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Abstract

For rapid response and efficient recovery, the accurate assessment of damaged
area caused by the natural disaster is essential. SAR system has been known as a
powerful and effective tool for estimating damaged area due to its imaging capability
at night and cloudy days. One of the damage assessment methods is based on
interferometric coherence generated from two or more SAR images, namely
coherent change detection. The interferometric coherence is a very sensitive detector
to subtle changes induced by dielectric properties and positional disturbance of
scatterers. However, the conventional approaches using the interferometric
coherence have several limitations in understanding the damage mechanism caused
by natural disasters and providing the accurate spatial information. These limitations
come from the complicated mechanism determining the coherence. A number of
sources including the sensor geometry, radar parameters, and surface conditions can
induce the decorrelation. In particular, the interpretation complexity of the
interferometric coherence is severe over the vegetated area, due to the volumetric
decorrelation and temporal decorrelation. It is a remaining problem that the
decorrelation caused by the natural phenomena such as the wind, rain, and snow can
come along the decorrelation caused by natural disaster. Therefore, a new accurate
approach needs to be designed in order to interpret the decorrelation sources and
discriminate the effect of natural disaster from that of natural phenomena. This
research starts from the development of the temporal decorrelation model to interpret
the interferometric coherence observed in multi-temporal SAR data. Then, the
coherence model is extended to be applied to the damage mapping algorithm for
single- and fully-polarimetric SAR data for detecting the damaged area caused by
volcanic ash and wildfire.

The coherence model is designed so that it explains the coherence behavior



observed in the multi-temporal SAR data. The noticeable characteristic is that the
interferometric coherence tends to decrease as the time-interval increases. Also, the
coherence for multi-layer is determined by the different contributions of each layer.
For example, the volume and ground layer can affect the total coherence observed in
the forest area. In order to reflect the realistic condition and physically interpret the
coherence, the coherence model proposed in this research includes several
decorrelation sources such as temporally correlated dielectric changes, temporally
uncorrelated dielectric changes and the motions in the two layers; i.e. ground and
volume layer. According to the proposed model, the coherent behavior of each layer
is explained by exponentially decreasing coherence (temporally-correlated
coherence), and the difference between the observed coherence and the temporally-
correlated coherence is interpreted as the temporally-uncorrelated coherence. The
ground-to-volume ratio plays an important role to determine the contributions of
temporal decorrelations in ground and volume layer.

Suggested model is applied into the coherent change detection for multi-
temporal and single-polarized SAR data. The method is evaluated for detection of
volcanic ash emitted from Kirishima volcano in 2011 using ALOS PALSAR data.
The criterion of the spatial baseline is calculated based on the Random Volume over
Ground model to minimize the volumetric decorrelation. The model parameters are
extracted under the several assumptions, and then the historical coherence behavior
is analyzed using kernel density estimation method. By comparing the changes of
model parameters between the reference pairs and event pairs, the probability of
surface changes caused by volcanic ash is defined. The in-situ data, which measure
the depth and area density of volcanic ash, is compared with the calculated
probability maps for determining the threshold and evaluating the performance. The
correlation is found over the area where the depth of the volcanic ash is more than 5

cm and the area density is more than 10 kg/m?.
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The temporal decorrelation model is also used for change detection using multi-
temporal and fully-polarimetric interferometric SAR data. By introducing
polarimetric and interferometric SAR data, the assumptions used in the method for
single-polarized SAR data are reduced and the changes of two layer can be estimated
separately. The approach is applied to detect the burnt area caused by the Lake fire,
in June 2015 using UAVSAR data. Even though, coherence analysis shows the loss
of coherence due to the fire event, the temporal decorrelation caused by the natural
changes is mixed with the signal of the event. In order to apply the coherence model
and extract the model parameter, here, the three steps are proposed; coherence
optimization, temporally-correlated coherence estimation, and temporally-
uncorrelated coherence estimation. Then, the extracted model parameters are used
for the damage assessment using the probability determination based on the history
of natural phenomena. The final generated damage map shows higher performance
than the damage mapping method using coherence only. Also, the comparison result
with the RMoG model shows high agreement, which implies the extraction of the
model parameters is reliable.

One of the advantages of the proposed algorithm is that the more accurate
delineation of damage area can be expected by isolating the decorrelation caused by
the natural disaster from the effect of natural phenomena. Moreover, a
distinguishable benefit can be obtained that the changes over ground and volume
layers can be assessed separately by utilizing the multi-temporal full-polarimetric

SAR data.
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are 10, 0, and 10 dB. The lines represent the hypothetical envelopes defined by
the temporally correlated coherence. The points are the coherences of two-layer
model for three different ground-to-volume ratios assuming Gaussian
distributions with 0.85 and 0.4 means and 0.1 and 0.2 standard deviations for

ground and volume layers, respectively. 42

Fig. 2. 16. Coherence behavior calculated from the RVoG model, RMoG model and the
coherence model used in this study by varying the ground-to-volume ratios. The
coherence involving the volumetric coherence might be non-monotonic, while
the coherence changes monotonically when the volumetric coherence is zero in
RMoG model. The coherence in the proposed model is monotonic only in the
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and p = oo does not need to pass through the origin. 48
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Chapter 1.
Introduction

1.1. Brief overview of SAR and its applications

During the last few decades, the advanced techniques for remote sensing have
been dramatically developed and have been used in humerous earth science fields.
Synthetic aperture radar (SAR) is one of the promising and powerful systems for
remote sensing and its applications involve hydrology, oceanography, glaciology,
geology, and volcanology, etc.

Since SAR utilizes an active sensor which transmits the microwave signal and
receives the backscattered signal from the targets, it can image in daylight or at night.
Also, because the microwave is not less affected by the meteorological conditions,
the SAR system has advantages that it can acquire the data anytime. Moreover, the
images acquired from SAR sensors have unique information related to the dielectric
and morphological properties of target media which are different illumination from
the optical sensing measurement. Thus, the SAR measurement has been applied to a
number of earth science fields and plays an important role as a complementary
measurement with the other remotely sensed data. For this reasons, the needs of SAR
sensors have been dramatically increasing, and consequently, a number of SAR
satellites have been launched and successfully operated. Accordingly, a huge amount
of robust and innovative techniques have been developed.

One of the main techniques of SAR system is interferometry, namely “InSAR”,
which utilizes the phase differences between received signals by two or more SAR
sensors. The phase components of complex values of SAR image is related to the
distance to the target and scattering phase of the target. However, because the phase
of one image of SAR sensor is effectively summation of each scatterer in a
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resolutions cell, the sole phase is shown as a uniform probability density function
and does not give any information of distance. The interference of two SAR images
acquired at slightly different geometry cancels the scattering phase of the target
recorded in each SAR images and measures the angular differences between the
sensors and target at a certain height by applying simple trigonometry. The
interferometer can estimate the topographic height by using the relationship between
the topographic height and estimated angle difference angle and geometry of SAR
sensors such as perpendicular baseline, the altitude of sensors and look angle. The
concept of interferometry is first introduced to estimate the topographic height of
Earth by Graham (Graham, 1974). The representative missions for generation of
global digital-elevation-model (DEM) are Shuttle Radar Topography Mission
(SRTM) and TanDEM-X mission (Jordan, 1997; Krieger et al., 2007; Moreira et al.,
2004; J. J. Van Zyl, 2001). Both utilize InSAR techniques and provide DEMs with
30m x 30m and 15m x 15m spatial resolutions, respectively.

The major advance of INSAR system is designed to estimate surface displacement
which is referred as differential SAR interferometry, DINSAR. The surface
movement could be estimated by using conventional scheme by estimating the
offsets between images when the target moves more than a resolution cell and its
accuracy is the order of meters. However, DINSAR technique uses phase differences
of SAR images. If the position of the target at revisit time is shifted compared to the
initial position at first acquisition, it induces the phase shift in a resolution cell.
Typical wavelength of the microwave which recent SAR satellites use range from
2cm (X-band) to 24 cm (L-band). The phase difference measurement can be orders
of millimeter or centimeter, so its accuracy is much higher than the conventional
scheme. DINSAR technique has been widely applied to measure the displacement
caused by diverse natural phenomena such as earthquakes, volcanic activities, and

land subsidences (Amelung et al., 1999; Galloway et al., 1998; Massonnet et al.,



1995; Massonnet et al., 1993). The recently developed time-series interferometric
techniques using multi-temporal data acquired at multiple times have improved the
accuracy of displacement estimation by extracting the error sources such as
tropospheric phase delay, orbital ramps, DEM error. The representative methods are
persistent scatterer interferometry (PSINSAR), small baseline subset algorithm
(SBAYS), and Stanford method for persistent scatterer (StaMPS) (Berardino et al.,
2002; Ferretti et al., 2001; Hooper, 2008; Jung et al., 2014).

Despite the robustness of INSAR and DInSAR techniques, the measurement
accuracy can be degraded where the contribution of the phase noise in pixels is
severe. As mentioned above, the phase of complex value is related to the distance
and scattering characteristics of the resolution cell. If the scattering phase is identical
at different acquisition time and the acquisition position is exactly identical, the
scattering phase in target media can be perfectly canceled in interferometry and the
phase is reliable. This state is called “coherent”. However, this case is unusual
because the states of the scatterers are perturbed due to the meteorological changes
such as the wind, rain, and snow, etc. and artificial changes such as agricultural
activities, construction, and the collapse of man-made structures. If the state of the
target is totally changed, the measurement of displacement fails. The similarity
degree of complex values of two observations can quantitatively be estimated, which
is referred as “coherence”. Thus, high coherence ensures high reliability, meanwhile
the low coherence implies the inaccurate measurement. In this perspective, the low
coherence could be a weakness of INSAR system for the purpose of measuring the
displacement. Meanwhile, the applications using this characteristic of the coherence
have been proposed, hence, the coherence involves the information related how the
scatterers in resolution cells respond to the natural phenome such as the wind, and
soil moisture change. Consequently, the land cover classification methods based on

the coherence have been suggested. (J. Askne et al., 1993; Bruzzone et al., 2004).



Also, the coherence can be used to assess the change detection and damage detection.
The phase is disturbed even by the subtle morphological and positional changes.
Hence, this change can be captured in phase disturbance estimator, coherence. Some
researchers reported that the track made by the vehicle can be detected using
interferometric coherence, and it demonstrated the sensitivity of coherence as change
detector (Corr et al., 1998; Preiss & Stacy, 2006). Similarly, the damage maps have
been derived after disasters such as flood, and earthquake (Fielding et al., 2005;
Geudtner et al., 1996; Hoffmann, 2007; Yonezawa et al., 2001).

As the development of SAR system is accelerating, currently developed airborne
and spaceborne SAR systems have been designed to acquire the full-polarimetric
SAR (PolSAR) images which play the key roles to reveal the propagation and
scattering mechanism. The polarimetric SAR is invaluable to decompose the
observed scattering mechanism to the elementary components such as surface,
double, and volume scattering. The applications based on PoISAR include the image
classification, change detection, image segmentation (Shane R Cloude et al., 1997;
J.-S. Lee et al., 1994; Park et al., 2013; Sato et al., 2012; J. Van Zyl et al., 1992).

The two main SAR applications can be combined to solve the uncertainty of
physical and morphological properties of natural media. The techniques utilizing
both interferometry and polarimetry are referred as “Polarimetric SAR
interferometry (PolInSAR)”. The interferometer which uses more than two SAR data
can measure the topographic height using phase of complex values. However, the
conventional interferometric system operating with a single-polarization and a
single-frequency is difficult to extract the scattering mechanism which the
microwave interacts the scatterers of the scenes because the number of the
measurement is not enough to extract the parameters associated with the scattering
process. Also, the interferometric observations using single-polarization do not

explain the exact location of scattering phase center of the target which depends on



polarization and wavelength of a system parameter and physical structure and
geometrical parameters. To overcome the limitations of the conventional
interferometry, the PolInSAR data is one of the promising ways because it increases
the number of observations which relevant to scattering process of the target. A
number of innovative approaches utilizing PolInSAR techniques have been
suggested to extract the model parameters of forest and glacier having multi-layers
(S. R. Cloude et al., 1998; Lavalle et al., 2012; Maxim Neumann et al., 2010;
Konstantinos P Papathanassiou et al., 2001).

After the first launch of spaceborne SAR sensor (SEASAT), a number of space-
borne and airborne SAR systems have been developed and operated. Depending on
the goal of the mission, they use different frequencies and operating strategies. The
innovative experiments have been conducted to measure the natural phenomena and
understand the physical mechanisms. Therefore, the continuously the techniques to

utilize the SAR system need to be designed and improved.

1.2. Motivations

Natural disasters can cause serious massive damage to the property, social
infrastructure, natural resources, and heavy casualties. For the rapid response to the
disaster event and efficient recovery, the accurate and timely delivered information
of damage is essential. Consequently, the technique to accurately detect the damaged
area using remote sensing data has been one of the main issues in Earth and
Environmental science field.

Disaster detection using remote sensing data is key techniques for the generation
of global-scale damage maps after natural hazards (Yonezawa & Takeuchi, 2001,
Gamba, et al., 2007, Matsuoka & Yamazaki, 2004(Yun et al., 2015)). In the past

decades, several approaches of change detection using visible and near-infrared data



have been proposed (Collins et al., 1996; Singh, 1989). These approaches, however,
have not always been successful in detecting changes in the presence of canopy cover
because optical sensors measure primarily the surface reflectivity. Also, the cloud
cover can limit the availability of proper data. Conversely, synthetic aperture radars
(SARs) microwaves can penetrate forest canopies and obtain structural information
about the underlying surface, especially at longer wavelengths. In addition, remote
sensing with radars has several advantages, such as independence of acquisition from
cloud cover and sun illumination. These advantages are critical in many practical
situations because they extend the temporal and spatial applicability of SAR-based
change detection techniques and play an invaluable role as a complementary tool to
the other remote sensing data.

Change detection approaches using SAR data are categorized into incoherent
and coherent (Preiss, Douglas, et al., 2006). Incoherent change detection involves
comparison of backscattering amplitude between SAR data, generally by
interpreting the difference or ratio of the SAR intensity acquired before and after the
event to be detected (Dekker, 1998; Gong et al., 2012; Giovanni Nico et al., 2000;
Rignot et al., 1993). In order to enhance the changed area, log ratio and amplitude
normalized differences were also introduced (Bovolo et al., 2005; G. Nico et al.,
2000). Also, incoherent change detection was performed with a filtering method in
order to reduce false alarms (Dekker, 1998; White et al., 1990). These efforts were
further developed into unsupervised change detection techniques that automatically
determine the threshold value (Moser et al., 2006b).

On the other hand, coherent change detection (CCD) techniques utilize the
interferometric correlation estimated between interferometric pairs of SAR images
(Azzedine Bouaraba et al., 2012; Grey et al., 2003; Novak, 2005; Oishi et al., 2009;
Yonezawa & Takeuchi, 2001). Analysis of cross-correlation is able to provide

information about changes in scattering properties, including dielectric and structural.



Many CCD techniques have produced excellent results in detecting subtle changes
induced by natural hazards and human activities (A Bouaraba et al., 2012; Geudtner
et al., 1996; G. Nico et al., 2000; Preiss, Douglas, et al., 2006). These techniques
were based on the statistics of the coherence and difference in the coherence
magnitude (A Bouaraba et al., 2012; Grey et al., 2003). Some researchers have
proposed change estimation based on hypothesis testing with likelihood-ratio-based
statistics (Newey et al.,, 2012). This method has been further extended into
polarimetric coherence cases (Barber, 2015). Furthermore, the coherences generated
from three-pass data have been used to reduce the false alarm rate induced by
vegetation (Barber et al., 2012). Other researchers have adopted multispectral land-
cover classification in CCD using a Bayesian approach (Yu et al., 2014). In (Wahl et
al., 2016), a new estimator was proposed to account for false alarms associated with
a low cluster-to-noise ratio.

So far, however, the physical process that affects the statistics of the
interferometric phase has not been fully considered in CCD techniques. Coherence
is affected by a variety of components such as radar geometry, radar parameters, and
surface conditions. Temporal decorrelation, in particular, is a mixture of natural
changes and changes possibly associated with disaster events. Thus, ambiguities in
conventional CCD techniques still remain where temporal decorrelation caused by
natural phenomena is dominant such as over vegetated areas, which are likely
affected by the wind or seasonal changes. When decorrelation caused by a certain
event is coupled with temporal decorrelation from wind or rain, isolating the two
different decorrelation sources is difficult and leads to poor change detection
performance. Therefore, it is necessary to understand the effect of temporal
decorrelation on the interferometric coherence of both natural processes and major
events for isolating the natural changes from changes caused by the major event.

Also, the damage delineation method mainly utilized the single threshold to



detect the damaged area because they implement the spatial information only using
one or two interferometric pairs. However, the uncertainty can arise when the
scatterers with different physical properties react differently to the natural disasters.
The high false alarm and low true detection can be severe if input images contain a
variety of surface types. The problem cannot be overlooked even in the forested area,
because the canopy height, spatial density of tree, and attenuation of microwave also
affect the interferometric coherence. Therefore, the strategy to set different criteria
in pixel by pixel is required.

Recently advanced SAR system can obtain the full-polarimetric SAR images
which are also used in interferometry. The change detection techniques using multi-
polarization SAR data successfully estimated to change by focusing on the on the
image magnitude (Moser et al., 2006a; Rignot & Zyl, 1993). Meanwhile, analysis
using the complex correlation of multi-temporal SAR data for quad-polarimetric
SAR data is not fully exploited even though it has potential to detect changes
successfully. In addition, the full-polarimetric interferometric SAR data measure the
different phase centers with different polarization. Therefore, a new technique using

multi-temporal and full-polarimetric data for change detection needs to be evaluated.

1.3. Purpose of Research

In the previous subsection, the possible reasons were outlined to degrade the
performance of damage mapping using only coherence. To overcome the problems
and obtain the desired result might be relied on what information can be derived and
how to apply them. The main concept of this study starts from that the additional
information to discriminate the contribution of damage and natural phenomena can
be found in the multitemporal dataset. The historical behavior of coherences
involved in multi-temporal data before the disaster can provide the statistical

distribution of value which is associated with the natural phenomena. However, the
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exploitation of decorrelation sources in multi-temporal data is fundamentally
preceded before the damage assessment. The coherence is determined by diverse
decorrelation sources. In particular, the temporal decorrelation severely affects the
coherence in the multitemporal dataset which has a long temporal baseline (i.e. a few
days to a few years). Therefore, the temporal decorrelation model for multi-temporal
data should be formulated to explain the coherence behavior. Then, the proposed
model will be extended to the application of change detection. At the same time, the
potential of the coherence model to extend to the polarization issue is also taken into
consideration.

This research aims to estimate the damaged area caused by the disaster based
on the coherence calculated from single-polarimetric and full-polarimetric SAR data
using temporal decorrelation model. Firstly, the coherent behavior will be interpreted
based on the model, then, the inversion process for the extraction of the parameters
will be designed for single-polarized data. For a case study, changed area by the
volcanic ash deposit which was emitted due to the eruption of Kirishima volcano in
January 2011 will be estimated. Secondly, the coherent changes will be analyzed for
multi-temporal and full-polarimetric SAR data. Then, the inversion of the temporal
decorrelation model and change detection method will be designed. The study will
focus on the Lake fire which occurred in July 2015 in California, USA.

The main objectives can be summarized as followings

® Formulation of the temporal decorrelation model for the multitemporal
dataset which has a long temporal baseline

® Development of coherence change detection technique for multi-temporal
and single-polarized SAR data

® Development and evaluation of coherence change detection for multi-

temporal and quad-polarized SAR data.



1.4. Outline

This research addresses the three main topics: coherence model, damage
detection using single-polarization and multi-temporal data and damage detection
using fully-polarized multi-temporal data. Each topic is organized as follows.

In Chapter 2, the interferometric decorrelation sources are reviewed and a
temporal decorrelation model to interpret coherence observations from multi-
temporal and single-polarization SAR data is proposed.

In Chapter 3, how to estimate the model parameters of the temporal
decorrelation model for coherence change detection is described. The strategy is
evaluated using Japan Aerospace Exploration Agency’s (JAXA’s) ALOS-PALSAR
data acquired before and after the eruption of the Kirishima volcano in Japan in 2011.
Using in-situ data, validation of result and discussion about the limitations of the
approach is explained.

In Chapter 4, the damage mapping algorithm using coherence model for the
multi-temporal and full-polarized data. Accordingly, the inversion method and
damage assessment are discussed. The approach was applied to the UAVSAR data
for detection of burnt area by Lake Fire, 2015 which occurred in California, US.

In Chapter 5, the study is summarized and the future study is discussed.



Chapter 2.
Estimation of complex correlation and
decorrelation sources

2.1. Estimation of complex correlation

The complex correlation is defined as

(s1 5;) .
=— 12 |y ) 2.1)
Y RO ylexp(joo (

where s; and s, are the complex pixel values of two SAR images, and the angular
brackets denote ensemble averaging (Zebker et al., 1992). The magnitude of the
complex correlation coefficient, with 0< |y| < 1, is often called simply “coherence”.
The coherence is used as the estimator of phase noise. The argument of y is the
effective phase difference which contains the flat-earth, topographic, displacement
and atmospheric phase delay contributions.

The properties of complex correlation can be understood using the statistical
approach because the complex values of SAR images, including the real and
imaginary part of complex values, usually have circular Gaussian distribution. The
joint probability density function of the interferometric phase ¢ and amplitude a

can be written as (Touzi et al., 1999)

pdf(a, )
3 2L(La)* 2lylLa cos( ¢ — @) 2La
= 21— YT exp( cd—Iy%) > (e ym) @2

where ¢ = /E(s;)E(s,) and K;_,() is the modified Bessel function. T is the
gamma function for the looks, L. By integrating over amplitude, a, the marginal

probability density function of the phase, pdf (a, ¢), can be obtained as
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Fig. 2. 1. Probability density function of interferometric phase for coherence and the
number of looks. Coherence levels range from 0.9, 0.7, 0.5, 0.3, and 0.1. The
narrowest distribution corresponds to 0.9 coherence.
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Then, the probability density function of interferometric phase, ¢, for variables v,
L, ¢, can be plotted as shown in Fig. 2.1. The variance of interferometric phase

can be calculated based on the probability density function as
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Based on the probability density functions of interferometric phase, the increase of
the number of looks makes the shape of distribution narrow. Hence, by applying the
sufficient looks, the measured phase is expected to be close to true phase. Also, the
high coherence value tends to yield narrow distribution, and it implies that the phase
is sufficiently reliable. Similarly, the phase standard deviation increase as the
coherence decrease as shown in Fig.2.2. For the distributed target of single look
images, the phase standard deviation is relatively high, even though the coherence is
high. Therefore, the coherence is an indicator or a measure for the accuracy of
interferometric phase having a nonlinear relationship between the phase standard
deviation and coherence.
The estimator of coherence could have a bias if the sufficient number of looks is

not used. The bias in the coherence magnitude d can be described:
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where D is the unbiased coherence (true coherence), and L is the number of looks
(Touzi et al., 1999). Fig 2.3. shows the relation between the unbiased coherence and
the biased coherence with regarding the number of looks. It is clearly observed that
the estimation of coherence is more biased at the lower coherence or the smaller
estimation window. Thus, the efficient way to estimate the coherence correctly is the

use of the sufficient number of looks.
2.2. Decorrelation sources

In general, the coherence ranges between 0 and 1. For completely coherent
scatterers, y = 1; however, this condition is extremely uncommon in repeat-pass
interferometry owing to a variety of decorrelation effects. Decorrelation can be

divided into four components: geometric, volumetric, temporal, and thermal
% ey i 5
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decorrelation (Bamler et al., 1995; Wei et al., 2010; Zebker & Villasenor, 1992).

Y= YgeometrithhermalYtemporal&volume (2-7)

2.2.1. Thermal decorrelation

Thermal decorrelation is determined by thermal noise in the interferometric
instrument. Thermal noise is typically assumed to have Circular-Gaussian statistics.
The scattered signal consists of signal parts and noise parts, such as

Si=c+n; s;=c+n, (2.8)

The coherence determined by only thermal decorrelation can be described as

(Bamler & Just, 1995; Zebker & Villasenor, 1992),

(cc* + cny + c*ng + nyny)
J{ce* + 2eni + nyni)cc* + 2cn + nanj)

(2.9)

Ythermal =

Then the noise parts are assumed to be uncorrelated and the signal is uncorrelated
with the noise parts,
E() = E(ny) = E(ny) (2.10)

(cc*) o cl?

Ythermal = ) - |C|2 + |n|2
((cc* + nn*)")

The signal to noise ratio is |c|?/|n|? and thermal decorrelation can be written as

(2.11)

1

Ythermal = 1+ SNR-1 (2.12)

Consequently, the thermal decorrelation is related to the signal-to-noise ratio
(SNR) of the scatterers illuminated by radar signal (Wei & Sandwell, 2010; Zebker
& Villasenor, 1992). The variance of the interferometric phase depends on the SNR.
Thus, pixels with high SNR generally exhibit high coherence. Because the
magnitude of the returned SAR signal varies depending on the response of the

scatterers, the thermal decorrelation also varies pixel by pixel. The SNR can be
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Fig. 2. 4. Thermal decorrelation as a function of SNR.

estimated by dividing the radar backscattering coefficient (c°) by the noise

equivalent sigma zero (NESZ) (Sun et al., 2010).

2.2.2. Geometric decorrelation

Geometrical decorrelation is caused by the shift of wavenumber spectra when data
acquired at different incidence angle from different acquisition positions of two
sensors (Gatelli et al., 1994). The relative shift of the ground wavenumber is related

to the baseline, and the local slope angle. If let a be local slope angle, the ground

range wavenumber k,, can be described as,

4 | 4nf
ky, = 75111(9 —a) = Tsm(& —a) (2.13)

Then, its deviation can explain the variation of k,, as a change of the look angle,
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ATt fAB
Ak, = - cos(6 — a) (2.14)

The ground wavenumber shift can be expressed as the expression of equivalent
frequency shift, Af. This can be obtained by differentiation of above equation.

fAg _ cB,
tan(d —a)  rpyAtan(6 — a)

Af = (2.15)

The expression means that the backscattered signal contained the shifted spectral
components. The scattered signal of two images acquired at different positions is
totally uncorrelated, as the frequency shift Af equal to bandwidth, . Based on
this, the critical baseline is determined as (Gatelli et al., 1994),

WryAtan(0 — a)
|Berie = |——— (2.16)

Additionally, the spatial resolution of range direction is determined the bandwidth
of the chirp signal of SAR sensor. Thus, the critical baseline can be expressed as a
function of resolution, p,..

rodtan(6 — a)

2.17
20, (2.17)

|Bcrit.| =

Now, the geometrical decorrelation can be defined using the calculated critical

baseline (Gatelli et al., 1994; Zebker & Villasenor, 1992).
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B,

(2.18)

Ygeometric = 1- B
crit

The formulated geometrical decorrelation is determined by the geometric parameter
such as distance to the target, incidence angle, and local slope angle, and the system
parameters such as wavelength, and bandwidth. Thus, the geometrical decorrelation
is different depending on the SAR sensors and location of scatterers. In the case of
ALOS PALSAR, the fine beam single (FBS) and fine beam double (FBD) mode are
usually used for SAR interferometry. The bandwidths of FBS and FBD are 28 MHz
and FBD 14 MHz, respectively. Thus, the critical baselines are ~ 14km and 7 km for
FBS and FBD modes. The geometric decorrelation of FBS mode was plotted in Fig.
2.5. As expected, the longer baseline results in the lower coherence. Since the
geometric decorrelation is sensitive to the slope angle as well, the effect of the
geometric decorrelation varies on the locations. Also, the geometric decorrelation
can be plotted as a function of slope angle as shown in Fig. 2.6. When the vector of
the line of sight is normal to the plane of the slope, 8 = a , the geometric
decorrelation dramatically affect the coherence so that coherence become zero. In

contrast when the line of sight vector is parallel to the slope plane, the geometric
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coherence is almost 1. However, if the slope angle is less than 6 —90, the
transmitted signal of SAR sensor cannot reach the surface. This is known as “shadow
effect”, which is present in SAR images. It should be taken into account for analysis
of geometric decorrelation. Therefore, coherence can be estimated in the range of
slope angle, 8 —90 < a < 6. The common band filtering, which filter out the
uncorrelated frequency parts of the two scenes, and utilize the only common parts

(Wei & Sandwell, 2010).

2.2.3. Volumetric decorrelation

Volumetric decorrelation originates from the scattering of radar microwaves
within a volume such as forest canopies (J. I. Askne et al., 1997; Treuhaft et al., 2000;
Zebker & Villasenor, 1992). For simplicity of the model, here the volume layer is
assumed as uniformly distributed and randomly oriented scattering elements with an
underlying surface. If the vertical coordinate is denoted as z, it can be assumed that
the surface layer is located at z = z, and the height of the volume layer can be z =
zy + hy,, where h,, is the canopy height. When the sensor illuminates the target
media with slightly different distance (or angular angle), the interferometric complex

coherence in the volume layer can be formulated by using the structure function,

p(2) as:
oo Ssis)) [{p1(2)p5(2))dz
Visisisz53) [{p1(2)p; (2))dz [(p,(2)p;3(2))dz
L p@eterdz
Sy (2.19)
p2(2) = py(2)ethz (2.20)

where p,(z) and p,(z) are the complex reflectivity per unit length. Here, k, is

the vertical wavenumber:



_ 4mA0 4Ty,
" Asin@® ARysinf

(2.21)

In Eq. (2.21), A is the wavelength of radar signal, 8 is the mean look angle, and A6
is the difference between two look vectors of the interferometric pair, which is a
function of the slant range distance from the sensor to the target, R,, and the
perpendicular baseline, B,..,. The structure function, p(z), which physically
means the attenuated backscatter per vertical unit length, is determined by the mean
backscatter density of the volume layer, m,, the attenuation of wave propagation in
the volume layer and thickness of volume layer.

In order to understand the effects of the volume layer only, here, the ground
scattering contribution is ignored first, and later the model will contain the ground
effect also. In order to depict the vertical structure function, one frequently assumes
the uniform profiles and exponential profiles. If the uniform profile is introduced,

the Eq.(2.19) is rewritten as:

o ethuks g ihyky Sin(hvzkz) ihyky (hka) (2.22)
== T — 2 —e sinc '
lhykz %
2

The model is simplified as the simple Sinc function which has two variables of
volume canopy height and vertical wavenumber. This model is beneficial in the
estimation of canopy height when the quantity of independent parameter is limited
as in single-pol space-borne SAR system (Balzter, 2001; Olesk et al., 2015; Praks et
al., 2012).

If the exponential profile is assumed for the attenuation, the structural function
can be expressed as a one-way extinction coefficient, ,:
py(2) = my, exp(20,(z' — h,,)sech), (2.23)

The numerator in Eq (2.19) is rearranged as:
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Fig. 2. 7. Volume coherence for functions of extinction coefficient and canopy
height. The volume coherence at 0 dB/m is coincident to the case that structure
function is assumed as constant.

hy o hy 200(z'-hy,) ,
.[ p(zNe*Zdz' = | mue cosd ekaZ dz’
0 0

m, —20¢hy
] (2.24)

= = [eikzhv — e cosb

Also, the denominator is rewritten as:

Ry Ry
p(z')dz' = m, exp(20,(z' — h,)sech) dz’
0 0

1—e cos@

cos 8 _200hy
= mv

2.2
20, (2.25)

Thus, the interferometric complex coherence of volume can now be:
. —20chy
20,secl |etkz"w — g7cos6

" 20,sech + ik, 1 e_zcg)_esfg

14

14 (2.26)

Now, the volumetric coherence in volume layer is determined by the wavenumber,
3 hy i J —
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Fig. 2. 8. Schematic representation of random volume over ground model. (a)
Actual geometry of sensors and forest, and (b) simplified two layers model.

canopy height, and extinction coefficient, and incidence angle. As shown in Fig. 2.
7, the volume coherence model shows slowly decreasing trend as the canopy height
increase at high extinction coefficient. This is because the transmitted signal from
radar less penetrated the target media, and the interferometric phase does not
significantly vary along the vertical direction. Meanwhile, at the zero-extinction or
uniform profiles, the interferometric phases from bottom to top evenly contribute the
volume coherence, thus, the volume coherence decreases fast. This result implies
that in real nature, the volume decorrelation is more severe in the forest with sparse
branches than the dense branches.

The wave with long wavelength (i.e. L-band and P-band) often penetrates the
volume layer and reaches to the rough surface. The Radom Volume over Ground
(RVoG) model depicts the coherence model including volume and ground layers (S.
R. Cloude & Papathanassiou, 1998; Konstantinos P Papathanassiou & Cloude, 2001).
In the case of the ground layer, the complex coherence is described as:

y9 = elkzzo (2.27)
Hence, the magnitude of the coherence of ground layer does not change, but the

phase is determined by the altitude of the ground lever and vertical wavenumber.
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Fig. 2. 9. Volumetric decorrelation changes for a function of ground-to-volume ratio,
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The coherence depicted in RvoG model is explained as two contributions of ground
and volume layer. Thus, the structure function now has the term related to the ground

layer.

, —200hy
Py (2) = m,e?oe@ ~hw)secd) 4 o7cos8 m §(z — z) (2.28)
Thus, the final two-layer coherence model for the volume decorrelations can be

expressed as follows:

Moy (W)Y "e ™% + pymy W) _ . yTe % 4 u(w)

Toow (W) + Pty (W) Traw) &9

y(w) = etz

Py = e—Zaeh,,/cose (2_30)

where §(z — z,) is delta function. m, indicates the attenuated scattering from

cos @ _20ehy
moy(W) = —— 0(1—e cose) m,(w). (2.31)
e
-
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_20ehy
Dgmg(W) B 20,e cosOmg(w)

Mmopy(W)  cos B, (1 — e~20ehv/ €056y m (w)

p(w) = (2.32)

As a result, the volumetric decorrelation assuming two simplified layers have the
structure parameters such as extinction coefficient, and volumetric height, system
parameters such as the wavelength of the sensor, and geometric parameters such as
baseline, and distance to the target from the sensor. Here, w represents the
polarimetric scattering mechanism. Note that m, and m, are the polarization-
dependent scattering cross-section of volume and ground layer respectively,
meanwhile the extinction coefficient of volume layer, o, does not change with
polarization. Accordingly, the ground-to-volume ratio u, which is a function of m,,
and mg, is polarization-dependent parameter. Hence, the coherence observed in
forest area is effectively determined by the each contribution of the surface and
volume layer. This characteristic is discriminatory property with the model
considering only the volume layer.

The difference of incidence angle between two geometries at acquisitions is a
function of the distance from sensor to target in slant range plane and the spatial
baseline, B. The expected volumetric decorrelation based on the RVoG model can
be simulated with the deterministic parameters such as extinction coefficient, canopy

height, baseline, and ground-to-volume ratio as shown in Fig 2.9.
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Fig. 2. 10 shows the relationship between the volume coherence and ground-
to-volume ratio. High ground-to-volume ration indicates the ground contribution is
dominant, meanwhile, low ground-to-volume ratio represents the volume-dominant.
It is worth noting that the amplitude of the coherence does not monotonically

increase as the ground-to-volume ratio increase. When the volume contribution is

dominant, the coherence decrease as a ground-to-volume ratio increase. Under the
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condition that ground contribution is similar to the volume contribution, the
coherence become low. Consequently, the minimum value is observed at some value
between high and low ground-to-volume ratio. This is because the ground
component make the effective phase center moves to the ground, and consequently,
the complex coherence of ground and volume layer is mixed. After the order of the
ground component is similar to the volume layer, the ground component is stronger
as the ground-to-volume ratio increase. Hence, the coherence of two-layer model
increases.

Also, it is important that a high extinction coefficient induces high coherences
at the low ground-to-volume ratio, however, it leads to the low coherences at the
high ground-to-volume ratio. As mentioned above, the high extinction represents
that the signal is likely to return at top of the forest. Hence, the interferometric phase
is less varied, the coherence is high. In contrast, the interferometric phase is more
diverse when the extinction coefficient is low due to the high penetration. Adding
the more ground components, the signal from the surface is stronger. It implies that
interferometric phase is more varied along the vertical direction. The volume layer
with high extinction is still influent on the coherence, thus, the coherence is relatively
low. However, since the ground contribution is strong at low extinction, the
coherence is mainly determined by the ground component, hence, the coherence
could be high.

In Fig. 2. 10. (b), the coherence is depicted as the ground-to-volume ratios
increase with the canopy height. The higher canopy height induces the more
variation of coherence with the changes of the ground-to-volume ratio.

Recent research efforts using polarimetric SAR interferometry aim at retrieving
the structural parameters of forests using a two-layer model in which the properties
of coherence and interferometric phase are sensitive to forest vertical structure and

height (S. R. Cloude & Papathanassiou, 1998; Konstantinos P Papathanassiou &
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Cloude, 2001). The number of the unknowns used in the RVoG model is four
(hy, 0., 2y, 41) and the number of observable is two in the case of acquisition of
single-pol and single-pass interferometry. By incorporating the fully polarimetric
and single-pass interferometric system, the two additional unknowns (p, t3)
corresponding to the newly added polarizations are involved the model, while the
four additional observables are available. Thus, the RVoG model is able to interpret
the volumetric decorrelation in polarimetric SAR interferometry (S. Cloude et al.,
2003). However, the applications have been limited for only airborne SAR campaign
experiments so far, because of the temporal decorrelation. The temporal
decorrelation indicates the amount of decorrelation related to the physical,
morphological, and dielectric changes of target scatterers. If the temporal
decorrelation present, the coherence is also affected and the model parameters tend
to be overestimated. It will be more discussed in the next subsection. If the temporal
baseline is sufficiently short, such that temporal decorrelation is negligible as in the
case of single-pass interferometry, the model can be used for estimation of the
canopy height and other physical parameters. Temporal decorrelation can be
controlled in the airborne-SAR campaign, thus, many studies describes the
approaches with the airborne SAR data (M. Neumann et al., 2010; Konstantinos P
Papathanassiou & Cloude, 2001). The current space-borne system to minimize the
temporal decorrelation is TanDEM-X which operates the two coincident X-band
SAR sensors with few temporal baseline (Krieger et al., 2007). Since TanDEM-X
provides only single- and dual- polarization data, PolinSAR techniques using Dual-
polarization have been proposed and demonstrated (Kugler et al., 2014)

In single-polarization SAR interferometry, since the quantity of the parameters
exceeds that of observations, the RVoG model parameter cannot be accurately
retrieved. The single-pol and single-pass interferometric pair measures the location

of a phase center which is effectively determined by the systematic, geometric, and
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Fig. 2. 11. Coherence change using Random-Volume-over-Ground (RVoG) model
for a variety of forest parameters: (a) As a function of wavenumber and extinction
coefficient k, assuming canopy height hy, =20 m. (b) As a function of wavenumber
and canopy height assuming vertical extinction 0.1 dB/m.

structural parameters. The conventional interferometric pair with single-polarization
provides only one measurement, and it implies the interpretation is restricted and has
an ambiguity without the prior information of forest.

If one is interested in the remaining decorrelation except for the volume
decorrelation, the volume coherence needs to be estimated and compensated. As
mentioned above, the accurate amount of volume decorrelation can be retrieval
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under the case of single-pass interferometry with more than dual-polarizations.
Alternatively, the conditions to minimize the volume coherence can be priory
searched. In order to minimize the volumetric decorrelation, several assumptions can
be incorporated into the RVoG model, depending on the properties of the forest and
the characteristics of the interferometer. One of the robust ideas is to find the
bounding conditions of perpendicular baseline. In practical, the forest parameter is
unknown and uncontrollable unless the prior knowledge is given, meanwhile, the
baseline is controllable. In this study, the volumetric decorrelation was bounded
which is observed by ALOS-PALSAR to minimal value so that the observed total
coherence is dominated by temporal decorrelation, which is key to estimating the
changes in the imaged scenes. The RVoG coherence versus the perpendicular
baseline for different values of canopy extinction coefficient and canopy height was
plotted in Fig. 2. 11. The figure shows that the volumetric coherence is higher than
0.94 for perpendicular baselines smaller than 1 km assuming 20 m canopy height
and 0.1 dB/m extinction coefficient. Therefore, in order to neglect the contribution
of the volumetric decorrelation in the total observed coherence, use of an
interferometric baseline shorter than 1 km (i.e., an interferometric wavenumber

smaller than 0.10 rad/m) is recommended.

2.2.4. Temporal decorrelation

. Temporal decorrelation is related to the alteration of the position and dielectric
changes of the scatterers, typically caused by wind, rain, snow, or other natural
events (Rosen et al., 2000; Zebker & Villasenor, 1992). In single-pass interferometry,
where two or more images are acquired simultaneously, there are no effects related

to changes in scattering characteristics such as the motion of the scatterers and
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Fig. 2. 12. Schematic representation of scatterer motion for temporal decorrelation.

biological growth; thus, temporal decorrelation is negligible. However, in repeat-
pass interferometry, where images are acquired at different times and look angles,
the physical changes of scatterers over the time period, the temporal decorrelation
could be observed.

The physical sources inducing the temporal decorrelation could be categorized
into two groups. One is the decorrelation induced by the positional changes of
scatterers, which is also known as motion-induced decorrelation (Lavalle et al., 2012;
Zebker & Villasenor, 1992). The other is associated with the dielectric properties
changes including soil moisture change, roughness changes, vertical structure
profiles changes, and etc. (De Zan et al., 2014; Hajnsek et al., 2008; Morrison et al.,
2011; Nesti et al., 1998; Zwieback et al., 2015). The former alters only the
interferometric phase but does not induce the backscattering amplitude changes.
Therefore, the coherence can be a good indicator to identify the motion-induced
decorrelation. Meanwhile, the latter leads to the loss of coherence and may change
the amplitude as well.

The explanation of the temporal decorrelation induced by the positional changes

S T i
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usually adopts the Gaussian-static motions (Zebker & Villasenor, 1992). Let X, Y,
and Z represent along-track, cross-track, and vertical axis, respectively and O
represents the center of resolution cell. Then, the distance between antenna and
resolution cell is assumed to be r. Let assume a target in resolution cell, and its
coordinate as (x, y, z). The phase variation of the pixels at the signal can be described

as

4
§; = ff filx,y,2) exp {—i TH (r+ysinf@ — zcos 9)} X W(x,y)dxdydz (2.33)

where f;(x,y,2) is the complex backscatter density, A is the wavelength, 6 is
the incidence angle, and W (x,y) is the system impulse response. In revisited time,
if the scatterers change their positions to other position, the signal from the second

antenna can be written as
4r
S, = ff fo(x,y,2) exp {—i = (r +ysin6 — zcos 9)} x W(x,y)dxdydz (2.34)
If the backscatter density changes its position without the changes of dielectric
properties, the backscatter density at second acquisition can be written as
A .
fo(x,y,z) = fi(x,y,2) exp [l T{dy sin8 + d, cos 9}] (2.35)

where d, and d, are displacement of elements along the y and z axis. The

correlation between the signals is

5185 = J:U ff filx,v,2)fi(x,y,2)" exp {—i %(dy sin @ + d, cos 9)}

X W (x,y)W(x,y)dxdydzdxdydz (2.36)
If the uniform system response and the independent probability distributions,

py(dy) and p,(d,), which are the motions displacement along y and z, are assumed,

after averaging the equation is simplified as

< 5185 >= fff ffp(x,y,z) exp {—i 47”(dy sin @

+d, cos 9)} py(dy)p,(d,)dx dy dz dd,, dd, (2.37)
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The p(x,y,z) is the structure function of back scatter density, thus its integration

may be written as

fff p(x,y,z) dxdydz = o°. (2.38)

where ¢ is averaged backscatter density. If the probability density function is
assumed Gaussian distribution, the temporal decorrelation is described as,

1 /4m\?
Yeemporal = €XP {— > <7> (o2 sin6? + o2 cos 92)} (2.39)
where o, and o, are standard deviations of displacement at y and z axis. The
formulated temporal decorrelation is a function of standard deviation of
displacements of elements in'y and z directions. If the variation of the motion is same

along the all direction, i.e. oy = o7 = o/, the temporal decorrelation is simplified

again,

14m\?
Ytemporar = €XP _E(T) oy (2.40)

So, phenomena increasing the standard deviation, which could be interpreted as
inhomogeneous movements of elements, could yield loss of coherence. The response
of the temporal decorrelation could vary on the sensors, which utilize different

wavelength as shown in Fig. 2. 13.
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Fig. 2. 13. Theoretical temporal decorrelation induced by motions of scatters for
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X-band (10.25 GHz, 2.94cm). (a) When only horizontal motions exist and (b) when
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In the forested area, the temporal decorrelation could be different along the
vertical direction. The temporal coherence behavior has been explained in the
literature. In this case, the structure function of backscattered signal can be a function

of volumetric height.

fff p(x,y,z) dxdydz = aofp(z)dz (2.41)
Here, the distribution of backscatter density is assumed homogeneous along the
range and azimuth direction. Also, by setting the d, = d, and a new parameter,
d, =d, sin6 + d, cos 8, which represents the displacement along the line of sight

direction, the correlation between two signals can be expressed as,

47mtd,

(s155) =a° _Up(z) exp {— ) }pr(dr,z)dzddr (2.42)

After normalizing the temporal decorrelation along the vertical direction is

formulated as,

4nd
JJ p(@) exp {~ e} py (dy, 2)dzdd,
Vtemporal = fp(Z)dZ

(2.43)

If the Gaussian distribution is assumed about probability density function p,.(d,, z),
the equation is simplified,

f p@ exp (-G Dyl
Ytemporal = fp(Z)dZ

(2.44)

The temporal decorrelation in a forested area is a function of standard deviations of
displacement of elements in the line of sight direction. The formulations of temporal
decorrelations assuming forested area differ from the normal case in terms of the
vertical structure of the forest. Thus, the temporal decorrelation could vary along the
vertical direction of the forest. The expression of temporal decorrelation is described
only when acquired SAR data have zero baselines. In the presence of rather long
spatial baseline, the volumetric decorrelation also affects the total coherence. The

volumetric decorrelation explained in the previous chapter is also the function of
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height. Then, the temporal and volumetric decorrelation are combined along the
vertical direction and are difficult to be separated. In that case, the more complicated
model is required.

In Addition, it is worth noting that the temporal decorrelation describes only
phenomena related to the movement of elements. In the real case, the dielectric
properties of elements in a resolution cell can be affected and changed by a variety
of natural phenomena. For instance, changes in soil moisture can yield the different
states of dielectric properties and change the penetration depth, heterogeneously.
Also, the loss of coherence versus time interval between image acquisition times has
been reported in the literature (Lombardini et al., Jul. 1998; Rocca, 2007). Therefore,
the decorrelation induced by motions is appropriate to explain the temporal behavior
in the dataset which acquired with short temporal baseline (i.e. a few minutes to
hours). However, for the multitemporal dataset which is acquired with rather long
temporal baseline (i.e. a few days to months), the temporal decorrelation is not fully
understood. Therefore, the formulation of the temporal decorrelation model is
required in use of the multi-temporal coherences. For this, the temporal decorrelation

model for multitemporal dataset will be explained.

2.3. Derivation of coherence model assuming two layers
for repeat-pass interferometry

Temporal decorrelation is associated with changes in the dielectric and structural
properties of the scatterers (Lavalle et al., 2015; Zebker & Villasenor, 1992). These
changes are more likely to occur over longer interferometric time intervals, which
are typical of the space-borne interferometer. Among the various land covers,
vegetated areas are more affected by temporal decorrelation owing to the motion of

leaves and dielectric changes associated with natural growth and leave falling. All
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these effects change the complex reflectivity in the radar resolution cell and cause
decorrelation in interferometric radar signals.

Here, a temporal decorrelation model to describe the coherence behavior
observed in the repeat pass acquisition strategies with temporal baseline on the order
of months or years will be formulated. Temporal decorrelation for the forested area
is decomposed into several terms depending on where the temporal decorrelation
occurs, i.e., volume or ground, and what induces the temporal decorrelation, i.e.,
motion or dielectric changes. The multiple targets having different behaviors in a
resolution cell effectively determine the coherence. The vegetated area has the
distinct and discriminated properties in volume layer and underlying ground layers.
Hence, the coherence is rather stable even in the long temporal baseline, meanwhile,
the coherence decreases faster in short temporal baseline (Wei & Sandwell, 2010).
Motion-induced temporal decorrelation occurs when the scatterers change their
positions during the time between the acquisitions of two interferometric images
(Zebker & Villasenor, 1992). Leaves and branches are likely to be randomly
rearranged by the wind, and their positions are uncorrelated with the initial positions.
Thus, the motion in the canopy can occur even within timescales of seconds. The
dielectric properties change includes soil-moisture change, and the structure profiles

change. They can be observed in rather long timescales of hours or days.
2.3.1. General coherence model involving temporal decorrelation

A widely-used model of the polarimetric-interferometric coherence for
vegetation employs a volume layer, which comprises uniformly distributed and
randomly oriented scattering elements, and an underlying surface that represents the
ground. If the vertical coordinate is denoted by z, the location of the surface is at

z = z, and the location of the top of the volume layer at z = z, + h,,, where h,
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simplified two layers model with motion.
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is the canopy height. In the case of the ground layer, the repeat-pass complex
coherence is described by the effective temporal decorrelation of the surface, ytg,
and interferometric coherence:
v8 =y etk (2.45)
The temporal decorrelation component in the volume layer, y/(2), as:
v @wEeit dzt
ly"p(z) dz’

If the exponential profile is assumed for the attenuation, the structure function can

Yl = etks? (2.46)

be expressed as a one-way extinction coefficient, g, in Eq. (2. 47)
hy EEELELZEﬂl ik.z' ,
m, [,"yE(z)e cos8 ete? dz

h. 20e(z'—hy)
mvfove cos8  dz'

yv — eikzzo

etkzZom v v gy 20eEhy)
=——| y¥(z)e cost ekZdz  (2.47)
Moy 0

20¢hy
where, m, (w) = (“;; 0 (1 et )) m, (W)

Here, w represents the polarimetric scattering mechanism. Egs. (1) and (6) can be
combined for a typical forest area if the radar signal penetrates the canopy of forest
and interaction between ground and canopy is sufficiently strong. Thus, the final
two-layer coherence model containing the volumetric and temporal decorrelations

can be expressed as follows:

Mo, W)y e ™% + pymy W)y -yl + p(w)y!

y(w) = etkz%o v Ee T a0 (2.48)

where, p, = e2%hv/cos6, (2.49)
_20ehy

and pu(w) = 22me0 - ot BERelh (250)

Based on the two-layer coherence model, many modifications have been applied to

extract the physical parameters of forest depending on the strategies of data
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acquisitions. If the temporal baseline is sufficiently short, such that temporal
decorrelation is negligible as in the case of single-pass interferometry, the model will
be coincident with the RVoG used to estimate canopy height and other physical
parameters. For the case in which the volume temporal decorrelation is a function of
canopy height and motions of scatterers, the form of the model will be reformulated
to RMoG (Lavalle & Hensley, 2015; Lavalle et al., 2012). For a scenario with a long
temporal baseline (i.e., a few months to years) and a near-zero spatial baseline (the
UAVSAR repeat tracks remain within a 5-m tube), different assumptions for the

temporal decorrelation can be applied.

2.3.2. Coherence model for zero-spatial baseline and long temporal baseline

For polarimetric interferometric pairs with zero spatial baselines (k, = 0), the

volumetric decorrelation component in Eq. (2. 47) vanishes and Eq. (2. 47) becomes

(Lavalle & Hensley, 2015; Lavalle et al., 2012).

20¢(2'—hy)
T (o yv(2Ye™ cos8 - dz’ + p(w)y?
ov
= 2.51
y(w) 1+ u(w) ( )

In Eq. (2. 51), the temporal decorrelation of the volume layer yf(z') is indicated
as a height-dependent parameter to highlight a general relationship between canopy
height and motions of scatterer (Lavalle & Hensley, 2015; Lavalle et al., 2012). This
relationship can be simplified by using the mean-value theorem (Jung et al., 2016).

According to the mean-value theorem, given two continuous functions, f(x) and g(x),

within interval (a, b), the definite integral of ff f(x)g(x)dx can be rewritten

as f(c) f‘f g(x)dx, where mean value “c” is defined on [a, b]. Thus, Eq. (2.51) can

be rewritten as (Jung et al., 2016)



0.(z'—h

, h, 20e(z'-hy) g
V(o) Jy" e eos?dz" + ROV 4wy
1+ pu(w) 1+ pw)

mU
Moy

y(w) = (2.52)

where h,, is an arbitrary intermediate height in the interval [0, h,]. Note that the
modification from Eq. (2.48) to Eq. (2.52) reduces the number of variables. This
algebraic manipulation implies that the phase of the complex coherence for the long-
temporal repeat-pass interferometric pairs is related to the displacement of the
surface, and the atmospheric phase delay rather than the topographic phase. Also,
the complex value can be induced by the soil moisture change (De Zan et al., 2014;
Nolan & Fatland, 2003; Nolan, Fatland, et al., 2003; Zwieback et al., 2015).
Meanwhile, the amplitude of the observed coherence can be explained mainly by the
temporal decorrelation and ground-to-volume ratio without volumetric decorrelation.
Thus, the Eq. (2.52) would be useful for exploiting the temporal decorrelation
because the volumetric decorrelation and associated physical parameters do not need
to be taken into consideration.

For the long temporal baseline, not only wind-induced motion but also dielectric
changes including soil moisture changes can occur. Modeling dielectric changes in
the forested area is a challenging task. In order to keep the model with a small
number of unknowns while capturing the sensitivity of the coherence over long
temporal intervals, the temporal decorrelation parameter ytg is assumed to be
dominated by soil moisture induced dielectric changes whereas the temporal
decorrelation parameter y/ is assumed to be mainly driven by wind. The rationale
behind this choice is that soil tends to remain wet for several hours (or days) after
precipitations, in contrast to canopy elements that tend to dry out faster and be more
subject to positional changes. Under this assumption, ytg is complex-valued and
has dependency on the polarization, meanwhile y/ is real-valued a and
polarization-independent parameter (Hajnsek et al., 2009). One of the coherence
behaviors observed in a repeat-pass interferometry scenario with long temporal
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baselines is that the amplitude of coherence decreases as the time-span of
interferometric pair increases. This coherence behavior is observed clearly in data
sets acquired by repeat-pass space-borne SAR systems. The phenomenon is
explained by the Brownian motion, hence, non-consistent scattering conditions after
meteorological events such as rain, snow, and wind. This model is a function of the
temporal baseline and has been adopted to quantify the coherence behavior
(Lombardini et al., 1998; Rocca, 2007). Indeed, the measured coherences cannot be
explained by only exponentially decayed model, because the scattering condition
often changes regardless of time intervals. Consequently, it is necessary to formulate
the temporal decorrelation using two terms: the temporally correlated changes,
Yt corr» and temporally uncorrelated (random) changes, ¥¢ yqnq, for volume or

ground layers:

g g g AT, 4 ,
Yt = YecorrYt rana = €XP _‘[_ |yt_rand|exp(l¢yf) (2'53)
g

AT
y‘t/ = y‘t,_corryt?_rand = exp [_ T_] |y1}“}_rand| (2-54)
v

Decomposition of the temporal decorrelation implies that observed coherence of
every pixel has its unique time-characteristic constants, ,, or 7,4, to define the
exponentially decayed line, and that the differences between the line and the
observed coherence can be interpreted as the temporally uncorrelated changes,
Yt rana- Further, the temporally uncorrelated changes y; ,q4nq €xplain the randomly
generated decorrelation such as rain, snow, strong wind and the collapse of manmade
structures. Decorrelation caused by sudden events have been reported in the
literature, and these phenomena were often observed in coherence maps(A Bouaraba
et al.,, 2012; G. Nico et al., 2000). The different coherence values are usually
observed even though the temporal baselines of interferometric pairs are same over
the same scatterers. According to the proposed model, these coherent differences are

interpreted as an effect of the temporally uncorrelated dielectric change.
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Fig. 2. 15. (a) Temporally correlated coherence behavior versus temporal
baseline when the characteristic time constants are 8000, 4000, 2000, 1000, and
500 days. (b) Coherence modeled in two layers when characteristic time
constants of the ground and volume are 5000 and 300 days and the ground-to-
volume ratios are 10, 0, and 10 dB. The lines represent the hypothetical envelopes
defined by the temporally correlated coherence. The points are the coherences of
two-layer model for three different ground-to-volume ratios assuming Gaussian
distributions with 0.85 and 0.4 means and 0.1 and 0.2 standard deviations for
ground and volume layers, respectively.
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The temporally uncorrelated term y, ,4nq Can be divided into V&g,mnd and ¥4 randa
depending on where decorrelation happens. Consequently, the final form used to
model temporal decorrelation for zero-spatial baseline and long temporal baseline
case can be formulated as:

AT AT .
exp [— E] |V$7_rand| + u(w) exp [_ E] |V£rand|exP(l¢V£q)
14+ u(w)

yw) = (2.55)

The coherence model, which is a function of wave polarization, indicates that the
observed coherence is different depending on the scattering position determined by
the radar cross section of wave polarization. Thus, the estimated coherence could
vary depending on the physical properties of forest and surface types even though
pixels have the same amount of temporal decorrelation in ground and volume layers.
Also, the formulated model can explain the coherence behavior in a timescale of
months to years due to the existence of the temporally correlated coherence. If the
interferometric data is acquired within a timescale of seconds to minutes (i.e. AT =
0), the contribution of temporally correlated change is almost negligible and
temporal decorrelation can be interpreted as the result of motion of scatterers.
Therefore, the form of the model becomes the RMoG model with zero spatial
baseline, potentially enabling retrieval of the motion standard-deviation (Lavalle &
Hensley, 2015; Lavalle et al., 2012). However, in Eg. (2. 55), the direct conversion
from temporal decorrelation to the standard-deviation of motions is ambiguous
because the dielectric changes should be considered in long-temporal repeat-pass
scenario.

The temporally correlated change terms, ;2. ”., are defined as functions of the

t_corr!
characteristic time constants, 7, and t,,. These variables represent how sensitively
the scatterers in a resolution cell respond to the natural changes. In Fig. 2. 51(a), the
envelops of the temporally correlated changes are plotted versus the temporal
baseline for characteristic time constants of 8000, 4000, 2000, 1000, and 500 days.
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A high value indicates that the dynamic and dielectric properties of scatterers are
unlikely to change with time, and consequently, the coherence slowly drops toward
zero as shown in Fig. 2. 51(a). Fig. 2. 51(b) shows the simulated coherences versus
the temporal baseline for distinct values of ground to volume ratio. In this figure, the
characteristic time constants of the ground and volume are 5000 and 300 days for
three candidates of ground-to-volume ratios, -10, 0, and 10 dB. The temporally

uncorrelated (random) coherences of the ground or volume, y.”.J ., are given as

real value so that they have Gaussian distributions with 0.85 and 0.4 means and 0.1
and 0.2 standard deviations, respectively. According to the formulated coherence
model Eq. (2. 55), the different observed magnitudes of coherence can be attributed
to the ground-to-volume ratio at arbitrary polarization, even though the physical
parameters such as characteristic time constants and temporally-uncorrelated
coherence are the same. Because of this sensitivity of coherence to the ground-to-
volume ratio corresponding the certain polarization, this study can better constrain

the model parameters by introducing additional polarization in the inversion process.

2.3.3. Comparison of coherence model for zero-baseline and long temporal
baseline with RVoG and RMoG
The coherence model proposed in the previous section is for the long-temporal
baseline and zero-spatial baseline. The recently developed coherence models such
as RVoG, RVoG+VTD, and RMoG model were designed for different purposes,
under the several assumptions. In this section, the models will be compared
regarding the assumptions they used and the circumstances they can be applied, and
resulting behaviors in coherence.
As summarized in Table 2.1, the RVoG, RMoG, and RVoG+VTD models were
designed for the forest parameter extraction, in particular, the canopy height

estimation. Thus, the spatial baseline should be longer than zero. However, the model
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Table. 2. 1. Model comparison

RVoG RMoG RVOG+VTD  This study
Forest Forest Forest Change or
Purpose parameter parameter parameter Damage
extraction extraction extraction detection
. . Non-zero or Zero or Near
Spatial baseline Non-zero Non zero
zero zero
Almost zero a few
. a few seconds~ a few seconds~
Temporal baseline (a few seconds seconds~ a
. a few days a few days
or minutes) few months
\Volume \Volume
Decorrelation in \Volume decorrelation + decorrelation +  temporal
volume decorrelation temporal temporal decorrelation
decorrelation  decorrelation
Temporal . .
P . . Dielectric
decorrelation - Motion -
change

source in ground

proposed in this study is for damage assessment, thus there are no reasons for a
spatial baseline to be a non-zero value. In contrast, the zero-spatial baseline is more
beneficial by minimizing the irrelevant decorrelation sources.

Since the RVoG model considers the volumetric decorrelation only, the temporal
baseline should be small enough to be negligible. The terms compensating the
temporal decorrelation have been later added in RVoG+VTD model and RMoG
model. The temporal decorrelation source there model mainly consider is the
dominant positional changes. Accordingly, the choice of available data should be
careful unless it has significant dielectric changes. In general, the interferometric pair
with the short temporal baseline is related to the motion-induced decorrelation, thus,
the RMoG and RVoG+VTD could be suitable for the repeat pass scenario with short
temporal baseline. The proposed model has terms describing the temporally
correlated and uncorrelated change which can be found in the long temporal baseline.

In Fig. 2. 16, the coherence changes are plotted as a function of the ground-to-

volume ratio for comparison of cases with zero and nonzero spatial baselines. For
b 3 [ = | |
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Fig. 2. 16. Coherence behavior calculated from the RvoG model, RMoG model
and the coherence model used in this study by varying the ground-to-volume
ratios. The coherence involving the volumetric coherence might be non-
monotonic, while the coherence changes monotonically when the volumetric
coherence is zero in RMoG model. The coherence in the proposed model is

monotonic only in the certain condition (i.e. |y%| > ly5l/ cos ¢, 9)- In the case

of no volume layer, then the coherences of two-layer model is governed by only
temporal decorrelation of ground regardless of the volumetric decorrelation (red
triangles and green circles.).

the coherence with volumetric decorrelation (nonzero spatial baseline), the
parameters commonly used are 8 = 35°, k, = 0.1m™%, o, = 0.12dBm™?, and
h, = 25m. Also, yg" and yf can be set so that the temporal coherence of the
ground layer is higher than the volume layer |ytg| > |y£|. As the ground-to-volume
ratio increases, the coherence with nonzero spatial baseline shows a minimum value
for a mixed contribution of the canopy and ground (gray circles and purple
diamonds). This indicates the minimum of observed coherences is neither ground
layer nor volume layer. The coherence in RMoG model with a zero spatial baseline
changes monotonically (yellow plus). Then, without loss of generality, we can
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consider the minimum amplitude of coherence as volume dominant layer (low
ground-to-volume ratio) and the maximum as the ground-dominant layer (high
ground-to-volume ratio). The proposed model in Eg. (2. 55) has a different behavior
depending on the amplitude conditions of temporal decorrelation function of ground

and volume layers. Hence, if the condition, |y}| > ly{l/ cos @9, is satisfied, the

amplitude of complex coherence increase monotonically increase (upside-down
triangles). However, the other case, the minimum moves non-monotonically (red

asterisks). Thus, the phase induced by dielectric change, P, can affect the

coherence behavior associated with ground-to-volume ratio. In other words, when
the phase induced by the dielectric change is not large, the similar interpretation
concept can be applied as the RMoG model with a zero-spatial baseline. In order to
make the estimation problem tractable, in this study it is assumed that the temporal
decorrelation of the ground is moderate. This assumption entails that the amplitude
of the complex coherence changes monotonically, which is important in the model
parameter inversion because the observed coherences at different polarization can be
simply linked to the ground-dominant and volume-dominant layers. Note that when
this assumption does not hold for a particular pair, temporal decorrelation is expected
anyway to be severe and the overall coherence very low, which suggests that the pair
can be disregarded from the set of available pairs and the proposed algorithm can

still be applied.
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Fig. 2. 17. Coherence loci in a complex plane. The RvoG model and the RMoG
model that incorporates the volumetric decorrelation are illustrated. Meanwhile, the
RMoG for a zero spatial baseline is observed in the line intersecting the origin. For
the long-temporal and zero-spatial baseline case, the line between g =0 and u =
oo does not need to pass through the origin.

The coherence loci derived from coherence models are illustrated in a complex plane
in Fig. 2.17. The ends of the solid line segments represent theoretical points at which
the ground-to-volume ratio is infinite or zero. For the RVoG (volumetric coherence
only) model, since the ground-to-volume ratio is the only wave-polarization
dependent parameter, the coherence is located along the line as the polarization
changes. The magnitude and phase of the complex coherence are determined by the
physical parameters of forest and the radar parameters. In the RMoG model
(volumetric + temporal coherence), the temporal decorrelation shifts the RVoG
model line to another line. Not only the physical parameter of vegetated terrain and
radar parameters but also the dynamic processes of scatterers relate to the length and
angle of the line (Lavalle & Hensley, 2015). Without the consideration of the

temporal decorrelation, the topographic height is misinterpreted as ¢¢ pseuqo NOt
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¢o. Accordingly, the angle between ¢, and the complex correlation value at u =
0 is changed and the estimation strategy of volumetric height yields the ambiguous
height (S. K. Lee et al., 2013; K. P. Papathanassiou et al., 2003).

Meanwhile, if the case of zero baselines is considered for the RMoG model (no
volume decorrelation), the coherence locus is located along the line passing through
the origin by varying the ground-to-volume ratio. The phase angle of the line
segment is not taken into consideration anymore for the zero spatial baseline and
small temporal baseline because temporal decorrelation induced by the motion is
mainly observed (Lavalle et al., 2012).

For the scenario of repeat-pass interferometric and zero spatial baseline, the phase is
related to the deformation, atmospheric phase delay (APD) and dielectric properties
change (i.e. soil moisture change). The phase induced by deformation, and APD is

normally polarization-independent. In Eq. (2. 55), if P9 is non-zero, the coherence

locus does not pass through the origin. Also, if the v .., is assumed to be

polarization independent, the complex coherence vary along a line depending on the
ground-to-volume ratio. However, if the polarization dependency is enough strong,
the coherences are located in a certain region as polarization changes (Flynn et al.,
2002).

By analyzing the distribution of the complex coherences in the complex plane, the
strategy of coherence optimization can be designed. Depending on the amount of the
volumetric coherence, the angles of the ends of the line is widened. Since the line
defined by the volumetric coherence does not need to intersect the origin, the
distance between the ends is important. Accordingly, the coherence optimization
method to estimate the maxima of the distance between ends is appropriate.
Meanwhile, if the volumetric decorrelation is negligible and the temporal
decorrelation is dominant, the maxima and minima of magnitude of complex
coherence have a close relationship to the model. Therefore, the coherence

7]
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optimization algorithm to find the magnitude maximum in the distribution need to
be introduced. The coherence optimization algorithm is discussed more in Chapter

4,
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Chapter 3.

Damage mapping using temporal decorrelation
model for single-polarized SAR data

: A case study for volcanic ash

Change detection technique is one of the main applications in the remote sensing
area. In particular, coherent change detection (CCD) utilizing coherence of
interferometric pair is a unique approach achievable only in SAR data. As explained
in Chapter 2, since the coherence, the main material of CCD, is determined by
diverse sources, the temporal decorrelation model essentially needs to be applied for
the interpretation.

Currently operating space-borne SAR system has collected interferometry-
capable and multi-temporal SAR images. A number of single-polarized images have
been accumulated for past decades over the whole area of Earth. Therefore, the
method for multi-temporal interferometric data which are usually acquired at single-
polarized data should be primarily designed.

In this Chapter, the CCD technique using the temporal decorrelation model will
be applied for detection of volcanic ash of Kirishima volcano in 2011 as a case study.
Also, the interpretation of the temporal decorrelation model is performed using Japan
Aecrospace Exploration Agency’s (JAXA’s) ALOS-PALSAR which acquired for

single-polarized interferometric data.

3.1. Description of study area

Kirishima volcano, located in Kyushu, Japan, is a volcanic cluster consisting of

more than 10 basaltic-andesite volcanoes which were active during the 22,000 years.
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Shinmoedake is a stratovolcano, one of the volcanoes of Kirishima volcano cluster,
and the several small and big eruptions have been reported. The phreatic eruptions
were observed in 2008 and 2010 and the magmatic eruptions started in January 2011.
After a small phreatomagmatic event on January 19, 2011, a sub-plinian event started
on January, 26. During the eruptions, effusion of lava inside the summit crater was
observed and a strong shock wave and an explosion earthquake are recorded by
tiltmeters and GPS. A thick layer of volcanic ash was deposited on the southeastern
part of the volcano (Miyabuchi et al., 2013).

According to the land-use map (ver. 2014.04) provided by JAXA(Takahashi et al.,
2013), the peak and the area around the rim of the Shinmoedake volcano mainly
consist of bare soil. The Kirishima volcano cluster is surrounded by evergreen and
deciduous forest as shown in Fig. 3.2. Thus, the volcanic ash emitted in 2011 mainly
fell on bare soil and vegetated areas. As stated in Chapter 2, the decorrelation caused
by the volcanic eruption event may appear on top of the temporal decorrelation
caused by the natural background change. Such temporal decorrelation caused by
the natural change may be misinterpreted as the contribution of the major event. In
particular, this misinterpretation might be severe in forests because vegetated areas
are prone to temporal decorrelation. Therefore, understanding and predicting the
coherence behavior using a temporal decorrelation model are essential for accurate
interpretation of coherence.

Kirishima city was chosen for comparison of change detection results in order to
evaluate the performance of the change detection method. This area is not severely
affected by the volcanic ash in 2011. The city is a type of suburban which consists

of man-made structures, cropland, and bare soil.
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Shinmo€dakes

Fig. 3. 1. Topographic map of Kyushu, Japan (Top), and shade relief map of

Kirishima volcano cluster (Bottom).
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Fig. 3. 2. Landsat images acquired March 5, 2008, and April 13, 2013. Land-use
maps provided by JAXA for Kirishima volcano and Kirishima city.
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3.2. Data description

In this study, 21 ALOS-PALSAR datasets were used with HH polarization of the
study area acquired from January 2007 to April 2011 (about 4.2 years) in descending
orbit at a 38° incidence angle. The interferometric pairs were separated into pre-
eruption and co-eruption pairs. Only two images were acquired after the volcanic
eruption in January 2011 (March 05, 2011 and April 20, 2011). The coherence maps
generated using pre-eruption data was assigned as the reference pairs, and these
coherence maps were used to interpret the temporal behaviors of natural phenomena
via a temporal decorrelation model. The coherence maps generated using co-eruption
data were assigned to the event pairs. Interferometric coherence estimation was
performed after 32 multi-looking, common band filtering, and removal of flat-earth
and the topographic phase. Thus, the bias of coherence and geometrical decorrelation
were assumed insignificant. The SNRs were estimated by dividing sigma zero (c°)
by NESZ(Sun et al., 2010). The minimum NESZ was approximately — 23 dB in HH
polarization of FBS and FBD modes(Shimada et al., 2009). The acquired data set

showed a high SNR for the forest and urban areas, specifically, > 12, and a low SNR
+ %

55 A =2~ CH &l



in the sea area, specifically < 8 as shown in Fig. 3.3. The thermal decorrelation of
the forest and urban areas was less than 0.07; thus, thermal noise may not have been
the cause of the major decorrelation in those areas. However, the areas with a low
SNR, such as the sea and rivers, are prone to thermal decorrelation. Therefore, areas
consisting of the sea were masked out and the analysis was mainly performed on
bare soil, urban area, and forest, which have high SNR.

For minimization of the volumetric decorrelation, the interferometric pairs within
1000m were chosen as listed in Table 3.1. As described in Chapter 2, the volumetric
decorrelation may be over 0.94 for interferometric pairs within 1000m in the case of
ALOS PALSAR. Thus, the volumetric decorrelation is assumed not to be major
contributions of the decorrelations.

Under criteria described, the coherence maps can be assumed to be affected by
only the temporal decorrelation. Generated coherence maps were visualized in Fig
3.4-6. The overall coherences tend to decrease as the temporal baseline is longer. Its
behavior will be explained in next sections. The coherence maps shown in Fig. 3.6
have information of volcanic ash because these are generated from event pairs. The
signature of volcanic ash is observed, but not clearly. In event pair with 46 temporal
baselines, the low coherence value is observed around Shinmoedake volcano. Even
though the volcanic ash was mainly deposited over the southeastern slope of the
volcano, the low coherence is also observed in northwestern slope. Another
misinterpretation could result in the coherence map with 1012 temporal baseline.
Since the overall area over the whole scene shows low coherences, the separation
between the natural changes and event is difficult. In next section, the algorithm will
be discussed for the accurate interpretation, and change detection using temporal

decorrelation model.
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Table 3. 1. Interferometric pairs used in this study

Temporal Spatial Temporal Spatial
Master Slave Master Slave
baseline baseline baseline baseline
(Yyymmdd) (yyyymmdd) (Y¥yymmdd) (yyyymmdd)
[day] [m] [day] [m]

Reference Pair

20070107 20071125 322 18 20080712 20090830 414 -763

20070107 20080110 368 353 20080712 20091015 460 -77

20070107 20080225 414 945 20080712 20091130 506 226

20070107 20100115 1104 -628 20080712 20100115 552 782

20070107 20100302 1150 -154 20081012 20081127 46 191
20071125 20080110 46 334 20081012 20090112 92 532
20071125 20080225 92 927 20081127 20090112 46 341
20071125 20100115 782 -647 20090112 20090414 92 872

20071125 20100302 828 -173 20090112 20090830 230 925

20080110 20080225 46 592 20090414 20090530 46 812
20080110 20100115 736 -981 20090414 20090830 138 53
20080110 20100302 782 -508 20090414 20091015 184 739
20080225 20080411 46 329 20090330 20090830 92 -758
20080225 20080527 92 769 20090530 20091015 138 -73

20080225 20101203 1012 565 20090330 20091130 184 230

20080225 20110118 1058 9203 20090530 20100115 230 786

20080411 20080527 46 440 20090830 20091015 46 685
20080411 20101203 9266 236 20090830 20091130 92 989
20080411 20110118 1012 573 20091015 20091130 46 303
20080527 20101203 920 -203 20091015 20100115 92 860
20080527 20110118 9266 133 20091130 20100115 46 556
20080712 20090414 276 -816 | 20100115 20100302 46 473
20080712 20090530 322 -4 20101203 20110118 46 337
Event pair

20080527 20110305 1012 582 20110118 20110305 46 449
20101203 20110305 92 786

s X
57 A =1



Fig. 3. 4. Averaged coherence maps of reference pairs with time intervals from 46 days to 368 days. The interferometric pairs are listed in Table
3.1
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Fig. 3. 5. Averaged coherence maps of reference
3.1.
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Fig. 3. 6. Coherence maps of event pairs. Jan.18.2011 - Mar.05.2011 (left), Dec.03 — Mar. 05.2011(Middle), and Aug. 27.2008 — Mar.05.2011.
(Right)
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3.3. Extraction of temporal decorrelation parameters

If N interferometric pairs (sum of the number of reference and event pairs) are
available, the number of model parameters become 2N + 3 in multi-temporal and
single-polarization interferometer, because y; ,qnq (N) and yg‘frand (N) are pair-
variant variables and u, 7,, and 7, are pair-invariant variables. Consequently,
extracting the model parameters is a challenging task. Despite the analytic limitation,
it is possible to estimate the model parameters of the proposed temporal
decorrelation model under several realistic assumptions as described hereafter.

In the first step, the highest coherence values were identified in each time interval
in the reference pairs. An exponential curve envelope can be fitted for the highest
coherence values. The highest coherence values indicate that the coherence is most
likely unaffected by temporally uncorrelated temporal decorrelation, which means

that y¢ qnqand ¥, .,q are almost equal to one. This assumption is beneficial to

simplification of the temporal decorrelation model to,

- 1 AT  u AT
high
_ _ 2 1
Ve 1+,ueXp< )+1+Mexp< Tg> (3.1)

The second step is to estimate the ground-to-volume ratio p and the characteristic
time on the ground, 74, and in the volume, t,,. This procedure was performed using
curve fitting to the highest points. The curve fitting was applied so that the fitted
curve was closest and higher than the selected highest coherences, as shown in Fig.
3.7. In addition, the model parameters, 7, 7,4, and w, all should be greater than zero
so that they reflect realistic conditions. The highest points are used for curve fitting
because any changes in their structural and dielectric properties would result only in

decorrelation. Further, corresponding model parameters, ¢ ,qna and ¥, ng are

constrained in the range zero to one. If the coherence points are located over the
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Fig. 3. 7. Estimation of the temporally correlated changes in temporal decorrelation
using exponential curve fitting. Coherence distribution along the time axis for (a)
man-made structure (denoted B in Fig. 3.8) and (b) forest area (denoted D in Fig.3.8).
Squares and circles are the measured coherence. Red lines indicate the decorrelation
related to the temporally correlated dielectric changes.

envelope, the model parameters are out of the range and the possible explanation

about the physical meanin

g does not exist.

The accuracy of estimation using maxima is deeply related to the number of

available pairs and time intervals. Because (3.1) assumes N0 ¥¢ yana and ¥, zna:

this assumption can be successful when there are sufficient numbers of scenes and

pairs. Further, the number of maxima is important, because the shape of the envelope
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is determined by maxima values. Therefore, long temporal baselines or many time
intervals are also keys to more accurate estimation. In this study, although coherence
maps with baseline within 5000 m were generated, most cases showed that
coherences within 1000 m are closer to the envelope. In addition, the model
parameters extracted from coherence showed high correlation with those with 1000
m. Therefore, the basis of the coherences with baseline within 1000 m tends to be
representative of all coherence maps.

As shown in Fig. 3.8 and Table 3.2, the extracted parameters have different
characteristic time and ground-to-volume ratios depending on the surface type. A
high p means that coherence is determined by one dominant scattering (ground),
and 7, isnotimportant in the analysis. The high p value is mainly observed in the
bare soil and the manmade structures (areas A and B in Fig. 3.8). The t, value is
higher in the manmade structures than in the bare soil because they are less affected
by natural changes. Further, an interesting observation is that the values of u, 7,
and t, are different even in the same surface type, i.e., evergreen forest denoted as
C and D in Fig. 6. Because the ground-to-volume ratio is related to not only surface
type but also the properties of the canopy, a vegetated area could have a high u

value if the forest is not dense.

Table 3. 2. Extracted model parameter labeled in Fig. 3.8

Ground lt.l Characteristic time Bavswhen ccherence Coherence after revisit intervals
Label Landuse _ Yolume ratio [days] Domi scattering Y

is 0.5

u T4 (ground) 7, (volume) 46days  92days 138 days
" G d scatteri

A Bare soil 943 2888 7 e paTeTeg 1711 0.94 0.90 0.88
dominant

B Man pade 9.89 6313 53 Grauid scalicring 3768 094 091 0.90
structure dominant

C Evergreen 405 627 142 Soupled acaitering 0.89 0.80 072

forest (Ground > Volume)
D Evergreen 0.53 1219 49 Coupled scateriiig 65 0.59 042 035

forest : (Volume > Ground)

+ .
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Fig. 3. 8. Estimated ground-to-volume ratio, u, for (a) Kirishima volcano and (b)
Kirishima city.
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Fig. 3. 9. Characteristic time constant of the ground layer for (a) Kirishima volcano,

and (b) Kirishima city.
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Fig. 3. 10. Characteristic time constant of the volume layer for (a) Kirishima volcano,

and (b) Kirishima city
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The third step is calculation of the portion (or contribution) of coherence between
ground, ay =¥ corr/ Ve corr + V2 corr), @nd volume, @, = 1 — ag, in each time
interval, based on the estimated u, Ty, and t,. Even though the parameters, Tg, Ty
and, u were already extracted in the preceding step two, the number of unknown
variables is 2N, which exceeds the number of coherence maps, N. Therefore, another
assumption needs to be applied to reduce the number of variables. In this study, a,
is a key factor in solving the problem. Portion a, is a timespan variant variable. In
the general case, a, increases in temporally correlated coherence as the timespan
increases because 7, is higher than 7,,. The targets such as manmade structures and
bare soil have high u, thus, the ground contribution is assumed to be dominant in
every timespan.

The fourth step is estimation of the random (temporally uncorrelated) coherence
changes of ground, Vté_]'rand' In the pixels with a high proportion of the ground
component, the temporal decorrelation is determined by only ground-dominant

scattering, that is (3.1) is reformulated as,

i AT
if ag>0.9, ytmgh = exp <— T—) (3.2)
Y
g _ Yobs
yd,rand - AT (3'3)
e (-5)
Y

Thus, it is necessary to find ground-scattering dominant pixels before performing
(3.3). The decorrelation components, yf_’mnd, are related to the changes in the
dielectric properties induced by rain, snow, and seasonal changes. Therefore, the
extracted parameters, y,. ... ;. can be used to explain loss of coherence and statistical

analysis of natural phenomena on ground-scattering dominant pixels. It is worth
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noting that pixels with high a, and u are usually less affected by the contribution
of the volume. This implies that the perpendicular baseline criterion is unnecessary,
and that pairs with higher baseline are available for extracting v/,

The fifth step is the extraction of the model parameters, v, ..., and ¥{ gnq, in
the pixels where the effects are coupled (a4, < 0.9). According to the proposed
temporal decorrelation model, each decorrelation caused by the temporally
uncorrelated changes starts from each coherence level of the temporally correlated
changes. Thus, the logical implication that “if one of the temporally correlated
changes is dominant, then the corresponding temporally uncorrelated changes is
dominant” is reliable. For the pixels with 0.9 > ag > 0.5, the ground contribution is
more dominant than the volume effect. In order to solve the equation, ¥ 4nq is thus
assumed to be negligible. Likewise, ytg_mnd should be ignored. This approach
should be performed in each pixel and in each pair, because pixels have

different 7y, 7,,,and u, and a4 and a, are different in every timespan.

Yobs — ﬁexp (_%)

if 09> ay>05 ¥, =

_ B (_ H)
. " Yobs 1+ U exp Tg
if Ay < 0.5, Yt rand = 1

(3.5)

3.4. Probability map generation

In Chapter 3.2 and Chapter 3.3, the temporal decorrelation model was presented
and the procedure for extracting the model parameters was described from multi-

temporal data having single-polarization. In this section, the procedure to estimate
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the changed area using model parameters will be outlined. Firstly, it is worth noting
that the decorrelation effects are concentrated near the estimated envelope, as shown
in Fig. 3.7. This implies that the decorrelation related to random natural changes
typically induce coherence that is concentrated at a certain level. Therefore, it can be

assumed that v, and y{,4,q are non-uniformly distributed. A major event,

such as volcanic ash, building collapse, or landslide, has a stronger contribution to
the loss of coherence than the usual decorrelation related to natural phenomena.
Accordingly, a major event usually results in lower yf_’mnd and ¥¢ yqnq (brown
bars in Fig. 3.11). A cumulative distribution function (CDF) of reference pairs (black
lines in Fig. 3.11) offers statistical information about how strong and often the
natural phenomena usually affect the observed coherence. Therefore, if these model
parameters extracted from the event pair set are located at the tail of the probability
density function (PDF), they can be assigned as “changed pixels,” as indicated by
the red rectangles in Fig. 3.11.

However, the PDF of the model parameters is undefined, the shape of the function
is unknown, and the sample is also finite. Kernel density estimation (KDE) is an
appropriate method for estimating unknown probability density functions by
smoothing the finite and discrete samples(Bowman et al., 1997). Thus KDE can be

applied to estimate the PDF and then the continuous CDF of v ..., and ¥ 4na
of reference pairs can be built.

The statistics of model parameters was analyzed depending on the dominant
scattering because the numbers of available pairs are different. For example, when
pixels are assigned as ground-dominant pixels (a, > 0.9,), the interferometric pairs
can be chosen without consideration of perpendicular baseline. In this study, a
histogram of ygrand using 196 pairs (166 reference pairs and 30 event pairs) below
5000 m was generated to estimate PDF using the KDE method (Fig. 3.11(a)). When

the pixels are affected by the ground-volume-coupled effect (a;, < 0.9), then
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estimation of the CDF has to be performed separately. Further, when «, is greater
than 0.5, the v/, of reference pairs is used to estimate CDF, as shown in Fig. 3.
11(b.1). Otherwise, ¥¢ rqnq IS used, as shown in Fig. 3.11(b.1). Consequently, two
CDFs can exist in the coupled effect pixels. It is also worth noting that the number
of interferometric pairs used in CDF is smaller than the number of ground-dominant
pixels owing to the limitation of the baseline (<1000 m). In this case, 47 reference
pairs and three event pairs were generated.

On the basis of the estimated cumulative density function from the reference pair
set, the probability of a region having changed can be calculated using event pairs.
Because two ALOS-PALSAR scenes were acquired after the volcanic eruption, it is
obvious that they include the decorrelation caused by volcanic ash. Among all
coherence maps generated using event pairs, only three interferometric pairs met the
required baseline criterion, as shown in Fig 3.6. One thing to keep in mind when
interpreting the estimated probability is that the high probability results not only
from volcanic ash, but also other factors including heavy rain, strong wind, and other
temporary changes. One simple and effective way to mitigate such short-lived events,
compared to volcanic ash fall, is to average the probability of all pairs spanning the
event. Averaging the probability plays an important role in enhancing the
contribution of the interesting event, which is volcanic ash. Fig. 3.12 (a) shows the
averaged probability map, on which the effect of volcanic ash is clearly observed
near the southeast of the Shinmoedake volcano. Further, significantly high
probability values are sparsely distributed in Kirishima city (Fig. 3.12(b)). This
implies that Kirishima city was not affected by regional changes such as volcanic
ash. Therefore, the result of Kirishima city clearly proves that the method proposed

in this research effectively discriminates changed regions from unchanged regions.
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Fig. 3. 11. (a) Histograms (blue bar) of yg‘fmnd in ground-dominant pixels and (b)
Vevana @d ¥{rana in ground-and-volume-coupled pixels. Brown histograms
indicate corresponding value in event pair. Black lines are the estimated cumulative

density functions using KDE, and red boxes are probability of event. This analysis
was performed in the area denoted as Aand D in Fig. 3. 8
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Fig. 3. 12. Calculated probability change map for (a) Kirishima volcano and (b) Kirishima city.
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3.5. Mapping volcanic ash

To map volcanic ash, the probability maps, the in-situ measurement and the
contour lines created from in-situ data were compared(Miyabuchi et al., 2013;
Technology, 2011). According to(Miyabuchi et al., 2013), the tephra plumes after
eruption were dispersed by the wind and deposited southeast of the Shinmoedake
volcano. Further, the thickness of volcanic ash deposits reached 4.5 to 25 cm in the
proximal area. A comparison between the depth of the volcanic ash deposit and the
probability map generated from this analysis showed a high probability over 2 cm,
which corresponds to approximately 75%. For comparison with the contour lines,
the probability values, which are located between the contour line and the next level
of the contour line, were averaged. Accordingly, the values at the x-axis in Fig.
3.13(d) represent the levels between two contour lines. The analysis with the area
density show a high correlation over 10 kg/m?2. This result does not mean that the
calculated probability is directly related to the depth or the area density of the
volcanic ash. In general, thicker volcanic deposit might cause more phase alteration
and thus strong temporal decorrelation. In addition, the probabilities at manmade
structures are higher than other areas over 10 kg/m?. The estimated probability is
determined by the temporal behavior of coherence of the scatterers. If the scatterers
are less affected by the natural phenomena, the historical coherence tends to be
concentrated on a certain level. If a small amount of volcanic ash induces relatively
low coherence, it can result in a high probability. This implies that even though the
same amount of volcanic ash was deposited, the sensitivity of change detection could
be different. In the forest area, the random motion of volume and temporally
uncorrelated dielectric changes are coupled in a complicated manner. This area is
prone to decorrelation, and the coherence is concentrated in the low values. Thus,

the decorrelation caused by a small amount of the volcanic ash may be hidden or
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unclear owing to the strong natural changes.

The analysis also shows that volcanic ash deposit below 10 kg/m? is uncorrelated
with the probability. In order to mask out uncorrelated probability, 75% level was
selected as the threshold because 1o (standard deviation) of uncorrelated probability
reaches a maximum of 75%. Finally, the change detection maps caused by the

deposit of volcanic ash can be generated, as shown in Fig. 3.13 (a).
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Fig. 3. 13. (a) Estimated probability map over 75% and (b) the predicted distributed map of the volcanic ash and location of in-situ depth data.
Comparison between estimated probability and (c) the depth of volcanic deposits and also between (d) area densities.
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3.6. Discussion

In this study, the temporal decorrelation model is proposed for coherence maps
generated by multi-temporal and single-polarimetric data to identify regions changed
as a result of the deposit of ash that follows volcanic eruptions. The proposed
temporal decorrelation model uses the ground-to-volume ratio, random motion of
volume, temporally correlated dielectric changes in volume and ground, and
temporally correlated changes in volume and ground. Because the number of
variables involved in the temporal decorrelation exceeds the number of available
equations, several plausible assumptions were made. Also, pixels with many
scatterers have different temporal decorrelation behaviors depending on the
temporally correlated dielectric changes and ground-to-volume ratio. In addition, the
temporally uncorrelated dielectric changes and random motion of volume were also
estimated based on analysis of the portion of ground and volume coherence. To
identify the coherence changes related to alterations in natural conditions, such as
seasonal changes and meteorological phenomena, the KDE method was used to
estimate the CDF for each pixel. Extreme changes caused by unexpected events such
as deposition of volcanic ash, which yield abnormal values in the coherence map,
were successfully extracted based on the CDF.

The proposed temporal decorrelation model was applied into CCD and used it to
estimate the physical parameters of the forest. The model carries out quantitative
analysis involving physical parameters, which is not a common approach in CCD
techniques. Consequently, it is very useful in areas with a variety of decorrelation
sources. The special significance of the proposed method is that the model considers
most of the decorrelation effects in order to be useful for many realistic and complex

change detection applications. Also, the extracted parameters from the temporal
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Fig. 3. 14. (a and c) Two examples of coherence covariance matrix and (b and d)
yg‘fmnd matrices. (a) and (b) show the temporal behavior of bare soil, denoted A in
Fig. 3.6, and (c) and (d) are denoted B in Fig. 3.6.

decorrelation, which contains one of the natural change information, can enhance its
event information by reducing the effect of the temporally correlated changes as
shown in Fig 3.14. This advantage makes the technique detect the event better.
However, the several assumptions used to solve the main equation could still be
controversial. Fortunately, recently developed fully polarimetric and interferometric
SAR sensors onboard UAVSAR and ALOS-2 could reduce the effect of the
assumptions or even render them more realistic. Further research using these sensors
can show the usefulness of the temporal decorrelation model for the extraction of

reliable physical parameters, and generate more robust damage detection maps.
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Chapter 4.

Damage mapping using temporal decorrelation
model for multi-temporal and fully-polarized SAR
data

SAR system and its applications have been dramatically developed during past
decades. Recently advanced SAR systems can obtain fully-polarized images which
can be applied to the interferometric techniques, which is called as Polarimetric and
Interferometric SAR (PolInSAR). The development of SAR system has introduced
the innovative applications of remote sensing and Earth system science studies. Also,
the PolInSAR system is able to overcome the limitation of the conventional
interferometry which has an uncertainty of phase center by providing the sensitive
information of vertical distribution related to scattering mechanism. Based on this
advance, the applications of PolINSAR can estimate accurately the physical
parameters of forest including the canopy height.

However, the coherence change detection and damage mapping using
PolInSAR, which is major subjective of remote sensing studies, is not fully studied.
Firstly, the many applications for change detection utilize the amplitudes which have
information of scattering mechanism. PolInSAR techniques measure not only the
amplitude of scatterers but also the phase information related to the distance. For this
advantage, more information could be exploited. Secondly, since the existence of the
temporal decorrelation is not fully understood and may restrict the application by
yielding the ambiguity of the physical interpretations. Thus, the temporal
decorrelation involved in PolInSAR needs to be studied for better interpretation.

In the previous Chapter 2, a temporal decorrelation model was formulated to

explain the coherence behaviors observed in time-series data with long temporal
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baselines and single polarized data (Jung et al., 2016). The damage detection was
successful, even in vegetated areas, using a temporal decorrelation model estimated
from the historical statistics of natural change. However, the estimation uncertainty
of model parameters still remained, because parameter extraction from single
polarization data required several assumptions due to the unmatched number of
observations and unknowns.

In contrast to Chapter 3, here fully-polarimetric-interferometric Uninhabited
Aerial Vehicle SAR (UAVSAR) data will be used to address the uncertainty in the
temporal decorrelation of the ground and volume layers. The remainder of this
chapter is organized as follows. In Chapter 4.1, Lake Fire in California (2015) and
the UAVSAR data used in this study are introduced. Chapter 4.2 address the
conventional methods for change detection and evaluate the performance. The
limitations of these methods are also revealed. In Chapter 4.3, the damage mapping
algorithm proposed in this study will be explained in detail. Furthermore, the damage
mapping result is evaluated. Chapter 4.4 explains the applicable conditions that this
algorithm can be applied. In Chapter 4.5, the quantitative comparison between the
damage mapping algorithms in Chapter 4 and Chapter 3 is carried out. Finally, the

key finding and the potential issue in this study is summarized in Chapter 4.6.

4.1. Description of Lake Fire and UAVSAR data

UAVSAR is an airborne SAR system developed and operated by the Jet
Propulsion Laboratory (JPL) (Hensley et al., 2008). The UAVSAR instrument is
mounted on a Gulfstream-I11 aircraft and employs a full quad polarimetric L-band
system with a bandwidth of 80 MHz. Accordingly, the theoretical slant range
resolution is 1.87 m and the azimuth resolution is about 0.8 m. The mean flight

altitude is 12.5 km and look angle ranges from 28° to 66°. One benefit of using the
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Fig. 4. 1. A burnt area map of Lake fire. The image is provided from the Incident
Information System (http://inciweb.nwcg.gov/).

UAVSAR system is that the position of UAVSAR can be controlled precisely to
within 5 m diameter tube of the designed flight track, making it suitable for repeat-
pass interferometry with the assumption of zero spatial baselines. A specification of
UAVSAR is summarized in Table. 1.

In this study, a stack of 15 repeat-pass polarimetric UAVSAR images acquired
from 2009 to 2015 over the San Bernardino National Forest in California, United
States, is used in order to evaluate the potential of the coherence model to delineate
the damaged area. The natural disaster event this study focused on is the wildfire
Lake Fire, which burned more than 31,350 acres from June 17, 2015, to July 21,
2015. The UAVSAR instrument was deployed on June 29, 2015, during the wildfire
in coordination with NASA headquarters and the UAVSAR team at JPL. Due to this
effort, 14 scenes before the event, and 1 scene during the event were able to be
collected. For simplicity, hereafter the interferometric pairs acquired before the event
are referred as the reference set, and those acquired spanning the event as the event
set. Each acquisition date is listed in Table. 2. The minimum and maximum temporal
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baselines were 43 and 2,258 days, respectively, which can be categorized as
interferometric pairs with a long temporal baseline. The spatial interferometric
baseline for all flights of the reference and event sets was within 5 m. The limiting
value of 5m for the spatial baseline corresponds to a vertical wavenumber of 0.04
rad/m and 0.01 rad/m in near and far range, respectively. Assuming a reference tree
height of 30m, the volumetric decorrelation calculated from a conservative SINC
model is 0.94 and 0.99, respectively (S. R. Cloude, 2010). Thus, it is reasonable to
assume that the geometric and volumetric decorrelations were negligible and that the

estimated coherence carries only the effects of temporal decorrelation.

Table 4. 1. Sensor parameters of UAVSAR system.

parameter Value
Frequency L-Band 1217.5 to 1297.5 MHz
Bandwidth 80 MHz
. 1.67 m Range,
Resolution 0.8 m Azimuth
Polarization Full Quad-Polarization
ADC Bits 2,4,6,8,10 & 12 bit selectable BFPQ, 180Mhz

Nominal Chirp/
Arbitrary Waveform
0.5 mrange
/1.5 azimuth (electrical)
Greater than £20°

Waveform

Antenna Aperture

Azimuth Steering

(x45° goal)
Transmit Power > 3.1 kW
Polarization Isolation <-25 dB (<-30 dB goal)
Swath Width > 23 km
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Table 4. 2. UAVSAR data used in this study.

Index Acquisition date Index Acquisition date

1 2009.04.23 9 2012.04.27
2 2009.09.18 10 2013.05.31
3 2010.03.03 11 2014.01.17
4 2010.04.15 12 2014.10.23
5 2010.10.14 13 2015.01.08
6 2010.12.07 14 2015.05.11
7 2011.07.08 15 2015.06.29
8 2011.10.28

4.2. Brief analysis of SAR amplitude and interferometric
coherence

According to the land cover data, the west part of the image contains Pinyon-
Juniper Woodland, Dry-mesic Mixed Conifer Forest, and Jeffrey Pine-(Ponderosa
Pine) Woodland (Homer et al., 2007). In contrast, the desert scrub and outcrop area
are mainly observed over the east part of the scene. The different land cover yields
the different signature of polarimetric SAR images. As observed in Fig. 4. 3, which
is constructed using Pauli basis, the relatively strong volume scattering is observed
in western part, while the surface scattering is dominant in eastern parts.

One of the simple and robust change detection methods is to generate the
difference or ratio of the amplitude of SAR images acquired before and after the
event, which is categorized as the incoherent change detection. The studies to
evaluate the amplitude or intensity changes due to the fire has been proposed in the
literature (Bourgeau-Chavez et al., 2007; Goodenough et al., 2012; Florian Siegert

et al., 2000; F Siegert et al., 2000). For testing the potential of the incoherent
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Fig. 4. 2. Land cover maps of Study area provided from National Gap Analysis
Program.
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Fig. 4. 3. UAVSAR image acquired on April 23, 2009. The color composite image
was reconstructed using Pauli basis. R: HH-VV, G: 2HV, B: HH+VV.
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io (HH)

(b) Amplitude ratio (HV)

Fig. 4. 4. Amplitude ratio between images acquired on May 11, 2015, and June 29,
2015, for (a) HH, (b) HV, and (c) VV polarizations.

change to detect the damaged area, the amplitudes of the scene with HH, HV, and
VV polarization acquired on May 11, 2015, were simply divided by the polarimetric
amplitude acquired on June 29, 2015. The results are illustrated as log scale in Fig.

4. 4. According to the study exploiting the backscattering change after fire, the
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Fig. 4. 5. ROC curve for amplitude ratio in Fig. 4. 4.

backscattering signal decrease, especially in HV polarization (Goodenough et al.,
2012; Siegert & Ruecker, 2000). Similarly, the burnt area located in the center of
images shows high value due to the decreased backscattered signal. However, the
burnt scar cannot be discriminated accurately on the left side of images. The receiver
operating characteristic (ROC) curve shows the quantitative potential to discriminate
the burnt area from the unburnt area. However, the amplitudes in all polarization
have poor sensitivity to the damage caused by fire, although HV polarization
amplitude ratio is slightly more sensitive.

The polarimetric characteristics of elements in the resolution cell affect not only
the scattering mechanism of polarimetric SAR but also yield different coherence
behaviors. As mentioned, the coherences generated from the interferometric
approaches is determined by the thermal and temporal decorrelation only. If the SNR
is assumed high enough to ignore the thermal decorrelation, the temporal
decorrelation is the only main determinants of the coherence. Under this assumption,
the averaged coherence using SAR data acquired before the event shows relatively
low coherence (0.3~0.5) in western area where the volume scattering is strong. The

possible explanation is that the resolution cell with vegetated area is prone to be

85



Fig. 4. 6. Averaged coherence maps using HH, VV, and HV images (a) acquired before the fire and (b) acquired crossing the fire.
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Fig. 4. 7. Color composite image using coherence maps generated from
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Fig. 4. 8. Coherence maps generated from the interferometric pairs acquired on May
11, 2015, and June 29, 2015, for HH, VV, and HV polarization. The Lake fire started

on June 17, 2015.



affected by biological growth, and motions of volume layer such as leaves or
branches caused by the wind. The eastern area which the only low vegetation exist
shows high coherence (0.6~0.9) in HH, HV, VV image comparing the western site.
The high coherence implies the area has high phase stability in time because of low
precipitation and low contribution of vegetation.

The effect of the changes caused by Lake Fire can be analyzed via the coherence
changes analysis before and after the event. Two interferometric pairs were chosen,
i.e. 2015.01.08 ~ 2015.05.11 and 2015.05.11 ~ 2015.06.29. As expected, the
coherence of all polarizations decreased after the event where the fire occurred. The
significant decrease is observed in HV polarization because the leaves to be sensitive
to volume scattering is prone to be affected by the fire. However, the low coherence
in area A does not fit to the predefined burnt area, while the low coherence in area B
shows good agreement. The reason why the area A shows the discordance with the
actual fire area could be that the area is less affected by the fire. A few coherent
changes can be enhanced by differentiating the coherence maps before the events
(2015.05.11 ~ 2015.06.29) with that across the event (2015.01.08 ~ 2015.05.11).
This approach has been applied to extract the damaged area caused by the natural
hazard. The coherence calculated from the interferometric pairs before the event
contains the information of natural changes. If the similar amount of the natural
changes is assumed in two interferometric pairs, the difference of two coherence
maps means the stronger decorrelation caused by the event. The results show higher
agreements with the predefined fire area comparing the method using only coherence.
However, the method may have two critical limitations. Firstly, the assumption that
the decorrelation caused by the natural change is same in the coherence maps should
be satisfied in pixel by pixel. The temporal decorrelation of vegetated area is

determined by the motions of leaves, and dielectric changes caused by natural
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Fig. 4. 9. Coherence difference maps. The reference coherences are generated from
the interferometric pair acquired on January 08, 2015 and May 11, 2015. The event
coherence maps are calculated from the interferometric pair between May 11, 2015,
and June 29, 2015. The black area means lowered coherence with respect to the
reference coherence.

changes. However, the case is hardly satisfied. In addition, since the temporal
baselines are different in the scene by scene, the effect of temporal decorrelation
could be different. Also, the physical interpretation of the coherence differences is
difficult even though the approach is simple and sometimes robust. Therefore, the
coherence maps need to be interpreted using temporal decorrelation, then it should

be extended to the applications.

4.3. Damage mapping algorithm using coherence model

In this chapter, the damage mapping algorithm using coherence model will be
presented. The procedure for this algorithm consists of main three steps. The first is

coherence optimization. Before the parameter inversion, the coherence is optimized
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Fig. 4. 10. Flow chart for damage mapping.

in order to find the best polarization to explain the temporal decorrelation. Then, in
the second step, the temporally-correlated coherence estimation is carried out. In the
third step, the randomly occurring events in coherence stack are calculated. Finally,

the probability related to the natural disaster is calculated.
4.3.1. Coherence optimization

Polarimetric SAR interferometry (PolInSAR) leads to the separation of scattering
centers within a resolution by compromising the polarimetric and interferometric
information. If the scattering matrix of one polarization basis is defined, the different
orthogonal-basis can be generated by varying the polarization state. As the
polarimetric basis changes, the unitary complex vectors can be obtained to optimize
the coherence values and scattering mechanism (Qong, 2005). The conventional
polarizations have separable phase centers and different coherences, but they are not
optimized. The optimization process makes it possible to resolve the formulated

% w

|
{ &
|



model as the algorithm provides the three independent scattering mechanisms
The basic observable of PolInSAR data is 6x6 coherency matrix, and can be

described as,

T Q
kk*T — [ 11 12] 4.1
(kk*") 0y Ty (4.1)

Here, k means Pauli-vector of polarimetric radar observable.

1
k= NG [San + Sov  Sin—Sov  2Sny Shn+Sov  Shn—Sev  2Sk,1T (4.2)
[T14]
2 * *
(|Shn + S50 ((Shn +S50)(Sin = Sov) ) 2((Shn + Sov)Shy
* 2 *
=1((San — Skv) (St + Sk) ) (|San — Sau|") 2((Shn — Spv)Shy )
% * 2
L 2(5E,(Ska + S5)) 2(57, (St — Stn) ") ety |
4.3)
[T32]
2 *
[ (lSi%h + ngl ) <(S}%h + ng)(sf%h - ng)*) 2<(Si%h + ng)sf%v )]
2 *
= l((sf%h - 5517) (Si%h + 51?17)*> <|Si%h - Slgv| ) 2((5}%11 - ng)slfv >
2(S2,(S7n + S2)) 2(S2,(S?n — S2)7) (asz, )
(4.4)
[Q15]

((Sf%h + S%v)(si%h* + S‘L%TJ*)> ((Si%h + S%v)(si%h - ng)*> 2((S%h + S%U)Si%v*>
= ((Shn = Se) (Shn +S2)")  ((San — Sov)(SEn — S&w)™)  2((Shn — San)Sy )
2(Spy (S + Sev)™) 2(Spy(Sin — Sn)™) (4Sp,Shy )

(4.5)
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where subscription 1 and 2 represents the measurement at two acquisitions. T
matrix is coherency matrix which has information of scattering mechanism. Q
matrix is polarimetric and interferometric matrix which its components have
information of distance at each polarization. By introducing the unitary vector w;

and wj, the generalized complex correlation is written as,

%
w; Ql}w]

(4.6)

vij(wp w;) =
\/a);-*Til-a)l-a)]’-*Tjjwj

where i € [1,2,3,..N],j€ [1,2,3,..N] and 0 < |y;;(w;, w;)| <1. Depending on
choice of the arbitrary vectors w; and wj, the coherence changes on the defined
basis.

For the optimization problem, the several approaches can be applied depending
on the assumptions of unitary vectors (S. R. Cloude, 2010; Neumann et al., 2008;
Qong, 2005). Here, the two representative methods are introduced by assuming two

different unitary vectors or common unitary vectors.

Multi-scattering mechanism

The coherence optimization problem can be dealt with two cases; single baseline and
multi-baseline data. If the available data is acquired at single baseline, the
optimization process is confined with only finding the eigenvectors for two
scattering mechanisms. The coherence optimization can be achieved by introducing

the Lagrangian L and multipliers 4; and 4;.

92



The optimization of the Lagrangian problem is solved using its partial derivatives

with respect to the variables.

oL .
ﬁ = (A)l' Tiiwi - 1 = 0 (4‘8)
l
oL .
ﬁzij}ja)j—le (49)
]
daL
L
JL

]

Then, two 3 x 3 complex eigenvalue problem is obtained with common eigenvalues.

T T 0 w; = v, (4.12)
T 10T 0 w; = v, (4.13)

The eigenvectors corresponding to eigenvalues can project the scattering vectors of
each SAR images onto the new vectors to derive the optimized coherence.
nkiopt = Wiopeki (4.15)
nkj ope = a)]’-‘_optkj (4.16)
The procedure is valid for the extraction of two scattering mechanisms of one
polarimetric SAR interferometric pair. If the multi-temporal or multi-baseline data
is available, the optimized coherences of each pair can be obtained by iterating the
same procedure to each pair, independently. Let the number of images is N, then
N(N+1)/2 interferometric pairs can be generated. The optimization process based on
the single-baseline multi-scattering-mechanism (SB MSM) vyields N-1 vectors for
one reference image with respect to the remaining images. It is worth noting that the
absolute phase of the vectors is not uniquely defined using eigenvalue problem. The
interferometric phase is required so that
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Fig. 4. 11. Interferometric coherence optimization scheme using single-baseline
multi-scattering mechanism.

arg(wi opc@j.opt) = 0 (4.17)
Thus, the additional compensation may be required as
¢ = arg(wz‘lopta)j_opt) (4.18)
a)],'.opt = Wj opteXp(—i¢p) (4.19)
If more than 2 data are needed for the coherence optimization, another approach can
be taken into the consideration, which calculates coherence using all available data.
This procedure is called as multi-baseline multi-scattering-mechanism (MB MSM)
The Lagrangian problem is written as
N N N
L= 2 Z W} jw;) + zzi(w;‘Tﬁwi ~1 (4.20)
=1 j=1=#i i=1

Then, partial derivatives of Lagrangian problem is rewritten as,
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Fig. 4. 12. Interferometric coherence optimization scheme using multi-baseline
multi-scattering mechanism.

N
L
= z .QU(I)] +/1iTiiwi =0 (421)
Wi e
0 QO Qin][w1
QO Qon || @2
-QNl -Q-Nz 0 Wy
Ti11 Q42 0 W,
W
oY e T | (4.22)
0 0 TNN Wy

The partial derivative of the Lagrangian problem yields the generalized eigenvalue
problems. By solving the generalized eigenvalue problem, the largest eigenvalue can
be obtained and it equals to the optimized coherence. If the data consist of N multi-
temporal or multi-baseline images, this approach yields one eigenvector of one
reference image with respect to the remaining images. In optimization process, the
eigenvector is calculated to the overall coherence of remaining images, which means
effectively averaged coherence of remaining images, not individual images. Thus,
the coherence based on extracted vector is closest to the weighted optimized

coherence rather than largest coherence.
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Fig. 4. 13. Interferometric coherence optimization scheme using single-baseline
equal-scattering mechanism.

Equal-scattering mechanism

In contrast with MSM, the scattering mechanism could be preserved, thus, T;; is
similar between data sets. This is a reliable assumption when data have a small
temporal baseline and spatial baseline. If the different scattering mechanisms is not
necessary, the equal scattering mechanism, which has the same vector to project the
optimized plane, can be used, and it is called as “Equal-scattering-mechanism”. For

optimum of coherence, the following matrix can be defined.

m; =T, /20,1, /? (4.23)
V(@) = ;’% (428
2
1 N
T, = N; T, (4.25)
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Fig. 4. 14. Interferometric coherence optimization scheme using multi-baseline
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The coherence corresponding the change of basis is defined as,

By iteratively changing its basis, corresponding range of the matrix, r(Il;;), changes,

then the maximum of the coherence is obtained.

r(HU-) = max{|w*l’[ija)|: w'w = 1} (4.27)

The approach to finding the optimum using two data assuming the common w is
called as single baseline equal scattering mechanism (SB ESM). In the process, the
process to find w of the two data is repeat using each pairs as shown in Fig. 4. 10.
However, for the multi-baseline case, the common w should be defined for the all

data. For this, estimate of the coherence optimum can be obtained.

N N
H = 2 z I1;; exp(—i6;;) (4.28)
=1 j=1%i
Hw = Aw (4.29)

The optimal vector, w, is calculated from the eigenvalue problem.
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Comparison of optimized coherences

In order to optimize the interferometric coherence, the four methods could be
applied, as mentioned in the previous section. Since the described methods have
different physical meaning, the appropriate approach is required before the
optimizations. In procedure assuming Single-baseline (or single-temporal-baseline),
the optimization is repeated for the all possible pairs. Thus, the extracted vectors
corresponding to the optimum vary depending on the selected pairs. The highest
coherence values could be extracted via this approaches because it mathematically
calculated highest coherence value. However, it is not easy to find the interpretation
of the physical meaning for changing vector with respect to the other scenes.
Meanwhile, the approach using multi-baseline (or multi-temporal) assumption
results in the unique vector for pixels of one scene. The vectors to optimize the
coherence describes the polarimetric state at the acquisition of the image. Thus,
physical interpretation is reasonable even though the coherence values could be
lower than single baseline case.

Also, the assumption about the scattering mechanism should be taken into
account. The multi-scattering-mechanism (MSM) assume the different scattering
mechanism in optimization. Thus, the vectors to define the optimum are different for
the different scenes. Meanwhile, the resolution cells of different scenes share a
common vector to define the optimum coherence in equal-scattering-mechanism
(ESM) method. These two methods were evaluated using real data using multi-
baseline approach. As shown in Fig. 4. 12, the overall coherence of MSM is higher
than ESM. In outcrop area denoted as A, the coherence values are similar. In contrast,
the forested area denoted as B, the coherence is much higher in MSM cases. This
differences may indicate the forested area could be not optimized if ESM is applied.
The possible explanation is that the common vectors used in EMS cannot represent

the scattering mechanism of the vegetated area because the forested area is likely to
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be affected by the temporal decorrelation.

The temporal comparison is also performed for the several test area denoted in
Fig. 4. 12. The area denoted as A is mainly covered by outcrop or desert bush. The
areas denoted as B, C, and D are the forested area, and area C and D were burnt due
to Lake fire. The MSM shows high coherences for the outcrop area over entire time
spans. Similarly, the ESM also yields high coherences, even though lower
coherences are observed in some time-spans. For the coherence covariance matrices
of forested area, two approaches show different coherence trends along the time span,
hence, the coherence of MSM is higher than ESM. The results support that MSM
approach could higher coherences than ESM similarly with the spatial analysis.

The spatial and temporal analysis imply that the dataset affected by the temporal
decorrelation could be optimized using MSM approach for the higher coherence. If
the temporal decorrelation is not present in the data, both approaches may vyield

similar coherence values.
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Fig. 4. 15. Optimized coherence using multi-baseline (a-b) multi-scattering-
mechanism and (c-d) equal-scattering mechanism. After optimization, the coherence
was obtained for interferometric pairs (a, ¢) January. 08.2015-May.11.2015 and (b,

d) May.11.2015-June.29.2015.
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Fig. 4. 16. Coherence covariance matrices using multi-baseline multi-scattering-
mechanism. (a) outcrop area, (b) unburnt forested area, (c) burnt forested area, and
(d) burnt forested area which are denoted as A, B, C, and D in Fig. 4.12.
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Fig. 4. 17. Coherence covariance matrices using multi-baseline equal-scattering-
mechanism. (a) outcrop area, (b) unburnt forested area, (c) burnt forested area, and
(d) burnt forested area which are denoted as A, B, C, and D in Fig. 4.12.
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4.3.2. Temporally correlated coherence estimation

According to the model formulated in Chapter 2, the coherence model for
UAVSAR data (zero-spatial baseline, multi-temporal, and quad-polarimetric SAR
images) can be formulated as

AT AT .
exp [_ E] |ngnd| + u(w) exp [_ E] lygand| €xp (ld)l/{-q)
14+ u(w)

y(w) = (4.30)

In order for the inversion to be successful, the number of observations must match
the number of unknowns. Throughout this chapter, let N be a humber of scenes for
multitemporal SAR data with a single-polarization channel, then the number of
interferometric pairs is N(N-1)/2. In a multi-temporal polarimetric interferometric
scenario, the additional polarimetric channel increases the number of new
observations by a factor of N(N-1)/2. The formulated coherence model in Eq. (4.30),

which has a zero-spatial baseline, and long temporal baseline, has 6 unknown

parameters (K, Tg, Ty » ¥frang » P9, Yt rana ) fOr a single-polarization

interferometric pair. However, the number of unknowns changes depending on 1)
characteristics of model parameter, 2) additionally available polarizations, and 3) the
number of available data.

As described in Chapter 2, the temporally-uncorrelated changes have different
characteristics depending on the physical source inducing the decorrelation. If wind-

induced motions are assumed, hence ¢, ¢ is zero, then ¥ ana DECOMeS real-valued
; .

and polarization-independent. Consequently, the numbers of y/ and ytg , become
N(N-1)/2 and N(N-1)/2. Also, the total number of unknowns is N(N-1)+3, where the
ground-to-volume ratio and the two characteristic time constants of the volume and
ground layers are pair-independent parameters. An additional polarization introduces
one unknown ground-to-volume ratio corresponding to the newly added polarization.

If three-polarizations are available, the total numbers of unknowns and observables
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are N(N-1)+5 and 3N(N-1)/2.
However, if ygmnd is polarization-dependent and complex valued (i.e. Pyo #

0), not only the amplitude of complex coherence, but also the phase information
needs to be accounted for. Hence, in the case of three-polarization, the 3N(N-1)/2+5
real parameters are mapped onto the 3N(N-1)/2 complex coherences. Thus, the
number of the observations can be matched unknowns. In this section, the detailed
inversion procedure and the extracted model parameter from UAVSAR data are
discussed.

In order to estimate the model parameters, the optimized coherences were
linked to the model parameters. The five unknown parameters, three ground-to-
volume ratios (Uope,» Hopt,: Hopt,) COrresponding to the optimized coherences, and
two temporally correlated coherence (ygcorr' Y¢ corr), Which are pair-independent
parameters, can be estimated first. If the temporally uncorrelated changes of the
ground and volume layers are negligible, i.e., V;]_}a‘gla = 0, the equation can be
rewritten as:

AT,
lg

|

Eqg. (4.31) indicates hypothetical envelope line to describe the coherence determined

AT:
exp [— —”] + u(w°Ptm) exp [—
optm — T

ijno_rand — 1+ ‘u(woptm)

(4.31)

by the temporally correlated changes (Jung et al., 2016). Thus, the hypothetical
envelope can be estimated in the subspace between 1 and the maxima of coherence
values plotted as a function of temporal baseline. Furthermore, the curve is expressed
as the sum of two exponential functions of the temporal baseline and an
exponentially decayed envelope. Thus, the nonlinear unknown parameters are Thus,
the nonlinear unknown parameters are estimated to satisfy min(||D||) and D>0,

where ||...|| indicates the Euclidean vector norm:
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opty
[yij,no_rand] y"ptl

opt
D =|Vij,n§_mnd — |yort (4.32)
opt opts
b/ij,ng_randJ ¥

In the estimating procedure, note that the temporal decorrelation components of the
ground and volume layers are assumed to be polarization invariant; thus, the
coherence from each polarization is associated with the ground-to-volume-ratio. In

addition, it is necessary to preserve the physical range of the model parameters
(i.e. 0< ny;ﬁd < 1). Accordingly, the following constraints can be set for the

estimation of the ground-to-volume-ratios:

— — opt — opt
o B Yy ' S M Yy '
1+ 1+H2yl.j z 1+#3]/l.j 3

—_— — v opt — v opt
Hq > U2 <thorr B yl] 1) > M3 <)/tcorr B yl] !

— > 2 >3 (4.34)
T+ L+ y&orr - yl'o'pt2 L+ ytvcorr - yi(}pt3>

(4.33)

for the case of yi‘;.ptl = yi‘;-ptz = yi‘;.pt3. If the above constraints are not taken into

consideration, the remaining parameters have physically unexplainable values.
Therefore, the estimation of parameters under constraints is a notable point in this
approach. The obtained characteristic time constants are linked to the ground or
volume layers. Here, it is assumed that the ground is more stable than the volume in
terms of coherence, i.e., Ty > 7,,. This is a reasonable assumption because the
temporally correlated changes represent the expected amount of coherence change
and the volume is more likely to be affected than ground by wind or tree growth.

Starting from the optimized coherence images obtained UAVSAR, the characteristic
time constants of the ground and volume layers were estimated as shown in Fig. 4.
18 (a) and (b). In the case of the ground layer, high values were observed over bare
soil area on the right side of the Fig. 4. 18 (a), which means that the coherence in this
area could be high, even over a long time span. In contrast, the left side of Fig. 4. 18

shows relatively low values because the ground was covered by forest. A possible
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Fig. 4. 18. Characteristic time constants of (a) ground and (b) volume layers. High
values of characteristic time constant mean the high coherence can be expected even
in long temporal baseline.

explanation might be that the surface underlying forest is affected by fall of leaves

or frequent precipitation.

4.3.3. Estimation of temporally uncorrelated coherence

Assuming no response from the ground at one optimized coherence (i.e. pype, = 0),
the numbers of pair-dependent parameters, yi!]J'.t_rand and ¥t rana- are now N(N-

1) in complex domain and N(N-1)/2 in real domain, while the number of

observations is 3N(N-1)/2 in complex domain. Thus, the inversion problem has

—
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(b) Optimized coherence

Fig. 4. 19. Model parameter extraction for the ground layer. (a) Optimized coherence before the fire. (b) Optimized coherence during the fire. The
temporally correlated coherence of ground layer for (c) 710 days and (d) 759 days. The temporally uncorrelated coherence of ground layer (e)
before the fire and (f) during the fire. For the pair before the fire, the scenes acquired on May 31, 2013, and May 11, 2015, are used.

106 * ,{-} 2 Eﬂ '*.51' Jr



(b) Optimized coherence (2013

Fig. 4. 20. Model paraeter extraction for volume layer. (a) Optimized coherence before the fire. (b) Optimized coherence during the fire. The
temporally correlated coherence of volume layer for (c) 710 days and (d) 759 days. The temporally uncorrelated coherence of volume layer (e)

before the fire and (f) during the fire. For the pair before the fire, the scenes acquired on May 31, 2013, and May 11, 2015, are used.
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unique solution. Theoretically, both yl.?_t_mnd and ¥ii¢ rana Can be inverted by

finding the minimum as Eq. (4.35)

opty v g

yij Y('u"ptl’ TuTg yij:trand ’ yijlol’t1,trand)
. opt

min |||y "™ ) (4.35)

ly;}ptsj Y(‘uf)ptl’ Ty, yiv].:trand)

v g
- V(#optzl Toy Tg yijrtrand ’ yij,optz,

trand

Fig. 4. 19 and 20 show the coherences and decomposed coherences for the pair
acquired on May 31, 2013, and June 29, 2015. This pair contains information of the
Lake Fire, and its temporal baseline was 759 days. The fire scar caused by the Lake
Fire was observed on the left to the middle of the coherence image, as shown in Fig.
5(a) and (b). However, the boundaries were unclear because of the strong temporal
decorrelation of the forest area. Based on the characteristic time constants in Fig. 4.
18 and the temporal baseline of this pair (759 days), the temporally correlated
coherence values were estimated as shown in Fig. 4. 19 (d) and 20 (d). These
coherence images were the expected values when the pair has the temporal baseline
of 759 days without any temporally uncorrelated changes. These values would be
the same for all pairs with the same temporal baseline. As expected, the damage
caused by the fire was observed in the temporally uncorrelated changes because such
an event is categorized as the temporally uncorrelated coherence. In comparison with
the optimized coherences in Fig. 4. 19 (a) and (b) and Fig. 4. 20 (a) and (b), the effect
of damaged area in the temporally uncorrelated coherence was enhanced, such that
it was possible to identify the periphery of the burn scar. The histograms of coherence
images shown in Fig. 6 also support the effectiveness of the approach. The mean
coherences of y°Pt1 of damaged and undamaged area are 0.34 and 0.69,

respectively. The mean values of yfptlltmn are 0.53 and 0.93 in damaged and

d

undamaged area. Hence, the differences between the changed and unchanged areas
in the temporally uncorrelated coherence is higher than in the observed coherence.

Similarly, the differences of y°Pts and Yt.gnq 1S 0.33 and 0.4. Therefore, applying

d
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Fig. 4. 21. Histograms of total coherence (gray), the coherence of damaged area
(pink), the coherence of undamaged area (green), the temporally uncorrelated
coherence of damaged area (red curve), and temporally uncorrelated coherence of
undamaged area (black curve) for (a) the ground and (b) the volume layer.

the coherence model is beneficial not only to the interpretation of the physical status
of the scatterers but also to the damage mapping by widening the distance between

undamaged and damaged values.

4.3.4. Damage probability calculation

One of the critical limitations in CCD is that the coherence images contain not
only the decorrelation caused by the natural disaster but also the decorrelation due
to natural changes of scatterers. In particular, delineating the perimeter of a damage
of a forested area often appears on top of natural changes. In this section, this study
aim to distinguish the natural disaster event from natural changes.

According to the model used in this study, the decorrelation caused by a disaster
event is considered temporally uncorrelated changes because it occurs randomly in
time. The temporally uncorrelated decorrelation before the event contains the effect
of randomly occurring natural phenomena such as rain, snow, and wind. The effect
of the event on the coherence is contained in the coherence generated from pairs
acquired before and after the event. Thus, the probability of the event was estimated
by comparing the temporally uncorrelated coherence of reference with those of the

event. To do this, the probability density function, p(t), was constructed using the
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Fig. 4. 22. Damage probability calculation. The histograms can be built using
history of the temporally uncorrelated coherence of ground (upper) and volume
(lower) layer, respectively.



temporally uncorrelated changes of the volume and ground layers from pairs before
the event (reference set), which represents statistical character of natural changes.
Then, the probability of the event can be calculated from the pairs before and after

event by comparing the built probability density functions:

g v
Pr(yd  Y=1- fo T () de (4.36)
where Pr indicates the probability. The indices of the scene, m, and n indicate the
scene acquired before the event and after the event, respectively. Because the
probability is calculated based on the probability density function of natural changes,
the decorrelation caused by an event should be stronger than that induced by natural
changes. Thus, this damage mapping algorithm is effective when the scatterers have
suffered moderate temporal decorrelations caused by the natural changes. If the
scatterers are prone to the decorrelation or the effect of the natural change is too
strong, the decorrelation induced by the event cannot be distinguished.
From Eqg. (4. 36), the multiple probability maps were generated corresponding
to the event pairs in Fig. 7(a) and (b). In practical, the number of event pairs is 14.
Some event pairs might have strong decorrelation caused by natural change, such as
heavy rain, in a region where the event has not occurred, because coherence is
defined as the relative difference of scatterer status. Averaging the stack of the
probability maps is one way to mitigate this effect, because every event pair has the
decorrelation of the event, while only a few event pairs have the decorrelation of
strong natural changes. The final products of the averaged probability maps of the
ground and volume layers are shown in Fig. 4. 23, respectively. It is worth note that
the damaged area can be estimated in volume and ground layer separately.
To evaluate the damage mapping performance, the ancillary boundary line
information provided from California Department of Forestry and Fire Protection

(CAL FIRE) was rasterized in accordance with the resolution of the probability maps
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¥,

Fig. 4. 23. The calculated damage probability for (a) ground layer and (b)
volume layer. The multiple probability maps of ground and volume layer can
be averaged to reduce the effect of natural phenomena.

112 b A—I—E‘T-Eﬂ



(b) R})C curve

°

o

L L s L s s L L s ]
[ 01 02 03 04 05 06 07 08 09 1
Probability of false alarm

(e) Damaged area of volume layer at false alarm of 0.01

Fig. 4. 24. Performance evaluation of damage mapping algorithm. (a) reference
damage map and (b) ROC curve. (c and d) The binary image of the ground layer
when the false alarms are 0.01 and 0.05, respectively. (e and f) The binary image of
volume layer when false alarms are 0.01 and 0.05.

and coherences. Since the boundary line of the damaged area exceeded the boundary
of the SAR imaging swath, only the overlapped areas were compared. In addition,
the low coherence areas due to shadow, water, and flat surfaces were also masked
out. Thus, the white area was only used for comparison (Fig. 4. 24 (a)). A receiver
operating characteristic (ROC) curve has been widely used for evaluating
performance in change detection research. The ROC curve results show that the best
performance can be obtained when the averaged probability maps (Fig. 4. 23. (c) and
(d)) are used. Their probabilities of detections (PD) are 0.81 and 0.80 when the
probability of false alarms (PF) is 0.05. Meanwhile, PDs are 0.58 and 0.57 when PF
is 0.05 in the case of the first and third optimized coherences (Fig. 4. 19 (b) and Fig.
4 .20 (b)), respectively. The PDs using the probability map of the ground and volume
layers (Fig. 4.23 (2) and (b)) are 0.64 and 0.65. These prove the proposed approach

effective in damage mapping.
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4.4. Applicable conditions of damage mapping algorithm
using coherence model

4.4.1. Coherence condition

So far, the damage mapping algorithm using coherence model has been
introduced. The main concept of this algorithm is that the history of the coherence
behavior which is not affected by the natural disaster can emphasize the effect of the
natural disaster. To do this, the reliable coherences before the event need to be
available in order to generalize the coherence behavior for each pixel. Generally, the
immoderate changes including the soil moisture change and vertical profiles change
can induce not only the phase disturbance but also the amplitude of the scattering
change. If the pixels have been suffering excessive dielectric change, the coherence
is almost zero and the incoherent approach is more proper rather than coherent
approach. Thus, it is necessary to find the certain conditions which enable this
algorithm applicable.

In non-zero spatial baseline case, the phase of volumetric coherence has a
dependency on the ground-to-volume ratio, canopy height, and extinction coefficient
because the integral term in RVoG model results in the complex values. Accordingly,
the interferometric phase varies on the arbitrary polarization when the spatial
baseline is nonzero. In contrast, the coherence model exploiting the temporal
decorrelation without the volume decorrelation is explained under the assumption
that the temporal decorrelations of ground and volume layers are complex and real
values, respectively. If the significant amount of the temporal decorrelation in
volume layer, which is related to the vertical profiles changes, the temporal
decorrelation in volume layer can be complex. Then the accurate extraction of the
model parameter may fail. Thus, the temporal decorrelation of volume layer needs

to be ensured whether it is complex or not. Unfortunately, the verification of
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Fig. 4. 25. (aand b) The interferometric phase of optimized coherence before the fire.
(c) The phase difference between two optimized coherence (i.e. (a) and (b)). (d and
e) The interferometric phase of optimized coherence during the fire. (f) The phase
difference between two optimized coherence (i.e. (d) and (e)).

the properties of temporal decorrelation is difficult because the parameter cannot be
retrieved without the prior knowledge. Instead, the significant amount of the
dielectric change can be identified by searching phase differences of each
polarizations, indirectly.

The UAVSAR dataset used in this study are acquired with the zero-spatial
baseline and for repeat pass scenarios. Hence, the phase associated with the
topographic elevation and canopy height is ignorable. The interferometric phase can
be interpreted as the contributions of the displacement of surface and atmospheric
phase delay. Fig .4. 25 show the interferometric phase generated from the optimized
complex coherences. Since the surface displacement and atmospheric phase delay
are independent to the polarization, the interferometric phases induced by both

effects are coincident at arbitrary polarizations. The differences between

2
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Fig. 4. 26. The absolute value of phase difference in Fig. 4. 25. (a) Before fire. (b)
During fire.
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Fig. 4. 27. Histograms of phase differences in (a) unburnt area and (b) burnt area.

interferometric phases can be considered as the phase induced by the temporal
decorrelation. Fig. 4. 25 (c) shows the phase differences between the first and third
optimized coherences from the pair of May.31.2013 and May. 11. 2015. Almost
pixels shows near zero value of phase, which indicates the phase difference between
two optimized complex coherence is not severe. In terms of the physical
interpretation, this implies that the temporal decorrelation event inducing the
complex coherence value is not severe. However, the pair which is acquired before
and after the event shows the non-zero value where the wildfire occurred. In order
to emphasize this effect, and compare the non-event pair, the absolute values of
phase difference are illustrated in Fig. 4. 26. In particular, the non-zero values are
clearly observed over the damaged area. Hence, the certain event such as wildfire
disturb the vertical structures of the target media, and accordingly, this event induced
the complex value. Histograms of the phase differences over the unburnt area also

verify that phase differences maintain their distribution regardless of conditions
116 2 A—] i3 T_‘.H 1T,
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(temporal baseline and natural condition at acquisition time). As a result, the
coherence model can be applied to the pairs before the event, and the extraction of
the model parameters is possible. Also, the damage mapping method can be
successful by comparing the historical coherence behavior with the phenomena

induced by the event.
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Fig. 4. 28. Complex correlation plotted in the complex plane. (a) outcrop area, (b)
unburnt forested area, (c) burnt forested area, and (d) burnt forested areas which are
denoted as A, B, C, and D in Fig. 4.12.
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4.4.2. Number of available scenes and interferometric pairs

The key to reliable estimation of the model parameter and successful delineation
of damage area is the number of the available data. In order to build the historical
change belonging to the natural phenomena, the enough data to characterize the
coherence behavior is required. The UAVSAR data used in this study consists of 14
scenes before the disaster event, and one scene after the event. To find out the
minimum number of the scenes and the interferometric pairs can be achieved by the
changing the scene list for processing, and evaluating their performances.

Tests were carried out for the step to calculate the probability by building the
histograms involving the natural changes. Starting from 2 scenes, the number of the
scene which will be used for histogram were increased to 14 scenes. The
performance is evaluated at each time using ROC curve analysis. As shown in Fig.
4. 29, the true detection, which is accuracy of the damage detection, increase as the
number of scenes increases. The increasing trend of the accuracy is observed up to
7 scenes. After 7 scenes are available, the accuracy does not increase dramatically.
This indicates that if 7 scenes are available, the reliable information about the
influence of the natural phenomena on the coherence can be obtained. In order to
confirm this finding, the analysis was carried out for the interferometric pairs. The
maxima of the interferometric pairs which can be generated from the 14 scenes is 91
pairs. The performance was recalculated by repeatedly increasing the interferometric
pairs. Up to 25 pairs, the accuracy is gradually improved. Over the 25 pairs, the
accuracy improvement is not seen. This result coincides to the analysis for the
available scenes. If 7 scenes are available, the maxima number of the pairs is 21 pairs.
The damage mapping algorithm assumes that the every interferometric pairs have
only information of the temporal decorrelation. If the spatial baseline is non-zeros as
in the space-borne SAR system, the interferometric pairs with the long spatial

baseline should be excluded. Then, the more than 7 scenes may be required.
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4. 5. Comparison of model inversion results and damage
mapping algorithm results

In Chapter 2, the recently developed temporal decorrelation models assuming two
layers were presented such as RMoG and RVOG+VTD models. In order to
discriminate the temporally decreasing coherence, the model is extended and
reformulated to have the terms describing the exponential function. Also, the
temporal decorrelation sources are different from the RMoG and RVoG+VTD
models by setting the complex coherence change related to the soil moisture change.
Accordingly, the model parameter inversion adopted a different approach. Thus, it is
worth quantitatively comparing the result derived from the RMoG model and the
model formulated in this study.

In addition, the damage mapping algorithm using single-polarized SAR data
was addressed in Chapter 3. In contrast, Chapter 4 is focusing on the damage
mapping approach using full-polarized SAR. Both methods were separately
evaluated and demonstrated successfully their performance. This subsection will
present the quantitative comparison in terms of the model parameter inversion and

damage mapping performance.

4.5.1. Comparison with RMoG model

The RMoG model is designed to extract the physical parameter of forest from
polarimetric interferometric data. Hence, the RMoG model is applicable even in the

case of the non-spatial baseline. The form of the model can be described as:

Vore 0+ uye
u+1

YRMoG = €'%° (4.37)

where

p1 [e(pz+p3)hv —-1]

vV o _ ,ip
Yot = €t O, + pg) (e — 1)
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Here, o, and o, is the motion standard deviations of the scatterer of ground and

at an arbitrary height h,.. Under the zero-spatial baseline case (k, = 0), the RMoG
model can be written as

Yoro T UVt g

YRMoGzero = n+1 (4.43)
(P1+p3dhy _
e 1
il | (4.44)

Y0 = Ve Gy g ) epii — 1)
The basic forms of the RMoG and the model used in this study is similar because
both models assume the coincident the structure of the forest, i.e. two layers model.
However, the model in this study splits the temporal decorrelation functions of
ground and volume layers into the temporally-uncorrelated and temporally-
correlated coherence functions. In addition, the main physical sources to induce the
temporal decorrelation is motion only in RMoG model. Hence, comparison of the
amount of decorrelation is more reasonable rather than the extracted physical

parameters. Also, the temporal decorrelation function y;;, of RMoG model is
coincident to the exp [— ‘TE] [¥? rana| Of the model in this study. Hence, the total

amount of the temporal decorrelation need to be compared.
Fig. 4. 29 shows the correlation between the RMoG model and the model
formulated in this study. These results demonstrate that the temporal coherence of

volume and ground, y.;, and yfg, extracted from RMoG model has similar amount

of the temporal coherence estimated from the model in this study. The high
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correlations are observed not only in the short temporal baseline (49 days), but also

in long temporal baseline (759 days). The temporally-correlated coherence in long

temporal baseline is smaller than that in short temporal baseline. Thus, the

contribution is lager in long temporal baseline in terms of temporal decorrelation.

The fact that the correlation between the two models is similar implies that the

extraction performance is also similar regardless of the temporal baseline. Also, the

inversion approach adopted in RMoG model finds the minimum between model

value and observables. Meanwhile, the inversion in this study first estimate ground-

to-volume ratio and the temporally-correlated coherence by finding the closest

exponential envelope to the observables. The high correlation value also

demonstrates the inversion method reliable.

Model in this study
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Fig. 4. 30. Temporal coherence comparisons between RMoG model and the
coherence model used in this study. Temporal coherence of (a) ground and (b)
volume layers for a pair 2015/05/11-2015/06/29 (49 days). Temporal coherence of

(c) ground and (d) volume layers for a pair 2013/5/31-2015/06/29 (759 days)
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4.5.2. Comparison with damage mapping algorithm using single-
polarization data

The advantages in the use of the full-polarization are that the extraction of the model
parameters is possible without the assumptions used in the approach using single-
polarization, and consequently, the analysis of each layer (i.e. ground and volume
layers) is independently possible. In Chapter 3 and 4, the both damage mapping
algorithms using single- and full- polarizations have been introduced and validated
with in-situ data. However, the comparison between both algorithms has not been
fully performed. Here, in order to quantitatively assess the both algorithm in terms
of extraction of the model parameters and performance of the damage mapping, the
results is compared.

For this purpose, the algorithm proposed in Chapter 3 was independently applied
to the dataset with the each polarization (HH, HV, and VV). The calculated
characteristic time constants of ground and volume layers, t, and t,, are shown in
Fig. 4. 30, 31, and 32. The high values are observed on the right side of the images,
where the bare soil and low and sparse vegetation dominantly exist. In contrast, the
lower value of Ty and t, is mainly observed on the left side where high and
relatively dense trees exist. This spatial features of t, and t, values are coherently
found in the analysis using full-polarization (Fig. 4. 18). However, the obtained
values from single-polarization dataset tend to be underestimated through the
comparison in Fig. 4. 33. These tendencies are found in the characteristic time

constants of both ground and volume layers. Indeed, the underestimated value of T,

is easily expected from the interpretation of coherence characteristics. The HH, VV,
and HV simultaneously have the contributions of the ground and volume layers. It
was possible to maximize the coherence and isolate the ground effect from the
volume effect by the coherence optimization procedure. Thus, the optimized

coherences can have the more ground contributions than coherence generated from
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HH, VV and HV polarizations. In the same perspective, the higher value of T, is
expected in the single-polarization dataset. However, the obtained result is opposite
to the expectation, because the range of the ground-to-volume ratio is set based on

the criteria of temporally-uncorrelated coherence (Eq. (4.33) and (4.44)).

(a) Characteristic time constant of Ground (

700 days [ ]10000 days

(b) Characteristic time constant of Volume (H

Fig. 4. 31. Characteristic time constant of (a) ground layer and (b) volume layer
calculated from HH polarization data.
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Fig. 4. 32. Characteristic time constant of (a) ground layer and (b) volume layer
calculated from HV polarization data

0 days [N 5000 days

Fig. 4. 33. Characteristic time constant of (a) ground layer and (b) volume layer
calculated from HH polarization data.
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Fig. 4. 34. Comparisons of characteristic time constant of ground layer extracted
from full-polarization data with (a) HH, (b) HV and (c) VV polarizations.
Comparisons of characteristic time constant of volume layer extracted from full-
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polarization data with (d) HH, (e) HV and (f) VV polarizations.
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In terms of the performance of damage mapping, the ROC curve is plotted
coherently with the analysis of Full-polarization dataset. Through the ROC curve
analysis, the most effective method was the damage map of the ground layer using
full polarization. Interestingly, the performance of damage mapping using single-
polarization is slightly lower than the approach using full-polarization, especially in
HV and VV polarization, despite the underestimated parameters. The damage map
of volume layer using full-polarization only prevails the effectiveness in the range
from 0.03 to 0.2 of false alarm rate. This founding somehow reveals that the
proposed method using single-polarization can be effective even though the model
parameters are less accurate. However, it does not imply that the introduction of the
polarization does not help to obtain the damage mapping. One of the main benefits
in use of the polarization is that separate analysis of volume and ground layer is
possible. This may be most effective when the only one layer is affected by the
natural disaster such as the surface fire. In the case of the single-polarization, the

damaged area can be generated but which layer is affected is not clear.
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(a) Probability map (HE)

Fig. 4. 35. Damage probability maps derived from the damage mapping algorithm
using multi-temporal single polarization data (Chapter 3).
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Fig. 4. 36. ROC curves for coherence and damage mapping algorithm using single-

polarizations and full-polarization

Table 4. 3. The probability of detection on various damage mapping methods.

Probability of False Alarm

0.01 0.05 0.1

HH coherence 0.433 0.629 0.727

HV coherence 0.376 0.618 0.727

VV coherence 0.398 0.583 0.691

HH single-pol analysis 0.533 0.748 0.830
HV single-pol analysis 0.641 0.803 0.876
VV single-pol analysis 0.641 0.813 0.868
Full-pol ground 0.691 0.833 0.883
Full-pol volume 0.541 0.819 0.882

4. 6. Discussion and conclusion

This study demonstrated the usefulness of polarimetric and interferometric

SAR (PolInSAR) data for mapping damage caused by a wildfire. Challenges of

coherence-based damage mapping are that the interpretation of coherence behavior

is not easy and that the decorrelation caused by the damage occurs on top of natural

changes. To overcome these limitations, this study first formulated a coherence

model to interpret multi-temporal PolInSAR data with zero spatial baselines and long
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temporal baselines using UAVSAR data. The coherence model incorporates
temporally correlated change related to the decreasing of coherence as the time span
increases and temporally uncorrelated changes induced by randomly occurring
natural phenomena such as rain, snow, and the wind. The unique property of the
model used in this study is that it has a term describing the exponentially decaying
coherence with the temporal baseline. Also, the model was designed to interpret the
decorrelation induced by dielectric property changes in ground layer and the
positional changes in volume layer.

The limitations associated with the use and interpretation of PolInSAR data
arise from the balance between the number of observations and unknown parameters.
In this case, the full-polarizations and multi-temporal data were essential in solving
the coherence model. The three-step parameter estimation approach was also
introduced. Before estimation of the model parameters, the complex coherence is
optimized. Then, pair-independent parameters (i.e. the ground-to-volume ratios and
the characteristic time constants of the ground and volume layers) were estimated.
The difference between the expected coherence from the envelope estimated from
the temporally correlated coherence and the actual coherence estimated was
interpreted as the temporally uncorrelated coherence. Thus, the temporally
uncorrelated coherence could be estimated by finding minimize the actual coherence
and the expected coherence.

To solve the problem regarding the mixed contributions from the natural
changes and the event, the probability map was estimated by comparing the
temporally uncorrelated coherence of the event set with the probability density
function built from the reference set. The final probability maps of the ground and
volume layers for the event were generated by an averaging stack of the probability
maps of the event set.

Through the application to the 2015 Lake Fire, California, using UAVSAR data,

130 s



it is proved that the proposed approach can assist quantitatively interpretation of
coherence and effective damage mapping. The result that the damage caused by the
Lake Fire was included in the temporally uncorrelated coherence implies that the
decorrelation caused by randomly occurring phenomena can be isolated. The
analysis using the ROC curve verified that the method successfully reduced the false
alarms.

This approach is meaningful because it is the first trial that the coherence model
applied to the damage mapping using multitemporal PolInSAR data. Furthermore,
the advantage that changes in the ground and volume layers can be detected
separately is a unique characteristic. This method can be applied in many cases for
damage mapping purposes, as long as a stack of quad-polarization SAR data were
acquired with near-zero spatial baseline.

The algorithm used in this study was evaluated for the case that volumetric
decorrelation is negligible due to near-zero spatial perpendicular baseline. Typically,
data acquired from space-borne SAR systems not only have a temporal baseline but
also a non-trivial spatial baseline. To overcome this limitation, the criteria used for
setting the spatial baseline range should be carefully determined to minimize the
volumetric decorrelation. The application utilizing the coherence model
incorporated with the volumetric and temporal decorrelations, as described in
Chapter 2, is also worthy of further study. This research could be useful for data
acquired from the L-band ALOS-2 mission, the planned NISAR mission, and the

proposed TanDEM-L mission.
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Chapter 5.
Conclusions and Future Perspectives

In this study, the damage mapping algorithm using the temporal decorrelation
have been presented for multi-temporal SAR data. During past decades, the SAR
system has been dramatically developed and advanced, and its applications have
extended their applicable range in technological and scientific aspects. The most
useful advantage on the damage mapping purpose is that the radar can image the
target even in poor weather conditions and night. This is critical when an emergent
response is required to evaluate the damage and carry out the appropriate response
to the natural disaster.

From the beginning of remote sensing techniques, the detection and assessment
of damages caused by the natural disasters have been the main issue. A number of
techniques to detect the change in more than two images have been proposed using
remote sensing data for past decades. Also, they successfully demonstrate their
robustness and effectiveness in many kinds of literature. They usually approach the
problem by finding differences between the scenes related to the event of interest
and interpreting the physical factor to induce these differences. Thus, the results
produced by the change detection methods can be the collective of many events
involving a natural disaster, and anthropogenic activities which can affect the remote
sensing images. In this context, this work can be discriminated from the previous
techniques, hence this study aims to detect only the changes caused by the event of
interest.

When the work started, two challenging problems have been found. First is that
the differences in the images are not only a result of natural disaster but also the
effect of several phenomena which is not of the interest. The main tool of the damage

mapping, coherence, is very sensitive to the natural phenomena, thus, the significant
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loss of coherence has been observed even though the coherence is irrelevant to the
natural disaster. In the case of the event pair, the decorrelation is observed over the
area which is located far from the source of natural disaster. This undesired features
can be considered as the primary source to degrade the performance. In order to
overcome the limitation, one of the conceivable ways is the use of multi-temporal
data to build the historical behavior of coherence induced by only natural phenomena.

The second problem is the decorrelation sources are various. In particular, the
coherence of the vegetated area is theoretically determined by the complex structure,
physical characteristic, and the response to the diverse phenomena in terms of the
radar signal. Also, the observable coherences are complicated to apply the
conventional method of change detection. This problem is also linked to the first
issue because the model to explain the coherence of the multi-temporal data needs
to be designed.

In order to successfully cope with the problems and detect the damaged area,
the study has started from the theoretical background of coherence and design of
coherence model for multi-temporal data in Chapter 2. The decorrelation sources are
commonly categorized into four main factors, which are the thermal, geometrical,
volume, and temporal baseline. The coherence model is designed so that it includes
several decorrelation sources such as temporally correlated changes, temporally
uncorrelated changes and the motions in the two layers; i.e. ground and volume layer.
The temporally correlated change depicts the exponentially decreasing coherences
with the increase of the temporal baseline, which is commonly observed in multi-
temporal coherence. The temporally-uncorrelated change explains the differences
between the observable coherence and hypothetic envelopes calculated the
temporally correlated coherence. In reality, this term means the randomly occurring
phenomena such as rain, snow, and natural disaster. The physical source of

temporally-correlated and uncorrelated coherence. The parameterization of the
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temporal change can be different depending on the assumption of the physical source.
Hence, the standard deviation of scatterer motion and dielectric properties change
can be the source. However, the discrimination of these two sources can be
challenging task and it might be unnecessary for the purpose of damage mapping.

The coherence model consists of two layers which have their own temporally-
correlated and uncorrelated change terms. The ground-to-volume ratio plays an
important role to determine the contributions of temporal decorrelations in ground
and volume layer. The ground-to-volume ratio is a function of the backscattering of
ground and volume layer, and the terms related to attenuation of the radar signal.
Since the backscatter signal is also varied depending on the arbitrary polarization,
the coherence can be different on the choice of polarization. If the interferometric
data with multi-polarization is available, the coherence behavior can be differently
observed even though the assumption that temporal decorrelation of ground and
volume layer is irrelevant to the polarization is valid.

The differences with the previous model are also discussed in Chapter 2. The
RVoG model does not employ the temporal decorrelation term because it is designed
to explain the PolInSAR data with negligible temporal baseline. Meanwhile, RMoG
model is formulated to extract the physical parameters of the forest such as extinction,
canopy height, ground-to-volume ratio and temporal decorrelation. This model
assumes the height-dependent temporal decorrelation, which is induced by the
motions of scatterers. However, this model may be insufficient to apply the data with
long-temporal baseline because not only the motion but also the dielectric properties
change can dominantly affect the coherence. The model presented in this work
considers properties that the coherence decrease as time spans are longer. Also, the
distributions of coherence values acquired at multi-temporal acquisitions are
reasonably interpreted as a sum of the temporally uncorrelated and temporally

correlated changes on the ground-to-volume ratio.

134 3



The damage mapping algorithm using the suggested model was introduced for
single-polarization multi-temporal data in Chapter 3 as a case study for the detection
of volcanic ash. Shinmoedake volcano, which is one of the active volcanoes among
Kirishima volcano cluster, erupted in January 2011 and emitted a massive amount of
volcanic ash. For the detection of volcanic ash, L-band ALOS PALSAR
interferometric data was used. This data was acquired over the Kirishima volcano
spanning from 2007 to 2011. In order to emphasize the temporal decorrelation effect,
it is necessary to minimize the other decorrelation sources. Since the volcano is
covered by the dense forest, accordingly the contribution of the volume decorrelation
can be severe. The volume decorrelation is commonly expressed as a function of the
physical parameter of the forest, and the geometry of SAR sensors. In order to
minimize the effect of the volume decorrelation, the controllable parameter is the
spatial baseline. In approach using multi-temporal images, a number of the
interferometric pair can be listed which have a different spatial baseline. According
to RVoG model, the interferometric pairs within 2000m ensure the 0.94 of volumetric
coherence under the realistic assumption for the physical parameter of the forest.
During the extraction procedure for the model parameter, the challenging problem is
an imbalance between the numbers of unknowns and observables. Here, the model
parameters were extracted under the several assumptions. Also, the ground-to-
volume ratio and the temporally-correlated coherence are first estimated using the
curve fitting method and, then the temporally-uncorrelated coherences were
retrieved. Once the model parameters were estimated, the probability of the damage,
i.e. volcanic ash, was calculated based on the historical coherence behavior
constructed by kernel density estimation method. By comparing the changes of
model parameters between the reference pairs and event pairs, the probability of
changes caused by volcanic ash is defined. The in-situ data, which measures the

depth and area density of volcanic ash, is compared with the calculated probability
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maps for determining the threshold and evaluating the performance. The correlation
is found over the area where the depth of the volcanic ash is more than 5 cm and the
area density is more than 10kg/m?. The uniqueness is that this approach show good
performance, and the result has physical meanings. Introducing the new parameter
can interpret the coherent behavior and enhance the measurement regardless of the
time spans.

In Chapter 4, the damage mapping method for the multi-temporal and fully-
polarimetric interferometric SAR data was addressed. The approach proposed in
Chapter 3 has the several limitations, which the assumptions for extracting the model
parameters are required. In this chapter, the assumptions used in the method can be
reduced and the changes of two layer can be estimated separately by introducing
polarimetric and interferometric SAR data. The approach is applied to detect the
burnt area caused by the Lake Fire, in June 2015 using UAVSAR data.

In order to quantitatively evaluate the damage caused by Lake Fire, the
amplitude ratio, and coherence analysis were carried out. Even though, coherence
analysis shows the loss of coherence due to the fire event, the temporal decorrelation
caused by the natural changes is mixed with the signal of the event. Thus, the clear
discrimination of the effect of fire from the natural phenomena cannot be achieved.
Also, the amplitude ratio result shows poor sensitivity, and it cannot be used for
damage mapping.

The damage mapping algorithm proposed in Chapter 4 also uses the coherence
model proposed in Chapter 2. Here, the temporal decorrelation of ground layer is
assumed as a complex number, because it involves the soil-moisture changes, which
is a polarization-dependent parameter. Hence, the fact that the use of multi-
polarization causes the different level of the temporal decorrelation of ground on the
arbitrary polarizations needs to be taken into account. Meanwhile, the temporal

decorrelation of volume layer is assumed to be dominantly governed by the motions
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of scatterers. The model parameter inversion is a key step in the application using
full-polarization data. The procedure consists of the three steps, which are coherence
optimization, the estimation of temporally-correlated coherence and temporally-
uncorrelated coherence estimation. The extraction results show the high
characteristic time constants in ground-dominant pixels, meanwhile, the relatively
low value is observed in the vegetated area. It is also worth to note that the isolating
procedure from observed coherence into the temporally-correlated and uncorrelated
coherence enhanced the damaging effect. The proposed inversion approach is
practically beneficial to independently provide the damage information of volume
and ground layers.

The damage probabilities of volume and ground layers are determined based on
the histograms of the natural phenomena and natural disaster. Concerning the
performance of the proposed algorithm, ROC curve analysis was carried out. The
guantitative analysis demonstrates the proposed method is more effective than only
use of the coherence. In particular, the most robust way was when the averaged
probability of ground layer was used.

However, the method is not always applicable due to the assumptions used in
inversion procedure. The considerable change in the dielectric characteristic of target
media can induce a significant alteration in complex coherence. In this circumstance,
the coherence is observed near zero value. Then, observed coherence has no valuable
meaning to be interpreted. Similarly, the significant change in the vertical structure
of target media invalidate the assumptions and misinterpret the model parameters.
Thus, whether the pixels experience the significant change or not needs to be
checked. If the significant changes in complex coherence and the phase alteration is
induced by the natural phenomena, the temporal decorrelation is a complex number.
In this perspective, the phenomena can induce the different level of the phase

alteration in complex coherences of arbitrary polarization. It means that the phase
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angles in optimized coherences can be different. Thus, in this work, the phase
differences between optimized coherence are calculated. In the unburnt area, the
distributions of phase differences are stationary regardless of temporal baseline. This
observation implies that strength of the temporal decorrelation is very similar in most
of the cases. Therefore, the method can be applicable and results have an invaluable
meaning. If this condition is not fully satisfied, the different approach such as
incoherence change detection should alternatively be designed.

In Chapter 4 the reliability of the extracted model parameters was also discussed.
RMoG model and its inversion process have been demonstrated in the literature. This
work quantitatively compares the extracted model parameters of two algorithms. The
temporal decorrelation terms in RMoG model correspond to the total amount of the
temporally-correlated and uncorrelated coherence. The comparison shows the
considerable correlation, and consequently the processing chain, and its products
have convincingness.

The comparison between the approach using single-polarization and full
polarization data is also carried out. The robustness of the damage mapping
algorithm for single-polarization is demonstrated using in-situ data. Unfortunately,
the extracted model parameters are not fully exploited because its verification is a
troublesome task, however, the available multi-polarization allows the comparison
of model parameters. The result leads that the model parameters for single-
polarization approach tend to be underestimated. The returned signal is effectively
determined by the many scatterers in target media. In full-polarization, the effects of
distinguishable contributions of ground and volume layers can be discriminated by
the coherence optimization. However, the data with single-polarization cannot adopt
this key procedure, thus some inconsistency is found. Although the underestimated
parameters appear, surprisingly the performance of single-polarization is discovered

to be good enough to be comparable with the full-polarization technique. As

138 s



mentioned in Chapter 2, the algorithm focuses on how to assess the accurate the
damage map rather than the accurate model parameter. The comparison result
apparently proves that the processing chain, especially the isolating the exponentially
decreasing coherence and statistical approach to determine the probability, is robust
and applicable to these studies.

So far, the damage mapping algorithms based on the coherence model for
single- and multi-polarization have been proposed. These have a special meaning
because they are first trials for multi-temporal coherence employing the coherence
model. Also, they have a benefit to provide the remarkably accurate damaged maps.
The algorithms used in this work start from the stacks of a number of the SAR images.
Currently, a number of SAR images are available from the beginning of space-borne
and airborne mission, and the plans of a new mission for the high-resolution, high-
quality, multi-polarization and short revisit time are increasing. Consequently, the
requirement can be expected to be easily fulfilled. For next generation missions such

as TanDEM-L, and NISAR, this algorithm has an enough potential to be applied.
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