
1 

 

 1 

The Sentinel-1 mission for the improvement of the scientific understanding  2 

and the operational monitoring of the seismic cycle 3 

 4 

S. Salvi
a*

, S. Stramondo
a
, G. J. Funning

b
, A. Ferretti

c
, F. Sarti

d
, A. Mouratidis

d
 5 

 6 

(a) Istituto Nazionale di Geofisica e Vulcanologia – Via di Vigna Murata, 605, 00142 Roma - Italy 7 

(b) University of California – 900 University Ave., Riverside, CA 92521 - USA  8 

(c) TeleRilevamento Europa – Via Vittoria Colonna, 7, 20149  Milano -  Italy  9 

(d) European Space Agency – ESA/ESRIN, V.Galileo Galilei, C.P. 64, 00044 Frascati - Italy 10 

  11 

(*) Corresponding author: stefano.salvi@ingv.it, Ph. +39 06 51860438,  Fax +39 06 5041181 12 

Abstract 13 

  We describe the state of the art of scientific research on the earthquake cycle based on the analysis 14 

of Synthetic Aperture Radar (SAR) data acquired from satellite platforms. We examine the 15 

achievements and the main limitations of present SAR systems for the measurement and analysis of 16 

crustal deformation, and envision the foreseeable advances that the Sentinel-1 data will generate in 17 

the fields of geophysics and tectonics. We also review the technological and scientific issues which 18 

have limited so far the operational use of satellite data in seismic hazard assessment and crisis 19 

management, and show the improvements expected from Sentinel-1 data. 20 
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 24 

1. Introduction 25 

Earthquakes and fault ruptures cannot be directly observed at the depths at which they originate. 26 

This, and the fact that earthquake processes span several orders of magnitude of space and time 27 

scales, complicates the scientific understanding of these phenomena (Rundle et al., 2003).  28 

Seismology is in fact a science largely based on observations not only of present events, but also of 29 

those registered in the historical and geological records.  During the last couple of decades, our 30 

understanding of earthquake and fault processes has improved, thanks to new observational 31 

methods, as broadband seismology, Global Positioning System (GPS) and SAR Interferometry 32 

(InSAR).   33 

Development of new observation tools and datasets has always led in short order to scientific 34 

advancements. For example, plate tectonics, the most revolutionary Earth science theory of the past 35 

century, could only be fully developed when new, improved, and systematic observations of the 36 

Earth‟s gravity and magnetic fields, precise locations of global earthquakes and detailed 37 

measurements of seafloor bathymetry, started to became available in the 1950s and 1960s. 38 

Today the Solid Earth scientist has available the technological means to generate a wealth of 39 

spatially and temporally denser observations to constrain better earthquake models and improve the 40 

understanding of the fundamental physical processes driving the earthquake cycle. What is really 41 

needed is to make these observations systematic and constant over a long period of time. 42 

Measurement instruments placed on satellite platforms are among the best ways to provide 43 

systematic observation of the Earth surface over large areas and over long time intervals. In the 44 

field of geophysics the most successful of such instruments in the last two decades has been the 45 

Synthetic Aperture Radar (SAR).  46 
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Using SAR images of the ground acquired at different times, an accurate, quantitative measurement 47 

of the deformation of Earth‟s crust can be obtained.  This is one of the most important parameters 48 

for the study of the seismic cycle, providing important constraints that are used to model the 49 

mechanisms of tectonic stress accumulation (in the interseismic phase) and release (in the coseismic 50 

and postseismic phases) along fault zones.  51 

Since the  1990s  two Earth Observation missions of the European Space Agency (ESA) have 52 

provided fundamental SAR data for these applications. The ERS and ENVISAT missions were very 53 

successful not only in promoting new Earth science applications: based on these data new analysis 54 

techniques have been developed, tested, and standardized for use by service providers on the market 55 

(Ferretti et al., 2000; Berardino et al., 2002; Adam et al., 2009).  56 

The Sentinel-1 mission has been designed to continue, and improve, the data flow provided by 57 

previous ESA SAR missions (see the introductory article in this issue), and to provide the 58 

framework for the development of operational services and applications.  59 

The aim of this paper is to describe the advances and potentialities that the Sentinel-1 data are 60 

expected to generate in the fields of seismology and seismic risk management. We shall review the 61 

applications of SAR data for the scientific understanding of the seismic cycle and for the 62 

operational crisis management and mitigation. We shall evidence the new possibilities provided by 63 

the Sentinel-1 platform and sensor characteristics, for the improvements of these applications and 64 

for establishing new ones. 65 

 66 

2. Using Synthetic aperture radar interferometry (InSAR) to measure surface 67 

deformation  68 
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In this section we briefly introduce the SAR processing techniques used in geophysical 69 

applications; for a more detailed treatment of the subject we refer the reader to  Bürgmann  et al, 70 

2000.   71 

A SAR image contains a two-dimensional record of both the amplitudes and the phases of the 72 

returns from targets within the imaging area. The amplitude stands for the reflectivity while the 73 

phase is a term proportional to the sensor-to-target distance. A particular SAR data processing 74 

technique referred to as InSAR (Interferometric SAR) is widely used in seismology, volcanology, 75 

hydrogeology, glaciology and subsidence studies. The InSAR approach aims at estimating any 76 

variation of the phase component of two or more SAR images taken under the same acquisition 77 

geometry. This means that the images need to be acquired along the same orbit, at different times 78 

(repeat-pass configuration). Since SAR is a coherent sensor, the phase information of any SAR 79 

image is related to the sensor-to-target distance. The interferogram, i.e. the result of the 80 

interferometric processing, is generated by computing the phase difference of two radar images on a 81 

pixel-by-pixel basis. Indeed, satellite SAR sensors can acquire new data over the same area of 82 

interest, using the same acquisition geometry, many times a year, thus allowing a comparison of the 83 

phase maps at different times. In repeat-pass interferometry, the temporal baseline is the time 84 

difference between two SAR acquisitions, the minimum temporal baseline corresponds to the 85 

satellite “repeat-cycle” (or revisit time) and varies from 11 days to 46 days for the satellites 86 

available today. Using satellite constellations, the actual revisit time can be further reduced to only 87 

few days. 88 

The interferometric phase int
 can be schematically split into five terms, the "flat Earth" 89 

component f
, the topographic phase topo

 , the displacement phase displ
 , the atmospheric term 90 

atm
 and the error phase err

 (Bürgmann  et al., 2000). Except for the last, each term contains 91 

information relevant to specific issues, but for the applications described in this paper the signal of 92 
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interest is displ
,i.e. the phase  variation due by changes in the sensor-to-ground distance. The 93 

displacement phase (also called range change) is best shown in the differential interferogram, where 94 

the "flat Earth" and the topographic terms have been removed (the latter in general using an external 95 

Digital Elevation Model). The process of generating such topographically corrected interferogram is 96 

known as Differential InSAR (DInSAR). Although  DInSAR is the actual processing technique 97 

used in most geophysical applications, the more general term InSAR is often used in the recent 98 

geophysical literature, implying in a way that interferograms are necessarily corrected for 99 

topography.  100 

A further, fundamental step in InSAR analysis is the conversion of the original discontinuous, 101 

modulo 2π „wrapped‟ interference signal, into an „unwrapped‟ continuous phase signal, performed 102 

in the so-called „unwrapping‟ process (e.g. Bürgmann  et al., 2000). Phase unwrapping is often 103 

considered as a critical step in the estimation of ground displacement, and if an interferogram is 104 

largely affected by noise, the lack of signal continuity (decorrelation) may introduce errors in the 105 

displacement values (unwrapping errors). Such errors are usually accounted for using independent 106 

observations, such as GPS, leveling data, or other interferograms from different orbits or satellites. 107 

After the DInSAR technique was consolidated, and became a tool for geophysicists rather than a 108 

research subject for electronic engineers, the research in SAR signal processing moved rapidly 109 

towards new developments. Taking advantage of the large numbers of images available in the ESA 110 

archives, the analysis focused increasingly on the investigation of the temporal evolution of the 111 

surface deformation. New SAR data processing techniques were developed to provide displacement 112 

time series for each ground point which could remain coherent over the entire multi-year data set 113 

(Ferretti et al. 2000; Berardino et al., 2002; Mora et al. 2003; Usai, 2003; Werner et al. 2003; 114 

Hooper et al. 2004; Crosetto et al., 2005).  115 
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The aim of all multitemporal techniques is to overcome some limitations of conventional InSAR, 116 

mainly phase noise (Zebker and Villasenor, 1992) and atmospheric effects (Zebker et al. 1997), 117 

taking advantage of long temporal series of SAR data. Rather than simply generating single 118 

interferograms and  stacking them, these algorithms identify areas or individual ground targets 119 

where signal to noise ratio (SNR) values are favorable for InSAR measurements and generate time 120 

series of phase data where atmospheric disturbances can be characterised and removed. From the 121 

geophysical point of view, the main advantage of the multitemporal analysis is to generate the time 122 

history of the ground deformation, allowing a better understanding of the various processes acting 123 

in the seismic cycle. 124 

At present, multitemporal techniques can be divided into two broad families of algorithms usually 125 

referred to as Persistent Scatterer (PSI), and Small Baseline (SBAS) approaches. In the following, 126 

we briefly describe the main features of both. 127 

Persistent scatterer methods 128 

The term Persistent Scatterer Interferometry defines techniques aiming at identifying individual 129 

scatterers exhibiting high phase coherence in all images of a multitemporal SAR dataset. The first 130 

PSI algorithm was the so-called Permanent Scatterer InSAR technique (PSInSAR), developed in the 131 

late Nineties at the Politecnico di Milano (Ferretti et al. 2000, 2001). Since then, many research 132 

centres and private companies have developed  similar strategies for processing InSAR data-stacks.   133 

A Permanent - or Persistent - Scatterer (PS) is defined as a radar target, within a SAR resolution 134 

cell, that displays stable amplitude properties and coherent signal phase, throughout all of the 135 

images of a data stack. Objects that make good PS can be natural: rock outcrops, hard un-vegetated 136 

earth surfaces, single boulders, or man-made: buildings, light poles, transmission towers, metallic 137 

objects, walls and fences.  138 
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In the original PSI algorithm (Ferretti et al. 2000, 2001), all interferograms are generated using a 139 

single master scene, carefully selected within the available data-set of SAR scenes, in order to 140 

minimize temporal and geometrical decorrelation phenomena. In order to preserve the phase 141 

information related to isolated point-scatterers, interferograms are not filtered spatially. Initial PS 142 

selection is typically made by identifying scatterers that have consistently high amplitudes. Next, 143 

the time series of interferometric phases for each of these scatteres are unwrapped by considering 144 

the temporally correlated nature of deformation, usually assuming that the displacement time series 145 

can be well approximated with a low-order polynomial, possibly superimposed on a seasonal signal. 146 

Residual phase at each epoch is typically assumed to be tropospheric in origin; the residuals are 147 

interpolated and removed from each interferogram. A secondary search for further phase-stable 148 

pixels can then be made by considering the phase time series of each pixel, which are unwrapped in 149 

a similar way. Several variations on this algorithm have been implemented and used since the 150 

original algorithm was proposed; there are differences in particular in the methods used to unwrap 151 

the interferometric phase. For instance, in the StaMPS algorithm, the phase of each interferogram is 152 

unwrapped spatially, rather than by assuming a functional form for the time series (Hooper et al, 153 

2004). 154 

The most important factors impacting on PS data quality are: 155 

• Spatial density of the PS (the lower the density, the higher the errors involved in estimating the 156 

tropospheric phase). 157 

• Quality of the radar targets (signal-to-noise ratio levels). 158 

• Ambient conditions at the time of the acquisitions (e.g. the amount of atmospheric turbulence and 159 

relative humidity). 160 
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• The distances between each measurement point and the reference point (similar to the case of 161 

differential GPS data, all measurements are differential measurements with respect to a reference 162 

point of known or assumed motion). 163 

As a general indication, based on our experience and on a vast literature, using a satellite sensor 164 

with monthly repeat-cycle at mid-latitudes, it is possible to get an accuracy better than 1 mm/yr on a 165 

mean 3-year displacement rate for good radar targets located at less than 10km from the reference 166 

point, assuming regular 35-day acquisition repeats as have been possible with the ERS-2 and 167 

Envisat satellites. Of course, the lower the satellite repeat cycle (i.e. the higher the temporal 168 

frequency of the observations), the shorter the time lag to get to the 1 mm/yr precision.  169 

Small baseline methods 170 

In contrast to PSI, SBAS algorithms enhance the SNR level of the interferograms through spatially 171 

averaging (locally) the phase values, to filter out the noise and to enable robust spatial phase 172 

unwrapping. Rather than selecting a single master scene for the generation of the interferogram 173 

stack as in the PSI methodology, multiple masters are used, with a fixed threshold on the maximum 174 

normal baseline value, limiting the impact of geometrical decorrelation (Zebker and Villasenor, 175 

1992). Interferograms meeting the maximum baseline criterion are then generated, filtered, and 176 

unwrapped. Once all interferograms have been unwrapped, phase data are combined (usually via 177 

the Singular Value Decomposition) to estimate a displacement time series for pixels exhibiting a 178 

good coherence level in most of the interferograms (Berardino et al. 2002; Usai, 2003; Crosetto et 179 

al., 2005).  180 

Although different versions of the algorithm exist, the SBAS approach is usually more efficient 181 

over distributed scatterers (i.e. wherever no dominant scatterer can be identified), rather than on 182 

point-wise targets and whenever the spatio-temporal distribution of the baseline values makes it 183 
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possible to have a single set of small-baseline interferograms creating a connected graph with all the 184 

images of the data-set (Sansosti et al., 2010).    185 

Recently, some new algorithms that aim to combine the advantages of PSI and SBAS techniques, 186 

have been presented (Hooper 2008, Prati et al. 2010, Ferretti et al. 2009). These new approaches 187 

allow one to increase the spatial density of the measurement points and to obtain a better 188 

combination of the information coming from all the interferograms that can be generated from a 189 

long-term dataset. Current research foci include: the estimation and removal of tropospheric effects 190 

(Hobiger et al., 2010) which still represent a major limitation of any InSAR analysis; estimation and 191 

removal of residual orbital phase components (e.g. Biggs et al., 2007); and the exploitation of SAR 192 

data sets characterized by high spatial resolution and short repeat cycles, provided by new satellite 193 

constellations (Lanari et al., 2010).     194 

 195 

3. Observing the seismic cycle using InSAR 196 

The concept of the seismic cycle (also known as the earthquake cycle) is born from the observation 197 

that earthquakes can occur repeatedly on the same segments of faults, over time scales that are 198 

typically decades to centuries in length. In each individual seismic cycle, the rapid and large surface 199 

displacements that accompany an earthquake are typically preceded by a long period of slow, 200 

gradual loading, and followed by a shorter, transient period of rapid deformation; we therefore 201 

subdivide the seismic cycle into three phases. We call the loading phase, where strain accumulates 202 

on the fault segment(s), the interseismic phase. InSAR observations of this phase can make 203 

important contributions to the assessment of seismic hazard, as the rate of strain accumulation on a 204 

fault can be directly related to the rate of earthquake recurrence.  Once sufficient strain has been 205 

accumulated such that shear stress on the fault exceeds a fault‟s frictional strength, an earthquake 206 

occurs; we call this the coseismic phase of the seismic cycle. Studies of this phase of the seismic 207 
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cycle can lead to improved knowledge of earthquake source processes. Finally, after the earthquake, 208 

we enter the postseismic phase. In this interval, the stress changes that were imparted by the 209 

earthquake are relaxed, typically stimulating movement in the subsurface at rates that, while slower 210 

than earthquake motions, are significantly faster than interseismic rates. Study of this period of the 211 

seismic cycle can lead to understanding of the constitutive laws and parameters of the crust and 212 

uppermost mantle, fundamental to our understanding of how the lithosphere responds to stress. All 213 

three phases of the seismic cycle have been studied using InSAR data; we will discuss each of them 214 

in turn. 215 

 216 

Interseismic deformation 217 

Measuring interseismic deformation with InSAR is challenging – typically, rates of deformation are 218 

small (< 3 cm/yr), and the deformation signal can be distributed over tens of kilometres. 219 

Interferograms that aim to capture such deformation are therefore susceptible to noise, errors and 220 

often decorrelation. A small displacement signal can be masked by the effects of differential 221 

tropospheric water vapour – the principal source of „noise‟ in interferograms of deformation. In 222 

areas that contain significant amounts of vegetation, it is not possible to increase the deformation 223 

signal (and thus improve the signal to noise ratio in the data) by simply increasing the time span of 224 

the interferogram – this will increase the probability of temporal decorrelation in the interferogram, 225 

and thus reduce the number of useable pixels. Finally, the length scale of interseismic deformation 226 

signals is similar to that of long-wavelength gradients due to incorrect determinations of satellite 227 

orbital position; consequently, estimates of the strain accumulation rate, and therefore the geodetic 228 

„slip rate‟ associated with the fault, can be erroneous. 229 

Several strategies have been employed to improve the likelihood of recovering interseismic 230 

deformation from InSAR data. One method is interferogram stacking – averaging a number of 231 
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interferograms so that random tropospheric noise is reduced. There are two approaches in stacking 232 

that have been shown to work well – either the very best data can be stacked (the „quality‟ 233 

approach), or larger volumes of data are used (the „quantity‟ approach). In an example of the 234 

former, Wright et al. (2001) stacked four independent interferograms identified as having low 235 

tropospheric water vapour content and minimal residual orbital gradients in order to determine the 236 

geodetic slip rate of the North Anatolian fault in eastern Turkey. In an example of the latter, Peltzer 237 

et al. (2001) stacked 25 interferograms from the Eastern California Shear Zone, using GPS data as 238 

an additional constraint so that the long-wavelength orbital errors could be estimated and removed. 239 

Similar approaches have since been applied over a number of different tectonically active fault 240 

systems, such as the faults in western Tibet (Wright et al., 2004a), central Tibet (Taylor and Peltzer, 241 

2006), and the southern San Andreas fault (Fialko, 2006). More recently, multitemporal approaches 242 

such as those described in section 2, have been successful for clarifying interseismic deformation 243 

signals from sets of noisy interferograms (Hunstad et al., 2009; Cavalié et al., 2008, Fialko, 2006). 244 

Models that are used to interpret these data range from simple 1-D analytical models developed for 245 

the analysis of trilateration data (e.g. Savage and Burford, 1973), through three dimensional 246 

dislocation models (e.g. Okada, 1985), to models of deformation over networks of faults (e.g. 247 

Schmidt et al., 2005). Some groups have attempted to use such models as prior information on the 248 

form of a multitemporal interferogram rate map, assisting with interferogram unwrapping and the 249 

estimation of improved orbital corrections. Biggs et al. (2007) used such a hybrid model/small 250 

baseline subset method to jointly estimate the fault slip rate, regional deformation rates and orbital 251 

corrections using interferograms covering the Denali fault in Alaska, an area where simple stacking 252 

provided insufficient constraints on the deformation model on its own (Figure 1). 253 

 254 

Coseismic deformation 255 
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The first application of InSAR to an earthquake dates back to 1992, when the surface displacement 256 

field due to the Landers earthquake was clearly detected and measured using a pair of ERS1 images 257 

(Massonnet et al, 1993). The Landers coseismic image pair, spanning April 24 – August 7, 1992, 258 

provided the optimum conditions for coherence thanks to the short temporal baseline, a minimal 259 

difference in orbital position between the two images and the arid desert surface with minimal 260 

vegetation. In subsequent years, thanks to the long-sighted ESA policy of background data 261 

acquisition, the constantly increasing ERS image archive provided the necessary data for similar 262 

applications in a wide variety of environments and acquisition conditions as the 1994 Northridge 263 

earthquake (Massonet et al., 1996), 1995 Dinar earthquake (Wright et al., 1999) and 1997 Umbria-264 

Marche earthquakes (Stramondo et al., 1999; Salvi et al., 2000, Lundgren and Stramondo, 2002) 265 

earthquakes. At the time of writing, over 60 earthquakes, with magnitudes between 4.4 and 8.5 have 266 

been studied with InSAR (see Weston et al., 2010, submitted to Journal of Geophysical Research, 267 

for a detailed list).  268 

 InSAR offers many advantages in the study of the earthquake source, particularly in areas where 269 

coherence is good. For instance, InSAR allows a precise determination of the geometries of the 270 

fault segments involved in an earthquake. The surface rupture geometry and length can often be 271 

mapped directly from the data. Additionally, through consideration of simple elastic dislocation 272 

models (e.g. Okada, 1985), certain specific features of the deformation pattern can be related to 273 

other earthquake source parameters: for instance, asymmetry in the deformation pattern can provide 274 

information on the dip and rake of the fault responsible; the fault-perpendicular extent of the 275 

deformation pattern is related to the bottom depth of the fault; the magnitude of the surface 276 

displacement is related to the magnitude of fault slip. Typically, a nonlinear optimization algorithm 277 

is used to modify analytical elastic dislocation models to search for the set of earthquake source 278 

parameters that give the best match to the observed displacements (e.g. Wright et al., 1999; Lohman 279 
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et al., 2002). Often these geometric parameters are better constrained by InSAR data than by other 280 

data (e.g. Funning et al., 2005a,b). 281 

Once a geometry for the fault is obtained, the fault segments are typically subdivided into smaller 282 

subfaults, or „fault patches‟. For a fixed fault geometry, the relationship between fault slip and 283 

ground displacement, e.g. as measured by InSAR, is linear, meaning that it is trivial to invert for the 284 

slip on each fault patch (e.g. Feigl et al., 2002; Jonsson et al., 2002; Simons et al., 2002; Funning et 285 

al., 2005a). In such studies, it is usually necessary to regularize the inverse problem (i.e. reduce the 286 

number of independent model parameters) by adding smoothing constraints, typically a finite-287 

difference Laplacian constraint (e.g. Jonsson et al., 2002). 288 

The accurate and spatially dense InSAR measurements of the coseismic deformation has given the 289 

possibility to model fault dislocations with a detail often not obtainable with any other means. 290 

Inversion of the displacement data allows to map the rupture geometry and sense of movement with 291 

high accuracy, especially when multiple interferograms from different sensors and viewing 292 

geometries are used (Wright et al., 2003, 2004; Atzori et al., 2009). As will be shown in section 4, 293 

these data can have important application in the operational management of a seismic crisis. 294 

Postseismic deformation 295 

Postseismic displacement has been detected and measured by InSAR since 1992, when Massonnet 296 

et al. (1994) concluded that most of the post-earthquake movements of the Landers strike slip event 297 

were concentrated in the 40 days after the mainshock. Ongoing observations have subsequently 298 

shown that deformation continued for several years after the event (Fialko, 2004). In subsequent 299 

years, several more earthquakes have generated postseismic displacements detectable with InSAR, 300 

including Manyi in 1997 (Ryder et al., 2007), Hector Mine in 1999 (e.g. Pollitz et al., 2001; Jacobs 301 

et al. 2002), Izmit in 1999 (e.g. Bürgmann  et al., 2002; Ergintav et al., 2002; Hearn et al., 2002) 302 

and Denali in 2002 (Pollitz, 2005, Biggs et al., 2009). These postseismic movements are the 303 
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response of the lithosphere to stresses imposed by the earthquake. An active area of current research 304 

is to explain how and where the stresses are relaxed, and by what mechanism. Postseismic 305 

displacements have been modelled as afterslip on a discrete plane (e.g. Bürgmann et al., 2002), 306 

creep in a viscous or viscoelastic shear zone (e.g. Hearn et al., 2002), viscoelastic relaxation in the 307 

lower crust/upper mantle (e.g. Pollitz et al., 2000), and poroelastic rebound (e.g. Jònsson et al., 308 

2003). In some cases, it is likely that multiple mechanisms are operating, often with different time 309 

constants – poroelastic rebound coupled with localised deep shear (e.g. Fialko, 2004); poroelastic 310 

rebound, afterslip and shallow volumetric contraction (Fielding et al., 2009). 311 

The use of InSAR in the study of postseismic movements in the subduction areas has led to improve 312 

the comprehension of the source mechanism in such transitional zones (Béjar-Pizarro et al., 2010) 313 

characterized by alternating transient aseismic shear and seismic slip (Hyndman & Wang 1993). 314 

Transient aseismic slip is also observed as postseismic afterslip in both the lower region and the 315 

upper region of the seismogenic zone, thus apparently in areas surrounding the main asperity 316 

characterized by high coseismic slip (e.g. Chlieh et al. 2004; Miyazaki et al. 2004; Baba et al. 2006; 317 

Hsu et al. 2006; Pritchard & Simons 2006). Postseismic deformation time series over normal faults 318 

have also been estimated using multitemporal analysis: during the 1999 Athens earthquake (Atzori 319 

et al., 2008)  using 26 + 47 ERS images from ascending and descending orbits (Figure 2), and 320 

during the 2009 L'Aquila earthquake, using a data set of 32 X-band COSMO-SkyMed images 321 

acquired in the 8 months after the mainshock (Lanari et al., 2010). 322 

Limitations of InSAR in studies of the seismic cycle 323 

Scientific research based on InSAR data has been limited until now by some relevant technical 324 

drawbacks. The main limits coming from the satellite systems available up to few years ago (ERS, 325 

ENVISAT, JERS, RADARSAT, ALOS) concerned the long revisit time intervals (a minimum of 326 

24 to 46 days depending on mission). Often, the repeat time between acquisitions has been a 327 
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multiple of the minimum repeat time, due to limitations in onboard data storage and power supply, 328 

and acquisition conflicts – in most of the currently operating SAR satellites it is not possible to 329 

acquire images over every point on every orbit. This has in general limited the use of SAR 330 

Interferometry to areas characterised by stable surfaces (urban, rocky, or arid environments) where 331 

the surface scattering properties change very slowly with time. Moreover, for conventional InSAR 332 

analyses, the long revisit time implies a sparse temporal sampling of the ground displacements, 333 

which can affect the significance of the modeling. For instance, interferograms of coseismic 334 

displacement fields created using temporally distant images, may contain an unknown amount of 335 

postseismic deformation, with an impact on the source parameter estimation. In fact, during the 336 

whole lifetime of the ERS and ENVISAT satellites, only in very few cases has a timely post-event 337 

image acquisition occurred: the Umbria-Marche, 1997 (few minutes time delay, Salvi et al., 2000), 338 

and the Hector Mine, 1999 (4 days time delay, Sandwell et al., 2000) earthquakes, being two 339 

examples.  340 

Some of the SAR instruments from the old generation, with low resolution and low revisiting time 341 

are no longer operative (see ERS-1 and JERS-1) or are close to the end of their operation (ERS-2, 342 

Radarsat-1 and ENVISAT). During the last 8 years, the ENVISAT mission has been the main 343 

source of SAR data for scientific research, but at the end of October 2010 the satellite orbit had to 344 

be lowered to ensure extension of the mission up to 2013. The orbit change resulted in a general 345 

increase of the spatial baselines, to an extent that will prevent the building of multitemporal InSAR 346 

data sets for most areas of the world. Only for images acquired within two narrow bands centered at 347 

+-38° latitude, will the baselines be low enough to form useful interferometric pairs over several 348 

cycles (see a more detailed explaination in Briole et al., this volume).  349 

Since 2007, with the Japanese ALOS PALSAR, the first HR (High Resolution) SAR system 350 

operating at L band became available, characterized by a larger revisiting time than the existing C-351 

band systems (46 days), but also by a better potential for InSAR applications, as the L-band SAR 352 
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data are significantly less affected by temporal decorrelation (Bürgmann  et al., 2000). Also in 353 

2007, the Canadian Space Agency launched the Radarsat-2, a C-band sensor capable of different 354 

acquisition modes, spatial resolution up to 3m and full polarimetric capabilities. The most recent 355 

SAR missions are both based on X-band, VHR (Very High Resolution) imaging systems: the 356 

German TerraSAR-X, achieving 1m resolution and 11 days revisiting time (Werninghaus, 2006) 357 

and the Italian COSMO-SkyMed, 1m resolution and 4 days revisiting time in InSAR mode 358 

(Caltagirone et al., 2007).  359 

4. Operational applications for seismic risk management 360 

The significant advances in solid earth geophysics promoted by ERS and ENVISAT data have had 361 

important benefits for the society. The new observations of crustal strain accumulation and release 362 

during the seismic cycle, and the analysis they have fostered, allowed a better knowledge of many 363 

active faults, eventually resulting in improvements of regional Seismic Hazard Assessment (SHA). 364 

However, there are other uses of SAR data in the decision-making chain of seismic risk 365 

management, which have been so far only partially demonstrated, and which can be boosted by 366 

Sentinel 1 data.  367 

In the following we discuss the possibility of an operational use of InSAR data in the risk 368 

management phases named Knowledge and Prevention, and Warning and Crisis (Beer and Ismail-369 

Zadeh, 2002; Lettieri et al., 2009). Most of the following discussion is based on the results of the 370 

SIGRIS project (2008-2010), funded by the Italian Space Agency. This has been the first project 371 

aiming to demonstrate the potential of present and future SAR and optical satellite systems for 372 

operational activities in seismic risk management (Salvi et al., 2010). A complex infrastructure has 373 

been developed for the acquisition, storage, management, processing, modeling and interpretation 374 

of satellite data, integrated with the seismic monitoring activities of the INGV National Earthquake 375 

Center. The various products (maps, models, reports) generated by the SIGRIS system have been 376 
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evaluated and approved by the Italian Civil Protection Department, the state-wide agency for 377 

seismic risk management in Italy. 378 

The Knowledge and Prevention phase of seismic risk management comprehends all activities 379 

concerning the risk assessment, mitigation and preparedness. They are carried out before the 380 

earthquake occurs, and are presently the only effective way to reduce the impact of earthquakes on 381 

the society, since earthquake prediction will not be a reality for several decades, if ever (Jackson et 382 

al., 1997; Geller, 1997; Geller et al., 1996). As mentioned before, Seismic Hazard Assessment has 383 

been the main application field of the new scientific results obtained through ERS/ENVISAT data 384 

and the use of InSAR and multitemporal InSAR, in particular for the parameterization of the 385 

seismic sources (Xinjian and Guohong, 2007; Fielding et al., 2004), for the definition of the present 386 

deformation rates (Hunstad et al., 2009; Nof et al., 2008; Funning et al., 2007; Motagh et al., 2007; 387 

Lyons and Sandwell, 2003; Bürgmann  and Prescott, 2000), for the partitioning of strain among 388 

different faults (Jackson et al., 2006), for the improvement of tectonic models in seismogenic areas 389 

(Biggs et al., 2006; 2007). Most of these studies have been possible thanks to the longsighted ESA 390 

policy of maintaining repeat image acquisitions over many seismically active areas worldwide (the 391 

so-called “background mission”). Now that new InSAR analysis techniques have been developed 392 

and made progressively more available to geophysicists, this enormous amount of data is showing 393 

its large potential for the monitoring of the strain accumulation along active fault zones. The 394 

geodetic data are then used to model the long-term interseismic slip rates which, together with the 395 

geological slip estimates and seismological data, are used to quantify the known earthquake sources 396 

in probabilistic SHA (Hearn et al., 2010; Petersen et al., 2007). Still, to promote a better and more 397 

effective use of scientific results arising from interseismic deformation studies, in Seismic Hazard 398 

maps, some practical issues have to be addressed. These include standardization of procedures for 399 

the SAR data analysis (especially multitemporal InSAR analysis) and uncertainty determination, 400 
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development of standard (or consensus) modeling procedures, a thorough assessment of 401 

significance and uncertainty of model results.  402 

The Warning and Crisis phase of seismic risk management concerns instead all activities needed to 403 

promptly and effectively respond to the effects of an earthquake, usually with a priority on the 404 

effects on the human environment. The first piece of information needed after a large earthquake 405 

occurs is an assessment of the extent and intensity of the earthquake impact on man-made 406 

structures, immediately after which it becomes important to formulate hypotheses on the evolution 407 

of the seismic sequence, i.e. where local aftershocks or future mainshocks (on nearby faults) may be 408 

expected.  409 

Much research has been done on earthquake damage assessment using remote sensing data 410 

(Sakamoto et al., 2004), and the all-weather imaging capability of SAR data are certainly a valuable 411 

asset (Yonezawa and Takeuchi, 2001; Matsuoka and Yamazaki, 2002) with respect to HR optical 412 

imagery. The use of SAR remote sensing for damage detection after destructive earthquakes has 413 

been proposed (Matsuoka and Yamazaki, 2001; Matsuoka and Yamazaki, 2004), and applied 414 

retroactively (e.g. Fielding et al., 2005) but has not been considered as an operational opportunity, 415 

mainly due to the strict temporal constrains of the application.  416 

We estimate that an earthquake damage map obtained from remote sensing data can be outdated by 417 

ground surveys in a time frame between 2 and 10 days, depending on earthquake magnitude and 418 

environmental context. In fact, damage areas of moderate magnitude earthquakes (Mw 5.8–6.4) 419 

occurring in developed countries, could be effectively surveyed by ground teams or aerial means in 420 

a couple of days, while for undeveloped regions and earthquakes with Mw > 7 (damage areas of 421 

several hundreds of km
2
) several days may be needed to obtain a synoptic damage map. Clearly the 422 

best-case, 35-day revisit interval of ERS/ENVISAT (or the slightly smaller ones of other SAR 423 

systems) was too large to match these requirements regularly. This drawback could be reduced, in 424 
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an operational perspective, by combining data from different sensors, and good results have been 425 

obtained by the joint use of SAR and VHR remote sensing systems, with much higher revisit time 426 

(Stramondo et al., 2006). Still, the best operational configuration would be based on high resolution 427 

SAR imagery, and a constellation of satellites capable of flexible and very short revisit intervals. 428 

Presently the only system with these characteristics is the Italian COSMO-SkyMed constellation of 429 

4 satellites with a high resolution, X-band SAR (Caltagirone et al., 2007).  In fact, COSMO-430 

SkyMed is the first constellation of SAR satellites specifically designed for an operational use in 431 

defense and in civilian applications, as monitoring of environmental resources and risk 432 

management. 433 

The potential of COSMO-SkyMed HR SAR data for early damage assessment was demonstrated 434 

after the 2009 L'Aquila earthquake using a postseismic image acquired 3 days after the event and 435 

two acquired within 1.5 months prior to the event (Dell‟Acqua et al., under review). 436 

Another very important piece of information in seismic crisis management is the so-called “event 437 

scenario”, whose goal is to provide the authorities in charge with some important elements to 438 

address, for instance, the choice of emergency housing locations, evacuation strategies, or specific 439 

safety measurements for man made structures. In an event scenario an assessment of the short-term 440 

spatial evolution of the seismic sequence may be attempted, even if likely affected by large 441 

uncertainties, due to the knowledge gaps still existing in earthquake dynamics (Steacy et al., 2005). 442 

Important elements of an event scenario are: 443 

 Location and assessment of the seismic source 444 

 Location and assessment of induced hazards (fault scarps, landslides, soil liquefaction areas, 445 

ground displacement areas) 446 

 Estimates on short term spatial evolution of the seismic sequence 447 
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 Location and assessment of the seismic source 448 

As shown in section 3 of this paper, there has been much research on the analysis of the seismic 449 

source by modeling the static coseismic surface displacement measured through InSAR. Unless 450 

more complicated elastic structures need to be taken into account (Masterlark, 2003) the source 451 

modeling is a straightforward process, carried out using analytical solutions for dislocation in an 452 

elastic, homogeneous crust. The inversion procedures described in section 3 can be rather fast (1-2 453 

hours) and, yet they have not become part of the operational seismic source assessment carried out 454 

by seismological services (as for instance the Centroid Moment Tensor and source time function 455 

estimations), due to the unpredictable availability of timely SAR data and to the variable level of 456 

interferometric coherence. When SAR data are made available in near-real time, as for COSMO-457 

SkyMed  imagery during the 2009 L'Aquila earthquake (Central Italy), seismic source models can 458 

be continuously generated and updated during the seismic sequence, and rapidly released to the 459 

Civil Protection authorities (Salvi et al., 2009). During the L'Aquila crisis, the SIGRIS system 460 

generated and released 5 different source models, using postseismic images acquired as little as 3 461 

days after the mainshock. The L‟Aquila fault rupture did not generate massive surface faulting, and 462 

the models constrained by InSAR allowed the timely and precise identification of the Paganica fault 463 

as the earthquake source (Atzori et al., 2009).  464 

Location and assessment of induced hazards 465 

The coseismic surface displacement maps obtained by InSAR do not contain only the signal due to 466 

the coseismic fault slip. Often local signals can be appreciated, due to gravitational deformations 467 

induced by the seismic ground motion. The accurate mapping and quantification of these 468 

phenomena is a priority for Civil Protection authorities, especially in densely populated areas (Yin 469 

et al., 2009). Again, a rapid assessment of these induced hazards is feasible when SAR data are 470 

acquired and distributed in a timely fashion (Moro et al., under revision; Moro et al., 2007). 471 
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Estimates on short term spatial evolution of the seismicity 472 

It is now widely accepted that stress changes (both static and dynamic) caused by large earthquakes 473 

in the Earth‟s crust, can trigger or anticipate seismic slip on other faults (King et al., 1994; Stein, 474 

1999; Parsons and Dreger, 2000). Presently several methods to relate the spatial distribution of 475 

aftershocks to Coulomb stress changes induced by the mainshock, have been proposed (see a 476 

review in Steacy et al., 2005). All require that the source geometry be known, and most need also a 477 

well constrained distribution of slip on the fault plane. Therefore, a quick and accurate assessment 478 

of the seismic source as can be obtained by space geodetic data, and DInSAR interferograms in 479 

particular, is the basic requirement to attempt estimates on the short term evolution of aftershocks. 480 

Although the methods are still under study, and no standard procedure exists to date, the 481 

information coming from even an uncertain aftershock forecast may prove very useful during 482 

emergency response (McCloskey and Nalbant, 2009). Moreover we expect that improved 483 

monitoring capacities, able for instance to generate rapid and repeatedly updated maps of surface 484 

displacement, will foster further analysis.  485 

5. Sentinel-1: the European Radar Observatory  486 

Building on the experience of the ERS and ENVISAT Earth observing satellites, and in compliance 487 

with the operational requirements of the Global Monitoring for Environment and Security 488 

Programme (GMES) space segment, ESA has developed the Sentinel concept for a constellation of 489 

operational satellites, each one focused on specific applications (ESA, 2010). The first mission will 490 

be Sentinel-1, also called the European Radar Observatory, a polar-orbiting satellite system hosting 491 

C-band SARs. The first satellite (Sentinel-1A) is due to be launched during spring 2013, followed 492 

by a second satellite (Sentinel-1B) two to three years later. Sentinel-1A and -1B are part of the 493 

European contribution to the Global Earth Observation System of Systems (GEOSS). 494 
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The Sentinel-1 mission will ensure the continuity of SAR C-band missions, building upon ESA‟s 495 

and Canada‟s heritage with SAR systems onboard ERS-1, ERS-2, Envisat, and Radarsat-1 and -2. 496 

Among many other applications, the Sentinel-1 mission and its data will give the possibility of 497 

detecting, measuring, modeling and monitoring ground displacements (e.g. for earthquake and 498 

volcano studies) in the order of a few mm, by the implementation of InSAR techniques. 499 

The Operational Modes of the satellite will be: 500 

1. A Stripmap Mode (SM) with 80 km swath and 5x5 m spatial resolution, with generally restricted 501 

use, mainly for emergency purposes. 502 

2.An Interferometric Wide swath Mode (IW) with 250 km swath and 5x20 m spatial resolution 503 

(range and azimuth respectively), obtained through burst synchronisation; this will be the preferred 504 

mode over land areas, used almost routinely for interferometry and hence of particular interest for 505 

geophysical applications. 506 

3. An Extra-wide Swath Mode (EW) with 400 km swath and 25x40 m spatial resolution, mainly for 507 

sea-ocean applications 508 

Sentinel-1A will have a 12-day revisit time, which will improve to a 6-day effective repeat cycle 509 

after the launch of the twin satellite Sentinel-1B, allowing a weekly monitoring of deformation 510 

phenomena over the major seismic areas of the world at intermediate latitudes. Effective revisit 511 

time at high latitude areas will be as short as 1 day (Snoeij et al., 2010).  512 

The higher temporal frequency of observation compared to C-band sensors available today, as well 513 

as the planned regularity of the acquisitions over the areas of interest will allow a more accurate 514 

quantification of deformation rates for both classical InSAR and multitemporal techniques. A 515 

higher spatial density of measurement points is expected to result (Lanari et al 2004) from a more 516 

effective filtering of the atmospheric components and a lower impact of temporal decorrelation 517 
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phenomena. The interferometric coherence will be improved not only for the more frequent and 518 

regular acquisitions, but also thanks to a tighter orbital control (thus decreasing geometric 519 

decorrelation) which will maintain the orbital tube (i.e. the maximum perpendicular baseline) within 520 

100 m.  521 

It is expected that Sentinel-1 data will allow strong improvements in all applications described in 522 

this paper. The time necessary to create an interferometric data-stack suitable for multitemporal 523 

analyses of ground deformation (a minimum of ~20 images) will be strongly reduced (8 months 524 

compared with >2 years). The higher monitoring frequency of rapidly evolving deformation sources 525 

(as in the early postseismic phase) will be useful to develop improved models of stress transfer 526 

across faults, with evident benefits on operational applications. The more rapid sampling and 527 

improved interferometric coherence of Sentinel-1 data should also increase the possibility of 528 

multitemporal analysis in areas with less stable surfaces and more changeable environmental 529 

conditions. The limited orbital deviation across different passes shall guarantee small perpendicular 530 

baselines in all interferometric pairs, favouring multitemporal analyses based on the Small Baseline 531 

techniques. The 250 km-wide swath of the IW mode will provide the capability to observe slow 532 

deformation phenomena, such as interseismic strain accumulation or postseismic relaxation, over 533 

large areas, allowing to better separate deformation signals from orbital fringes. Finally, another 534 

SAR-based technique, currently used in geophysics, which will benefit from the Sentinel-1 535 

enhanced capabilities is the use of speckle correlation for fault rupture detection and for 2-D ground 536 

deformation monitoring (see Gray et al., 1998, Deraw 1999, Sarti et al., 2006). The reduced revisit 537 

time and the smaller geometrical baseline values imply a better speckle preservation that will 538 

enhance the correlation performances. 539 

 540 

6. Operational use of Sentinel-1 data for monitoring the seismic cycle 541 
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The development of Sentinel-1 was undertaken as part of the GMES space segment, therefore the 542 

mission requirements were built on the basis of the outcomes of the GMES services developed at 543 

the EU and ESA level (Snoeji et al., 2010). The most important requirements for operational 544 

services (in different sectors) were: the continuity and certainty of data supply, a short revisit 545 

interval, a large geographical coverage, a rapid data distribution, and last but not least, a small data 546 

price. All these requirements have been fulfilled, and the Sentinel-1 constellation has the potential 547 

to stimulate the market development of many sustainable services.  Using these data, it will become 548 

possible to develop services for the monitoring of the seismic cycle, although they will probably be 549 

carried out by academic establishments and government agencies, and not by commercial 550 

companies (as for seismic and geodetic monitoring activities). In fact we expect that the analysis of 551 

Sentinel-1 data will become part of the routine activities carried out by national and international 552 

agencies involved in earthquake research, earthquake hazard assessment, and civil protection 553 

activities.   554 

During the ERS/ENVISAT era, even if a considerable effort was carried out by ESA, not all 555 

seismically active area of the world were systematically covered, whereas others, for technical 556 

constraints, did not attain a sufficient number of images for effective deformation analysis; 557 

moreover in many locations only a single acquisition geometry was well covered, while 558 

deformation is best estimated using both ascending and descending geometries. The so-called 559 

Background Regional Mission (BRM) planning, which was the default acquisition planning for 560 

ENVISAT/ASAR high resolution modes (Image, Wide Swath and Alternating polarization), 561 

defined an acquisition strategy with the aim to build up consistent data sets of scientific interest 562 

over areas where terrain movements occur (the so-called Strategic Data Sets – SDS), establishing 563 

some compromises between data requests from all the users.  564 

The Sentinel-1 data acquisition strategy is instead devised for operational applications, and it is 565 

based on systematic, routine and conflict-free acquisitions, that are defined a-priori and will not be 566 
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dynamically modified as a function of user requests. Over land, and in particular over active 567 

seismically or volcanic areas, data will be acquired in Interferometric Wide swath mode (IW) with 568 

250 km swath and 5x20 m of spatial resolution (in range and azimuth respectively). This will allow 569 

effective global coverage for interferometric data in a systematic way, with a minimum revisit of 12 570 

days with one satellite, and 6 days with both .  571 

In less than a year it will become possible to build a data-stack large enough to use the 572 

multitemporal techniques mentioned in section 2 for the mapping of slow deformations, possibly 573 

improving the measurement accuracies to below 1 mm/yr. The larger swath (it is 100 km for 574 

ERS/ENVISAT) could help to isolate areas of no deformation in the images, allowing a better 575 

separation among different signals (tectonic, orbital, ionospheric); the larger area will facilitate also 576 

the integration with Continuous GPS measurements of ground deformation, which will help to cope 577 

with a presumably higher error propagation. 578 

The constant acquisitions will make possible to create the necessary archives for reliable mapping 579 

of coseismic displacement fields and the generation of detailed models of the seismic source, within 580 

only a few days of an earthquake. Maps of the heavily damaged urban districts and of locally 581 

triggered gravitational deformations will also be generated. All these value-added information 582 

products will be updated at each new acquisition, and released in incremental versions, to the civil 583 

protection agencies.  584 

The lack of standard procedures for product generation and distribution has been, in our experience, 585 

a major factor to limit the assimilation of these important information in civil protection activities 586 

during seismic crises. The certainty of data acquisition and constant flow of data provided by the 587 

Sentinels will allow to overcome such limitations.  588 

Finally, we evidence that the Sentinel-1 mission will also allow Emergency Data Requests which 589 

can be inserted into the mission plan update with a 3-hour notice. The system is designed in such a 590 
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way that these emergency requests will have a minimum impact on the operational duty cycle 591 

(Snoeji et al., 2010).   592 

7. Conclusions 593 

Starting from the 1990s, the InSAR data have played and increasingly important role in the analysis 594 

of ground deformations. During the last two decades the constant refinement of the InSAR 595 

processing techniques has allowed a full exploitation of the large information content of the SAR 596 

data, contributing to improve our knowledge of the tectonic strain accumulation and release during 597 

the seismic cycle.  598 

Among the new European operational satellites, the Sentinel-1 SAR mission will be the first to be 599 

developed, acknowledging the important successes obtained through ERS and ENVISAT data. The 600 

system has been designed to overcome most of the limitations evidenced by previous satellites, and 601 

its capacity to provide excellent data for SAR Interferometry is guaranteed by the small orbital tube 602 

and by the limited revisit interval. The latter could be further reduced in the future, just by adding 603 

new satellites to the constellation. 604 

Sentinel-1 will also improve the already successful ERS/ENVISAT data policy and acquisition 605 

strategy, which allowed scientists worldwide easy access to consistent data archives for most 606 

tectonically active areas of the world. It is currently foreseen that the Sentinel-1 data will be free for 607 

scientific AND commercial use, and the flow of data will be constant and certain for a long period 608 

of time. All these premises will ensure to Sentinel-1 the capacity to stimulate not only new 609 

scientific advances and stable commercial applications, but also services of relevant public interest, 610 

as in the hazard assessment and civil protection sectors. 611 
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Figure captions 935 

 936 

Figure 1: Elements of the seismic cycle as observed using InSAR on the Denali fault (DF), Alaska. 937 

Top left: Map showing the location of: portions of the DF that ruptured in the 2002 earthquake 938 

(red); unruptured portions of the DF (black); the Trans-Alaska Pipeline (T-AP, blue); the locations 939 

of SAR frames (pink dashed lines). Top right: Interseismic deformation rate map for the Denali 940 

fault generated from 44 descending track ERS SAR interferograms from data acquired between 941 

1992 and 2002. Shading indicates the level of uncertainty in the rates; these are lowest close to the 942 

Trans-Alaska Pipeline which is coherent in most of the interferograms. The rate map data are 943 

consistent with a geodetic slip rate of 11±5 mm/yr (after Biggs et al., 2007). Bottom left: Example 944 

coseismic interferograms generated from ascending track Radarsat data acquired a few weeks either 945 

side of the 3 November 2002 M7.9 Denali earthquake (after Wright et al., 2004b). Bottom right: 946 

Postseismic deformation following the Denali earthquake, estimated using 41 Radarsat 947 

interferograms. Note that deformation rates are close to an order of magnitude faster than the 948 

interseismic rates (after Biggs et al., 2009). 949 

 950 



42 

 

Figure 2 - Spatial and temporal patterns of postseismic deformation following the 2003 Bam, Iran 951 

earthquake. (a) Total LOS displacement that occurred between 12 and 1097 days after the 952 

earthquake (January 2004-December 2006) from ascending track 156 data. (b) Total LOS 953 

displacement for the same time period from descending track 120 data. Solid black line shows the 954 

location of the Bam fault. Dashed black line shows the location of the city of Bam; decorrelation 955 

within that area is mostly due to palm vegetation and the city reconstruction. (c) Log-linear plots of 956 

the time dependence of two deformation features seen in the two data sets. 'Box A1-A2' shows the 957 

cross-fault signal at the southern end of the Bam fault, obtained by differencing data from either 958 

side of the fault trace (boxes A1 and A2 in (a) and (b)). In the descending data this difference is 959 

consistently smaller than in the ascending data, implying a significant component of E-W horizontal 960 

motion; this is interpreted as the effect of afterslip at the end of the fault segment at 2-3 km depth. 961 

'Feature B', obtained by differencing data from the fault trace (feature B in (a) and (b)) with nearby 962 

data, shows a subsidence feature centered on the fault trace, interpreted as fault-zone dilatancy 963 

recovery. In both cases, deformation follows a straight line trend in log-linear space, implying a 964 

logarithmic decay in the deformation over time. Inset map shows location of the area of interest 965 

within SE Iran. After Fielding et al., 2009. 966 
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