497 research outputs found

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators

    Drought index downscaling using AI-based ensemble technique and satellite data

    Get PDF
    This study introduces and validates an artificial intelligence (AI)–based downscaling method for Standardized Precipitation Indices (SPI) in the northwest of Iran, utilizing PERSSIAN-CDR data and MODIS-derived drought-dependent variables. The correlation between SPI and two drought-dependent variables at a spatial resolution of 0.25° from 2000 to 2015 served as the basis for predicting SPI values at a finer spatial resolution of 0.05° for the period spanning 2016 to 2021. Shallow AI models (Support Vector Regression, Adaptive Neural Fuzzy Inference System, Feedforward Neural Network) and the Long Short-Term Memory (LSTM) deep learning method are employed for downscaling, followed by an ensemble post-processing technique for shallow AI models. Validation against rain gauge data indicates that all methods improve SPI simulation compared to PERSIANN-CDR products. The ensemble technique excels by 20% and 25% in the training and test phases, respectively, achieving the mean Determination Coefficient (DC) score of 0.67 in the validation phase. Results suggest that the deep learning LSTM method is less suitable for limited observed data compared to ensemble techniques. Additionally, the proposed methodology successfully detects approximately 80% of drought conditions. Notably, SPI-6 outperforms other temporal scales. This study advances the understanding of AI-driven downscaling for SPI, emphasizing the efficacy of ensemble approaches and providing valuable insights for regions with limited observational data.</p

    Commercial risk management in the electricity supply industry

    Get PDF

    THE COMPARISON OF GENERATED SYNTHETIC MONTHLY RAINFALL USING SOME TWO PARAMETERS DISTRIBUTION

    Get PDF
    The ability to generate synthetic monthly rainfall characteristics is important for predicting hydrological impacts resulting from land use and climate change in the humid tropics. We present some quantile functions from two parameter distributions such as gamma, weibull and log normal to generate synthetic monthly rainfall data, which we demonstrate for the city of Pekanbaru, Riau Province of Indonesia. We use maximum likelihood to estimates the parameters of the probability density function. Synthetic rainfall will be generated 100 times using different quantile functions. Every time Synthetic Rainfall is generated, two statistical such as mean and maximum monthly rainfall will be produced and displayed in graphical form. The same statistics are also produce from the historical rainfall data, the ability of the generated synthetic rainfall graphs to capture the historical rainfall graph will show the ability of the probability density function to generate monthly synthetic rainfall. In this study, Overall, the statistics produced by synthetic rainfall using the gamma distribution can closely approximate the statistics produced by historical rainfall data when compared to the synthetic rainfall produced by the other two distributions. Keywords: Synthetics Rainfall, Quantile Function, Gamma Distribution, Weibulll Distribution, Log Normal Distribution

    Big Data Analysis application in the renewable energy market: wind power

    Get PDF
    Entre as enerxías renovables, a enerxía eólica e unha das tecnoloxías mundiais de rápido crecemento. Non obstante, esta incerteza debería minimizarse para programar e xestionar mellor os activos de xeración tradicionais para compensar a falta de electricidade nas redes electricas. A aparición de técnicas baseadas en datos ou aprendizaxe automática deu a capacidade de proporcionar predicións espaciais e temporais de alta resolución da velocidade e potencia do vento. Neste traballo desenvólvense tres modelos diferentes de ANN, abordando tres grandes problemas na predición de series de datos con esta técnica: garantía de calidade de datos e imputación de datos non válidos, asignación de hiperparámetros e selección de funcións. Os modelos desenvolvidos baséanse en técnicas de agrupación, optimización e procesamento de sinais para proporcionar predicións de velocidade e potencia do vento a curto e medio prazo (de minutos a horas)

    The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2020)

    Get PDF
     Ensuring food security has become a challenge in Sub-Saharan Africa (SSA) due to combined effects of climate change, high population growth, and relying on rainfed farming. Governments are establishing shared irrigation infrastructure for smallholder farmers as part of the solutions for food security. However, the irrigated farms often failed to achieve the expected crop yield. This is partly due to lack of water management system in the irrigation infrastructure. In this work, IoT-based irrigation management system is proposed after investigating problems of irrigated farmlands in three SSA countries, Ethiopia, Kenya, and South Africa as case studies. Resource-efficient IoT architecture is developed that monitors soil, microclimate and water parameters and performs appropriate irrigation management. Indigenous farming and expert knowledge, regional weather information, crop and soil specific characteristics are also provided to the system for informed-decision making and efficient operation of the irrigation management system. In SSA, broadband connectivity and cloud services are either unavailable or expensive. To tackle these limitations, data processing, network management and irrigation decisions and communication to the farmers are carried out locally, without the involvement of any back-end servers. Furthermore, the use of green energy sources and resource-aware intelligent data analysis algorithm is studied. The intelligent data analysis helps to discover new knowledge that support further development of agricultural expert knowledge. The proposed IoT-based irrigation management system is expected to contribute towards long term and sustainable high crop yield with minimum resource consumption and impact to the biodiversity around the case farmlands.</p

    Machine Learning based Wind Power Forecasting for Operational Decision Support

    Get PDF
    To utilize renewable energy efficiently to meet the needs of mankind's living demands becomes an extremely hot topic since global warming is the most serious global environmental problem that human beings are facing today. Burning of fossil fuels, such as coal and oil directly for generating electricity leads to environment pollution and exacerbates global warning. However, large-scale development of hydropower increases greenhouse gas emissions and greenhouse effects. This research is related to knowledge of wind power forecasting (WPF) and machine learning (ML). This research is built around one central research question: How to improve the accuracy of WPF by using AI methods? A pilot conceptual system combining meteorological information and operations management has been formulated. The main contribution is visualized in a proposed new framework, named Meteorological Information Service Decision Support System, consisting of a meteorological information module, wind power prediction module and operations management module. This conceptual framework has been verified by quantitative analysis in empirical cases. This system utilizes meteorological information for decision-making based on condition-based maintenance in operations and management for the purpose of optimizing energy management. It aims to analyze and predict the variation of wind power for the next day or the following week to develop scheduling planning services for WPEs based on predicting wind speed for every six hours, which is short-term wind speed prediction, through training, validating, and testing dataset. Accurate prediction of wind speed is crucial for weather forecasting service and WPF. This study presents a carefully designed wind speed prediction model which combines fully-connected neural network (FCNN), long short-term memory (LSTM) algorithm with eXtreme Gradient Boosting (XGBoost) technique, to predict wind speed. The performance of each model is tested by using reanalysis data from European Center for Medium-Range Weather Forecasts (ECMWF) for Meteorological observatory located in Vaasa in Finland. The results show that XGBoost algorithm has similar improved prediction performance as LSTM algorithm, in terms of RMSE, MAE and R2 compared to the commonly used traditional FCNN model. On the other hand, the XGBoost algorithm has a significant advantage on training time while comparing to the other algorithms in this case study. Additionally, this sensitivity analysis indicates great potential of the optimized deep learning (DL) method, which is a subset of machine learning (ML), in improving local weather forecast on the coding platform of Python. The results indicate that, by using Meteorological Information Service Decision Support System, it is possible to support effective decision-making and create timely actions within the WPEs. Findings from this research contribute to WPF in WPEs. The main contribution of this research is achieving decision optimization on a decision support system by using ML. It was concluded that the proposed system is very promising for potential applications in wind (power) energy management

    Design and conceptual development of a novel hybrid intelligent decision support system applied towards the prevention and early detection of forest fires

    Get PDF
    Forest fires have become a major problem that every year has devastating consequences at the environmental level, negatively impacting the social and economic spheres of the affected regions. Aiming to mitigate these terrible effects, intelligent prediction models focused on early fire detection are becoming common practice. Considering mainly a preventive approach, these models often use tools that indifferently apply statistical or symbolic inference techniques. However, exploring the potential for the hybrid use of both, as is already being done in other research areas, is a significant novelty with direct application to early fire detection. In this line, this work proposes the design, development, and proof of concept of a new intelligent hybrid system that aims to provide support to the decisions of the teams responsible for defining strategies for the prevention, detection, and extinction of forest fires. The system determines three risk levels: a general one called Objective Technical Fire Risk, based on machine learning algorithms, which determines the global danger of a fire in some area of the region under study, and two more specific others which indicate the risk over a limited area of the region. These last two risk levels, expressed in matrix form and called Technical Risk Matrix and Expert Risk Matrix, are calculated through a convolutional neural network and an expert system, respectively. After that, they are combined by means of another expert system to determine the Global Risk Matrix that quantifies the risk of fire in each of the study regions and generates a visual representation of these results through a color map of the region itself. The proof of concept of the system has been carried out on a set of historical data from fires that occurred in the Montesinho Natural Park (Portugal), demonstrating its potential utility as a tool for the prevention and early detection of forest fires. The intelligent hybrid system designed has demonstrated excellent predictive capabilities in such a complex environment as forest fires, which are conditioned by multiple factors. Future improvements associated with data integration and the formalization of knowledge bases will make it possible to obtain a standard tool that could be used and validated in real time in different forest areas
    corecore