be detected 

separately is a unique characteristic. This method can be applied in many cases for 

damage mapping purposes, as long as a stack of quad-polarization SAR data were 

acquired with near-zero spatial baseline.  

The algorithm used in this study was evaluated for the case that volumetric 

decorrelation is negligible due to near-zero spatial perpendicular baseline. Typically, 

data acquired from space-borne SAR systems not only have a temporal baseline but 

also a non-trivial spatial baseline. To overcome this limitation, the criteria used for 

setting the spatial baseline range should be carefully determined to minimize the 

volumetric decorrelation. The application utilizing the coherence model 

incorporated with the volumetric and temporal decorrelations, as described in 

Chapter 2, is also worthy of further study. This research could be useful for data 

acquired from the L-band ALOS-2 mission, the planned NISAR mission, and the 

proposed TanDEM-L mission. 
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Chapter 5.  
Conclusions and Future Perspectives  
 

 
In this study, the damage mapping algorithm using the temporal decorrelation 

have been presented for multi-temporal SAR data. During past decades, the SAR 

system has been dramatically developed and advanced, and its applications have 

extended their applicable range in technological and scientific aspects. The most 

useful advantage on the damage mapping purpose is that the radar can image the 

target even in poor weather conditions and night. This is critical when an emergent 

response is required to evaluate the damage and carry out the appropriate response 

to the natural disaster.  

From the beginning of remote sensing techniques, the detection and assessment 

of damages caused by the natural disasters have been the main issue. A number of 

techniques to detect the change in more than two images have been proposed using 

remote sensing data for past decades. Also, they successfully demonstrate their 

robustness and effectiveness in many kinds of literature. They usually approach the 

problem by finding differences between the scenes related to the event of interest 

and interpreting the physical factor to induce these differences. Thus, the results 

produced by the change detection methods can be the collective of many events 

involving a natural disaster, and anthropogenic activities which can affect the remote 

sensing images. In this context, this work can be discriminated from the previous 

techniques, hence this study aims to detect only the changes caused by the event of 

interest.  

When the work started, two challenging problems have been found. First is that 

the differences in the images are not only a result of natural disaster but also the 

effect of several phenomena which is not of the interest. The main tool of the damage 

mapping, coherence, is very sensitive to the natural phenomena, thus, the significant 
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loss of coherence has been observed even though the coherence is irrelevant to the 

natural disaster. In the case of the event pair, the decorrelation is observed over the 

area which is located far from the source of natural disaster. This undesired features 

can be considered as the primary source to degrade the performance. In order to 

overcome the limitation, one of the conceivable ways is the use of multi-temporal 

data to build the historical behavior of coherence induced by only natural phenomena.  

The second problem is the decorrelation sources are various. In particular, the 

coherence of the vegetated area is theoretically determined by the complex structure, 

physical characteristic, and the response to the diverse phenomena in terms of the 

radar signal. Also, the observable coherences are complicated to apply the 

conventional method of change detection. This problem is also linked to the first 

issue because the model to explain the coherence of the multi-temporal data needs 

to be designed.  

In order to successfully cope with the problems and detect the damaged area, 

the study has started from the theoretical background of coherence and design of 

coherence model for multi-temporal data in Chapter 2. The decorrelation sources are 

commonly categorized into four main factors, which are the thermal, geometrical, 

volume, and temporal baseline. The coherence model is designed so that it includes 

several decorrelation sources such as temporally correlated changes, temporally 

uncorrelated changes and the motions in the two layers; i.e. ground and volume layer. 

The temporally correlated change depicts the exponentially decreasing coherences 

with the increase of the temporal baseline, which is commonly observed in multi-

temporal coherence. The temporally-uncorrelated change explains the differences 

between the observable coherence and hypothetic envelopes calculated the 

temporally correlated coherence. In reality, this term means the randomly occurring 

phenomena such as rain, snow, and natural disaster. The physical source of 

temporally-correlated and uncorrelated coherence. The parameterization of the 
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temporal change can be different depending on the assumption of the physical source. 

Hence, the standard deviation of scatterer motion and dielectric properties change 

can be the source. However, the discrimination of these two sources can be 

challenging task and it might be unnecessary for the purpose of damage mapping.  

The coherence model consists of two layers which have their own temporally-

correlated and uncorrelated change terms. The ground-to-volume ratio plays an 

important role to determine the contributions of temporal decorrelations in ground 

and volume layer. The ground-to-volume ratio is a function of the backscattering of 

ground and volume layer, and the terms related to attenuation of the radar signal. 

Since the backscatter signal is also varied depending on the arbitrary polarization, 

the coherence can be different on the choice of polarization. If the interferometric 

data with multi-polarization is available, the coherence behavior can be differently 

observed even though the assumption that temporal decorrelation of ground and 

volume layer is irrelevant to the polarization is valid.  

 The differences with the previous model are also discussed in Chapter 2. The 

RVoG model does not employ the temporal decorrelation term because it is designed 

to explain the PolInSAR data with negligible temporal baseline. Meanwhile, RMoG 

model is formulated to extract the physical parameters of the forest such as extinction, 

canopy height, ground-to-volume ratio and temporal decorrelation. This model 

assumes the height-dependent temporal decorrelation, which is induced by the 

motions of scatterers. However, this model may be insufficient to apply the data with 

long-temporal baseline because not only the motion but also the dielectric properties 

change can dominantly affect the coherence. The model presented in this work 

considers properties that the coherence decrease as time spans are longer. Also, the 

distributions of coherence values acquired at multi-temporal acquisitions are 

reasonably interpreted as a sum of the temporally uncorrelated and temporally 

correlated changes on the ground-to-volume ratio. 
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The damage mapping algorithm using the suggested model was introduced for 

single-polarization multi-temporal data in Chapter 3 as a case study for the detection 

of volcanic ash. Shinmoedake volcano, which is one of the active volcanoes among 

Kirishima volcano cluster, erupted in January 2011 and emitted a massive amount of 

volcanic ash. For the detection of volcanic ash, L-band ALOS PALSAR 

interferometric data was used. This data was acquired over the Kirishima volcano 

spanning from 2007 to 2011. In order to emphasize the temporal decorrelation effect, 

it is necessary to minimize the other decorrelation sources. Since the volcano is 

covered by the dense forest, accordingly the contribution of the volume decorrelation 

can be severe. The volume decorrelation is commonly expressed as a function of the 

physical parameter of the forest, and the geometry of SAR sensors. In order to 

minimize the effect of the volume decorrelation, the controllable parameter is the 

spatial baseline. In approach using multi-temporal images, a number of the 

interferometric pair can be listed which have a different spatial baseline. According 

to RVoG model, the interferometric pairs within 1000m ensure the 0.94 of volumetric 

coherence under the realistic assumption for the physical parameter of the forest. 

During the extraction procedure for the model parameter, the challenging problem is 

an imbalance between the numbers of unknowns and observables. Here, the model 

parameters were extracted under the several assumptions. Also, the ground-to-

volume ratio and the temporally-correlated coherence are first estimated using the 

curve fitting method and, then the temporally-uncorrelated coherences were 

retrieved. Once the model parameters were estimated, the probability of the damage, 

i.e. volcanic ash, was calculated based on the historical coherence behavior 

constructed by kernel density estimation method. By comparing the changes of 

model parameters between the reference pairs and event pairs, the probability of 

changes caused by volcanic ash is defined. The in-situ data, which measures the 

depth and area density of volcanic ash, is compared with the calculated probability 



 

 １３６ 

maps for determining the threshold and evaluating the performance. The correlation 

is found over the area where the depth of the volcanic ash is more than 5 cm and the 

area density is more than 10kg/m2. The uniqueness is that this approach show good 

performance, and the result has physical meanings. Introducing the new parameter 

can interpret the coherent behavior and enhance the measurement regardless of the 

time spans.  

In Chapter 4, the damage mapping method for the multi-temporal and fully-

polarimetric interferometric SAR data was addressed. The approach proposed in 

Chapter 3 has the several limitations, which the assumptions for extracting the model 

parameters are required. In this chapter, the assumptions used in the method can be 

reduced and the changes of two layer can be estimated separately by introducing 

polarimetric and interferometric SAR data. The approach is applied to detect the 

burnt area caused by the Lake Fire, in June 2015 using UAVSAR data.  

In order to quantitatively evaluate the damage caused by Lake Fire, the 

amplitude ratio, and coherence analysis were carried out. Even though, coherence 

analysis shows the loss of coherence due to the fire event, the temporal decorrelation 

caused by the natural changes is mixed with the signal of the event. Thus, the clear 

discrimination of the effect of fire from the natural phenomena cannot be achieved. 

Also, the amplitude ratio result shows poor sensitivity, and it cannot be used for 

damage mapping.  

The damage mapping algorithm proposed in Chapter 4 also uses the coherence 

model proposed in Chapter 2. Here, the temporal decorrelation of ground layer is 

assumed as a complex number, because it involves the soil-moisture changes, which 

is a polarization-dependent parameter. Hence, the fact that the use of multi-

polarization causes the different level of the temporal decorrelation of ground on the 

arbitrary polarizations needs to be taken into account. Meanwhile, the temporal 

decorrelation of volume layer is assumed to be dominantly governed by the motions 
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of scatterers. The model parameter inversion is a key step in the application using 

full-polarization data. The procedure consists of the three steps, which are coherence 

optimization, the estimation of temporally-correlated coherence and temporally-

uncorrelated coherence estimation. The extraction results show the high 

characteristic time constants in ground-dominant pixels, meanwhile, the relatively 

low value is observed in the vegetated area. It is also worth to note that the isolating 

procedure from observed coherence into the temporally-correlated and uncorrelated 

coherence enhanced the damaging effect. The proposed inversion approach is 

practically beneficial to independently provide the damage information of volume 

and ground layers. 

The damage probabilities of volume and ground layers are determined based on 

the histograms of the natural phenomena and natural disaster. Concerning the 

performance of the proposed algorithm, ROC curve analysis was carried out. The 

quantitative analysis demonstrates the proposed method is more effective than only 

use of the coherence. In particular, the most robust way was when the averaged 

probability of ground layer was used.  

However, the method is not always applicable due to the assumptions used in 

inversion procedure. The considerable change in the dielectric characteristic of target 

media can induce a significant alteration in complex coherence. In this circumstance, 

the coherence is observed near zero value. Then, observed coherence has no valuable 

meaning to be interpreted. Similarly, the significant change in the vertical structure 

of target media invalidate the assumptions and misinterpret the model parameters. 

Thus, whether the pixels experience the significant change or not needs to be 

checked. If the significant changes in complex coherence and the phase alteration is 

induced by the natural phenomena, the temporal decorrelation is a complex number. 

In this perspective, the phenomena can induce the different level of the phase 

alteration in complex coherences of arbitrary polarization. It means that the phase 
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angles in optimized coherences can be different. Thus, in this work, the phase 

differences between optimized coherence are calculated. In the unburnt area, the 

distributions of phase differences are stationary regardless of temporal baseline. This 

observation implies that strength of the temporal decorrelation is very similar in most 

of the cases. Therefore, the method can be applicable and results have an invaluable 

meaning. If this condition is not fully satisfied, the different approach such as 

incoherence change detection should alternatively be designed. 

In Chapter 4 the reliability of the extracted model parameters was also discussed. 

RMoG model and its inversion process have been demonstrated in the literature. This 

work quantitatively compares the extracted model parameters of two algorithms. The 

temporal decorrelation terms in RMoG model correspond to the total amount of the 

temporally-correlated and uncorrelated coherence. The comparison shows the 

considerable correlation, and consequently the processing chain, and its products 

have convincingness.  

The comparison between the approach using single-polarization and full 

polarization data is also carried out. The robustness of the damage mapping 

algorithm for single-polarization is demonstrated using in-situ data. Unfortunately, 

the extracted model parameters are not fully exploited because its verification is a 

troublesome task, however, the available multi-polarization allows the comparison 

of model parameters. The result leads that the model parameters for single-

polarization approach tend to be underestimated. The returned signal is effectively 

determined by the many scatterers in target media. In full-polarization, the effects of 

distinguishable contributions of ground and volume layers can be discriminated by 

the coherence optimization. However, the data with single-polarization cannot adopt 

this key procedure, thus some inconsistency is found. Although the underestimated 

parameters appear, surprisingly the performance of single-polarization is discovered 

to be good enough to be comparable with the full-polarization technique. As 
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mentioned in Chapter 2, the algorithm focuses on how to assess the accurate the 

damage map rather than the accurate model parameter. The comparison result 

apparently proves that the processing chain, especially the isolating the exponentially 

decreasing coherence and statistical approach to determine the probability, is robust 

and applicable to these studies.  

So far, the damage mapping algorithms based on the coherence model for 

single- and multi-polarization have been proposed. These have a special meaning 

because they are first trials for multi-temporal coherence employing the coherence 

model. Also, they have a benefit to provide the remarkably accurate damaged maps. 

The algorithms used in this work start from the stacks of a number of the SAR images. 

Currently, a number of SAR images are available from the beginning of space-borne 

and airborne mission, and the plans of a new mission for the high-resolution, high-

quality, multi-polarization and short revisit time are increasing. Consequently, the 

requirement can be expected to be easily fulfilled. For next generation missions such 

as TanDEM-L, and NISAR, this algorithm has an enough potential to be applied.  
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국문 요약문 

  

 

자연 재해에 대한 빠른 대응과 복구를 위해서는 피해 지역에 대한 

평가가 선행되어야 하며, 그런 의미로 피해 지역을 탐지하는 것은 매우 

중요하다. SAR 시스템은 기상적 조건과 주야에 무관하게 영상을 획득할 

수 있으므로, 변화 혹은 피해 지역을 탐지할 수 있는 효율적인 

방법이라고 알려져 있다. 또한 SAR 시스템을 통하여 계산할 수 있는 

긴밀도 (coherence)는 지표의 산란체의 움직임 혹은 유전적 성질에 

변화에 매우 민감하게 반응하기 때문에 피해를 탐지하기에 적합하다고 

평가되어 왔다. 그러나 긴밀도를 이용한 자연재해의 피해 탐지에는 

어려움이 존재할 수 있다. 즉, 탐지하고자 하는 자연재해로 인한 피해와 

비, 눈, 바람과 같은 기상현상, 혹은 식생의 자연적인 변화가 미치는 

영향이 긴밀도에서는 유사하게 발생할 수 있기 때문이다. 이것은 레이더 

신호의 긴밀도가 미세한 변화에도 민감하게 반응하는 특징으로부터 

기인한다. 그러므로 자연 현상으로부터 발생하는 긴밀도 감소 현상은 

피해 탐지 알고리즘에서 오탐지율을 증가시키는 원인이 되며, 자연 

재해의 영향과 분리해야 할 필요성이 있다. 또한 다양한 지표 특성을 

가지는 픽셀들은 자연 현상에 대한 각기 다른 긴밀도 특성을 가지고 

있기 때문에 정확한 피해 탐지를 위해서는 각 픽셀들에서의 독립적인 

평가가 필요하다.  

 

긴밀도를 결정하는 요인들이 다양하고 복합적으로 작용하기 때문에 

해석에 어려움이 있다는 점 역시 긴밀도 기반 피해 탐지 알고리즘의 

한계점이다. 특히 식생이 존재하는 지역에서의 긴밀도의 변화는 더욱 

복잡하게 나타날 수 있다. 그 이유는 유전적 성질을 지니고 있는 

산란체들이 식생에서는 수직적으로 분포하며, 파장이 긴 레이더 신호가 

이를 투과함에 따라 식생의 상층부부터 하층부 또한 지표면까지 

도달되어 산란되어 긴밀도를 감소시키는 체적 긴밀도 감소 현상(volume 

decorrelation) 때문이다. 획득 시간이 동일하지 않은 두 장의 SAR 

영상을 사용하는 repeat-pass 간섭기법에서는 각 식생의 각 부분에서 

발생되는 변화 정보(temporal decorrelation)도 동시에 기록되기 때문에 

해석은 더욱 어려워진다.  
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그러므로 본 연구에서는 다중 시기 긴밀도를 이용하여 자연 현상을 

해석 할 수 있는 모델을 제작하고 이를 변화 탐지 알고리즘으로 

확장하여, 적용 가능성을 평가하고 정밀한 피해 지역을 추출하는 것을 

목적으로 한다. 이를 위하여 첫 번째로는 간섭 기법에서의 시간 

차이(temporal baseline)이 길 때, 다중 시기 긴밀도(multi-temporal 

coherence)를 해석할 수 있는 모델을 제작하는 것을 목적으로 하였다. 

두 번째로는 단일 편파의 다중 시기 SAR 영상에서 관측되는 긴밀도를 

해석하고, 모델 파라미터를 추출하며, 결과적으로 피해를 탐지하기 위한 

방법을 기술하고자 하였다. 세 번째로는 다중편파의 다중 시기 SAR 

영상에 대한 해석 방법에 대한 연구를 진행하는 것을 목적으로 하였다.  

 

2장에서는 긴밀도의 측정과 긴밀도를 결정하는 대표적 요인에 대하여 

분석하였고 시계열 긴밀도 감소 모델을 수식화하였다. 긴밀도 요인 중 

첫 번째는 열잡음 긴밀도 감소(thermal decorrelation)로서, 열 잡음 

(thermal noise)로부터 기인되며, 각 산란체의 신호대 잡음비(signal-

to-noise ratio)와 밀접한 관련이 있다. 두 번째는 기하학적 

비상관성(geometric decorrelation)으로, 두 센서가 다른 위치에서 

신호를 송수신할 때 지상에 투영되는 파수의 스펙트럼이 이동함에 따라 

발생한다. 세 번째 요인은 일반적으로 체적 비상관성 (volume 

decorrelation)이라 언급되는 것으로 지상의 매질 안에 산란체가 

랜덤하게 분포하고 전자파가 이를 투과할 때 발생하는 위상차이에 

의하여 발생된다. 체적 비상관성은 식생에서 주로 관찰되며, 이를 

설명하기 위하여 RVoG 모델이 제안되기도 하였다. RVoG 모델은 

식생의 잎을 포함하는 체적 레이어와 식생 하부의 지표 레이어를 

포함하는 모델로서, 두 레이어에서 결정되는 간섭기법의 위상 및 

긴밀도를 설명한다. 마지막 요인은 두 영상 사이에 산란체가 변화할 때 

발생하는 시간 비상관성(temporal decorrelation)이다. 픽셀 안의 

산란체가 비균질하게 이동하거나, 유전체의 성질이 변화할 경우 

발생한다. 일반적인 repeat-pass 간섭기법의 경우 시간 비상관성이 

매우 우세하게 나타나는 경우가 많으며, 식생의 경우 체적 비상관성과 

시간 비상관성이 동시에 우세하게 나타난다. 식생에서 관찰되는 체적 

비상관성과 시간 비상관성을 동시에 설명하는 RMoG 모델이 제안된 바 

있다.  

 

 본 연구에서는 상대적으로 긴 시간 차이를 가지고 있는 repeat-pass 



 

 １４２ 

간섭기법에서 관측되는 긴밀도 모델을 고안하였다. 시간 비상관성을 

다루는 RMoG 모델은 두 영상의 시간 차이가 크지 않을 경우, 산란체의 

이동이 시간 비상관성을 발생시키는 주된 요인이라는 가정하에 

제작되었다. 그러나 일반적인 인공위성 SAR는 수 일 이상의 시간 

차이를 가지고 있으며, 다중 시기의 SAR 영상을 다룰 경우, 각각의 

시간 차이는 상이하게 나타난다. 이 경우 시간 비상관성을 발생시키는 

요인을 산란체의 이동만으로 설명하는 기에는 어려움이 있다. 그러므로 

본 연구에서 고안된 모델은 지표에서의 변화를 산란체의 이동과 

유전체의 성질 변화가 결합된 상태로 가정하였으며, 식생의 체적 부분은 

산란체의 움직임이 체적에서의 시간 긴밀도를 감소시키는 주된 요인으로 

생각하였다. 또한 다중 시기의 SAR 영상으로부터 계산된 긴밀도는 시간 

차이가 증가함에 따라 긴밀도가 감소하는 현상을 관측할 수 있다. 

이러한 특징은 시간 차이가 길 경우 매우 크게 나타날 수 있지만, 

이전의 모델은 시간 차이가 짧은 경우를 가정하였기 때문에 그 영향이 

중요하지 않았다. 그러므로 본 모델에서는 기존 모델과는 다르게 두 

영상의 시간 차이가 증가함에 따라 긴밀도가 감소하는 현상을 

설명하고자 지수 형태의 함수를 지표 와 체적 레이어에 각각 도입하였고 

이를 시간 종속적 긴밀도(temporally-correlated coherence). 즉, 

체적과 지표의 두 레이어 상에서 각각의 시간에 따라서 감소하게 되며, 

이는 특정한 시간 차이에서 긴밀도가 형성되었을 때 특별한 현상이 없을 

경우 예측될 수 있는 값으로 생각할 수 있다. 반면, 예측되는 값과 실제 

관측값과는 차이가 존재하므로 이는 시간 독립적 긴밀도(temporally 

uncorrelated-coherence)로 해석하였다. 체적과 지표의 시간 긴밀도 

감소 현상은 전체 긴밀도에 영향을 주기 때문에 이를 지표와 체적의 

비를 도입하여, 각각의 효과가 전체 긴밀도에 주는 영향에 대하여 

정량화하였다.  

 

3장에서는 제안된 모델을 기반으로 단일 편파의 다중 시기 SAR 

영상에 대하여 긴밀도 변화 탐지 알고리즘의 해석이 고안되었다. 본 

방법은 일본의 키리시마 화산의 2011년 화산 폭발로 발생하였던 

화산재를 탐지 하는 것을 목적으로 하였으며, 본 목적을 위하여 단일 

편파의 ALOS PALSAR 영상이 사용되었다. SAR 영상을 이용하여 시간 

차이가 다양하게 긴밀도가 제작되었다. 사용한 multi-looking은 32 

look으로 긴밀도의 바이어스가 비교적 작음을 의미한다. 또한 픽셀의 

대부분에서의 열적 비상관성(thermal decorrelation)은 무시할 수 있을 
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정도로 나타났으며, 기하학적 비상관성(geometric decorrelation)은 

common-wave spectral filtering을 사용하여 감소되었다. 또한 대상 

화산은 식생이 분포하고 있기 때문에 체적 비상관성(volume 

decorrelation)을 최소화하여야 할 필요성이 있다. 체적 비상관성은 

식생의 높이, 식생의 수직적인 구조, 두 레이더 센서의 기선거리(spatial 

baseline)등에 의하여 결정된다. 식생의 물리적인 파라미터는 연구에서 

수정할 수 있는 변수가 아닌 반면, 다중 시기에서 만들어 진 영상은 

다수의 기선거리를 가지고 있기 때문에 기선거리에 대한 조건이 

설정함으로써 체적 비상관성을 최소화 할 수 있다. RVoG 모델을 

기반으로 계산된 결과 ALOS PALSAR의 경우 약 1000m의 기선거리를 

가지고 있을 때 체적 긴밀도는 약 0.94 이상이 됨을 알 수 있으며, 이는 

체적 긴밀도를 고려하지 않아도 됨을 의미한다. 앞서 2장에서 제안된 

긴밀도 모델의 파라미터의 추출을 위하여 자료는 화산 폭발 전의 

간섭쌍과 화산폭발 전후의 간섭쌍의 두 그룹으로 나누어졌다. 우선 화산 

폭발 이전의 긴밀도에 대한 해석 및 이해를 위하여 긴밀도 모델이 

적용되었다. 모델 파라미터에서 중요한 것은 모델에 포함되어 있는 

파라미터의 수와 관측 값의 수로, 관측값이 충분할 경우에만 정확한 

모델 파라미터 추출이 가능하다. 그러나 단일 편파의 다중 시기 영상을 

다루는 경우 미지수의 개수가 더 많기 때문에 정확한 모델 파라미터 

추출은 어려울 수 있다. 그러나 본 연구에서는 모델의 특성을 이용한 

가정을 바탕으로 모델 파라미터를 추출하고자 하였다. 모델 파라미터 

추출의 첫 번째는 지표대 체적비 및 시간 종속적 긴밀도의 추정으로 

이는 두 지수 형태의 곡선 적합(curve fitting)으로 수행되었다. 본 

결과로부터 추출된 각 픽셀의 특징적 시간 상수(characteristic time 

constant)는 그 픽셀이 시간의 변화에 따라 긴밀도의 안정성을 보이는 

상수로, 높을수록 긴 시간 차이에도 긴밀도가 높음을 의미한다. 

일반적으로 인공적인 구조물이나, 식생이 없는 나지(bare soil)에서 높은 

값을 보임을 알 수 있으며, 반면 식생이 있는 픽셀은 상대적으로 낮은 

값을 보였다. 추정된 결과를 바탕으로 시간 독립적 긴밀도를 

추정하였으나, 이 때 미지수가 관측 값의 개수보다 많으므로 파라미터 

추정에 불확실성이 존재한다. 그러므로 본 연구에서는 지표와 

체적에서의 시간 종속적 긴밀도의 비를 이용하여 각 픽셀 및 각 

시간차이를 갖는 긴밀도에서 체적과 지표의 시간 비상관성 중 우세한 

현상을 탐지하여 우세하지 않은 현상을 무시할 수 있다고 가정하였다. 

즉, 만약 지표의 시간 종속적 긴밀도가 체적의 시간 종속적 긴밀도보다 
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그 효과가 크다면, 시간 독립적 긴밀도가 주로 지표로부터 기인된다고 

가정하는 것이다. 일반적으로 식생의 긴밀도는 지표의 긴밀도와 체적의 

긴밀도의 영향이 복합적으로 작용하여 결정된다. 이 때 체적의 긴밀도의 

바람에 의하여서도 쉽게 변하기 때문에 시간이 지남에 따라 그 영향이 

거의 무시할 수 있게 된다. 그러므로 시간 차이가 짧을 경우 식생이 

긴밀도에 주도적으로 영향을 줄 수 있지만, 시간 차이가 긴 경우 지표가 

우세하게 긴밀도에 영향을 준다. 이와 같은 가정을 통하여 시간 독립적 

긴밀도를 추출하였다. 각 픽셀에서 관찰되는 긴밀도의 현상을 

통계적으로 분석하기 위하여 자연 재해가 포함되지 않은 자료의 시간 

종속적 파라미터의 히스토그램을 제작하였고, 이를 기반의 자연 재해가 

기존에 발생하였던 자연 현상이 가능성을 계산하였다. 반대로 이 수치는 

자연 현상이 아닐 확률을 의미하기도 한다. 결론적으로 ALOS 자료를 

사용하여 화산재가 쌓여있을 확률도를 계산하였다. 결과의 검증은 실제 

현장 조사를 통하여 획득된 화산재의 두께와 영역 밀도 (area 

density)와의 비교를 통하여 진행되었다. 검증 결과는 두께로 약 5 cm 

이상, 영역 밀도로 약 10 kg/m2 이상의 화산재가 쌓인 지역에서 

상관성을 보임을 확인하였으며, 이를 바탕으로 성공적으로 재해에 대한 

변화를 탐지하였음을 알 수 있었다.  

 

4장에서는 긴밀도 모델을 이용하여 다중 시기의 다중 편파 SAR 

영상을 활용하여 자연 재해 탐지 알고리즘에 적용되었다. 본 연구를 

위하여 2009년부터 2015년까지의 15장의 UAVSAR 자료가 

활용되었으며, 미국 캘리포니아 주에서 발생한 2015년의 산불 중 

하나인 Lake fire에 대하여 연구가 진행되었다. 긴밀도 영상에서 산불에 

의한 긴밀도 감소 현상을 확인할 수 있었지만, 식생 지역의 자연 현상에 

의한 긴밀도 감소 현상과 복합적으로 발생하였기 때문에 해석에 

어려움이 있었다. 영상의 진폭 영상을 이용한 자연 재해 탐지에도 산불 

탐지할 만큼 민감도가 충분하지 않았다. 3장과 마찬가지로 본 연구 

지역에서 긴밀도나 진폭만을 사용해서는 정확한 피해 지도를 만들기 

어려웠으며, 그러므로 긴밀도 모델을 적용한 피해 탐지 알고리즘을 

적용할 필요성이 있었다. 3장에서 제안된 모델 해석 방법과는 차이점이 

있는데, 그것인 본 연구에서 사용되는 UAVSAR 자료가 다중 편파를 

가지고 있으며, 공간 기선 거리가 거의 0에 가깝다는 특징이 있기 

때문이다. 단일 편파 자료에서는 매개 변수의 값이 관측값보다 많았지만, 

다중 편파의 경우 관측값이 더 많다. 그러므로 모델 파라미터 추정에 
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필요했던 가정을 줄일 수 있다는 장점이 있다. 또한 공간 기선거리가 

거의 0에 가깝다는 것도 체적 비상관성을 무시할 수 있다는 것을 

의미한다. 그러므로 관측된 긴밀도는 거의 시간 비상관성과 관련 있다고 

생각할 수 있다. 모델 파라미터를 추출하기 위한 방법은 크게 3가지로 

구성되었다. 첫 번째로는 지표와 체적에 대한 긴밀도 영향을 분리하기 

위하여 우선적으로 긴밀도 최적화 알고리즘을 적용하였다. 본 

연구에서는 다중 시기 영상마다 다른 최적화 벡터를 상정하는 MSM 

알고리즘을 적용하였다. 이 과정을 통하여 관측할 수 있는 긴밀도가 

최대치가 되게 만드는 편파와 그와 수직하는 편파를 찾을 수 있으며, 

모델 해석과 연관시켰을 때 최대치가 되는 긴밀도는 지표의 변화에, 

최소화되는 긴밀도는 체적의 변화와 관련되어 있다고 해석할 수 있다. 

두 번째 단계에서는 시간 종속적 긴밀도에 해당하는 변수인 특징적 시간 

상수를 추출하였으며, 지표대 체적비 역시 계산하였다. 단일 편파 추정 

방법과 다르게 다중 편파 영상에서는 모든 편파의 긴밀도를 이용하여 

체적과 지표에서의 시간 종속적 긴밀도를 추정한다. 세번째 단계에서는 

체적과 지표에서의 시간 독립적 긴밀도를 동시에 추정하며 3장과는 

다른 것은 이 과정에서 가정이 필요하지 않다는 것이다. 본 과정을 

통하여 추정된 파라미터 중 시간 독립적 긴밀도는 시간 종속적 

긴밀도로부터 설명되지 않는 부분을 추가적으로 설명하는 파라미터로써 

갑작스럽게 일어나는 변화를 의미한다. 그러므로 이를 이용하여 각 

픽셀에서 과거 동안 발생하였던 자연 현상이 긴밀도에 미치는 영향을 

파악할 수 있으며, 산불은 비교적 강한 긴밀도 감소를 발생시키기 

때문에 통계적인 접근을 통하여 확률적인 피해 가능성을 분석할 수 

있었다. 산불의 경계 부분의 자료와의 상대적인 비교를 통한 검증 

결과을 통하여 긴밀도만을 이용하여 피해 지역을 추정하는 방법보다 

오탐지률을 줄일 수 있는 것을 알 수 있었다.  

 

4장에서 사용된 모델 파라미터 추정 결과의 검증을 위하여 이전의 

검증이 진행되어 왔던 RMoG 모델과 상대 비교를 진행하였다. RMoG의 

체적과 지표 부분의 시간 비상관성 함수는 본 연구에서 사용된 모델의 

시간 종속적 긴밀도와 시간 독립적 긴밀도의 곱으로 표현될 수 있다. 

비교한 결과는 높은 상관성을 보이는 것으로 확인되었다. 또한 단일 

편파와 다중 편파를 사용한 모델 파라미터 추정 결과와 재해 탐지 

결과도 비교하였다. 모델 파라미터 추정의 경우, 단일 편파에서 추정된 

결과가 다소 작음이 확인되었으며, 이것은 단일 편파(HH)가 지표와 
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체적 사이의 산란 중심에서 기록된 것으로 그 원인을 추정해볼 수 있다. 

그럼에도 불구하고 피해탐지 방법에서의 정확도는 다중 편파를 사용하는 

방법에 우세하게 나타났지만, 거의 유사한 정도의 정확도를 가지고 

있음을 확인할 수 있었다.  

 

본 연구에서 제안된 피해 탐지 알고리즘은 자연 현상에서 비롯되는 

긴밀도 감소 현상을 분석하여 자연 재해로부터 발생하는 현상을 

구별하여 피해로 규정하였다. 이를 통해, 기존의 알고리즘 보다 

정확도를 향상시킬 수 있었다. 또한 다중 편파 간섭계 SAR 자료를 

사용함으로써, 다중 편파에 기록되어 있는 다른 산란 중심에서의 변화를 

이용하여 체적 및 지표에서의 변화를 독립적으로 평가하여 피해를 

탐지하였다. 이와 같은 알고리즘은 다수의 자연 재해에 적용될 수 

있으며, 각 픽셀의 긴밀도 특성을 반영하기 때문에 다양한 지표 타입에 

적용될 수 있을 것으로 기대된다. 또한 물리적인 해석을 병합하여 

피해의 심각도를 정량화 할 수 있은 가능성 역시 존재 하며, 향후 

발사될 인공위성의 미션에서도 적용될 수 있기 때문에 본 연구의 의의가 

크다고 판단할 수 있다.   
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