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Abstract 

The introduction of the New Electricity Trading Arrangements (NETA) in the UK from 31" 

March 2001 changed the nature of electricity trading from a centrally traded marginal pricing 

mechanism, known as the Pool, to a series of bilateral markets. This changed the nature of the 

risks facing market participants notably, higher price volatility, no single reference price on 

which to base long-term contracts and potentially punitive imbalance charges for participants 

whose commitments were not met. 

It would appear that Suppliers will be the major casualties of the changes because their function 

under the previous system was primarily the billing and metering of customers whereas the 

introduction of NETA means that they must submit exact information about their demand 

requirements and contracted position to the System Operator, 4 hours in advance of each half-

hour. Any shortfalls between expected and metered volume will attract prohibitive imbalance 

charges. Accurate forecasting is essential. 

This thesis describes effective forecasting methodologies that can be used by Suppliers to forecast 

their half-hourly demand at Bulk Supply Level. Artificial Neural Networks were selected as the 

most effective forecasting approach from an examination of the various short-term forecasting 

methods and by analytical comparison with Multiple Linear Regressions. 

The Artificial Neural Network (ANN) was optimised and configured to suit NETA's 

requirements. The optimised ANN was used to forecast according to the time-of-day, and the 

day-of-week, to determine the most accurate configuration. Both models had their strengths, with 

the parallel method being more accurate but the serial or linear, easier to implement. The 

methods designed achieved better financial results when compared with the current industrial 

standard. 
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Chapter 1. Introduction 

1. Introduction 

1.1 Introduction 

Following the successful privatisation of British Gas and British Telecommunications in the mid-

eighties, the government under Margaret Thatcher decided to privatise the Electricity Supply 

Industry (ES!), and this was successfully completed on 1st  April 1990. Its primary aim was to 

deliver lower prices to customers and to encourage greater efficiency from competition. From 

this period onwards the emphasis of the industry would change from the technical considerations 

to economic efficiency. 

The experiences over the first seven years after privatisation were mixed. The price of electricity 

should have fallen in accordance with the reducing cost of generation and greater competition. 

Instead, prices went up in real-terms and it was difficult for new participants to enter the market 

in order to increase competition in the price setting process. 	It was suggested that the larger 

Generators had taken advantage of their market power to receive and maintain high revenues by; 

Setting the marginal price of electricity, System Marginal Price (SMP), artificially high in 

the certain knowledge that they had no genuine competition because all scheduled 

generators received SMP; 

During the periods when SMP was low, generators held back capacity to inflate the 

Capacity Payments (CP), the incentive they received for making capacity available. This 

was to make up the loss of revenue; 

Additionally, by increasing the price volatility through holding back capacity, they 

strengthened their position in long-term contract negotiations with any Supplier who 

wanted to guarantee stable income flows. 

It was clear that the initial trading arrangements were not working as intended. Soon after 

Labour's electoral victory in 1997, they instructed the Electricity Regulator, Professor S. C. 

Littlechild to investigate reforming the electricity trading arrangements. A document was 

published in July 1998 with proposals to replace the marginal pricing system with a series of 

bilateral markets operating from the long-term up until close to real-time. The proposed trading 

arrangements were known as the New Electricity Trading Arrangements (NETA). Their main 

objective was to create more efficiency by financially rewarding generator flexibility and 

penalising  Supplier wastages through the balancing market and imbalance charges respectively. 

Under NETA there was a financial incentive for Generators to move towards more flexible plant 
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Chapter]. Introduction 

and operate closer to the system margins. After several delays, NETA came into effect on 3 lS 

March 2001. 

Suppliers' principal function under the Pool was to carry out the billing and metering functions of 

their customers. They bought electricity directly from the Pool or through contracts linked to 

Pool price and had no input in the price setting process. Suppliers have a high proportion of fixed 

costs and have a very thin margin for error or mismanagement. Under NETA Suppliers now have 

the responsibility for purchasing their long and short-term demand volumes bilaterally. 

Additionally, they are required to inform the system operator of their contracted volume and 

expected demand, 4 hours before the scheduled period. Any differences between their 

expectations and metered volumes attract punitive imbalance charges. 

Until recently the system operator, the National Grid Company (NGC) has performed demand 

forecasts primarily for operational purposes and the majority of these were medium to long-term. 

Under NETA, both Suppliers and Generators require accurate forecasts to inform them of their 

demand expectations and efficient generator scheduling respectively. Effective short-term 

forecasting will become increasingly integral to the financial viability of market participants. 

This thesis reports on work that developed a short-term methodology for NETA's participants 

that incorporates the weather, the primary driver of demand, into its forecasts. The analysis 

focuses on predicting demand of a Supplier's 33kV Bulk Supply Point (BSP). Scottish Hydro-

Electric (SHE) was the Supplier chosen. They had installed extensive demand-side management 

measures which distorted the demand and posed extra challenges to forecasting. 

Artificial Neural Networks (ANN) were selected from an examination of the various short-term 

forecasting approaches available and this was compared analytically with Multiple Linear 

Regressions (MLR). The Neural Network was optimised and configured to meet NETA's 

requirements. The most effective configuration both in terms of accuracy and ease of 

implementation (whether to predict according to the time-of-day or day-of week) was 

investigated to provide a definitive answer as to the best configuration to use when predicting 

demand. 

1.2 	Project aims and objectives 

This project had several distinct objectives: 

To investigate NETA to determine its implications and the sources of risk to the various 

participants. 

To examine risk measurement and management tools under the Pool to predict their 

evolution under NETA. 
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To analyse the key short-term demand forecasting approaches to determine their 

limitations so as to recommend the most appropriate ones for forecasting under NETA. 

To perform analytical comparison of the most appropriate short-term methods. 

To assess whether it is possible to predict accurately the load from a dataset contaminated 

by active demand-side management. 

To optimise and predict the demand from the most appropriate model, comparing the 

strengths of intra and inter day forecasting. 

To determine the effectiveness of the approach using real-life NETA balancing market 
prices. 

1.3 	Statement of thesis 

The thesis of this study is twofold. 

It should be possible to forecast accurately at a Bulk Supply Point supplying a load 

contaminated by active demand-side management to suit NETA's requirements using an 

ANN with weather variables among the predictors. 

Predicting according to time-of-day should be more desirable than according to day-of-

week because there should be less noise within the data set used to train the individual 
models. 

1.4 Thesis outline 

This thesis suggests an approach for forecasting short-term demand under NETA using Artificial 

Neural Networks, which guarantees market participants greater financial certainty than the 

present industrial standard. 

Chapter 2 gives an introduction to the basic functions of the ESI, this is followed by a description 

of privatisation and the initial trading arrangements, the Pool. The limitations with the original 

market structure are discussed. Chapter 3 gives a detailed description of the New Trading 

Arrangements (NETA). The most probable effects of the changes on the ESI are discussed 

together with an analysis of its impact on the various classes of market participants. The chapter 

concludes by focussing on Suppliers because they face greatest financial insecurity under the 

proposed changes. 

Chapter 4 examines the subject of risk management within the ESI with a view to evolving robust 

strategies to help insulate Suppliers from NETA's uncertainties. The definition of 'risk' is 

presented in the first section together with a general description of financial risk management. 
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The focus is then narrowed to risk management and measurement within the ESI and the 

inadequacy of the present methods under NETA. This is followed by suggestions for accurate 

short-term demand forecasting to help Suppliers eliminate their exposure to imbalance prices. 

Chapter 5 starts by discussing  demand and the factors influencing its behaviour notably weather, 

time, random events and economic factors. The various demand forecasting tools are discussed 

in the second half of this chapter and Artificial Neural Networks and Multiple Linear Regressions 

are chosen for comparison. This is because the MLR is easily implemented and is the most 

widely used. The ANN is the most popular Artificial Intelligence method and is widely 

acknowledged as the best method for representing a cause-effect' relationship. 

In Chapter 6 the data issues involved in forecasting demand at BSP level are discussed. This is 

followed by an introduction and discussion of the teleswitching system used by SHE for demand-

side management and its implications to short-term forecasting. The forecast configuration of the 

models is discussed next. This was to determine whether time-of-day or day-of-week forecasting 

was the most appropriate. It was decided to use time-of-day forecasting for the initial 

comparisons and this assumption was tested in Chapter 8. This was followed by a statistical 

analysis of the data to select the most relevant inputs for the forecasting model. 

In Chapter 7 the forecast evaluation method used in the assessment is described followed by an 

outline of the issues considered in constructing a correctly specified Multiple Linear Regression 

forecasting model. Details are given of the model construction and validation prior to discussing 

the Artificial Neural Network data pre-processing, training and construction. The most 

commonly used methodology within the ES! for performing naïve forecasts is presented and is 

used to illustrate the superiority of mathematical forecasting models over intuitive methods. 

From the results and discussion of the comparisons, the ANN model emerges as the better 

approach because it is capable of representing the high degree of nonlinearity in the load. 

The optimisation of the ANN is described in Chapter 8 and the inputs configured to meet 

realistic NETA conditions. The first step in the optimisation was to compare forecast accuracy of 

the binary encoding methodology with an alternative. In an attempt to shorten the training time 

whilst improving the accuracy, the length of the training window and forecast horizon were re-

examined. Before building the complete model, the validity of the chosen input architecture was 

assessed by constructing a model for the first six hours of the day. This revealed some inherent 

flaws, the input variables were re-evaluated and a revised model was built followed by the 

construction of 48 half-hourly forecasting models. Comparing the performance of the completed 

parallel method with a linear equivalent, tested the assumption that parallel methods are superior 

to serial or linear methods. This chapter ends with a simulation using real NETA balancing 

mechanism prices to confirm the validity of the forecast methods developed. 
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Finally Chapter 8 draws the main arguments and findings of the thesis together to present a 

summary and suggestions for future work. 



Chapter 2. The UK Electricity Supply Industry 

2. The UK Electricity Supply Industry 

2.1 Overview 

This chapter gives a brief description of the UK Electricity Supply Industry (ESI). An 

introduction to its basic functions is given in the first section. This is followed by a description of 

privatisation and initial trading arrangements. The limitations of the original market structure are 

discussed and changes explained. 

2.2 	Introduction to the Electricity Supply Industry ( ESI) 

The simplest function of the ES! is the conversion of fuel and primary energy to electricity and its 

transportation to customers. Electricity is expensive to store so supply and demand have to be 

matched continuously. The following section gives an introduction to the basic functions of the 

ES!. 

The ESI can be divided into the following functions 

Generation - The production of electricity 

Transmission - High voltage bulk transportation of electricity 

Distribution - Transportation and delivery from high voltage Bulk Supply Points (BSP) 

to customers 

Supply - Wholesale purchasing and retailing to end users 

2.2.1 Generation 

Generation is the primary function of the ES! and it involves converting either hydrocarbon, 

hydraulic or atomic energy into electricity. In the past generation was carried out on a large 

scale to utilise the cost advantages of economies of scale. Over the years generation sets 

(gensets) have got bigger as technology has improved. The modem gensets have greatly 

improved efficiencies over older ones, for example the modem 660MW coal fired units at Drax, 

boasted efficiencies of 38% compared with less than 33% for the previous 120MW units'. The 

introduction of Combined-Cycle Gas Turbine (CCGT) systems fired with natural gas, in the early 

1990's, led to an improvement in efficiency to over 55% from about 38% available from the old 

style Open Cycle Gas Turbines. 
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Over the past decade, CCGT stations have emerged as the plant of preferred choice. This is 

because CCGT are compact and produce less emissions than other fossil fuel generation 

technologies. They require fewer operators and can be built and decommissioned relatively 

quickly at low cost. Another reason for CCGT's ascension has been the reduction in gas prices 

over the last decade from 22p/therm to about 9p/therm2. This was due to the gas market 

deregulation and the expiry of long-term 'must-take' fuel contracts with British Gas. 

The total UK generation capacity at the end of September 1999 was 72 GW. The generation mix 

over the last decade is illustrated in figure 2.1. This figure shows the fact that gas has overtaken 

coal as the main source of generation and the output from nuclear has increased due to the 

improved efficiency of the stations and the 'must take' status afforded nuclear as part of the Non 

Fossil Fuel Agreement (NFFO) 

1990 
	

1999 

4% 1% 	
1%2' 4% 

19h 

7% 

Gas 

Coal 

DOil 

Nuclear 

Hydro 

0 Other fuels 

6% 	•lmports 

26% 

2l 

IGas 

Coal 

0011 

Nuclear 

Hydro 

0 Other fuels 

Imports 

28% 

Figure 2 .1. Electricity Supplied by fuel type in 1990 and 1999 as percentages. 

In the past generating stations tended to be located in areas of fuel availability. As such most of 

the coal stations commissioned in the 1950s and 60s were located in Northern England. The 

South-East has the highest concentration of CCGT generation because at present it is the location 

of the highest demand. Figure 2.2 shows a schematic diagram of the UK's electricity 

infrastructure. 

2.2.2 Transmission 

Transmission is the bulk transport of electricity at I-ugh Voltage (1-IV). The electricity is 

transported at HV because line losses are inversely proportional to the square of voltage. In 

England and Wales the network consists of 275kV and 400kV lines, whereas in Scotland the 

network uses 400/275/132kV, while 275kV and 132kV lines serve Northern Ireland. 
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Transmission is regarded as a natural monopoly because duplication would be uneconomical and 

lead to under use of the network. Control of the network is by the National Grid Company 

(NGC) in England and Wales, Scottish Power (SP) and Scottish Hydro-electric (SHE) in 

Scotland, and Northern Ireland Electricity (NIE) in Northern Ireland. Figure 2.2 shows all lines 

at or above 275kV on the transmission network in mainland Britain. 

The network transmission operators have the following  obligations to their customers 

To maintain the stability and security of the system 

Match supply and demand 

Cover line losses 

The transmission operators do this by contracting plant to generate or be held in reserve in cases 

of emergency. The extra capacity is collectively known as ancillary services. 

2.2.3 Distribution 

Distribution involves the transport of electricity from Bulk Supply Point (BSP) to consumers 

through successively lower voltage circuits. The BSPs are defined as metered points at the step-

down transformer, interfacing the I-IV transmission grid with the distribution network. In 

England and Wales, the distributors take power off the BSPs onto their 132kV networks. The 

voltage is stepped down to 33kV and 11kV and then finally to 400/230V, it is subsequently 

delivered to households and small customers. Some industrial and commercial customers take 

power at 11kV and 400kv. For example, National Power has a contract to supply an industrial 

gas manufacturer directly from its Eggborough coal fired station via a short 11kV link 

Similar to transmission, the high cost of developing the network means distribution is considered 

a natural monopoly. There are 12 Regional Electricity Companies (REC) covering England and 

Wales. In Scotland and Northern Ireland, the situation is rather different; here the transmission 

companies provide the distribution. The RECs boundaries are shown in figure 2.2. 

2.2.4 Supply 

This involves the wholesale purchase of electricity via contracts in the wholesale market and 

retail to the end-user customers. In addition to the energy purchase Suppliers have to pay a 

charge known as 'use-of-system charges' for using the distribution and transmission networks. 

They are responsible for metering and billing the end-user. In England and Wales the supply 

function was initially performed by the RECs. Over time successive tranches of customer groups 

were opened to competition between Suppliers to drive prices down. 
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2.3 Background to the changes in the Electricity Supply 
Industry 

The ESI has been constantly changing since the first Electric Lighting Act of 1882'. This Act 

introduced legislation that would protect customers and create a structured environment for the 

rapidly expanding business of electricity generation, transmission and distribution. Since then the 

electricity industry has gone through constant evolution due in the main to new technologies and 

the changing ethos on the optimal structure for the industry. This section gives an overview of 

the nationalised years, the motives for, and the process leading up to privatisation. 

2.3.1 The early years 

The Electricity Commission established in 1919 to govern electricity supply in the UK was the 

first of many governing bodies dedicated to the regulation and control of electricity generation 

and supply. It was replaced in 1926 by the Central Electricity Board which was in charge of 

promoting and operating a national system of interconnections between generators. 

2.3.2 Pre-Privatisation 

By 1947, there were 560 separate electricity suppliers of which two thirds belonged to local 

public bodies. This privately owned publicly controlled system of generation was difficult to 

regulate and lacked the co-operation needed for expansion. The Electricity Act of 1947 

reorganised the whole ESI by nationalising the remaining private companies and creating 14 

powerful Area Boards to control distribution, and a Central Electricity Authority (CEA) to 

organise finance and policy. 

The ESI reorganised again in 1954 with the separation of the two Scottish Boards. Three years 

later three Boards were founded: the Central Electricity Generating Board (CEGB) serving 

England and Wales; the South of Scotland Electricity Board (SSEB) serving the region south of a 

line from the Firth of Tay to the Firth of Clyde; and the North of Scotland Hydro-Electric Board 

(NSHEB) serving the rest of Scotland including the Islands. These were made responsible for 

generation, transmission and distribution. The CEGB also received a small amount of its 

electrical energy through the High Voltage Direct Current (HVDC) interconnector with France. 

Figure 2.3 shows the pre-privatisation structure of the ESI. 
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All customers 

Figure 2.3. The structure of the Pre-privatisation ESI in England and Wales 

The Electricity Council (EC) was set up to regulate the industry's constituent companies and 

provided a link to the government to help set energy policy. Generation and all other 

infrastructural investments were centrally planned and co-ordinated. In the earlier years, the 

predominant generation fuel was coal, because it was the cheapest and most readily available 

primary fuel source. 	To support the coal industry, the government prohibited the imports of 

foreign coal at a time when US prices were roughly half that of British coal. With 82% of its 

capacity in the early 1960s dependent on coal, the ES! was essentially a hostage to the coal 

industry. To loosen its grip, energy planning policy changed to favour other fuels. This change 

was also helped by low oil prices in the 1970s. By this time coal-fired capacity in the CEGB had 

fallen to 66% with oil accounting for 22%, nuclear 10%, gas 1.5% and hydro 0.5%. 

The CEGB used a merit order dispatch system, which was effectively a cost-plus pricing 

mechanism. The cheapest generators were dispatched first, to meet base load, followed by the 

increasingly more expensive units until the load was met. The CEGB charged the Area Boards a 

fixed amount, about £1 6/MWh in 1988/89, for each unit of electricity they took during the three 

peak half-hours of the year. The Area Boards were also charged a further £20/MWh for their 

average demand during the next 250 highest half-hours, to cover the higher fixed operating cost 

of the marginal peaking stations. 

Despite the Energy Acts of 1983 and 1987, aimed at attracting private generators back into the 

ESI, the industry was performing badly. The CECB was accused of bad policy making regarding 

the construction of nuclear plant against public opinion and poor customer service. 

11 
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2.3.3 Privatisation 

The mid-eighties saw a spate of privatisations, notably that of British Telecommunication and 

British Gas. The ideological beliefs behind restructuring and subsequent privatisation were that 

Private ownership and profit motives were better efficiency motives 

Competitive private industries gave better results than monopolies 

Government spending on long-term infrastructure costs would reduce 

Price reductions would be delivered to customers 

By the 1987 elections the government's attention focussed on the electricity industry. Mrs 

Thatcher asked the Minister responsible, Cecil Parkinson to plan the privatisation of the 

electricity industry. BT and BG privatisation had been a financial success for the government but 

the former's quality of service had declined significantly and the latter was on the verge of being 

referred to the Monopolies and Mergers Commission (MMC). It was decided that, to avoid the 

pitfalls of the previous privatisations, structural changes would have to be made to the industry to 

promote competition. 

In February 1988, the government published a White Paper entitled Privatising Electricity5, 

outlining its vision of a competitive electricity industry. This was to split the CEGB into three 

segments 

Two generating companies: PowerGen and National Power 

A transmission company, initially jointly owned by the RECs but to be sold off 

separately as the National Grid Company in 1995 

The former England and Wales area boards became the 12 Regional Electricity Company 

(RECs) maintaining their pre-privatisation role of supply and distribution 

In Scotland the situation was very different. Though the Scottish grid is connected to England 

and Wales via the interconnector, it is significantly smaller and was not deemed large enough to 

support a fully competitive system. Additionally there was the complex issue of the Highlands 

and Islands generation and transmission subsidies, which would be impossible to maintain under 

fully competitive conditions. As an alternative it was decided to create two vertically integrated 

companies, Scottish Power from the former SSEB and Scottish Hydro-Electric from NSHEB 

respectively, which later became Scottish and Southern Energy. Both were solely responsible for 

generation, transmission and supply and were subsequently privatised in 1991. 

12 
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24 The Market structure - Pool 

On jSt  April 1990, known as Vesting day, the market was privatised. The Pool was the 

centrepiece of the new market, almost all generation had to be sold through it. The electricity 

price quoted was used as a reference for all long and short-term trades. The National Grid 

Company (NGC) was set up to run its operation together with maintaining the HV networks. The 

merit order system of the old regime, where the cheapest generators were dispatched first was 

retained, using the same dispatch software from the old regime.  But instead of internal cost data, 

price bids were used to schedule the stations. This section details the workings of the pool as it 

then was and discusses m detail the changes and experiences brought about by privatisation 

ending with the experiences in Scotland. 

The pool had the following features. 

All stations intending to generate had to submit bids 24 hours in advance of the quantity 

and price they wished to generate, together with plant availability and operating 

characteristics. 

The NGC used an algorithm to reconcile forecast demand with the data received from 

the generators to create the 'unconstrained schedule' 

The 'unconstrained schedule' was constructed on a half hourly basis and consisted of the 

lists of plant that had to be operational to meet the demand and provide spinning reserve 

during the period. The scheduled plant was chosen in price order, stacking up from the 

cheapest first, until the expected demand for the period was met. This was used to derive 

the operational schedule. 

The System Marginal Price (SMP) was the accepted bid of the most expensive generator 

scheduled to run in a given half-hour and was paid to all scheduled plant. 

The generating capacity of the Pool for each half-hour was also calculated. This 

additional payment was devised as an incentive to make capacity available. Capacity 

payments were calculated as:- LOLP * (VLL - SMP): LOLP was the Loss of Load 

Probability, a number between 0 and 1, calculated as the probability of a power failure. 

VLL was the Value of Lost Load, a constant with price indexation. All available power 

stations would receive capacity payments whether or not they generated. The long-term 

value of capacity should have been relatively stable as it was designed to represent the 

incremental cost of adding to the system, but in the short term its value was sometimes 

extremely volatile. 

13 
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All scheduled generators received Pool Purchase Price (PPP) calculated as SMP plus capacity 

payment and this was paid regardless of the level of the original offer. The cost of covering 

transmission losses, ancillary services and providing reserve generation was known as Uplift. 

PPP plus Uplift gave the Pool Selling Price (PSP), the price Suppliers paid. Uplift was not 

volatile and generally added around 8% to PPP6. Pool prices were calculated every day of the 

year and provisional prices were published in the Financial Times. Settlement was continuous 

and payments were made by NGC 28 days after the scheduled date. The structure of the post-

privatised structure is shown in figure 2.4. 

National 	PowerGen 	Eastern 	IPP I I BNFL 	Other 
Power 	 Magnox 

EdF 	Nuclear 
Energy 

Pool 

Regional Electricity 	 Generators 	 Other licensed 
Companies 	I 	 I 	I 	Suppliers 

Scottish 	Scottish 	Scottish 
Nuclear 	Power 	Flydro 

411 
Scottish Power & 	Other licensed 
Scottish-Southern 	suppliers 

MI users 	 All users 

Figure 2.4. The post-privatised structure of the ESI 

2.4.1 Competition in Generation 

At privatisation the decision to create two generators was driven by the desire to privatise the 

CEGB's nuclear power stations. National Power with 30 GW of conventional plant was to be 

able to absorb the risk of 8 GW of nuclear plant. The remaining 20 GW of conventional plant, 

belonging to PowerGen was to act as a counter-balance to the larger company'. 

The intention was to allow the two generating companies to compete for sale of their output to the 

RECs and larger customers. They would also have to face entry from new stations built by 

independent power producers. 

Nuclear was withdrawn from the initial privatisation for the following reasons: 

. 	The city was uneasy about electricity prices 
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The decommissioning costs were causing concern in the city 

The memories of Chernobyl were still fresh and again the city was uneasy about litigation 

if a similar event were to occur in the UK 

Nuclear Electric and Scottish Nuclear were sold in 1996 as British Nuclear. This was after the 

debt was restructured and the older stations removed from the package and retired. 

2.4.1.1 The experience so far in England and Wales 
This section assesses the effect of privatisation on the UK's generation profile since privatisation 

by detailing the experiences of the various generating fuel sources over the last ten years. 

2.4.1.1.1 Gas 
There has been a dramatic switch from coal-fired to gas generation. There was no gas-fired 

generation in 1990, 16.6 GW had been commissioned by 1998. The reasons for these changes 

are outlined below. 

Combined with low capital and running costs the CCGT technologies appearing by the 

late 1980s required much shorter construction times (24-36months). 

The expiration of the long-term 'take-or-pay' gas contracts with British Gas and the 

introduction of a competitive gas market led to a reduction in the price of gas fuel and has 

made it more instantly accessible. 

The European commission rescinded its prohibition on gas-fired generation and tightened 

emission limits on sulphur dioxide. To meet these limits National Power and PowerGen 

would have had to refit some of their coal stations with flue-gas-desuiphurisation 

equipment. Given the relative prices of gas and coal, they decided to replace some of 

their coal plant with CCGT stations. 

Eleven of the RECs went into partnership with Independent Power Producers (IPP) to 

invest in CCGT stations. The stations sold long-term contracts (typically 15 years) for 

their expected output on terms that allowed them to be largely debt financed. The RECs 

involvement with IPPs was welcomed by the Regulator because it encouraged more 

competition in generation. 

2.4.1.1.2 Coal 
The ascension of gas was at the expense of the demise of coal. It fell from meeting 66% of the 

UK's annual demand in 1990 to 28% by 1999. Though this was inevitable due to the emergence 
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of CCGT technologies, it was partly precipitated through government policy. The main thrust of 

which are outlined below: 

The generators were privatised with three-year must-take' contracts to buy fixed 

quantities of British coal, at above world prices, and to sell electricity to the RECs. The 

prices in the electricity contracts were high enough to cover the cost of the coal and this 

protected the coal industry from competition. 

When these contracts expired, the new replacement contracts allowed the generators 

more flexibility to shop around. The reduced obligation on generators to buy over 

priced coal saw a shift away from coal to gas. 

2.4.1.1.3 Oil 
Generation by oil powered plant has also reduced from 7% to 2% of the UK's total annual 

demand since privatisation. This deficit has been made up by the increase in gas generation. 

The primary reason for this demise is its high emission levels. The most efficient Combined 

Cycle Oil plant would have NOx emissions of 0.1 9g/kWh, which are three times higher than that 

from CCGT stations and SOx of 0.25g/kWh, which is less than coal but high compared to the 

insignificant levels produced by gas combustion. 	Although the oil emissions are lower than 

coal, the price of coal was only 58% of that of oil on a heat equivalent basis, in 1997. This made 

coal fired generation cheaper than oil powered generation that year. 

2.4.1.1.4 Nuclear 
Since 1990 its percentage of the national capacity has increased by 35% whilst the costs have 

dropped by 30%. This is because 

The 'must take' status afforded electricity generated by nuclear as part of the Non Fossil 

Fuel Agreement (NFFO) guaranteed the spot market price for all its output. 

The bid to privatise the nuclear stations saw the closure of the less efficient Magnox 

stations and the writing off of the investment cost to make the industry more attractive to 

the private investor. The subsequent low capital cost is reflected in minimal marginal 

cost. 

The remaining stations were sold as British Energy in 1995. 

2.4.1.1.5 Others 
Imports from France and Scotland have gone up since privatisation, this is due to the receipt of 

market price for their output. The financial incentive to increase output has resulted in the 

Scottish interconnector increasing its exports from 850MW at privatisation, to 1600MW 
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presently. This is set to be increased further to 2200MW by the end of 2001. The majority of the 

flows are North to South 

2.4.1.2 The experience so far in Scotland 
Scotland has maintained much of its pre-privatisation structure, which has made new entry very 

difficult. British Energy is the largest generator and provided 60% of Scotland's requirements in 

2000. The remainder of the total output was roughly met by a 50:50 split between Scottish Power 

(SP) and Scottish Hydro-Electricity's (SSE) conventional stations. 

In Scotland there was no Pool, so plants were despatched on the basis of marginal cost. But in 

practice the number of long-term contracts between the companies complicated the picture 

somewhat. These contracts are outline below. 

The Nuclear Energy Agreement: This was a 'take-or-pay' contract between British 

Energy and the two generators, SP and SHE. It provides 60% of Scotland's requirements 

and prevents SN from selling any of its output to other parties without consent from the 

two generators 

The coal agreement: This gave SHE access to one-sixth of Scottish Power's coal fired 

plant 

The Peterhead agreement: This gave Scottish Power title to acquire 50% of the present 

capacity from SHE's Peterhead station 

The Hydro Agreement: It was a 'must-take' that gave Scottish Power title to 400GWh 

per year of SHE's Hydro-Electricity output, subject to rainfall conditions. 

These contracts, coupled with Scottish Power and SHE's control of the interconnector access and 

pricing greatly limited the potential for new entry. As a result, the structure of the Scottish 

generation industry has not changed much since privatisation. 

2.4.2 Competition in Transmission 

At privatisation it was decided to create one entity, National Grid Company (NGC), to be 

responsible for system operation. The following measures were imposed to limit the abuse of its 

monopoly position. 

Transmission price controls were imposed on the NGC to limit its monopoly power. 
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No UK ES! company was allowed to hold more than 1% of the shares in the NGC group. 

The National Grid Company retained all its pre-privatisation responsibilities. In Scotland, 

Scottish Power and SHE controlled and operated the transmission network in their respective 

areas. 

2.4.3 Competition in Supply 

Competition in Supply was deemed essential to a fully competitive electricity market; shown by 

its high emphasis within the 1989 Electricity Act. Central to this was the gradual opening up of 

the Suppliers captive customer base to competition. The theory was that consumer choice in 

Supply would put pressure on them to buy electricity more cheaply, which would put downward 

price pressure on generators. 

At the time of privatisation, Suppliers were split into the following two categories: 

First-tier Supplier: These were the RECs which were created at the time of 

privatisation, from the 12 area boards in England and Wales, the two Scottish companies 

and Northern Ireland Electricity. These companies owned the distribution business 

within their regional area and were obliged under their licence conditions to supply all 

customers in their region with electricity. The REC's dual functions of distribution and 

supply had separate accounts and were regulated differently. With 22 million customers 

between them, the RECs were the biggest purchasers of electricity on the wholesale 

market. The total value of their franchise markets was about £7bn. 

Second-tier Supplier: These were defined as the companies that supply electricity to 

customers within another RECs regional area. The players in this market ranged from 

RECs, Generators, and independent Suppliers to large customers. Second-tier suppliers 

had to pay the first-tier supplier a fee for use of the distributional network. 

Both first and second tier Suppliers had to sign a number of statutory codes and agreements, 

including the Grid Code (GC), the Distribution Code (DC) and the Pooling and Settlement 

Agreement (P&SA) 

Full competition was to be achieved over an eight-year period with successive customer tranches 

given the option to shop around for their electricity. This was phased in three stages, known as 

the franchise break, outlined below. 
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Stage 1: This took place at the time of privatisation. All customers with peak demands 

above 1 MW were allowed to choose their Supplier from any licensed Suppliers within 

the UK. The number of customers in this group was about 5000. 

Stage 2: The second phase occurred on 1st April 1994. This group comprising around 

50 000 were customers with peak demands between 1 MW and 100kW. 

Stage 3: This was originally scheduled to happen on 1st  April 1998, but the process only 

began in September 1998 and was completed on 24th  May 1999. This opened up the 

domestic sector involving 26 million customers across the UK to full competition. 

Suppliers are free to buy power from whosoever they choose. Some even went into partnership 

with IPPs to meet some of their customer demand. 

2.43.1 The experience so far in England and Wales 
The RECs lost two-fifths of their sales volumes in the first year of privatisation. Their market 

share in the above 1MW segment continued to decline from 57% of the market in 1990/1 to 20% 

in 1998/9 shown in Figure 2.5a. Similarly, there was a noticeable loss of 10% of market share in 

the 100kW to 1MW market between the financial years 1997/8 through to 1998/99. 

The final phase of supply deregulation was completed on 24th  May 1999. By March 2000, 

slightly under a year after full deregulation, just over 4 million electricity consumers (16 '/2%) 

were no longer with their local REC. In the domestic market segment, new Suppliers were 

charging on average £10 a year less than the incumbent Supplier. In some areas, annual price 

reductions offered by a new Supplier can be in excess of £60. In addition to competition, price 

controls imposed by the Regulator has reduced electricity prices for domestic and small business 

customers in real terms by about 7% on average from 1 April 1998 and a further 4.4% from April 

1999. These reductions were expected to save a typical domestic customer around £45 over the 

period from April 1998 to April 2000. A typical annual UK electricity bill was £264 in 1999 

compared to £299 in 199510. 

However the number of complaints about poor sales techniques, Supplier poaching and 

inaccurate billing has increased. 
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Figure 2.5a and 2.5b. Decline in I't Tier supplier market share 

2.5 The Present situation 

Against all expectations the price of electricity to the customer has gone up since privatisation. 

Prices should have fallen for the reasons laid out below. 

Competition was intended to make the industry more efficient, making prices more 

reflective of the marginal cost of generation. 

In theory the lower cost of generation brought about by reductions in fuel costs, lower 

capital cost of new plant, the introduction of newer, cleaner and more efficient 

technologies should have been reflected in consumer prices. 
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Figure 2.6. Annual average time-weighted pool prices (February 1998 £/MWH) 
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To investigate the reality, figure 2.6 shows the average annual time-weighted Pool prices since 

privatisation. From this graph, prices had indeed increased, the temporary lower prices between 

31t March 1994 and 31t  March 1996 were due to the price cap of £25/MWh imposed by the 

regulator on System Marginal Price (SMP). Since the removal of the cap the SMP steadily crept 

up11 . 
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Figure 2.7. Average winter plant margin (October to March) 

It was possible that the increased SMP was reflective of the lack of available plant and or 

increased demand. This was investigated in figure 2.7. The graph shows that the average winter 

plant margin, the difference between total plant availability and demand fell up to 1994/5 and 

then increased again. This suggested that the increases in SMP had no relation to increased 

demand or reduced capacity. 

The evidence from the preceding discussions suggested that the market was not behaving as 

intended. The issues of market structure and market power will be examined in the following 

sections to determine the source of this distortion. For the purpose of the discussion, the power 

market must be thought of as three integrated and interacting markets. These markets model the 

structure of electricity trading in the UK. There are 

A physical market for spot energy (the Pool) 

Markets for risk-sharing (the contracts and Electricity Forward Agreement markets) 

A market for capacity. 

2.5.1 Power market games and strategy through the Pool 

In order to identify the reasons for the increases in SMP, the price-setting mechanism was 

considered. SMP was set by the mid-merit and peak load stations because they were the upper 

limit of accepted bids. The stations that came into this category were the coal, oil and the more 

expensive gas sets. 
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However, it was immaterial who set SMP, since all the Generators received it, and thus all 

benefited from any increases. Whether the increases in bid prices yielded the desired increase in 

revenues depended on the confidence of the price setting generators PowerGen and National 

Power, that not too much additional capacity would be brought into play by their competitors. It 

is therefore necessary to look at Generators changes in output and capacity since privatisation. 

Figure 2.8 shows the Generators percentage of output in England and Wales. From the figure it is 

obvious that all the Generators increased their output except the largest two, National Power and 

PowerGen who reduced their output by retiring about 17000MW of old capacity and disposing of 

6000MW of coal-fired plant to Eastern Electric. The latter was replaced with 6000MW of new 

CCGT capacity. Asa result their combined market share fell from around 78% to 41% of output 

and 51% of capacity. 

In a competitive market increased bid prices not reflective of marginal cost will result in 

competitors increasing their output. Price increases could only be sustained if those wishing to 

secure them were willing to lose a share of the market. Similarly, Companies wishing to increase 

their market share will have had to reduce their bid prices, unless some other participants were 

willing to trade a loss of market share in order to sustain prices12  
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Figure 2.8. Market shares of output in England and Wales 

The above discussion suggested that National Power and PowerGen were content to lose a 

percentage of their output to facilitate the increase in SMP. The other Generators seem content to 

benefit from the increased share of output, and higher SMP. 
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Output (TWh) Output (TWh) winter Change (TWh) Change (%) Average winter 

winter 1996/97 1997/98 load factor 

National 

Power 26.6 23.2 -3.4 -13 45 

coal 7.4 10.3 +2.9 +2.9 93 

CCGT 0.4 0.1 -0.3 -0.3 2 

Oil 

Total 34.9 33.6 -0.9 -3 46 

PowerGen 

Coal 19.7 18.8 -0.9 -5 46 

CCGT 1.9 12.2 +0.3 +3 90 

Oil 1.4 0.0 -1.4 -98 0 

Total 33.1 31.1 -2.0 -6 47 

Eastern 

Coal 12.2 15.6 +3.5 +29 61 

CCGT 1.5 2.5 +1.0 +68 73 

total 13.7 18.2 +4.5 +33 63 

Table 2.1 winter output and load factors by plant type 

The next issue of concern was discrimination according to fuel type. Table 2.1 shows the winter 

output and load factors by plant type of the largest three generators. From the table, it may be 

seen that the two SMP setting generators reduced the output of their coal stations, whilst 

increasing their CCGT output. These figures suggest that the big two Generators were following 

a strategy of profitable withdrawal from coal-fired generation. The increased output of the CCGT 

stations went in at baseload, thereby receiving the SMP set by their more expensive stations. The 

sum-total effect was increased revenues from the higher SMP received by the CCGT plants and 

reduced fuel and environmental costs. 

In contrast, Eastern increased their coal generation output but it seemed that they were not 

actively competing with the big two in setting SMP but were willing to bid lower to get the 

increased output and receive SMP. 

The discussion in this section endorsed the suggestion that the big two were using their market 

power to take advantage of the market structure to realise increased revenues and that the 

marginal pricing mechanism did not encourage the other participants to compete on price. The 

smaller participants benefited from increased prices and increased market share, with consequent 

increased revenues. 

2.5.2 Power games and strategy through the contracts market 

In practice, between 80 and 90% of electricity sales were hedged with Contracts for Difference 

(CfDs)'3. With a two-way Cifi, the parties agreed a strike price for a fixed quantity of electricity. 

Whenever the pool price was below the strike price, the buyer paid the seller the difference 
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between the two. Conversely when the pool price was higher, the seller refunded the difference. 

Theoretically, Generators with high CfD cover, were indifferent to the Pool price because their 

income became the strike price. However in practice things were somewhat different with the 

Pool price being used to manipulate contracts. The most commonly used strategies are described 

below 

If the Pool price was below the station's marginal cost, the Generator would buy 

electricity from the Pool to meets its demand commitments, and not trying to run 

In the medium term, contract prices depended on expected Pool prices, so increasing this 

strengthened the Generators bargaining power in contract renegotiations. 

Increasing price volatility (attributable to increased capacity payment volatility) made 

contracts more attractive because they guaranteed predictable electricity costs. This 

increased the demand for CfDs thereby pushing up their value. 

2.5.3 Power games and strategy through the capacity payment mechanism 

Capacity payments were designed as an incentive mechanism to reward Generators for providing 

capacity. At times of low demand and excess capacity, the capacity element was zero. These 

payments increased as demand rose and generating capacity got more stretched. The long term 

value of capacity should be relatively stable since it represented the incremental cost of adding 

capacity to the system, but the short-term value can be very volatile. Proponents of the capacity 

mechanism system argued that this system provided valuable price signals to the market. These 

signals acted as the incentive to build more capacity as and when the market needed it. 

In reality the reverse was the case as is shown by the inverse relationship between capacity 

payments and SMP in figure 2.6. In the years when SMP was low, capacity payments were high, 

the inverse happened when SMP was high. For example, during the period of the SMP cap, 

capacity payments rose as a result of the largest two generators withdrawing capacity from the 

system. The generators managed this by increasing their plant failure rate. This reduced the level 

of spare capacity on the system, raising capacity payments. This inverse relationship suggested 

that the capacity payments were not working as intended, but instead were being used as a means 

for topping up Generator income when SMP was 1ow14 
15  

2.5.4 Discussion 

The issues of markets power were focused on in the earlier sections. It was felt by many that the 

Pool was not working as intended because the large Generators appeared to be using their market 

power to take advantage of the market structure to make excessive profits. This prompted the 
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Government to instruct the Regulator to investigate the possibility of a new trading structure in 

the UK. 

2.6 Summary 

The Electricity Supply Industry (ES!) is responsible for the production of electricity from primary 

fuels and transporting it to the end-user. The industry has undergone many structural changes 

over almost a century and a half of its existence culminating in re-privatisation in 1990. This was 

intended to bring cheaper prices to customers and lead to a more efficient utilisation of the 

generation resource through competition, but these were not achieved. Instead, prices have risen 

in real terms, and Generators have appeared to abuse their market power and the pricing 

mechanism. This prompted the Labour party, shortly after its re-election in May 1997, to instruct 

the Regulator to investigate the possibility of new trading arrangements for the industry. 
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3. The New Trading Arrangements (NETA) 

3.1 Overview 

In this chapter, the New Electricity Trading Arrangements (NETA) are described in detail, 

followed by a summary of the British Electricity Trading and Transmission Arrangements 

(BETTA), the proposals for the extension of NETA to include Scotland. The most probable 

effects on the Electricity Supply Industry (ESI) are discussed, together with an analysis of the 

specific impact on the various groups of participants. The chapter concludes with a focus on 

Suppliers, the group with the lowest margins within the ESI. They are presented by NETA with 

the steepest learning curve, making them the industrial segment most vulnerable to the changes. 

As a result, Suppliers will have to be able to measure and manage their exposure to risk if they 

are to survive in the new era of trading. 

3.2 NETA 

In October 1997, shortly after Labour's election victory, The Minister for Science, Energy and 

Industry, John Battle, instructed the Electricity Regulator, Professor S C Littlechild to investigate 

reforming of the electricity trading arrangements The initial proposals were published in the 

Review of Electricity Trading Arrangements: Proposals in July 199816.  The proposed trading 

arrangements were modelled on the gas market and competitive electricity markets in 

Scandinavia and Australia. These were accepted by the Government in October 1998 and 

included in its White Paper on Energy Policy. It was confirmed that the Office of Electricity 

Regulation (OFFER) and the Department of Trade and Industry (DTI) would lead the process of 

consultation and with the help of a Programme Director, facilitate the full participation of the 

industry and its customers. After much consultation The New Electricity Trading Arrangements 

(NETA)17  were published in July 1999, and introduced on 31st  March 2001. 

The aims of the proposed trading arrangements, laid out by OFFER were as follows: 

Lower prices from more efficient and competitive trading 

Greater choice of markets 

More scope for demand side management 

Sharper incentives to manage risk 

Transparency from simpler bids 

Forward price curves to facilitate new entry 
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Avoidance of discrimination against thel sources by rewarding flexibility 

More liquid contracts market 

Scope for greater co-ordination and consistency with gas 

More flexible and effective governance 

The system of marginal pricing, together with market power were identified as the major 

obstacles to competition. The then marginal pricing system was to be replaced by a series of 

bilateral markets operating from the long-term up until real-time. It was perceived that bilateral 

markets, based on the gas markets, would be less open to the abuse of market power and less 

vulnerable to gaming. The main thrusts of these markets at the time of writing are outlined 
below: 

Forwards and futures markets (to the extent required by participants) 

Short-term power exchanges (also to the extent required by participants) 

A voluntary Balancing Mechanism (initially operating from 4 hours ahead to the end of 

each trading period) 

A mandatory settlement process. 

It should be noted that the above aims might be liable to some degree of change over time. It was 

expected that trading would commence in the long-term via either exchange-traded derivatives or 

by long-term bilateral contracts known as Over-The-Counter (OTC) contracts. These were 

expected to allow participants to cover their expected long-term positions. These markets will 

operate from any time in the future up until 24 hours before the half-hour in question. They will 

serve as indicators to the short-term markets and in reverse, the short-term markets will provide 

the indices on which the long-term markets will be referenced. The short-term bilateral market 

will be functional from 24 hours till 4 hours before the period. The balancing market will be in 

operation from 4 hours until real-time. The settlement process takes place after the scheduled 

period. Figure 3.1 is a schematic diagram of how the three markets interact with each other. 

27 



Chapter 3. The New Trading Arrangements ('NETA) 

-24hrs 	 -4hrs 
	

Ohrs 

OTC & 
exchange 
traded 
contacts 

Power 
exchange 

Balancing 	 tSeftlement 
mechai*nism 	 Proces 

, s 

Long-term 	Short-term 	Real time 	 Financial 
contracts 	 trimming contracts 	matching of supply 	settlement of 
and derivatives 	(screen based) 	and demand 	 contractual 

(<5%) 	 imbalances 

Figure 3.2. The time-periods for NETA's physical markets 

Each of these markets is discussed in more detail in the following sections. 

3.2.1 Long-term markets 

It is expected that the majority of trading will take place in the forwards, futures and long-term 

bilateral markets. These are expected to evolve according to market participants needs through 

third party involvements. Trading via long-term bilateral contracts or forwards will allow 

participants to cover their likely output or demand so that by the time the Balancing Mechanism 

opens for a trading period, participants contracted positions  will closely match their anticipated 

physical positions. The level of cover required by participants will depend on their trading 

strategies and hedging requirements 

3.2.1.1 Forwards 
These are expected to trade like financial forwards. The buyer and seller agree on a price one 

day, on a quantity of electricity for future delivery. On the delivery date, the buyer pays the 

seller, or the seller pays the buyer the difference between the agreed forward price and the current 

market price also known as the spot price. Through this, market participants will be able to 

secure their long-term output or consumption, well in advance. In this market, the terms and 

agreements of all contracts will be determined bilaterally. In other words it is an Over-The-

Counter (OTC) market. 

3.2.1.2 Futures 
Futures are similar to forwards in that one party agrees to buy electricity today for the future 

physical delivery from a second party. However, there are the following differences between 

futures and forwards 
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Futures are standardised contracts and are traded on an exchange. The International 

Petroleum Exchange (IPE) has already expressed an interest in launching an electricity 

futures market". 

Participants in the futures market are not subject to counterparty default risk because the 

exchange acts as counterparty, guaranteeing the settlement of all transactions. 

Trades are settled at the end of each trading day. This means, instead of settling the 

trade at the end of the contract as with forwards, the difference between the future price 

and the spot price is calculated and settled at the end of each trading day, this is known 

as the margin. The margins are accumulated and settled on the final agreed date of 

physical delivery. 

It is hoped that price reporting will evolve within these markets. This would give an indication of 

the market's perception of 'future' spot prices, also known as price transparency. Experience 

from the Australian and Scandinavian electricity markets suggest that this will lead to more 

efficient competitive pricing. Greater transparency will increase third party participation in these 

markets whilst increasing the frequency of trades. The increased volume of trades is often 

referred to as liquidity. 

32.2 Short-term bilateral market 

The short-term bilateral market will operate from about 24 hours up until 4 hours before the 

trading period. It will be operated via a screen-based system, price setting will be auction based 

as opposed to marginally priced. The easy access to bidding information via screens, should 

increase transparency and maintain anonymity. As at the time of writing the proposed market 

operator was UK Power Exchange (UKPX). It would act as underwriter for all contracts in return 

for transaction charges. 

Generators, suppliers, customers and traders will submit simple offers and bids to the market 

operator. Offers and bids will be posted, modified or withdrawn at any point until they are 

accepted. Accepted offers and bids will represent firm financial commitments and will be settled 

at the prices specified in the offer or bid, rather than some uniform price specified by the market 

operator. 

Trading will be on the basis of standardised products. For example, baseload contracts, peaking 

contracts and combinations of these contracts as well as individual trading period contracts. The 

nature of these products will be allowed to evolve over time to meet the needs of market 

participants. 
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This short-term bilateral market will thus be similar to exchange-based markets for shares and 

commodities. It is possible that this market will not only come under the regulation of licensees 

by the Developmental General of Electricity Supply (DGES), but would also be subject to 

regulation by the Financial Services Act (FSA). 

3.2.3 Balancing Arrangements 

The Balancing Mechanism is used by the System Operator (SO) to keep the system in balance on 

a real-time basis, both half-hourly and instantaneously. This involves resolving transmission 

constraints, placing Generators on stand-by to provide balancing services and ensuring that all 

transmission equipment will continue to operate within safe limits. NGC has estimated that the 

balancing activities may, on average, require around 2 GW, which is about 7% of average 

demand' 9. 

The balancing market starts operating at Gate Closure (GC), which has been set at 4 hours until 

the period of operation. There is an obligatory requirement on all market participants to submit 

their intended generation and demand to the SO by GC. This information together with the 

NGC's own forecast are used to determine  possible short-falls or excess generation or demand at 

various locations on the network, known as Balancing Mechanism Units (BM Units). 

Participation in the balancing market will be voluntary except at times of system stress. 

Participants in the balancing mechanism will have to comply with the Balancing and Settlement 

Codes (BSC) and any relevant Grid Code obligations. 

3.2.3.1 	Balancing points on the network 
Since demand and transmission constraints are location specific, the SO will need to accept bids 

and offers at specific points on the transmission system. The generic term 'BM Unit' has been 

introduced to define the type and size of grid point location at which balancing will take place. 

Its definition is as follows. 

Connectable generating plant of capacity larger than 50MW 

Meters at the Bulk Supply Point (BSP) for customers directly connected to the grid 

Any other generation or demand connected directly to the transmission network will 

have its BM Unit as the meter at the BSP below which the meter is connected. 

For smaller generation or demand that might be connected to the distribution network 

rather than the transmission network, the BM Unit will be an aggregation of all meters 

within a BSP group for which the participant is responsible (including those for any 

licence exempt Generators with which the participant has signed a contract) 

For interconnectors the BM Unit will be the proportion of the interconnector meters 

allocated to each Interconnector user. 
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There are some categories of demand that will need special treatment, for example radio-

teleswitched customers. This will be discussed in more detail in subsequent chapters. 

3.2.3.2 Balancing Mechanism (BM) operation 
Participants must submit their Initial Physical Notification (IPN) to the SO by 11:00am for the 

day ahead. The IPN shows the Generators or Supplier's expected position for each half hour 

period in the next day. The IPN's are constantly updated until Gate Closure when participants 

must submit a Final Physical Notification (FPN), finn declaration of output or demand during the 

specified half-hour. 

At gate closure, the balancing mechanism opens. A wide range of participants are able to make 

Bids and Offers to the SO through the Balancing Mechanism. Bids and Offers are defined below. 

Offers or 'increments': 	Increase in output from Generators and decreases in 

consumption from Suppliers 

Bids or 'decrements': Load-reductions by Generators and consumption increases by 

Suppliers 

It was proposed that 'buyers' of imbalance electricity would pay a price calculated as the volume-

weighted average of the Offers accepted in the Balancing Mechanism known as System Buy 

Price (SBP). 	Sellers of imbalance electricity will be paid the volume-weighted average of 

accepted Balancing Mechanism bids, referred to as System Sell Price (SSP). 

In general, Generators who are under contracted (and Suppliers who are over contracted) and 

'spill' electricity on to the system, can expect to receive the lower SSP for their electricity. This 

is expected to encourage participants to resolve their imbalance in the forward markets. Suppliers 

who remain under contracted (and generators who under generate) can similarly expect to be 

charged the higher SBP which is expected to be higher than if they had entered into contracts for 

their full requirements in advance. These charges are expected to reflect the additional costs 

incurred by the SO in instructing participants at short notice to keep the system in balance from 

moment to moment. The costs of any forward contracts used by the SO to maintain a balance of 

overall supply and demand are also included in the calculation of imbalance prices. 

Bids and Offers are location specific and refer to individual BM units to help the SO overcome 

local transmission constraints. 
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3.2.4 Cash-Out and Settlement Arrangements 

Imbalance cash-out prices are designed to penalise or compensate Generators and Suppliers on 

whose behalf balancing services are performed by the SO. Electricity imbalances are the 

difference between participants metered volumes and their contracted volumes determined from 

their FPNs and balancing market activities. These are charged SSP for over contracting and SBP 

for under contracting. The settlement of imbalances is to ensure that any electricity not covered 

by contracts or BM actions, is paid for or charged an appropriate price. 

Default imbalance prices will be calculated if there are no Offers or Bids in a relevant half-hour 

period. Options for this are outlined below: 

. 	Price from the previous half hour 

An average of all cash-out prices over the past 7 days 

The price of the offer/bid that would have been taken first (the lowest priced offer or the 

highest bid) 

A price indicator from the spot market, adjusted by a transaction fee 

3.2.4.1 	Imbalance Volumes 
The volume to which imbalance prices are applied is the difference between a participant's 

notified contract volume and metered volume. A participant's notified volume is the sum of all 

trades (whether over-the-counter or exchange-based) notified the SO by the time of Settlement, 

together with any volumes accepted by the SO in the Balancing Mechanism. 

Imbalances relating to production (export) and consumption (import) meters will be calculated 

separately. All the contributions from production and contribution meters associated with a 

participant will be aggregated, regardless of their geographical location. 

3.2.5 Regulation 

As mentioned earlier, OFFER was set up in 1989 to oversee the regulation of the ESI, and its 

control over the electricity industry was through licence agreements. However, the Regulator 

could not change the licences without the holder's consent, so new regulation was slow to 

achieve. Rapid intervention was only possible through the Monopolies and Mergers Commission 

or directly through legislation from the Secretary of State. This resulted in a call for more 

efficient regulation, consistent with the overhaul of the industry. 

On 19th June 1999 the merger of the two energy regulators, OFFER and OFGAS, became the 

Office of Gas and Electricity Markets (OFGEM). Because of the converging interdependency of 

the two industries, this was intended to improve the consistency of gas and electricity regulation. 
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OFGEM has increased powers under NETA. This is achieved through shorter licensing periods 

and some direct control over the market controller so as to enable quicker regulation through 

market changes. It is hoped that regulation through the market rather than by direct intervention 

will encourage more self-regulation via competition. 

3.2.5.1 	Governance 
The futures and short-term bilateral markets are likely to be subject to regulation under the 

Financial Services Act. The Balancing and Settlement Code (BSC) for the balancing markets and 

the imbalance Settlement Process (ISP) will replace the Pooling Settlement Agreement and SO 

will be obliged to maintain and enforce the Code. There is a Balancing and Settlement Code 

Panel, comprising representatives of all interest groups including Generators, Suppliers, traders 

and customers as well as the SO. This panel considers modifications to the rules and procedures, 

and listens to representations from any concerned parties. All proposed modifications to the BSC 

will be subject to the approval from DGES. 

3.3 	Scottish Trading Arrangements: British Electricity Trading 
and Transmission Arrangements (BETTA) 

The Scottish market is an important part of Great Britain's electricity market, both in terms of 

volume and in diversity of generation sources. Annual electricity sales in Scotland are 

approximately £1 bn and form an important component of the national turnover20. 

The structure of the Scottish market has evolved very slowly since privatisation. This was 

thought by some to be due to the continued vertical integration of the two principal companies, 

the restructuring of contracts, and interconnector access and pricing. The Review of Scottish 

Trading Arrangements (ROSTA) published in October 1999 began the process of consultations 

designed with the intention of establishing new Scottish Trading Arrangements, separate, but 

consistent with NETA. This document outlined proposals for interim trading arrangements to be 

put in place between the expiry of the previous arrangements in April 2000 and the introduction 

of the new arrangements in April 200221.  The May document, Initial proposals and issues for 

the consideration on the reform of Scottish Trading Arrangements May 2000, included more 

detail of the vision. 

In August 2000, the Interim Proposals for the reform of Scottish Trading Arrangements: British 

Electricity Trading and transmission Arrangements (BETTA) was published. In this document, 

the initial plan for separate Scottish Trading Arrangements (STA), set out in the May document, 

was abandoned in favour of nationwide trading arrangements. The document proposed the 

following: 
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Trading arrangements for Scotland as part of a Great Britain (GB) market 

Transmission access and charging arrangements for Scotland to be developed as part of a 

GB set of arrangements, BETTA, set to go 'live' in April 2002 

A set of interim trading arrangements to provide a smooth transition between the present 

set-up and the new arrangements. 

The interim proposals which will run from 1St  December 2000 to 1St  April 2002, are designed to 

improve the competitive position both within Scotland and between England and Wales, before 

the introduction of BETTA. The interim measures are as follows: 

Encourage new supply entry by modifying the existing Nuclear Energy Agreement 

(NEA) to allow British Energy to sell some of its capacity to other Suppliers or directly to 

customers. 

Increase the transparency of the interconnector access arrangements, and define the cost 

of interconnector trading. 

Balancing services will be charged at the proposed balancing use-of-system charge in 

England and Wales, less the constraint related component. 

Imbalance prices in England and Wales will be used as a proxy for imbalance prices in 

Scotland. 

Initial proposals in the May 2000 document to have a single Scottish System Operator 

combining the existing system operation functions of SSE at Port-Na-Craig and SP at 

Kirkintilloch. 

Since BETTA will be an extension of NETA to Scotland, all the NETA market mechanisms 

described in previous section will apply to Scotland from 1St  April 2002. Under BETTA there 

will be one system operator for the whole UK. As at the time of writing, there were still several 

pertinent issues that have still to be resolved affecting interconnector pricing and access. 

3.4 	NETA's Implications on the ESI 

NETA will have a marked effect on all participants within the ESI because of its change of 

market emphasis. The main industry wide changes include: 

Greater demand-side participation 

A more efficient competitive electricity market 

Removal of fuel source discrimination 

The ability to respond effectively to changing market circumstances through more 

efficient governance 
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3.4.1 The 'NETA effect' 

The 'NETA effect' is the term used to describe the anticipated changes and effects NETA might 

have on the ESI 

3.4.1.1 	Bilateral versus Marginal pricing 
One of the main reasons for the abolition of the Pool was to bring an end to the marginal pricing 

system. The perception was that a Generator who was paid more than he asked for was getting 

too much, since he was free riding on high prices set by other participants. It is still not clear 

whether paying stations their bid price via bilateral agreements will lead to reduced prices. 

The literature on auction theory22  suggests that, in bilateral markets, those who used to submit 

very low bids under the marginal pricing system would be likely to submit bids closer to the 

highest accepted bid, that is, if they have some idea of the likely value of the highest accepted 

bid. This could include Generators with several bidding stations, because knowledge from all 

their stations could give them some foresight of the highest accepted bid. For smaller plant who 

were benefiting from the marginal price set by others, they would try to guess the highest 

accepted bid. If their guesses are wrong this could result in real market inefficiencies with high 

marginal cost plant being run before plant with low marginal costs. Consumers will be, in effect, 

paying too much if expensive plants are being run while less expensive plants lie idle. 

This system could favour larger portfolio Generators with information about the bid prices of 

their own plant. Smaller Generators with no 'insider information' might have to sign long-term 

contracts to guarantee their output at less favourable prices. This phenomenon could discourage 

new entry from smaller Generators, and encourage larger firms to build new capacity. 

Eventually, this could lead to less competition as a result of fewer companies, leading to higher 

prices23. 

3.4.1.2 Abolition of capacity payments 
Capacity payments are one of the most disliked features of the Pool and critics argue that it is an 

easy gaming mechanism. Regardless of the market configuration, there will always be a need for 

peaking stations which are used infrequently for providing capacity at the margins. Capacity 

payments offered them a means to recover their costs. The abolition of the capacity payment 

mechanism will remove the financial incentive for Generators to make extra capacity available. 

This would increase volatility because the system will be operating within tighter margins. 

This gives very flexible plant such as CCGT greater market power in the short-term and 

balancing markets. For example, flexible plant could withhold capacity from the balancing 

mechanism until the last minute, as such raising the value of capacity and thus benefiting from a 

high imbalance price. This could also have a knock-on effect on the price of long-term contracts 
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because market participants, especially Suppliers, will want to lock into long-term contract to 

hedge against the spot price volatility. 

	

3.4.1.3 	Demand-side participation 
Demand-side participation in the price setting process is seen as a good thing, because no longer 

will Suppliers have to accept, passively, the price set by Generators. They could have a choice as 

to what they pay. However, only Suppliers with demand-responsive customers would truly 

benefit from demand-side bidding. Demand-responsive consumers could react to high prices by 

shedding load, reducing the generation and reserve required. This could imply lower peak prices, 

but for a longer period. On the other hand, Suppliers who do not have price responsive customers 

cannot alter the amount of generation required. Generators could react to this by reallocating 

their sales between markets, withholding capacity in the short-term markets, raising prices, 

thereby negating the ethos of demand-side participation24. Suppliers with high domestic loads 

would fall into the latter category. 

3.4.1.4 Possible developments of financial markets 
The Government and OFGEM expect sophisticated financial markets to evolve within the ESI to 

meet market participants' demands for a wider variety of risk management tools. Central to the 

evolution of these markets is transparency. There have been suggestions that the lack of 

participation by third parties in the electricity forward markets resulted in low liquidity, which 

meant that there was no demand for standardised products". The absence of third parties was 

because the Pool price, the price forward contracts are tied to, could be manipulated by the 

dominant Generators. As has been suggested in the previous section, if the bilateral prices are 

less transparent than the present system, which seems rather likely, then there would be no 

incentive for third party participation. The possible implication of this would be that many 

market participants, notably Suppliers, would face more risk under NETA and with limited tools 

to manage this risk. 

3.4.2 Implications of NETA on the various groups 

So far, the industry-wide implications of the 'NETA effect' have been outlined. The 'NETA 

effect' will affect the various segments of the ESI in different ways. The following section 

summarizes the 'NETA effect' on the various participants26. 

	

3.4.2.1 	Large portfolio generators 
These are the Generators with a portfolio of stations across the country, including mid-merit, 

peaking as well as baseload plant. Their possible operations will be as follows: 

36 



Chapter 3. The New Trading Arrangements (NETA) 

They might be able to exercise their market power with their 'insider knowledge' in 

short-term bilateral. 

They will use the balancing mechanism for the margins, as they do not have much 

flexible plant. 

They might want cover for any imbalances. 

They are in a stronger negotiating position in long-term contract negotiation. 

3.4.2.2 	Nuclear 
These comprise all the nuclear stations belonging to BNFL Magnox and British Energy. Their 

possible activities under NETA are summarised below: 

Nuclear is very inflexible and all its output will have to be fully contracted. 

Because of nuclear's inflexibility, it will have a limited role in the balancing mechanism. 

Unlike under the Pool system, nuclear Generators will not be passive price takers but will 

have to actively bid their output. 

3.4.2.3 Independent Power Producers (IPPs) 
IPPs formed the first generation of independent gas-fired CCGT plant in England and Wales. In 

majority of the generators, the financial loans for construction of their plant was linked to the 

financial return from the projected 15-year output from their stations. 	The power prices were 

linked to their price of gas under their fuel purchase agreements and also to projected Pool prices. 

Their position under NETA will be as follows: 

Complete contract re-negotiation will be required since their output contracts were 

linked to Pool price. 

They have very flexible plant and so will have the choice of under contracting so as to 

use the balancing mechanism to make more money for their output. 

They might become part of a portfolio, to minimise the risk of under-contracting- 

3.4.2.4 CHP, Renewables, Embedded Generation 
In the government's proposed Utilities Bill it was stated that 10% of generation must be met by 

2010 from renewables. This is in line with its commitments to the Kyoto protcol28. This will 

present much longer-term challenges for NETA. Because where there is a strong financial 

incentive for firmer offers and bids, there will be a disincentive for participants to be involved 

with renewables. This is because of the intermittency of the energy sources, which means that 

their generating plant output is less predictable than conventional ones. As a result there would 

be no major incentive for new inward investment, or industrial funding of research into the long-

term technological advancements. 
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Recent renewables projects developed in England and Wales have typically signed contracts for 

their output with RECs under the Non Fossil Fuel Obligation (NFFO) arrangements. The NFFO 

Generators are paid a fixed price for their output by the REC, who in return, is compensated for 

the difference between the NFFO contract price and Pool Selling Price (PSP). The compensation 

paid is recovered from consumers via the Fossil Fuel Levy. 	NFFOs will be abolished under 

NETA, and will probably be replaced by an obligation on Suppliers through 'Green taxes'. 

However this was still to be finalised as at the time of writing. 

The probable 'NETA effect' on renewables will be 

An alternative reference price will have to be quoted for contracting. 

They can expect to be fully contracted, as present. 

They might form part of a generation portfolio, to limit their exposure to the balancing 

markets 

Because of the penal imbalance charges, there will be a greater incentive to get their 

forecast and control right. 

3.4.2.5 Suppliers 
Greater demand-side participation means that Suppliers will be more vulnerable to customers 

whose demand is liable to variation. This inherent uncertainty may cause Suppliers to be 

reluctant to commit to buying specific quantities of power, leading to conservative bidding at the 

margin, which could push prices up. Suppliers who do not take steps to control their risks may 

lose business to those who understand the requirements of their customers and who introduce 

incentives both in their prices and their terms of trade that allow greater predictability of customer 

response. The effects of NETA on Suppliers are outlined below. 

Required to submit FPNs to the System Operator. This will mean Suppliers will have to 

perform real balancing. 

Suppliers would have less of an influence in price setting than was envisaged because 

only a small proportion of demand is movable. 

Suppliers will be very exposed to the balancing market and imbalance price because they 

have very scant knowledge of their customer base and domestic demand is very variable. 

Suppliers will have a great incentive to work with customers, such as on demand 

reduction schemes. This will be useful for internal balancing, or to take advantage of 

balancing market decrements. Suppliers could offer customers favourable terms and 

conditions as a premium for demand management 'options' or as incentives for tailored 

profiles. 

Suppliers will have minimum bargaining leverage in long-term contract negotiations. 
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3.4.3 NETA's Losers 

At present the primary function of Suppliers is to carry out the billing functions of their 

customers. Supply has a high proportion of fixed costs and has a very thin margin for error or 

mismanagement29. Under NETA, Suppliers will have the responsibility for predicting their half-

hourly demand, a new responsibility to this segment of the industry. They would be made to pay 

the penalty for getting their demand predictions wrong, as a result they would be faced with a 

much higher level of financial uncertainty for demand variability also known as volumetric risk. 

As discussed in previous sections, in the desire to reduce their exposure to the shorter-term 

markets, Suppliers will face higher long-term contract prices than at present. Due to the nature of 

electricity consumption, knowledge of demand levels only becomes clearer closer to operating 

time. This would mean Suppliers would not be able to predict accurately and to cover their 

demand in the long-term. They will have to 'fine-tune' their demand in the short-term markets, 

exposing themselves to some degree of short-term price uncertainty. 

Suppliers will have the steepest learning curve under NETA. They are expected to evolve from 

an industry with very limited knowledge on the behaviour of its customer base to a fully dynamic, 

and efficient trading machine. This makes the future for Suppliers very uncertain. The winners 

will be the ones capable of making the most effective transition in the shortest time. In 

conclusion, managing their exposure to the risks presented by NETA will be paramount to 

Suppliers survival. 

3.5 Summary 

NETA has resulted in a major overhaul of the ESI. The marginal pricing regime has been 

replaced by a series of bilateral markets. These bilateral markets operate on sequential bases 

starting with. 

Long-term bilateral contracts and exchange traded tools 

A short-term 'pay-as-bid' screen-based auction market operating from 24 hours until 4 

hours before the scheduled half-hour; 

A balancing mechanism from 4hours until operating-time to allow the SO to balance the 

system; 

A settlement process for settling imbalances. 

NETA's bilateral markets are expected to remove the market inefficiencies of the present system. 

However, the new markets could simply give Generators more leverage, without tackling the 

apparent cause of the failure of the marginal pricing system, the abuse of market power by large 
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portfolio Generators. This could cause a 'NETA effect', which could see increased prices, a rise 

in price volatility, a reduction in new entry, and an increase in long-term contract prices. NETA's 

most disenfranchised group will be Suppliers. Under the present system, they are the group with 

the tightest margins. The NETA effect could result in a further erosion of these margins through 

tighter imbalance penalties that will accrue from the scant knowledge of their customer demand 

habits and higher long-term contract costs. 
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4. Risk Management within the ESI 

4.1 Overview 

Suppliers are entering an increasingly uncertain era, with the introduction of NETA. They will 

need to evolve more effective risk management strategies to be able to stay competitive and 

remain in business in this new marketplace. This chapter examines the subject of risk 

management within the ES!, with a view to evolving a robust strategy for Suppliers to shield 

themselves from NETA's uncertainties. The definition of 'risk' is presented in the first section 

together with a general description of financial risk management. 

Supplier risk management in the ESI is discussed in some detail, from the most commonly used 

techniques to the latest innovations. The inadequacies of these methods as they may fail to 

minimise risk under NETA are then analysed. This is followed by a proposed risk management 

strategy to eliminate Supplier short-term demand uncertainties under NETA 

42 	Definition of 'Risk' 

Everything changes: change can be good or bad for those it affects. Change leads to risk or 

uncertainty, the prospect of gain or loss. The subject of risk is broad ranging and affects all 

aspect of everyone's daily lives, from crossing the road to eating food. For the purposes of this 

discussion financial risk as related to business operation shall only be considered. A suitable 

definition of financial risk is given as: 

'the uncertainty in the outcome of the Profit and Loss statement' 

Risk can thus be considered as the likely deviation from the expected outcome. Few business 

ventures or activities are entirely risk free. The three possible outcomes from a business project 

are 

It makes as much money as was expected. 

It makes significantly less money than expected 

It makes significantly more money than expected. 

The first outcome is the most desirable, because companies base their long-term investment 

strategies and dividend payout projections on expected profits or incomes. Realising these targets 

is vital to the long-term competitiveness and investor confidence in any business. The second 

outcome is undesirable and may lead to a loss if the revenue gained from the project is less than 

41 



Chapter 4. Risk Management within the ESI 

the cost. In the worst case this may result in business failure. The final scenario is also 

undesirable, though not as disastrous. Unexpected revenue is often much less efficiently used 

because it is unaccounted for within the long-term business strategy. This could result in missed 

opportunity and may unduly raise investor expectation, which will have dire long-term 

consequences if the extra revenue, translated to higher divided payout is not maintained. 

4.2.1 Risk Management 

Risk is inherent in all business  activities and is something that successful competitive businesses 

must come to terms with. Coming to terms with the risk does not mean its elimination, which is 

clearly impossible; neither does it mean the fatalistic acceptance of its consequences. It means 

managing the risk; that is deciding which risks to avoid, and how to avoid them, which to take on 

and so on. The 'science' of managing risk is known as 'risk management'. 

Figure 4.1. Example of earnings variability30  

An effective risk management strategy should ensure that companies have the cash for investment 

when needed. The strategy should not completely insulate the company from risk of all kinds, so 

as to be able to take advantage of favourable movements in fortune. Figure 4.1 shows the 

earnings variability of two companies, Wildride Inc., and SteadyCo. The income flows within 

SteadyCo are much more desirable because they are less variable and hence more predictable 

enabling its directors to plan more effectively than those in Wildride Inc. 

4.3 	General guidelines for the implementation of a risk 
management strategy 

The first step to the formulation of an effective risk management philosophy is to impose 

guidelines on the risk management decision-making. This stipulates the kinds of risks to avoid 

and the ones to take on. The philosophy should give an indication of the attitude to take towards 

the various types of risks that might be faced. 
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Once a company decides to implement a risk management strategy, the following steps outlined 

below must be employed". 

Identify potential risks: There are many sources of risk in a firm's operations and these 

must be identified 

Prioritisation: The potential risks must be ranked in order of their importance 

Risk analysis: Determine the nature of each risk, its effect on the company and the 

probability of the event occurring 

Decision: A decision is made as to whether the risks are trivial, tolerable or significant. 

This is used to rank the risks in order of urgency. 

Regulation: deciding on a course of action to be taken to eliminate or minimise the risk 

and analyse the effect of this action on the risk. As a further step, the effect of alternative 

risk management actions could be analysed and compared. 

Implementation: The enforcement and monitoring of the chosen course of action. It is 

possible that this could throw up other new potential hazards. 

4.3.1 The risk of risk management 

The benefits of applying risk analysis and management are great, but risk analysis and 

management are not without their own set of risks. The primary risk in doing any risk analysis is 

that the recommendations for the management of the risks are inaccurate. This is referred to as 

the risk of risk analysis. Understanding this risk is very important to ultimately increasing the 

value of the risk management strategy. The risks from risk analysis are outlined below": 

Inaccurate conclusion from risk analysis could either lead to overestimation or 

underestimation of the risks. Overestimation could have substantial effects like holding 

back assets. This could deprive key areas from the resource that could have made the 

business activities a greater success. Underestimation more often than not results in a 

secondary consequence, those of management panic. Instead of being proactive, 

management finds itself reacting to events. 

Perversely, accuracy can also be a cause of risk. The true value of the analysis cannot be 

proven, since by recommendation of the analysis, the risk was avoided. As nothing went 

wrong, the analysis can be seen as an unjustifiable cost. Thus, the next time the analysis 

is required it is not performed. 

Another risk with risk analysis is that it can be used to keep the status-quo. This can also 

take the form of organisational blame, causing intimidation instead of improving the 

situation. 
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Risk analysis often over-relies on producing numbers, and does not rely enough upon the 

human expert knowledge and common sense required to interpret results. Different risk 

analysis techniques, produce varying results. This could result in arguments over the 

techniques rather than over what the results might be indicating. 

The cost of performing risk-analysis may impede project success. Firstly, risk analysis 

will take up resources that might be better applied to the actual project at hand. 

Secondly, risk is perceived as bad and the very fact of conducting an analysis could 

stigmatise the endeavour as one to be avoided. 

There are no quality controls on risk analysis themselves. Risks are only potential events 

with no certainties. Only after the event can the value of a risk management strategy be 

ascertained 

An effective risk management strategy does not involve the identification of risks and the 

implementation of a course of action to manage these risks only, but must also feature an 

effective interpretation of the results and an understanding of the wider implications of the risk 

management strategy on the firm. Understanding the risks of risk management will ultimately 

improve the value of the strategy. 

44 	Quantifying Risk exposure 

Before formulating a risk management strategy, the risk has first got to be quantified or 

measured. Risk measurement techniques are used for this purpose. Their aim is to provide an 

indication of the probabilities of different levels of deviation from the expected outcome. 

Financial risk measurement methods evolved initially in the financial markets. The earliest of 

these were Gap Analysis and Duration Analysis. Both were specifically tailored to measure 

interest rate risk. For all other financial risks, traditional measurement comes under two broad 

headings, statistical and scenario analysis. This section will briefly discuss both methods. 

44.1 Statistical 

Statistical analysis tries to postulate a measurable relationship between the exposure variable and 

the factors that might influence the loss or gain. These techniques are used to make numerical 

estimates of the uncertainty. The most commonly used technique in the financial markets is the 

variance since this gives a measure of the amount of spread of data about its mean. For example, 

returns on Wildride inc. have a higher variance than SteadyCo, therefore they would be 

considered more risky. A risk adverse investor will invest in SteadyCo to avoid the uncertainty. 

Variance has limited use as a measure of risk since it does not take into account expected 



Chapter 4. Risk Management within the ESI 

outcome. There exist more sophisticated techniques that attempt to provide an improved measure 

of risk, for example Pollatsek and Tversky33. Their measure incorporates both variance and the 

value of the expected outcome, so that it can be more readily used to compare directly and to rank 

the desirability. Other knowledge about the company can also be gained  from the variance 

calculation. 

The disadvantage of statistical measures is that they are based on estimated parameters. These 

can be very sensitive to the choice of proxies and the inclusion or exclusion of other variables. 

Relationships can change over time, often quite dramatically, so there is always the added risk of 

under or overestimation because the relevant risk factor has altered. 

4.4.2 Scenario Analysis 

Scenario analysis gives a different type of measurement to anything obtained by statistical 

analysis. It estimates the effect of 'what if' scenarios on a company's activities. To perform this 

type of analysis, the spectrum of scenarios a business is likely to face are identified and 

stimulated to determine the impact on the business34. There are two types of scenario analysis, 

static and dynamic. Scenario analysis can be applied to most kinds of risk, and is less limited by 

data availability and historical trends than statistical approaches. 

There are four main steps in performing scenario analysis: 

. Select a scenario, that is a path describing how relevant variables might evolve over a 

time horizon period; 

	

. 	Postulate the cash flows and/or accounting values of assets and liabilities as they would 

develop under the scenario; 

Repeat the first two stages for any other scenarios that might be encountered; 

Use the results of the scenarios to come to some view about the exposure. 

Scenario analysis is very effective because it alerts the company to all possible outcomes from a 

business endeavour. When using this method, care should be taken to explore all possible 

scenarios, as the omission of any potential scenarios will mean risks could go undetected. 

	

4.5 	Risk management methods - hedging 

Once the exposure has been determined, a decision must be made based on the corporate risk 

philosophy, on how to manage this exposure. If a company decides to take a proactive approach 

towards managing the risk, then the concept of hedging will be utilised. Hedging is the most 

commonly used risk management technique. A hedge is a contract entered into or an asset held 

as a protection against possible financial loss and will function in either one of two ways. 
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If the exposed asset (or liability) losses value, the hedge will compensate by increasing in 

value. 

If the exposed asset (or liability) gains  value, the hedge balances by decreasing in value. 

Hedging reduces the volatility of a company's cash flows, giving greater certainty to future cash 

flows and consequently enhanced budgetary decisions. There are two types of hedges, the 

internal and external hedge35. 

An internal hedge is constructed by matching the risks with a high negative correlation 

within a company's portfolio. For example, portfolio generators own a diversity of plants 

with different fuel and generating characteristics. This diversity reduces exposure to 

plant specific risk. 

The external hedge involves offsetting the financial risk with an external party willing to 

take on the risk either for a fee or to balance an equal but opposite risk within their 

portfolio. This external agent is known as a counter party. The external hedge is done 

through either purchasing exchange traded or Over-The-Counter (OTC) instruments. 

OTC instruments are tailor-made to fit exactly the hedging requirements but they are 

rather expensive and involve an clement of counterparty default risk. 

4.5.1 Hedging strategies 

There are two main types of hedging strategies, static and dynamic. Static hedging involves 

taking a fixed position for the duration of the hedge and dynamic hedging involves actively 

changing the hedging position to take advantage of more favourable opportunities during the 

lifetime of the hedge. 

Once the decision has been made to hedge, the basic choice is between standardised exchange-

traded instruments and tailor made OTC instruments. The trade-off is between exchange traded 

instruments which are more liquid, and OTC which fit hedging needs more closely but are more 

expensive and less liquid. 

To illustrate the concept of hedging, an example of a simple static hedge using exchange-traded 

options is presented. PipesCo is a large copper pipes manufacturer that will start purchasing a 

significant quantity of copper for a large order in 6 months time. Assuming that there is no 

exchange rate risk, then PipesCo will be exposed to the spot price of copper on the commodities 

markets in six months time. The company will favour lower than anticipated prices in the future 

because higher prices will increase production costs. PipeCo will want to insulate themselves 
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from higher prices while having the option to take advantage of lower prices. To achieve this, 

PipeCo will buy 'call' options on the future price of copper. A call option gives the holder the 

right to buy the asset at an agreed price on a specified date. A profit diagram for this example is 

illustrated in figure 4.2. 

Profit 

C2Op 

Loss 

Figure 4.2. Profit diagram for 'call' option of copper prices 

The agreed future price on the commodity market is 130p per unit of copper (known as the 

exercise price) and the specified date for delivery is in six months time (the expiration date). If 

the price of copper is less than the exercise price on the expiry date, the option will be allowed to 

expire, costing PipesCo 20p, the price of the option. If the copper price is above the exercise 

price, then the option is exercised and PipesCo will pay 130p for each unit of copper plus 20p, the 

price of each option. The option could be viewed as an insurance policy since the fee paid is the 

premium to guarantee a cap on the maximum price for a unit of copper. By pursuing this strategy 

PipesCo has ensured predictable future cash flows. 

4.6 	Overview of risks in the Electricity Supply Industry 

Up to this point, the discussion has focused in general terms to introduce the concepts of risk and 

its management as can be applied to any industry. 

The subject of risk management has been relevant in the ES! since its inception mainly because of 

the dynamic nature of electricity supply. The risk management in the pre-privatisation era was 

aimed primarily at optimising generation, transmission and supply. Post-privatisation risk 

management has been very different, and is geared towards increasing shareholder value. This 
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has led to the evolution of a new generation of methods and tools, the majority of which were 

borrowed and adopted from the financial markets. 

This section focuses specifically on risk and its management by Suppliers. These risks will be the 

same regardless of the market structure but their manifestations might vary. 

Supplier's financial risk can be grouped under the following headings; credit, volume, price, basis 

and operational risks. Particular emphasis is placed on volume, price and basis risks because they 

represent the uncertainty from Suppliers core business activity, supplying electricity. 

4.6.1 Credit risk 

Credit risk is the risk that a loss will be incurred if a counterparty defaults or fails to meet the 

terms on any contract. There are two types of credit risk, settlement and performance risk. 

Supplier settlement risk is associated with the anticipated payment for power delivered. It occurs 

when either a Generator fails to honour the output commitments stipulated within the terms of a 

long-term contract or a customer defaults on their bill repayments. 

Performance risk is the risk resulting from the difference between the market price and the 

contract price of power delivered at an agreed price. In the wholesale markets, Suppliers sign 

fixed priced contracts with Generators. If the long-term average price of electricity in the spot 

market is lower than the contract reference price, then the extra revenue could be viewed as a 

missed opportunity. 

So far, settlement credit risk has not been a problem in the UK electricity industry. However, the 

gas market has seen some bankruptcies from settlement risk and also, the US power market 

suffered some major defaults in June 199836.  The ESI's immunity from settlement credit risk has 

been because most of the market participants are fairly large and are cash rich. Additionally, the 

Pool acted as counterparty to all trades. In the unlikely case of a default, the Pool makes up the 

deficit, shielding Suppliers from the brunt of this risk. 

Under NETA, companies will trade bilaterally and there will be no pool to act as counterparty to 

all trades. Participants will thus be exposed to higher levels of settlement risk. Also, greater 

market uncertainties will translate to income uncertainty. Thus increasing the default risk of 

more market participants. 
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4.6.2 Operational risk 

Operational risk exists within poorly managed or structured organisations This is the risk that 

the company would run into trouble through badly managed trading  activities. It is a risk that 

affects all companies. 

4.6.3 Basis risk 

Basis risk occurs where the cashflows from the financial tool used to hedge do not match those of 

the risk they are intended to hedge. An example is when a Supplier buys an Electricity Forward 

Agreement (EFA) to hedge against future Pool price. EFA's are swaps where the buyer and 

seller agree a forward Pool price for a fixed quantity of electricity. Closer to the future delivery 

date, the buyer's demand circumstances change negating the need for the electricity purchased 

through the EFA. In this case the seller will be left with unwanted volume. 	The risk of this 

type of cash flow mismatch is known as basis risk. In more liquid markets the mismatch is not a 

big problem because mismatched volume can be easily liquidated. This is not the case in the 

electricity markets, because the low volume of trade in the hedging products, EFA's and CFD's, 

would make it difficult to unwind positions. Under these circumstances, such mismatches could 

have serious financial implications37. 

The principal types of mismatch are: 

Product Basis: This is the most important basis risk in the energy markets. It arises when 

there is a mismatch in quality, consistency, weight, or other specification of the hedge 

and the underlying product. Product basis is a big problem because positions as in the 

example above are not easily liquidated. 

Time Basis: This risk occurs when there is a sudden shift in demand or transportation 

bottlenecks occur. An example of a Supplier hedging its winter position by purchasing 

January swing options on contracts is used to illustrate time basis. For a fee, swing 

options give the Supplier the option to vary the amount of electricity purchased from the 

stipulated contract quantity. If the severe cold spell were to arrive early in the winter, say 

in late November, then the spot market prices in December may surge much more than 

the January prices. In this circumstance, the January swing option will not provide an 

efficient hedge against December's spot price and physical requirement 

Locational Basis : This risk was not a major problem because the Pool provided a 

uniform price to Suppliers, regardless of location. The story is entirely different under 

NETA's balancing market where the system will be balanced at the various Bulk Supply 

Points (BSP) around the country, and balance prices will be determined according to the 
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constraints at each point. This will result in differential locational Balancing Market 

prices. Suppliers will have to absorb these price differences, because they will be obliged 

to charge uniformly across the country. 

Mixed Basis Another type of basis risk in the energy markets is mixed basis. It occurs 

when an underlying position is hedged with more than one type of mismatch. A Supplier 

might hedge a January demand exposure with a February gas future, leaving both time 

and product basis exposures. Gas futures are sometimes used to hedge electricity 

exposures because of the intrinsic link between both markets. 

4.6.4 Price risk 

Pool price risk occurs whenever the pool price varies from its expected value. The pool price 

varies considerably on a day-to-day basis. This is illustrated in Figure 4.3 which shows the half-

hourly daily pool prices from three days in the same week; Sunday 8th  October 2000; Wednesday 

I jth  October 2000; and Thursday 12th  October 2000. There are variations in prices within the day 

as well as between days. The high level of variation makes the Pool price very hard to predict, 

exposing participants to income uncertainties. 

Pool price is very volatile hence difficult to predict because it is determined by a complex array 

of interdependencies. Electricity is difficult to store, as such supply and demand have to be 

constantly matched in real-time. The external influences of gas market arbitrage opportunities 

and market power within the price determination process increase its complexity. 
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Figure 4.3. Half-hourly pool price from 3 days in the second week of October 2000 
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Volatility is the degree of randomness within the pool price. Figure 4.4 shows the historical half-

hourly pool price volatility computed over four years from 1996 to 2000. The volatility peak 

occurs between 4:30 and 8pm, the evening peak, this coincides with the daily price peak. The 

combination of the highest prices and higher volatility causes high price exposures over this 

period. Volatility is particularly high during winter, when ratios of peak prices to prices during 

the rest of the day of 10:1 are not uncommon. 

Figure 4.4. Historical volatility of Pool Selling Price for period 15/11/95 - 8/8/99 

The capacity mechanism within the Pool Selling Price has served to dampen the volatility at the 

supply and demand margins. There is no such mechanism under NETA. In bilateral markets 

supply and demand are matched closer to operating time as such volatility will be much higher. 

NETA's volatility might be similar to other bilateral electricity markets without capacity 

incentives. For example in the Victoria Pool in Australia, prices for the same half hour of the day 
17 ranged from A$0 to A$5000 (US$2899) during 1998 .  This anticipated price volatility increase 

will expose Suppliers to greater electricity price risk. 

46.5 Volumetric Risk 

Volumetric risk is when the actual demand varies from expected demand. It is caused by 

customer deviations from their expected consumption pattern. Electricity end-users are classified 

into three generic groups, industrial, commercial and domestic, based on their level of 

consumption. The industrial load segment tends to be fairly predictable because the majority of 

their consumption is used on industrial processes. Commercial and Domestic loads tend to be 

more variable because they are heavily dependent on the weather and random influences like the 

World Cup or Princess Diana's funeral. 
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Suppliers buy fixed volume contracts for greater than 80% of their expected demand in advance. 

Volumetric risk is less of a problem if the half-hourly demand is less than the contracted volume. 

However, if the demand exceeds the Suppliers contracted volume, the Supplier will have to make 

up the excess demand on the spot market. This will expose the Supplier to NETA's imbalance 

prices. 

There are two types of volumetric risk: linear or parallel shift, and non-linear or slope and 

curvature shifts in the load profile: 

Parallel shift: Each daily half hourly load increases by the same amount, this causes the 

whole daily load shape to move up and down 

Non-linear shift: The half hourly load during a day changes in different proportion, this 

changes the shape of the daily load curve. For example, if a customer takes more power 

from 1pm to 6pm in a day and keeps the same consumption level of power for remainder 

of the day, then both slope and curvature in the load shape has changed. 

Non-linear shift is very hard to hedge against because the load shape changes: parallel shift is less 

problematic because the hedge can be tailored to fit the load shape. This can be lower or raised to 

fit the actual demand shape. 

Figure 4.5 Correlation of pool price versus time of day at a local 33kV BSP for demand in 
1997 

The financial implication of volumetric risk becomes greater the higher the positive correlation 

between spot price and demand. Conversely, negative demand and price correlation implies 
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Suppliers could buy the extra volume at lower prices and could possibly benefit from prices lower 

than the contract price. An example of price and demand correlation is shown in figure 4.5. It 

illustrates the correlation between the price and a predominantly domestic load, metered at a 

33kV Bulk Supply Point (BSP) in Scotland for 1997. There is a varying positive correlation 

between the price and demand throughout the day. There are four demand peaks at this location; 

the first peak between 2am and 6am, is due to the overnight heating load; the second peak is due 

to the morning demand; the third peak is the afternoon heating load; and the fourth and highest 

peak between 5pm and 8pm represents the evening demand pick-up. 

In the UK, with the exception of larger half-hourly metered customers, all end-users are charged a 

fixed rate based on fitting their aggregated metered demand to a set of pre-defined standard daily 

profiles. As mentioned earlier, the smaller customers tend to present the greatest demand 

variation. This demand segment does not pay for their electricity according to the specific time 

of day it was consumed. The use of standard daily profiles passes on the cost of volumetric risk 

directly to the Supplier. Standard daily profiles give very little incentive to customers to reduce 

their time of day demand variability. 

Though volumetric risk will stay the same, its financial implications will increase with the 

introduction of NETA. This is firstly because the bilateral market prices will be more reflective 

of supply and demand conditions, resulting in an even higher correlation between electricity price 

and volume. Secondly, the price volatility will increase resulting in higher price uncertainty. 

Thirdly, there will be stiff penalties imposed on out-of-balance participants. 

4.66 Summary of possible evolution of risks under NETA 

As at the time of writing the risks under NETA are not fully known, they are expected to become 

apparent sometime after its inception. This section presents a summary of the possible evolution 

of the risks outlined in the previous section, based on the point of view held both by the author 

and many observers". 

Credit risk: This is expected to increase because the risk of default will be greater as 

participants are expected to experience more volatile income flows. 

Operational risk: This is expected to increase in the early days of NETA as companies 

adjust their systems to the new trading arrangements. 

Basis risk: There will be a wider array of instruments to trade electricity. This will 

increase the scope for mismatches, potentially increasing the Product basis risk. Time 

basis should stay the same as it is at present. Locational basis could become a big 

problem if balancing mechanism prices reflect local constraints. 
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Price risk: It is expected that prices in the various markets will be more volatile than 

under the Pool, resulting in greater price risk. 

Volumetric risk: Though the physical level of volumetric risk should stay the same, the 

financial implications will be increased. 

4.7 	Risk measurement and management in the ESI 

The risks in the ESI were outlined in the previous section, and the expected evolution of these 

risks under NETA was summarised. The first step towards effective risk management is risk 

quantification. This section will examine the risk measurement techniques used within the Pool 

and discuss their inadequacies and possible modifications to suit NETAs needs. The methods 

used were based on techniques used by Scottish Hydro-Electric(SHE): quantification of price and 

volumetric risks are discussed. Credit risk is not discussed in this section because it was not a 

problem under the previous system so risk measurement and management was not necessary. 

4.7.1 Determining the level of exposure to Pool price risk 

The level of exposure to Pool price risk was directly proportional to the percentage of the 

Supplier's contracted volume. Lower levels of contracting meant the Supplier must make up the 

excess volume on the spot market, the Pool. Contracts were hedges against Pool price risk and as 

such, the higher the percentage of contracting, the lower the Pool price exposure. The method 

used by SHE to determine Pool price risk was fairly standard, and is presented below as a series 

of steps to show a typical calculation. 

Exposure was calculated as the percentage of uncontracted demand on a 3-month rolling 

average 

Forecasts of the pool price were obtained from the National Grid Company (NGC) these 

forecasts were made from historical prices, and knowledge of future supply and demand 

The average error of previous forecasts for the month in question was calculated by 

subtracting the actual price from the historic price of the particular month for the previous 

three years to give the Mean Absolute Percentage Error (MAPE) of the forecasts 

The Pool price exposure was calculated as the product of MAPE, net contracted volume 

and forecast price 

A risk management team was responsible for keeping the exposure within the limits set by the 

Board of Directors in their monthly budgets. The team might choose to increase or reduce the 

level of participation on the spot market based on the exposure calculation. During the winter 

months when the demand was generally higher and prices more volatile, the risk manager opted 

for a greater level of cover than in the summer months. From previous experience, the level of 

exposure to the spot market was generally less than 20% of the demand40. 
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The perception of future spot price levels and volatility determined the level of contracting 

required by Suppliers. This gave Generators the negotiating power to charge more for contract 

cover. Suppliers effectively paid a risk premium for higher contracting. 

	

4.7.1.1 	Inadequacy under NETA 
The nature of long-term price trends was not known at the time of writing. Additionally, the 

single reference price, Pool price, was to be replaced by a basket of prices. The method detailed 

above would require modification before it can be applied to the new markets. It is very 

important that participants do not rush into quick fix solutions to manage price risk because the 

true nature of prices and volatility will only be understood after a long period of observation. 

4.7.2 Determining the level of volumetric risk 

To determine volumetric risk, customers were grouped into two classes. The first group were the 

larger wholesale industrial and commercial customers who signed tailor-made contracts with 

Suppliers for their electricity. The second group were the smaller commercial and domestic 

customers, who were charged based on standard tariffs. 

	

4.7.2.1 	Larger customers 
Fixed price contracts were usually signed with the larger customer group for at least six months to 

a year in advance. Such contracts might stipulate a single tariff for a unit of electricity, e.g. £15 

per MWh, or Standard Time of Day (SToD) tariffs to reflect the higher cost of electricity during 

peak periods and the lower costs at times of low demand. Tariffs were normally calculated from 

historical records to recoup the expected cost of electricity the customer might consume. The 

most commonly used approach for determining customers volumetric risk, was the load factor. It 

is a dimensionless coefficient used to determine the level of demand variability. 

The load factor was calculated as: 

Load factor =Average Demand/Maximum Demand 

This measure indicated roughly how 'peaky' a customer's expected demand was. Lower Load 

factors tended to indicate high variability during the day and/or highly seasonal load. Peaky 

customers were riskier to Suppliers because their demand was more difficult to hedge. As a result 

Suppliers were exposed to price risk, because the excess demand was purchased from the spot 

market. High Load Factors implied flatter demand, which implied less variability, which was 

easier and less expensive to hedge. 
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Generally, customers with higher load factors were more desirable because they presented less 

risk to the supplier. Although Load factor was not ideal, it is the most commonly used risk 

measure within the industry because it is widely understood41 . 

A typical load profile for a large customer is shown in Figure 4.6. As can be seen, this customer 

has a flat demand for electricity with two peaks after midnight. This customer used electricity 

overnight and had negotiated cheaper tariffs with his Supplier. This customer was very desirable 

because his demand was predictable and was fiat during peak periods: the customer's load factor 

is 82.18%. 

Figure 4.6. Industrial customer demand on 5th  January 1998 

In practice, the use of more creative tariffing reflective of time-of-use, was rather limited because 

larger customers preferred simpler, more easily understood tariffs. For this customer segment, 

there was stiff competition between Suppliers and electricity expenditure only made up a small 

percentage of the customer's budgeted expenditure. Larger customer's demand preferences 

tended to dictate the style of contracts Supplers issued. As a result, ambitious tariffing schemes 

tended to be abandoned in favour of simpler ones. 

Empirical studies show that customer responses to SToD are often very limited'. Spector, Tishler 

and Ymgu42  found that customers failed to change their pattern of output significantly regardless 

of the potential savings. The reason is that customers' perceived adjusted costs, for example 

scheduling work shifts to avoid peak price, outweighed the perceived benefits of a shift in 

demand. 
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4.7.2.2 Smaller customers 
Smaller customers were charged according to their aggregated demand over a time period, 

superimposed onto a predefined set of load profiles. The load profiles were designed by the 

Electricity Association and are based on statistical data collected over time from monitoring a 

wide sample of users43. There are eight generic classes for the under 100kW customer group, 

two domestic and six non-domestic. 

This customer segment causes the greatest variability to the Supplier's demand. Though profiling 

is more reflective of time-of-use pricing than single tariff pricing, it does not reflect individual 

customer variability because it assumes uniformity across a generic group. There is no method 

used at present by Suppliers to determine the level of risk from this customer segment. For the 

recovery of individual customer costs, more reflective of time-of-use, chunking and algorithmic 

profiling were introduced 

Algorithmic profiling stretches or shrinks the consumption duration on a standard load profile 

whilst maintaining the overall daily consumption. This is to accommodate customers on demand-

managed heating loads. Chunking is when the daily load profile is either aggregated upwards or 

downwards based on the total quarterly metered demand. Algorithmic profiling and chunking 

assume parallel shift risk. Though they are better alternatives to standard profiling neither 

method accounts for non-linear shift risk, as the modified profiles are not reflective of individual 

demand variations. 

Load factor calculations could also be used to determine volumetric risk in this segment. There is 

no half-hourly metering in this demand segment, so volumetric risk was determined from 

measures at Bulk supply Points (BSPs). If there were large customers within the BSP group, their 

demand was subtracted from the aggregate demand. The load factor calculation is illustrated 

with an example from a predominantly  domestic BSP in northwest Scotland between 1997 and 

1998. The load factors in both years for the month of January were calculated as 64.53% and 

64.85%. This showed very little change across the years indicating that the demand profile in this 

section was fairly fixed. In this case, the customer-specific random influences seem to be 

cancelling out each other. The load factors for both years were 55.63% and 57.46%. This was 

lower than for the month of January, indicating  that the yearly profile was more variable than the 

within month profile. This was to be expected because of seasonality. Load factor is a very blunt 

tool and is not an exact measure of load variability. Figures 4.6a and 4.6b show the daily 

demands from the BSP for week 3 in January 1997 and 1998. From the graphs, the similarity of 

the daily profiles across week 3 in 1997 and 1998 vindicate the load factor calculation. 
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4.7.2.3 Application of volumetric risk management tools under NETA 
As previously mentioned the financial implication of volumetric risk is much greater under 

NETA. The risk measurement tools described above are applicable with the new arrangements, 

however these methods are fairly blunt and should be used in conjunction with more sophisticated 

methods such as forecasting to offer effective risk measurement. 

4.8 	Risk management tools 

So far the risks within the ESI have been presented, followed by the methods used to quantify 

these risks. This section examines the tools used to manage these risks, once the exposure has 

been determined, or the decision has been taken to hedge. 

4.8.1 The CFD Market 

The price risk caused by Pool price volatility was hedged through the use of over-the-counter 

(OTC) derivative instruments, namely Contracts For Difference (CFD). These were born out of 

a necessity to hedge all generator output at privatisation. To guarantee the purchase of their 

output, bilateral contracts were signed with the RECs. In 1999, 80% of the total demand in the 

UK was traded through CFD,  s45. At the time of writing, the industry was in the process of 

modifying  these contracts to meet NETA's requirements. 

CFDs typically had a one to two year term, but it was not uncommon for contracts to be signed 

for longer periods. Longer-term contracts were usually linked to long-term fuel purchase 

arrangements. For example, 15 year CFD's were used to link Independent Power Producers (IPP) 

sales revenue to fuel purchase and financing arrangements. 

CFDs were essentially financial swaps between Generators and Suppliers. There were two 

generic classes of CFD's, stacking contracts and time dependent contracts. These are expected to 

undergo some evolution under NETA however their basic principles should stay the same. 
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4.8.1.1 	Stacking contracts 
For a fixed fee, the seller of the contract agreed to pay the buyer the difference between the Pool 

price and contract exercise price for each half-hour the Pool price exceeded the exercise price. 

The exercise price was the price above or below which the contract became active. For the case of 

two-way CFDs, the buyer also agreed to pay the seller the difference between the Pool price and 

the exercise price whenever the Pool price was below the exercise price. The half-hours covered 

by the contract were stacked in descending order of price. The two-way CFD is illustrated in 

figure 4.7. Under NETA the pool price might be replaced by an index made up of a basket of the 

prices in the various markets. 

Half-hourly pool prices 
Price 	stacked in descending order 
in 

L 	I 	Seller makes payments to buyer 

Buyer makes payments to seller 

Exercise 
price 
	 take' 

Total half hour in month 
call 	put 

Half-hours in month 

Figure 4.7. Two-way stacking CFD contract 

4.8.1.2 Time-dependent contracts 
These were more popular because most Generators and Suppliers found it easier to predict their 

output and demand with reference to time rather than to the level of Pool price. Time related 

contracts were the most commonly used CFD type. It is expected that these types of contracts 

would be in higher demand under NETA because prices are expected to be more volatile and thus 

harder to predict than Pool price. 

The contract was usually structured as a two-way option, with difference payments being made 

either way depending on the Pool and exercise price. In this fashion the contract effectively 

swapped the Pool price for the contract price. Contract quantities varied according to the season 

and the time of the day. The periods covered in the contract were based on any standard time 

interval, for example time-of-day, day of week or season, or might have been sculpted to reflect 

changes in the level of cover required. An example of a time related contract is given below in 

figure 4.8. The contract is simply a function the time of day. 
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CFD's effectively swapped Pool price for the contract price. Contracts generally used PPP, 

which was the sum of the energy (SMP) and capacity components of Pool price, as the reference 

because it was the common risk shared by Generators and Suppliers. CFDs on PSP were 

sometimes also designed. The relationship between the contract price and exercise price was 

arbitrary; it reflected the risk premium that was judged fair by both parties. 

Seller pays buyer 
difference 

Contract 
price 

Price 
Contract exercise price 

quantity / 	

I 

	

quantity 	Buyer pays seller 
difference 

Midnight 

	

	 Noon 	 Midnight 
Time of day 

Figure 4.8. Time-dependent CFD contract 

As with Stacking contracts, it is expected that a basket index of NETA prices would replace the 

Pool price as the reference for these contracts. 

4.8.2 The Electricity Forward Agreement (EFA) 

Shortly after privatisation, the industry realised that CFDs were too large and inflexible to meet 

all the hedging needs of participants. CFDs were purely bilateral agreements and, as a result the 

larger Generators used their market power to influence contract prices, making the market very 

opaque. The CFDs market was also biased against the smaller participants and deterred outside 

participation, hampering liquidity. EFA's were introduced in 1991 as standardised instruments 

that were supposed to give more hedging flexibility and encourage outside participation, thus 

enhancing liquidity. Although EFAs were initially traded through a third party, in time most 

agreements were made bilaterally. 

EFAs were basically swaps. They were 2-way forward contracts that do not involve payment of 

an up-front fee. The buyer and seller agreed a forward price for the Pool over a defined period in 

the future. If the price turned out to be greater than the agreed price, the seller compensated the 

buyer. If it turned out to be less, the buyer compensated the seller. The price reference used for 
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the majority of EFA's contracts was PPP: the remainder of transactions used capacity or SNIP as 

their reference. 

In the EFA market, the year was divided into calendar weeks, then, for each day forming part of a 

week, into six four hour slots. The four-hour period was chosen to smooth out any short-term 

spikes in the Pool price, while maintaining hedging effectiveness, and condensing market activity 

into manageable series of trading blocks. Table 4.1 below shows the EFA time periods. 

Weekdays are treated differently to weekends because of their different demand patterns. The 

minimum cover period that could be purchased was a 4 hour period for each weekday (20 hours) 

or weekend (8 hours) in units of at least 1 MW. 

Mon-Fri Sat+Sun 

23:00-03:00 WD1 WE  

03:00-07:00 WD2 WE2 

07:00-11:00 WD3 WE3 

11:00-15:00 WD4 WE4 

15:00-19:00 WD5 WE5 

19:00-23:00 WD6 WE6 

Table 4. 1. Time periods in the EFA market 

EFA periods were seldom traded in isolation and were viewed as a series of standardised 

'building blocks' with which market participants might sculpt a contract based on their hedging 

needs. For example WD3. WD4, and WD5 could be combined to provide weekday daylight 

cover over a month, winter or a whole year. A few contract structures became more popular and 

were more frequently quoted. Evident among these was Loadshape 44, which was particularly 

popular with Suppliers. It was an annual swap, which provided a volume of 40MW on weekdays 

between 07:00 and 19:00 hours, with half that volume during the remainder of the week. 

Loadshape 44 for weekdays and weekends is illustrated in figures 4.9a and b. This shape was 

subdivided into seasons of six or three months and was particularly useful to Suppliers when 

managing their portfolios. 
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Figure 4.9a. Weekday Ioadshape 44 	 Figure 4.9b. Weekend Ioadshape44 

EFAs were usually used in tandem with CFDs. CFDs were purchased for cover over the medium 

term (one year). During this time period the market might take temporary deviations from the 

forecast on which the CFD hedge was based. EFAs were purchased to provide temporary cover 

over such periods. In other cases the forecast might deem hedging cover either unnecessary, or 

temporary blips could arouse the need for short-term cover. EFAs were best suited for this 

purpose. They provided greater flexibility affording more exotic hedging possibilities and were 

cheaper than CFDs. It is envisaged that EFAs will also still have a major risk management role 

to play under NETA. Like CFDs, the contract price reference will change. 

4.8.3 Swing options 

Some CFD contracts, for a fee, had options allowing Suppliers to vary the quantities of electricity 

demanded from the stipulated contract amount. These were known as swing options. There were 

various types of swing options in the marketplace. However, the two main distinct swing option 

groups, based on the types of counterpartics in question are: demand and price driven swing 

options. These are discussed in turn. 

4.8.3.1 	Price-driven swing options 
Price-driven swing options allowed counterparties, the Generator and Supplier, to buy and sell 

quantities in the market place. When the electricity price was high the Supplier could nominate 

the contract upwards and sell the extra volume to the Pool. Conversely, when the Pool price was 

very low, the Supplier could nominate the contract downwards and purchase his demand 

commitments from the Pool. This type of contract allowed the Supplier to maximise the swing 

contract value through the purchase and sale of energy. This option took on various shapes and 

forms; the basic contract allowed the base load of energy delivered to swing a certain amount. 

Daily and monthly maximum and minimum quantities were defined at the start. Another 

variation limited the option holder to the amount of times the quantity was allowed to swing from 

the base load quantity. Multiple peaking options had no base load quantity and allowed the 

Supplier to purchase the same quantity of energy but for a fixed number of days over a defined 
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time period. For example, the option on contracts for next day delivery might stipulate that it 

could be exercised five times only during the summer. 

483.2 Demand-driven swing options. 
Demand swing options were found in contracts where Suppliers could nominate only up or down 

the quantity demanded and hence they could only accept and not sell the energy into the market. 

Suppliers nominated the swing contracts to meet increased or reduced demand conditions. For an 

up-front fixed fee, some demand-driven options were allowed to swing without bounds, that is, 

without limits to the quantities demanded. Others had the maximum and minimum quantities 

defined. 

Swing options will have an important role under NETA. They can be used in conjunction with 

CFDs and EFAs to offer Suppliers the flexibility to alter their contracted demand positions closer 

to operating-time to avoid imbalance charges. 

4.8.4 Weather derivatives 

Since their introduction in 1997 by Natsource (a risk management company), latest estimates put 

the number of weather linked deals done in the US by 2000 at between 2500 and 3000, with a 

total value of around $7billion. In Europe, around 100 deals with a total value of $45 million 

were in struck in 2000. The rate of growth is particularly notable in Europe where only a handful 

of transactions were conducted in 1999. Weather derivatives are OTC contracts that swap the 

risk of unfavourable weather on company returns, through a third party, with a company that has 

equal but opposite weather risks. For example, an ice-cream manufacturer could enter into a 

summer weather derivative with an electricity Supplier. The ice-cream manufacturer is likely to 

be exposed to low sales volume during a poor summer because demand for ice cream may 

decrease. This is the opposite for an electricity Supplier who benefits from increased 

consumption when the weather is bad. The ice-cream manufacturer would compensate the 

Supplier in the event of a warm summer and will receive compensation from the Supplier in the 

event of a poor summer. 

The weather is the main source of customer demand variation and, the primary cause of 

volumetric risk. It causes domestic consumers to consume more by staying in and using higher 

levels of space and water heating. Weather-induced demand fluctuations can swing volumes by 

30% from one year to the next. Instruments to manage this risk will be very important under 

NETA. At present there has been very limited use of the appropriate instrument among Suppliers 

primarily due to scepticism. The only publicised deal was between Scottish Hydro-Electric 

(SHE) and Enron, a major US energy dealer". SHE was compensated whenever the average 

temperature remained below a specified level during the winter 1998/99, through a Heating 

Degree-Day (HDD) swap, lasting from the beginning of October to the end of March. 
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The purchaser of a HDD swap receives a certain value for each unit of temperature below a set 

reference temperature on each day for the life of the swap. A degree-day is the number of units 

of temperature below the reference temperature on a given day. In the SHE/Enron deal, the 

location reference point was set somewhere in England. Due to the lack of data on this deal 

because of commercial sensitivity, a reference point in North Eastern Scotland would be used to 

illustrate a similar weather derivative contract. The reference price for the contract is 65°F the 

same as was used in the SHE swap. 	The graph in figure 4.10 shows the average daily 

temperature and the reference temperature threshold line. The temperature data was purchased 

from the Meterological Office for the Dyce weather station near the Aberdeen airport. The sum 

of money agreed for each degree-day is £5, which is multiplied by the sum of the HDDs for the 

duration of the contract. This gives a total of 4350-degree days. For a winter swap between 

October 1998 and March 1999, this contract is due £21750. 
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Figure 4.10. Weather derivative contract 

The HDD calculation illustrated above is the simplest valuation method for weather derivatives 

and was the method used in the Scottish-Hydro swap. 

An estimated 70% of all businesses face weather risk in some form and as such weather 

derivatives will be of use to most companies. The weather derivative market is still mostly an 

OTC market. In Europe, the high cost of acquiring weather data, in some cases adding 10% onto 

the cost of the contract, has also been a major factor slowing their uptake. From the evidence of 

growth over the past three years, it is expected that initial scepticism will thaw and weather 

derivatives will become even more popular over the next decade, leading to increased liquidity 

and more transparent and flexible products. They could to play an increasingly important part in 

Suppliers risk management activities under NETA. 
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4.8.5 Demand Side Management 

Demand side management (DSM) was originally set up in the nationalised era to decrease end-

user electricity demand in order to cut overall demand growth. This was done to reduce the need 

for further investment in generation and distribution plant. Although, in the search for profit, it is 

often in the interest of Suppliers to sell more electricity rather than less, sometimes it is 

advantageous for the utility to help reduce its end-user demand. For example, a Supplier would 

want to minimise his demand during periods when electricity costs to him are at peak values. On 

occasion, the avoided cost to meet the greater demand is less than the potential profit from greater 

sales. This is known as Least Cost Planning (LCP)49. The post-privatised vertically industrial 

structure of separate generation, transmission, distribution and supply, make such optimisations 

difficult to achieve. In Scotland, where vertical integration has lasted for much longer, there is 

greater demand-side management. 

Despite these limitations, DSM might be very useful under NETA because it can be used to 

change the load shape, reducing or shifting customer's demand away from the periods of volatile 

prices or demand. This could potentially reduce the level of price and volumetric risk. Load 

shape modifications are achieved using one or a combination of the following methods illustrated 

below in figure 4.1 i50. The x-axis is time and the y-axis is load. 
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Valley filling 

Load shifting 	 Flexible load shape 

Figure 4.11 load shape modifications with the x-axis referring to time and y-axis to load 

Peak clipping - A reduction in electricity use usually restricted to times of near system 

peak conditions 

Valley filling - An increase in off-peak use 

Load shifting - A shift in use from peak to off-peak periods 

Strategic conversion- A reduction in overall use of electricity 

Strategic load growth - An increase in overall use of electricity 

Flexible reliability - An implied reduction in the availability of energy reflected in an 

increased probability of service being interrupted. 
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Suppliers can achieve load shape changes through a variety of methods. The different types of 

incentives available to Suppliers are outlined below: 

Load control: this involves controlling customer energy usage. This is done either 

through direct, local, or distributed methods, through the installation of communication 

devices at both Utility and customer facilities, enabling real -time alteration of the load 

Time-of use rates: Higher rate tariffs during peak demand hours can encourage customers 

to conserve and to shift demand to off-peak hours. 

Interruptible and Curtailable rates: In exchange for discounted rates, customers with 

typically large industrial or commercial facilities allow power to be turned down or off 

when it is needed elsewhere in the system 

Thermal energy storage (TES): These systems use off-peak electricity to heat a storage 

medium, and then draw from that medium to provide space heating during peak hours. 

TES systems offer customers energy savings where time-of use rates or demand charges 

are in effect. 

• 	Cogeneration: When capacity is constrained, some utilities promote customer use of on- 

site production of electricity. Though this might appear to reduce host utility revenue, 

many of these units are owned and leased by the utility. An example of Cogeneration is 

Combined Heat and Power (CHP) where there is simultaneous generation of usable heat 

and electricity in a single process. 	The heat generated in the process is 

utilised via suitable heat recovery equipment for a variety of purposes including: 

industrial processes, community heating and space heating". 

Conservation: Energy conservation programmes encourage customers to improve the 

thermal integrity of buildings and to use more efficient equipment and appliances to save 

energy costs. This results in decreased demand. To achieve this, some utilities give 

discounts as an incentive on energy conservation devices. 

So far there has been fairly limited use of DSM under privatisation except in Scotland. This has 

been for reasons given earlier. Under NETA, there will be a greater incentive for Suppliers to 

manage their load more effectively, especially for smaller customers because of the volume risk 

they pose. This could lead to more complex and dynamic tariffs and also more creative use of 

DSM, to reflect more accurately the time of day costs and to control possibly demand52. 
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4.8.6 Portfolio management 

In the financial markets, if the pattern of return on two risky stocks is sufficiently uncorrelated, 

then combining the returns on both stocks will reduce the risk, as the fluctuations cancel each 

other out. The percentage of risk on individual shares decreases by combining stocks with 

uncorrelated returns cancelling out the firm specific risk. The risk that remains within the 

portfolio is the market wide risk and is common to all shares. The optimal portfolio size is 15 

stocks, beyond which the risk reduction is negligibl&53 . 

This technique of combining assets to reduce overall risk has many applications. By gathering a 

large diverse customer base, Suppliers eliminate some of their volumetric risk. Random demand 

variations from individual customers cancel out each other leaving market wide effects like the 

weather and price risk. This technique goes some way towards reducing an clement of volumetric 

risk and would have even greater relevance under NETA by reducing some of the volumetric risk. 

4.8.6.1 	Value-at-risk 
The concept of Value-at-risk (VAR) was developed as a response to concerns about high profile 

derivative loses in the financial industry in the early 1990's54. J .P Morgan introduced the concept 

in December 1994 as part of a package known as RiskMetrics 5. VAR is the amount of money a 

trading company might lose due to the market risk of asset prices moving against it before it can 

close its position. In practical terms, VAR measures, for a portfolio, the worst expected loss to a 

specified confidence level during a given period of time under normal market conditions. VAR 

effectively gives a measure of the level of a company's market risk exposure. For its calculation, 

the concept uses 

The sensitivity of a portfolio to changes in underlying prices, which reflect how well the 

portfolio is hedged (the more fully hedged the less sensitive it is to price changes) 

The volatility of prices, which reflects the likelihood of large price changes. 

VAR can be applied to many risk management related activities with varying objectives. The 

main criticism of this method is that it does not take into account abnormal events like market 

crashes. In the US, VAR has been applied to the electricity market with a varying degree of 

success. It must be noted that there are fundamental differences between the electricity and the 

financial markets which complicate the application of VAR to the electricity markets". For 

example, the electricity spot price follows a mean-reverting process and has very strong annual 

and semi-annual seasonality factors. Added to this, VAR calculations only account for price risk 

and using VAR on real energy portfolios does not account for volumetric risk. Care should be 

taken when attempting to apply this method to NETA, because it requires a large historic data set 

to infer robust volatility and correlation calculations. 
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4.8.6.2 	Profit-at-risk 
Most electricity Suppliers focus on sales margins from their retailing activities as the key 

performance measure for management reporting. These are profit or revenue figures, which are 

very different from those of a bank, which focuses on portfolio evaluation, and the daily 

management of the balance sheet. VAR for a bank gives a risk measure that is directly related to 

the balance sheet value. As a Suppliers core business is measured in terms of profits and margins, 

a risk measure that is directly related to profits is more appropriate. This has led to the 

emergence of 'Profit-at-risk' (PAR) as the key measure of risk in the energy industry57. 

The main feature of PAR is that, unlike VAR, it assumes that positions will be taken through to 

delivery rather than be closed out. PAR works by using simulation-based modelling, which 

basically tests the whole range of risks affecting spot prices at the time of delivery. It models 

volume risk by running many different simulations, which allow parameters to be set for safe 

trading. 

The above two portfolio management methods, VAR and PAR are very recent additions to the 

risk management arsenal and access to knowledge about their use within the UK's ESI is scant 

because of commercial sensitivity. 

4.8.7 Metering 

Half-hourly metering provides Suppliers with an effective way of determining customers historic 

demand patterns. Half-hourly metering will be very necessary under NETA because it is a means 

by which a Supplier can determine a customer's volumetric risk. This enables not only Suppliers 

to settle the cost of the contract more effectively by passing on the cost of demand variation to the 

customer, but to also monitor the performance of the contract during its time of operation, 

through remote metering". Though metering will not help the performance of the contract, since 

generally tariffs have been agreed beforehand, the Supplier will be alerted to deviations from 

expected behaviour and can take steps to limit the risk through, for example, buying extra EFA 

cover. 

Half-hourly metering provides Suppliers with useful information but the cost of meter installation 

and the administrative resources required to manage and maintain data collection and billing, 

make effective meter provision to all customers impractical. This is particularly true for smaller 

customers where the price of effective half-hourly metering makes up a significant proportion of 

their electricity costs. Ironically, this is the group that provides the most variation. 	Instead, 

Suppliers use standard profiles to calculate tariffs for each class of low demand customer59. 

Chunking and Algorithmic Profiling are performed to make the tariffs more reflective of real time 
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costs. There are several innovative metering options coming on the market place in anticipation 

of NETA. 

4.9 	The future of risk management under NETA 

This chapter has concentrated on describing the risks Suppliers face within the ES!, the methods 

used to quantify and manage these risks. NETA will present increased risks to Suppliers. The 

industry will have to evolve a new generation of more sophisticated risk management tools and 

methods. This section discusses the future of risk management in the ES! and recommends 

suitable strategies. 

4.9.1 Price risk management 

In the present system, Pool price has been the main risk which majority of the present generation 

of tools have evolved to manage. These tools and methods would be inadequate for NETA for 

the reasons discussed in this section. 

NETA will be based on a series of bilateral markets. They will be starting from scratch and will 

have no semblance to the Pool mechanism. Price determination might be done separately in the 

various markets and could be influenced by a wider range factors than in the Pool. For example, 

in the case of extreme weather forecast, the 24-hour prices in bilateral market could be rather 

high. Closer to real-time most of the demand would have been met through the 24-hour market. 

Balancing Market prices may not reflect the 24-hour market's price increases. Currently, it 

would be impossible to forecast the prices in the various markets until adequate data has been 

collected. 	A large database, robust enough to perform accurate price forecasts on which 

exposure calculations are based will take a long time to gather. 

Most CFD and EFA contracts were referenced to one or a combination of the components of Pool 

price. NETA will have no single reference price; prices will be determined bilaterally in the 

various markets. Contracts might be priced based on a combined basket index of the spread of 

prices in each market or made up as a weighted combination of average prices in the various 

markets. Either way, the future pricing and referencing methods for long-term bilateral contracts 

is not clear. Any new methodology could have a new set of hidden risks 

Portfolio based techniques like VAR and PAR will be fairly redundant because they rely on 

historic data to determine the correlations between the assets or the contract values within the 

portfolio. These will not be available until several years after NETA's inception. For these 

reasons, it will be very difficult to design a robust strategy for price risk without making 

sweeping generalisations which could be inherently flawed. 
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4.9.2 Volumetric risk management 

The causes and components of volumetric risk will stay the same regardless of the market 

mechanism or price-setting model and so too would the risk management tools, like weather 

derivatives or demand driven swing contracts. However, the financial costs of volumetric risk do 

change according to the market mechanism. From the discussion in the previous chapter, one of 

the basic tenets of NETA is that Suppliers should be more accountable to demand shortfalls 

through balancing market prices and steep imbalance penalties. This means that the implications 

of volumetric risk will be much higher than in the Pool. 

Suppliers will be required to do real-time balancing,  and will face penalties for getting it wrong. 

In the Pool Suppliers had limited knowledge of demand behaviour because their primary function 

was to sell electricity and to bill customers. Balancing was done solely by the system operator 

and Suppliers were billed for any demand shortfalls. In NETA, Suppliers will be required to 

submit their Final Physical Notification (FPN) to the system operator by gate closure, which is 4 

hours before the half-hour in question. The FPN's should provide information on the exact 

requirements at BSP level. Suppliers will have to gain intimate knowledge of their customer 

behaviour to provide this information. In the Pool demand forecasting was performed primarily 

by the NGC at a national level and as such, it gave no information on demand requirements at 

BSP level. BSP forecasting has not been performed actively in the UK. 

Accurate demand forecasts would effectively be used by Suppliers to quantify their volumetric 

risk from which the exposure to imbalance prices will be calculated by subtracting the forecasts 

from the existing contract position for that half-hour in question. From the exposure calculation, 

Suppliers can make up any demand shortfalls either through nominating demand-driven swing 

options or in the balancing market. Accurate demand forecasting at BSP level will be invaluable 

to Suppliers in NETA. 

The remainder of this thesis describes work carried out to develop an optimal BSP forecasting 

model over a 4-hour time horizon to provide the SO with accurate demand expectations at Gate 

Closure. The Supplier would use the forecast to make up the difference between the contracted 

volume and expected demand to avoid imbalance charges. In the subsequent chapters, the 

various methods available for forecasting demand are compared, discussed and the most 

appropriate ones analysed. From this, the chosen method is optimised with a view to improving 

Suppliers volumetric risk measurement. 
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410 Summary 

This chapter introduced the concept of risk and its measurement and management. Suppliers 

faced a variety of risks from their trading activities including price, basis, credit, operational and 

volume risks during the Pool's existence. These are expected to increase under NETA. The most 

commonly used methods for measuring price and volume risk, the greatest risk Suppliers faced 

under the Pool was outlined. To introduce the concept of risk and its management in the ES!, the 

range of tools and methods evolved since  privatisation to manage price and volumetric risk were 

presented and their use summarised. Possible modifications of the existing risk management tool 

were suggested for NETA 

The arrival of NETA will invalidate the majority of these tools in their present incarnation. 

Modifications to existing methods, together with a new generation of tools, will be needed for 

effective risk management in an uncertain era. Designing tools for price risk management would 

be pointless because at the present time there is no historical data or prior knowledge of the 

markets operation. Volumetric risk stays the same regardless of the market configuration. Using 

optimal short-term demand forecasts, combined with knowledge of contractual positions, will 

alert Suppliers to exposures, allowing them to be managed. In order to avoid NETA's imbalance 

charges, accurate demand forecasts are necessary for the elimination of volumetric risk. 
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5. Electricity demand forecasting 

5.1 Overview 

Electricity demand forecasts are essential for the effective operation of the ESI. The system 

operator, National Grid Company (NGC), traditionally performed this function. These forecasts 

were used for scheduling, maintenance and long-term system planning. With the introduction of 

the New Electricity Trading Arrangements (NETA), Suppliers are required to submit Final 

Physical Notifications (FPN) 4 hours in advance to the system operator of their half-hourly 

demand position at every Bulk Supply Point (BSP) they service. Failure to provide accurate 

demand figures results in heavy penalties, which could have severe financial implications to 

Suppliers. As a result, accurate demand forecasting will become a vital part of Suppliers risk 

management activities. 

This chapter examines demand forecasting with a view to devising the appropriate forecasting 

tool for Suppliers needs. Before accurate demand forecasts can be made, the demand has to be 

understood together with the factors influencing its behaviour. The different types of demand 

forecasting methods are discussed in the second half of this chapter to determine which ones can 

be applied to satisfy NETA's requirements. 

5.2 	Customer demand 

In December 1933, George J. Read of Brooklyn Edison Company wrote in Electrical World 

magazine "urgent need for intelligent forecast of the future electrical demands and consumption 

is unfortunately accompanied by factors which weaken faith in most of the various methods used 

for past forecasts "59. This statement remains true today and serves as a reminder of the problems 

and difficulties of predicting the future. Human needs ultimately drive demand for energy, but 

the great variety of its consumers and end users creates a wide range of dissimilar use. Figure 

5.160 shows the major customer segments for electricity demand in the UK: domestic, industrial 

and commercial. Each of these demand sectors will be discussed in more detail in the following 

sections. 

5.2.1 Industrial users 

Industrial users constitute up to 28% of the total national demand with the majority of this load 

centred in areas with high industrial activity. The bulk of this load is used up in industrial 

processes, for example furnaces. The industrial load demand curve is very predictable and tends 
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to follow similar daily patterns. Excluding anomalies, this demand segment is not very variable 

and does not present to the Supplier much uncertainty in demand. 
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Figure 5.1. Electricity demand by sector 1999 total demand 43.32GW 

5.2.2 Domestic/Commercial users 

This segment makes up 47% of the total demand. Commercial customers who include hospitals, 

banks, shops etc have been included with domestic users because a high percentage of their 

demand is influenced by the same fundamental factors, notably the weather. Customer 

consumption patterns in the domestic segment are very variable. On any given day no two 

households will have identical demand, and even within a given household consumption patterns 

vary from day-to-day. The domestic customer segment causes the most demand uncertainty, 

hence volumetric risk to Suppliers. 

In addition, customers in both segments are not half-hourly metered. Thus their demand 

uncertainty cannot be apportioned and recovered. 	They will cause the greatest level of 

volumetric risk to Suppliers, as such it was decided to focus on a Bulk Supply Point (BSP) with a 

predominantly domestic/ commercial load for the analysis to select the best forecasting method. 

5.3 	Fundamental demand drivers 

Electricity demand is controlled by the dynamic effect of its fundamental drivers. They are the 

factors that cause consumers to increase or decrease their consumption. Understanding these 

factors is essential to forecasting demand. 
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5.3.1 Economic factors 

The economic climate in which a Supplier operates has an effect on electricity demand patterns, 

with the rate of demand growth or decline heavily dependent on economic trends. Increased 

economic activity also leads to higher investment in domestic, industrial and commercial 

activities. The reverse occurs during economic downturns. 

Total domestic demand increased by 25 per cent between 1970 and 199862, due largely to an 

increase in the number of homes which in itself is reflective of the increased economic activity 

over the period. Though there has been an increase in the number of electricity appliances during 

this time, this was offset by greater efficiency. Commercial demand also increased by 17 per cent 

during this period, mainly due to the ever-increasing reliance on electrical equipment and the 

growing use of air conditioning. 

Because they operate over long time horizons and do not have a direct effect on a daily basis, 

economic factors are not explicitly represented within short-term forecasts. It is very important 

to recalibrate short-term forecasting models frequently to capture the underlying trends. 

5.3.2 Time factors 

Electricity demand is very dependent on the time of use. The four principal time related factors 

that play an important role in influencing load patterns are ,the seasonal effects, day of the week, 

time of day and special days. These will be discussed in greater detail in the following sub- 

sections. 

5.3.2.1 	Seasonality 
Demand changes significantly over the year. This is illustrated in figure 5.2 which shows the 

average daily demand in 1998 of a predominantly domestic BSP in north eastern Scotland. 
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Figure 5.2. Average daily demand for 1998 

The load is cyclical with the peaks on the graph representing the weekdays and the troughs, the 

weekends. Over the year, the demand pattern shows a cyclical pattern with higher average daily 

demand during the winter, gradually descending till the beginning of July, then ascending again 

towards the end of the year. The yearly load cycle occurs gradually in response to the length of 

daylight hours and average temperature changes. The length of daylight hours controls the 

magnitude and duration of lighting peak. Figure 5.3 illustrates the average domestic household 

lighting demand by season. The winter lighting demand peak is very high and occurs in the late 

afternoon, coinciding with domestic customers arrival home from work63  in 	 . As the length of 

daylight hours increases, the magnitude of the evening lighting peak decreases and occurs 

progressively later in the evening. The timing of the morning lighting peak is constant 

throughout the year but its magnitude reduces to almost zero in mid summer. 

The daily average temperature affects both space and water heating loads. It follows a periodic 

cycle over the course of the year. In countries with a high air-conditioning load, for example 

USA, demand shows a significant summer increase. The summer load is still insignificant in the 

UK, but there have been signs in recent years that things could be changing because of the 

increased use of air-conditioning and large computer loads. 
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Clock Time, hours 

Figure 5.3. Weekday lighting demand by seasons 

5.3.2.2 Time-of-use 
Domestic and Commercial demand varies considerably across the day, either as a direct or 

indirect result of daily work patterns. Daily demand tends to be fairly flat except during the two 

daily peaks. The morning peak corresponds to when domestic customers are preparing for work 

and the evening peak commences when customers return from work. The evening peak lasts till 

around 8:30 pm, after which point demand begins to tail off. There is a demand increase around 

midday, corresponding to the lunch break. 

In some parts of the country Demand-Side Management (DSM) has been used to alter the daily 

demand pattern described above. For example, in northern Scotland DSM is used to distribute 

blocks of the space-heating load across the day. This was done in an attempt to flatten the load 

curve to optimise generation. As a result the morning and evening peaks are less noticeable 

because demand is more evenly spread over the day. 

There is considerable demand variation across the days of the week. The demand patterns on 

weekdays tend to show similar trends but vary from the weekend curve. The average magnitude 

of the weekend curve, particularly Sunday, is lower because majority of the commercial load is 

absent. As a result, consumer demand is more evenly spread across the day resulting in less 

pronounced evening and morning peaks. The diagram in figure 5.4 illustrates the day of week 

demand at the BSP in northeastern Scotland. The curve shows a high demand during working 
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hours, corresponding to a high commercial load and shifted domestic heating load as mentioned 

earlier. 
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Figure 5.4. Daily demand for week starting 4th January 1998 

5.3.2.3 	Special days 
On special days, for example public or religious holidays, the demand pattern is significantly 

different, due to the absence of commercial demand and altered domestic customer use. The 

average demand is lower and tends to have a similar shape to Sunday's curve (refer to the figure 

above). Special days must be taken into account in short-term demand forecasts. 

5.3.2 Random factors 

The system load is continuously subject to random disturbances reflecting the fact that it is made 

up of a large number of diverse individual demands. For this reason, the load will always have an 

inherent degree of randomness. In addition to these, there are the unpredictable one-off events 

that can greatly alter the load. These include industrial action, notably strikes or shut downs and 

special TV programmes. There was a noticeable demand spike during the half-time break of 

Scotland's Euro 1996 game with England. This was not caused by the power consumption of 

TV's, which is comparatively very low, but due to kettle consumption during the half-time 

interval. Another example of a random demand change was the Solar eclipse in August 1999. 

The national demand pattern on the day, from 9am to 1pm are shown in figure 5.5, these are 

contrasted with the demand pattern for the same period on the previous day. The demand shows 

a dip between 11:00 and 11:45am, the period of the total eclipse. This was because majority of 

the industrial and commercial load was shut down as the general public took a break to view the 
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eclipse. The effect of these unpredictable events on the load magnitude is very uncertain and is 

impossible to forecast. However, because large demand altering events occur very infrequently 

they do not present an everyday risk and as such not modelled within the forecast. 
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Figure 5.5. Demand during solar eclipse 

5.3.3 Weather effects 

The weather is the largest fundamental driver of domestic and commercial demand. The weather 

factors that have been found to influence the demand are as follows65: 

Temperature: Directly affects the level of space and water heating demand. 

Wind speed: Affects the space and water heating demand. Wind speed is responsible for 

rate of heat dissipation from the external surfaces of buildings. When the outside 

temperature is low the wind speed increases the rate of conduction. At high outside 

temperatures, conduction is lower so wind speed has less effect. 

Illumination effects: This is related to the level of cloud cover and the length of daylight 

hours. The illumination effect determines the lighting demand 

Precipitation: This factor also directly affects the rate of heat loss from building surfaces. 

In cold weather, the water effectively serves to help cool down buildings. Precipitation 

has an indirect effect of increasing domestic consumption by keeping people indoors 

where they will use more electricity. 
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Temperature is the weather variable with the greatest effect on demand. During the winter, a fall 

in temperature of one degree Celsius resulted in an increase of about 3% in average load during 

the half-hour 17:00-17:30 for British unrestricted domestic consumers in the year 1990-9 166. 

Figure 5.6 shows a scatter plot of the demand against temperature at the BSP in northeastern 

Scotland. The demand-temperature relationship may be seen. 

On the scatter plot, there are two similarly shaped clusters: the denser cluster represents the 

weekday demand, which is of a higher magnitude on average because it includes the commercial 

demand. The anomalous point on the scatter plot with zero demand at 9 degrees was caused by 

maintenance work on the BSP. 

Graph of the Daily average demand against temperature 
35 

30 

Demand 25 

in MW 
20 

15 

10 

5 

n 

Weekday cluster 

* 

Weekend cluster 

-5 	 0 	 5 	 10 	 15 	 zu 

Daily mean temperature in degrees (oC) 

Figure 5.6. Daily average demand against temperature 

Electricity is very widely used in the domestic and commercial environment. The next section 

examines the weather sensitive components of domestic and commercial demand. 

5.3.3.1 	Space heating 
Space heating contributes up to 75% of the total domestic electricity consumption. The space 

heating demand within a Supplier's BSP region usually depends on the local penetration of gas as 

a heating fuel. In northern Scotland, electricity is the principal fuel for heating purposes because 

the gas network is very limited. 

The relationship between the space heating energy demand and outside air temperature depends 

on the following: a physical loss effect, socio economic factors and other individual consumer 

choices notably, the desired level of thermal comfort67. 	This section briefly explains this 

relationship. 
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Three forms of cooling determine the rate of heat loss from the dwelling space: conduction, 

convection and radiation. 	The heat loss Q from the outside surfaces can be viewed as an 

increasing convex function of the difference between internal temperature, T, and the outside 

temperature, Ti , and can be represented by a polynomial68  

Q = c1 (T— T)+c2 (T— T)2  +c3(T - 7)3 +c4 (T— Ti )' 	Equation 5.1 

where c1  to c4  are coefficients. 

The convexity of the heat loss function means that, as outside temperature increases less energy is 

required to maintain the desired level of thermal comfort. Thus, the relationship between the 

demand and outside temperature becomes less marked as the temperature approaches this level. 

The level of thermal comfort depends on the consumer's preference and ability to afford it. For 

example, a retired single pensioner might want to keep warm but would opt for a lower level of 

thermal comfort to avoid high space heating cost. 

Thus, the implicit price of thermal comfort falls as outside temperature increases because 

consumers elect to switch off their heating systems. There is a temperature above which 

temperature has no effect on demand. Some consumers may change their behaviour in response 

to lower temperatures by wearing warmer clothes indoors. The net outcome of the price effect 

and the consumer's level of thermal comfort on the space heating demand will mean that as 

temperature decreases the increasing gradient of the convex relationship between temperature and 

demand will be dampened. These effects will vary according to the individual households. 

Another determinant  of the relationship between the demand for space heating and outside 

temperature is the capacity of the heating system. If at low temperatures, the heating system 

saturates and cannot maintain the difference between the customers desired temperature and 

outside temperature, the relationship between demand and temperature will flatten. 

The rate of heat loss from buildings is affected by the following factors. 

Quality of insulation: This is dependent on the materials used in its construction and the 

area of the exposed surfaces. Older buildings tend to be less well insulated and have 

larger external surfaces and as such, they lose more heat. 

Duration of the cold/hot spell: The temperature has a lagged effect on the rate of heat 

loss because it takes a period of time for building surfaces to adjust to the external 
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temperature. The longer a cold spell lasts, the greater the heat loss. This is the reverse 

during warmer spells. There is an exponential relationship between the duration of the 

cold/hot spell and the rate of heat loss/gain69. 

. 	Wind speed: As mentioned earlier, wind speed controls the speed of the external airflows. 

Heat loss increases with higher wind speeds. 

Rate of heat build-up/dissipation: This is related to the building density. Densely built-up 

areas have self-insulating properties because their radiated heat warms up the 

surrounding air, slowing down the rate of heat loss. Built-up areas also act as 

windshields, reducing the rate of heat conduction from building surfaces, increasing the 

rate of heat build-up. Conversely, isolated dwellings have a higher heat-dissipation rate. 

Location and building density have an effect on heat loss thus heating demand. 

The discussion above suggests that there are various complex physical, economic and consumer 

preference factors that influence the relationship between the space heating demand and outside 

temperature. These effects are non-linear, complex and thus difficult to model. 

Space heating demand is very sensitive to the time of the day. In the UK there are two domestic 

tariffs: either a time-invariant tariff or a tariff with a reduced over night price but a higher 

standing charge (Economy 7). The majority of Economy 7 customers are supplied with their 

heating demand at night to take advantage of the cheaper rates. This increases the overnight 

weather- demand sensitivity. 

The time-invariant customer would have the preference to use space heating at any given time. 

Commercial customers generally tend to use majority of their space heating during business hours 

with the notable exception of hotels and hospitals. The space heating demand sensitivity to the 

weather will be higher during the night because majority of domestic customers are indoors. 

5.3.3.2 Water heating 
The water-heating load is heavily weather dependent. It is influenced by both physical losses and 

consumer thermal preferences. In water heating, physical losses are primarily from the hot water 

cylinder, the primary pipework and the distribution pipework. The losses from the hot water 

cylinder depends on 

The type and thickness of the cylinder 

The temperature of the stored water 

The volume and shape of the cylinder 

The length of time before hot water is drawn off. 
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Heat losses from the primary pipework can be significant, particularly if the pipes are uninsulated 

or the system keeps the pipes hot for long periods of time. Distribution losses between the 

cylinder and the tap are fairly large and are about 15% of the energy leaving the tank °. The 

weather-water heating demand relationship is very sensitive to the time-of-day during weekdays 

because the heating load coincides with the daily demand peaks. The relationship is less sensitive 

to the time of day at the weekends as water-heating demand is more evenly spread across the day. 

Water heating is a less significant load than space heating and makes up less than 20% of the total 

heating requirements. 

A percentage of the heat lost from water heating contributes towards space heating. However, 

dwellings with poor space heating will have higher water heating losses on average. 

5.3.3.3 Refrigeration and freezers 
The electricity consumption of fridges and freezers is related to the surrounding temperature. 

They cool their contents using the principle of latent heat of vaporisation. As the surrounding 

temperature increases, they would require more energy to maintain the lower internal 

temperature. The relationship between fridge /freezer energy consumption and temperature is 

non-linear71 . 

5.3.3.4 Others 
There are various other appliances within the domestic household that are affected either directly 

or indirectly by the weather. General consumption goes up during the winter and over bad 

weather spells because consumers stay indoors longer, increasing their overall usage. For 

example, more kettles are boiled during cold, wet periods than at the height of summer. 

5.4 Forecasting 

The fundamental challenge to forecasters was best described by the Nobel-laureate physicist 

Neils Bohr when he stated, " prediction is a very difficult art especially when it involves the 

future. Like all statistical methods, demand forecasting is both a science as well as an art: The 

science and art of specification, estimation, and evaluation of the models, which depends both on 

the model's effectiveness and the operator's ability". 

In this discussion only the model's effectiveness at forecasting will be considered. The question 

of operator competence will be assumed to be the same with all models. 

Modern demand forecasting uses a variety of statistical methods to predict electricity demand. 

These methods include econometrics, time-series and artificial intelligence techniques. This 
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section presents an overview and discussion of these methods. Firstly the forecasting time frame 

is considered. 

5.4.1 Forecasting time-frame 

Prior to NETA's inception demand forests were performed primarily by NGC. Three types of 

forecasts were performed over short, medium and long term time horizons. Each type was used 

for different purposes and was influenced by different factors which required different 

techniques. The three forecasting  time horizon and their uses are discussed in turn: 

Short-term forecast: These were used by NGC under the previous system primarily to 

provide dispatcher information, which was used for generator scheduling and to perform 

off-line security analysis. The timescale for short-term forecasts vary from a few minutes 

to one week. In the short-term, demand is primarily influenced by the weather, day of 

week, time of day and random events, notably television schedules. 	Forecasts are 

usually made either every hour or half-hour. Economic and seasonal factors do not 

directly affect short-term demand because they work over longer time horizons. 

Medium term forecast: These were used to provide information for risk management 

purposes, for example Generators priced and sold Contracts For Difference (CFD) based 

on future demand expectations. Medium term forecast were also useful for scheduling 

generator and grid maintenance or repair72. The timescales for medium-term forecasts 

vary from one week to a year. The principal demand drivers over this time horizon are 

day of the week, weather, seasonality, and economic factors. Average weekly and 

monthly weather variables have a greater effect in the medium-term than daily weather 

changes. The forecasts are made either daily or weekly and is not done half-hourly 

because the variables determining half-hourly demand are not known with much certainty 

over time horizons longer than a week. 

Long-term forecast: They are used to plan long-term government energy policy and to 

enable market participants to make long-term investments. Long-term forecasts are used 

by Suppliers to target demand growth sectors. The timescales for long-term forecast 

range from a year to any specified time in the future. The principal demand drivers are 

economic factors and seasonality. Forecasts are made either weekly, monthly or yearly. 

For the purposes of this discussion, short-term forecasting only will be considered because under 

NETA, Suppliers would be required to provide demand predictions at Gate Closure (GC), 4-hours 

in advance of the scheduled half-hour. 
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5.5 Forecasting methods 

This section examines the wide array of forecasting methodologies available from the four most 

common generic classes; Regression, Time-series, End-User and Artificial Intelligence. This is 

done to assess the merits and demerits of each method in meeting Suppliers NETA forecasting 

requirements. 

Each of these methods has been used extensively in academic literature. However, as at the time 

of writing a comprehensive review of their implementation and application to NETA did not 

exist. This section attempts to achieve this by describing and assessing the various methods from 

the large volume of work available. The two most appropriate methods to meet NETA's 

requirements are selected and compared analytically in future chapters. 

55.1 Regression methods 

Regression models are used to find the relationship between independent variables and a 

corresponding dependent variable. In the case of the ES! the independent variables comprise of 

weather, time and previous demand and the dependent variable is future demand. Regression 

methods are grouped into two distinct classes: Parametric and Nonparametric. 

Parametric regression methods formulate a mathematical or statistical model by examining 

qualitative relationships between the dependent variable, load, and load affecting factors. The 

model's parameters are estimated from historical data and the adequacy of the models is verified 

by analysis of the model's residuals, i.e., forecast errors. Parametric models include Multiple 

Linear Regression (MLR) and Polynomial Regressions. With nonparametric methods the 

relationship is determined graphically, directly from the historical data set. Kernel smoothing is 

the most popular nonparametric method for short-term forecasting. 

5.5.1.1 	Multiple Linear Regression (MLR) 
This is the most commonly used short-term forecasting method in practice because of its 

flexibility and ease of application. 	MLR is either used as a stand-alone method for load 

forecasting or to define the transfer function in a time-series load-forecasting model. The 

National Grid Company uses MLR to perform short-term national demand forecasts. With this 

method, the load forecast is determined in terms of explanatory variables such as the weather and 

non-weather variables. The MLR will take the form of: 

y(t) = a0  +a, x,  (t) + ..........+ a; (1) + a(t) 	Equation 5.2 

where 
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Y(') 	= Electrical demand at time t 

x1  (t) ...... x, (I) 	Explanatory variables correlated with demand 

a(t) 	 = A random error term with zero mean and constant variance 

a0 , a 	= Regression coefficients 

Correlating each of these variables with the load variable identifies the explanatory variables to 

be used in this model. The estimation of the regression coefficients is usually found using either 

least squares estimation or maximum likelihood estimation. 	Statistical tests such as the F- 

statistic and t-ratios are performed to determine the significance of the regression coefficients. 

As the name implies, MLR gives a straight-line approximation of the relationship between the 

demand and the explanatory variables. It assumes that the relationship is linear. From the 

discussion in the previous section, the demand-weather relationship is not linear. Thus this 

method might not adequately illustrate the relationship and could bias the forecast. 

There are various methods to adapt MLR to non-linear relationships between the dependent and 

explanatory variables, notably, transformations of linear into non-linear term using an appropriate 

arithmetic function that adequately expresses the relationship. Below are examples of commonly 

used mathematical transformations. 	The two-variable regression model is used in the 

illustrations. 

log-linear: this involves a logarithmic transformation of both the dependent and 

explanatory variable. 

In y(t) = a0  + a1  in x1  (t) + a(t) 
	

Equation 5.3 

Semilog: The explanatory variable is in linear form and the dependent variable is in log 

form. 

lny(t)=a0  +a1 x1 (t)+a(t) 
	

Equation 5.4 

Lin-log: the dependent variable is in log form and the independent variable in linear form 

y(t) = a0  + a1  In x1  (t) + a(t) 
	

Equation 5.5 

Reciprocal: This model is appropriate when the relationship between the explanatory and 

independent variable can be explained by reciprocity. 
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y(t) = a0 +a1 x 1 (t)' +a(t) 	 Equation 5.6 

To determine whether or not to use a mathematical transformation and if so, the most appropriate 

transformation to use, a scatter plot should be plotted for the dependent variable y(t) against the 

independent variable x(I). A visual examination of the scatter diagram is made to select the 

most appropriate transformation. 

There are several considerations to be made regarding the transformation of x(t), most 

importantly whether a transformation actually results in a significant improvement of the model. 

When there is more than one explanatory variable, a multidimensional scatter plot is required. If 

there is correlation between the explanatory variables, care must be taken when interpreting the 

scatter diagram because it is very difficult to determine the exact contribution of each variable. 

This could obscure selection of the most appropriate transform. 

Transforms are one way of modifying MLR's to model the non-linearity in the weather—demand 

relationship. Another class of methods are the switching regression models. A simple example is 

illustrated below. 

a0 +a1 x1 (+a(1) where x, (t) <x0 (t) 	 Equation 5.7a 

= ,#o + 61 {x1 (t) 
- 

(t))+ b(t) where x (1) ~! x0 (1) 	Equation 5.7b 

where 

X(t) 	= weather variable, which is the explanatory in this case 

A 	= equation 5.3 

The switching regression model combines two MLR straight-line approximations each with a 

different gradient. 	A graphical representation is given in figure 5.7. The first model 

approximates the relationship for temperatures below the threshold, x0 (I) whilst the second model 

estimates the relationship for temperatures greater than the threshold. 



Chapter 5. Electricity Demand forecasting 

Demand 

Temperature 

Figure 5.7. Switching regression model 

This method gives a better approximation than the standard MLR method. It has two major 

drawbacks; Firstly, the switch between the models is sudden and might not be reflective of the 

relationship around the crossover point. Secondly, the crossover point is determined in practice 

through trial and error and will thus be influenced by the modeller's subjectivity. 

5.5.1.2 	Polynomial and trigonometric regressions 
Though MLR is widely used, it has its limitations, which could be improved using 

transformations. Another class of transformations uses polynomials to describe the relationship 

between the explanatory variables and demand. The polynomial regression model is in the form: 

y(t) = a0  + a1  x (1) + ........+ a x (1) + a(t) 	Equation 5.8 

where: 

j and k 	 = 	The regression polynomials 

The major drawback with this method is that the data points close to the mean heavily influence 

the shape of the polynomial. This biases the forecast and provides unreliable descriptions of the 

behaviour at either ends of the explanatory variable range. For example at high or at low 

temperatures. 

In some cases polynomial terms are combined with other nonlinear terms to obtain more accurate 

models. The most common approach involves combining with trigonometric terms to produce a 

parsimonious model72. These models are used to represent the periodicity within the seasonality, 

day-of-week and time-of-day cycles. An example with the two variable polynomial model is 

illustrated below: 

y(t) = a0  +a, x' (t) +p [ cos{jx(t)} + 8 sin{ jx(t)}] + a(t) 	Equation 5.9 



Chapter 5. Electricity Demand forecasting 

where 

d 	 2 

2 	 a set of estimator parameters that minimize the risk function R(2) 

5.5.1.3 	Non-parametric regression 
This method has only recently been applied to demand forecasting because of its high 

computational requirements. Non-parametric regressions are a collection of techniques for 

performing regressions when there is little prior knowledge about its shape. Nonpararnetric 

methods allow a load forecast to be calculated directly from historical data without having to 

formulate a particular load mode174  as is the case with parametric models. 	The fundamental 

assumption of this method is that a load prediction is a conditional expectation of demand given 

the time, weather conditions, and other explanatory variables. This is calculated directly from 

historical data as a local average of observed past loads. 

The local averages are found by using smoothers. A smoother is a tool for describing the trend in 

y(t) as a function of the explanatory variables. Smoothers are useful because the amount of 

horizontal scatter in the data will often make it difficult to visualise the trend in a set of 

observations. The most commonly used smoothers are described below75: 

Running line: This is the simplest smoother. Firstly, the data is divided into a moving 

'window' of points. The window size or the 'size of neighbourhood' is typically 10-50% 

of the data. A simple linear regression is computed for each window. The windows 

overlap and are influenced by the results from adjacent neighbourhoods. 	The 

disadvantage of this method is that anomalous data points could influence the regression 

line. 

Modified running line: The modified running line smoother eliminates the effect of 

influential data points. This is done by using only a certain fraction of the data points in 

each neighbourhood, that seem to fit the regression line. For example, 70% of the data in 

a given neighbourhood might be used together with the subset of data points that 

minimise the residual sum of squares. Such computations are computer intensive. For 

both running line methods, it is considerably more difficult to obtain statistical inferences 

like t-statistics on the data. This is because of the absence of certain exact distributional 

results. 

Kernel regression: This is one of the most commonly used smoothing method. In kernel 

regression the size of the neighbourhood is called bandwidth, as with the previous 

methods, the neighbourhoods overlap. With the running line methods, points within each 

neighbourhood are equally weighted, with the kernel methods, the weighting is 

me 
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dependent on the distributions around the local mean. This eliminates the influence of 

anomalous data points. Kernel estimators can perform badly at the boundaries of the 

predictor space and also when the true function is linear. 

Local regression: This is a combination of the running line smoother method and kernel 

methods. As in the running line method, a least squares fit is produced but as in kernel 

regression, weights are used that reflect each point's distance from the local mean. 

Therefore the fit in each neighbourhood is a weighted least squares fit. It has the 

advantages of kernel, in that; points far from the local mean have less influence on the 

regression line, eliminating bias. 	When the predictor has two or more dimensions, 

Kernel estimates are influenced by the boundary effect, this effect is eliminated with local 

regressions. 

Splines: They are generally defined as piecewise regressions, in which the curves (or 

line) are constructed individually and then pieced together. There are different types of 

splines, namely linear splines,  splines with polynomial terms and smoothing splines. A 

smoothing spline differs considerably from the other previous smoother methods. In 

particular, rather than fitting lines and/or curve segments to the data, the smoothing spline 

uses optimisations. The major differences of splines are that: Firstly, the data segments 

fit disjointedly, whereas in local regression they overlap. Secondly, the computational 

complexity of extending the number of explanatory variables increases in the order of fl' 

for each additional variable. This makes it unsuitable for electricity demand forecasting. 

Nonparametric methods offer the regression considerably more flexibility than the parametric 

methods described. This is firstly because the shape is made up of a combination of separate 

lines or points, which would represent the relationship better. Secondly, the shape is more 

accurately representative of the data because it is inferenced mathematically from the historical 

data not determined either through trial and error or by visual inspection, as is the case with 

parametric regressions. 

Caution must be exercised when using these methods because of the potential danger of over 

fitting the data. If this happens the model will act as a lookup table and will be inappropriate for 

forecasting a wide array of situations. Added to this, the accuracy of a nonparametric method 

relies on the adequate representation of future conditions by historical data. The model will give 

poor predictions for events not present historically. Nonparametric regression will not be as 

efficient as parametric methods if a simpler model adequately defines the relationship. 
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5.5.2 Time series methods 

Time series methods have been very popular within the ESI for the past 60 years. They have 

several advantages and disadvantages over regression models Their principal advantage is their 

structural simplicity. The main disadvantage is that they generally do not describe a 'cause-and-

effect' relationship, only one of dependency. Thus, these models cannot provide insight to the 

demand-weather relationship, fundamental to effective forecasting. 

In time series models, electrical demand y(l) is modelled as the output from a linear filter that 

has a random series input, known as white noise. This random input has a zero mean and an 

unknown fixed variance. A block diagram of the load time series model is shown in figure 5.8. 

	

White noise a(t) 	Electrical demand y(t) 

	

- 	 Linear filter 	 -4 

Figure 5.8. Load time series model 

Depending on the characteristic of the linear filter, different models can be classified76. The most 

common of these are described in the following sections. 

5.5.2.1 	Moving Average (MA) process 
In this method the current value of the demand is expressed linearly in terms of the current and 

previous values of white noise. White noise is determined iteratively, as the forecast errors from 

previous load forecasts. The moving average (MA ) is defined as 

y(t) = a(t) - 91 a(t —1) - 02a(t - 2) - .... - 9a(t - n) 	Equation 5.10 

where 

a(l) 	= white noise 

8 	= moving average coefficients 

5.5.2.2 Autoregressive (AR) process 
The load in this method is determined as a linear extrapolation from previous values. This gives 

an extrapolation from data sets that have been derived through historical correlation of dependent 

variables. The oldest previous value determines whether the series is positive or negative. It takes 

the form 

y(t) = q51 y(t —1) + 07 y(t —2) + .......+ q5y(t - n) + a(t) 	Equation 5.11 

where 

91 
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y(t —1),.. .y(t - n) 	= Previous demand values 

	

a(t) 	= White noise 

	

On 	 = Autoregression coefficients 

5.5.2.3 Autoregressive Moving-Average (ARMA) process 
This combines both the autoregressive and the moving average models. It captures both the self 

correcting nature of the moving average method whilst expressing the demand as a function of 

previous demand. It takes the form 

y(t) = b1 y(t - 	... + çby(t - n)+ a(t)— Oa(t —1)— .... - 9a(i - n) 	Equation 5.12 

5.5.2.4 Autoregressive integrated moving average (ARI MA) process 
The previous time series models are stationary processes. This means that the mean and 

covariance among its observations do not change with time. This is not the case with electricity 

demand because of the time-of-day, day-of-week and seasonality effects. The series has to be 

transformed to a non-stationary process, which is done using differential forms of AR and MA 

methods. Empirical research, notably Hagan and Behr 
17  show that this approach is rather 

complicated, though its short-term results are very good. 

5.5.2.5 Transfer Function (TF) modelling 
The ARIMA model forecasts are essentially extrapolations of previous load history and are 

unable to cope adequately with weather effects. Transfer function models allow for the inclusion 

of some independent variables. The transfer function is obtained using one of a variety of 

estimation techniques. The extrapolation is done using one of the time series noise models 

described in the previous sections. Both outputs are summed up to give the forecast. The transfer 

function model is illustrated in figure 5.9. 

olse 

Figure 5.9. The transfer function model 
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This approach can provide very good forecasts as long as the independent variables are similar to 

those from which the transfer function is created. However, during forecasting because the 

independent variable is generated internally, any major deviations from the mean will cause 

inaccurate forecasts. 

5.5.3 End-User models 

In the previous methods forecasts are derived through extrapolations from historical data. In end-

user models, they are calculated as the sum of electricity end-use in residential, commercial and 

industrial sectors. The basic structure of an end-use forecasting model is based on the following 

relationship. 

Energy consumption by end-use group = Number of users in group * Energy use per end-user 

Within the commercial/ domestic sector, end-user models begin by assuming that the total energy 

consumption equals the sum of the energy consumed for each end-use category. This assumption 

can be represented by the product of the following terms: 

The number of devices in each category 

A measure of the energy-using capacity of the device 

A measure of the average rate of utilisation of the device 

This can be represented in the equation form 

ESxNxPxH 	 Equation 5.13 

where 

E = Energy consumption of the appliance in kWh 

S = Saturation in the number of such appliances per customer 

N = Number of customers 

P = Power required by appliance in kW 

H = Hours of appliance use 

Customer households are grouped into different types based on size, number of occupants, type of 

house, demographics, and socio economic group". Sample households are selected from each 

customer group and the load for each energy-consuming appliance is monitored over a period of 

time79. The results are gathered to build the database for forecasting. The data base is modified 
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through regular monitoring and re-sampling the households. The major disadvantage with end-

user models is that they are information intensive and ignore changes in consumer behaviour. 

5.5.4 Artificial Intelligence methods 

Artificial Intelligence (Al) has been around since the late 1950's. The advent of more powerful 

computers has seen their application soar over the past decade. Artificial Intelligence is defined 

as 'Computer processes that attempt to emulate the human thought processes that are associated 

with the activities that require the use of intelligence80'. For the purposes of this discussion, 

Artificial Intelligence methods will be classed into four groups; Knowledge-based Systems, 

Fuzzy Logic, Artificial Neural Networks and Genetic Algorithms. These will be discussed in turn 

with specific focus on their application to short-term load forecasting. 

5.5.4.1 	Knowledge-based systems 
These systems capture knowledge on a specific field in a computer interpretable model. There 

exist two subsets: Decision Support Systems (DSS) and Expert Systems (ES). 

A decision support system allows the user to access previously collated knowledge bases. The 

knowledge base is in the form of a working computer model, or set of models. The user has 

access to some of the variables within the model and can alter them to create the environment in 

which the forecast is to be made. This is usually done through a questionnaire styled interface. 

The answers are used in the model along with internal, endogenous, data to provide either a 

solution or further questions. 

The applicability of DSS systems to short-term forecasting has been very limited because models 

have to be very large to contain the information required. Large scale models suffer from 

feedback and non-linearity problems which makes models difficult to solve. DSS systems can be 

improved by incorporating other Al techniques. 

An Expert System is similar to a Decision Support System except it uses a knowledge base of 

rules rather than a model to provide the solutions. The expert knowledge is stored as a number of 

strict technical instructions and rules of thumb that apply to the specific problem. In the case of 

short-term demand forecasting the analogical thinking that goes into the system operator's 

intuitive forecasting  is reduced to logical steps and programmed". 	Figure 5.10 shows the 

general structure of a typical ES 
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User 

User input 

User output 

Figure 5.10. Structure of a typical expert system 

The rules are normally divided into separate data bases, each concerning a particular discipline. 

They are then presented to the inference engine  as - If condition(s) then action(s) - statements, 

written in plain text to facilitate modification and understanding. The inference engine is a 

separate programme that acts as an interface between the user and the knowledge base. This is 

the most complicated part of an Expert System. 

Though Expert Systems have greater applicability in forecasting than Decision Support Systems, 

they are inefficient at coping with complex problems requiring a large rule base. Problems 

caused by large models are further accentuated in systems that contain a feedback loop, for 

example lagged variables in a forecasting model. This is due to the iterative methods used to 

approximate such loops. Another disadvantage with ES is that, expertise is difficult to extract 

from experts and can be highly heuristic. Heuristic rules can fail when given insufficient or 

unexpected data. 	ES often work very well when used in conjunction with appropriate 

inferencing methods82. 

5.5.4.2 Fuzzy Logic 
Traditional logic deals with precise values, yes or no, 1 or 0. These are known as 'crisp values'. 

Fuzzy Logic, on the other hand, attempts to model the impreciseness of human reasoning by 

representing uncertainty for the variables that are used by assignment of a 'set' of values to the 

variable. Each value has a 'degree of membership' of the set which represents the probability of 

the variable having that value83. A 'membership function' is a curve that defines how each point, 

over the whole range of input values, is mapped to a membership value between 0 and 1. The 

membership value can also be viewed as the degree of belonging to a particular group or set. 

Fuzzy logic can be applied to the short-term load forecasting problem because 

It is a multiple-input, multiple-output unknown dynamic system 
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There is a high degree of periodicity within the load forecasts and fuzzy logic has been 

proved to have great capabilities in drawing similarities from large data sets". 

Short-term forecasting is performed by pattern recognition. Fuzzy logic is used to classify and 

map the input and output pairs during training. To forecast, the fuzzy logic forecaster references 

its database, based on its input value then weights and sums the most likely output85. 

5.5.4.3 	Artificial neural networks 
The human brain is the most complex computing device known to man. Researchers have sought 

to create a computer model that matches the functionality of the brain's fundamental nerve units, 

neurons. The neuron is the base cellular unit of the nervous system, in particular, the brain. Each 

neuron is a simple micro processing unit which receives and combines signals from many other 

neurons through input structures called dendrites. If the combined signal is strong enough, it 

activates the firing of the neuron, which produces an output signal along a component of cell 

called the axon. The axon of a neuron splits up and connects to dendrites of other neurons 

through a junction known as a synapse. The transmission across the synapse is chemical in 

nature and the amount of signal transferred depends on the amount of chemicals or neuro 

transmitters. The quantity of neuro-transmitters present is what is modified when the brain 

learns. This combined with the processing of information in the neuron form the basic memory 

mechanism of the brain. 

In artificial neural networks, the unit analogous to the biological neuron is referred to as a 

processing element (PE) or perceptrons86. This has many input paths and combines, usually by a 

simple summation, the values of these input paths. This is given below. 

I =YWX j 	Equation 5.14 

The combined  input is then modified by a transfer function. The output of this function, y3  is 

passed directly to the output of the perceptron. 

y. = f(J.) 	 Equation 5.15 

The transfer function has a threshold that only passes information if 1i reaches a certain level. 

This function can be a variety of shapes though sigmoid is the most common. A sigmoid 

function ensures that the output value, y increases smoothly from 0 to 1, not abruptly as in hard- 

limiting functions. 	Both functions are illustrated in figure 5.13. The sigmoid function allows 

the perceptron to represent ambiguity. 

WO 
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Hard limiting function 	 Sigmoid function 

Figure 5.13. Perceptron transfer functions 

The output path of the perceptron can be connected to the input paths of other perceptrons. These 

are weighted to correspond to the synaptic strength of the neural connections. Since each 

connection has a corresponding weight, the signals on the input lines will be modified by these 

weights prior to being summed up. Thus, the summation function is a weighted summation 

function. A model of a perceptron with weighted inputs is illustrated in figure 5.14. 

Input 
vectors yj  

X" n 

Figure 5.14. A model of a perceptron 

A neural network consists of many perceptrons joined up in the manner described. The 

perceptrons are organised into groups known as layers. There are usually two layers connecting 

to the outside world: An input layer, where data is presented to the network, and an output layer, 

which holds the response of the network to a given input. Layers distinct from the input and 

output are called hidden layers. 
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Within a network, there are full or random connections between successive layers. The strength 

or weight of each connection is determined during the training process. During training, the 

network infers relationships by presenting an input and its desired response to the input and 

output of the network. This method of training is known as 'supervised learning'. When no 

desired output is shown to the network, the learning is known as 'unsupervised'. Regardless of 

the kind  of learning used, an essential characteristic of any network is its learning rule. This 

specifies how weights adapt in response to a learning example. A diagram of a full network is 

shown in figure 5.15. The example below is a known as a three layered network because it 

consist of an input, a hidden and an output layer. 

I'  
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'3 

14  
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Y3 

7u 
Input layer 

Hidden layer 

Figure 5.15. A three-layer artificial neural network 

The neural network can be viewed as a black-boxed non-parametric regression. ANNs are the 

most widely used Al method in short-term forecasting" because they lend themselves intuitively 

this application. The explanatory variables are presented at the ANN's inputs and the load at the 

output. The ANN infers relationships between the demand and the explanatory variables. Once 

trained the ANN is capable of forecasting from inputs outside the historical training space. 
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5.5.4.4 Hybrid systems 
The final group of Al systems currently in use for short-term forecasting are hybrid systems. 

These combine two or more of the A! techniques described to perform the forecast. In the 

majority of these methods either a fuzzy logic or an expert system is used to classify the input 

based on several characteristics such as season, day and time". More recently, fuzzy classifiers 

have emerged as the most prevalent classification method because of their ability to handle 

ambiguous data. Added to this, their implementation  does not require a great amount of expert 

knowledge. After classification, inputs are presented to an ANN via an interface for relationship 

inference 

Another hybrid method is the combined Genetic Algorithm (GA) and Artificial Neural Network 

approach89. GA's are essentially an optimisation method which models the biological process of 

natural selection to evolve generations of offspring that are closer to the optimum than their 

parents. They are used to select the optimal training inputs and outputs for the ANN. 

Though their conception and construction is more complex, hybrid systems are becoming 

increasingly popular in academic literature. 	Some of the ANN-Fuzzy hybrid systems have 

reported superior performance over other methods. The neural network is able to draw more 

precise relationships because classified data is very specific. The major drawback of hybrid 

systems is that they require a much larger database to supply the ANN with enough training data 

for each class. 

5.6 	Comparison of the forecasting methods 

The various short-term forecasting methods have been presented and discussed in the preceding 

sections. This section argues the merits and demerits of each generic group with a view to 

narrowing the selection of methods for analytical comparison in chapter 7. The appropriate 

choices for Supplier's short-term forecasting requirements will be made from the following 

discussion. 

5.6.1 Time series models 

These models employ historical data for extrapolation to obtain future hourly loads. The 

disadvantage of these models is that they model a stationary load trend. Even after incorporating 

transfer functions, the weather and any other dynamic factors that contribute to load behaviour 

are not fully utilised within the forecast. This could lead to poor forecasts during dynamic 

periods, for example, when the weather is heavily influencing the load. 

We 
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5.6.2 Regression methods 

Regression methods analyse the relationship between the load and other influential variables. 

Linear regressions have the disadvantage of representing the relationship linearly. With 

transformations, the nonlmearities are better represented, however, selecting the most appropriate 

transformation is done visually, which could be deceptive. Added to this, the curve is heavily 

influenced by data close to the mean. Non-parametric regression provides the most appropriate 

fit however, this requires complex modelling techniques and heavy computational effort. 

5.6.3 Artificial intelligence 

Knowledge based systems model the knowledge of a human expert to develop the rules for 

forecasting. Transforming the knowledge of an expert to a set of mathematical rules is often very 

difficult. Fuzzy logic systems produce much better forecasts but there are difficulties when 

forecasting beyond the boundaries of the training data set. This is because forecasts are based on 

a discrete set of historical conditions. 

ANN methods are able to learn and extract complex relationships from multivariate data. Their 

main disadvantage is that they provide a black box solution, as such it is very difficult to assess 

the effect of individual variables. 

Hybrid systems usually combine the advantages of classification with the ANN's ability to infer 

complex relationships. Their major drawback is that they require sophisticated model interfaces 

and are far more data intensive than the previous methods. 

5.6.4 Model choice 

The preceding sections discussed the various short-term forecasting methods with a view to 

selecting the most appropriate models for analytic assessment in the next chapter. To meet 

Suppliers forecasting requirements under NETA, the primary requirements governing the model 

choice are: 

. 	4-hour lead time 

Very high accuracy 

Flexibility 

Easy implementation. 

Short-term demand is heavily influenced by independent dynamic factors like the weather. These 

are essential inputs into Suppliers forecasting models. Time-series models will not be adequate 
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because they do not take these factors into account. The inclusion of a transfer function will 

improve the forecast though not adequately for Suppliers requirements. 

End-user models were considered because they use a bottom-up approach. This is different from 

the top-down approach used by all the other models. Another unique feature of this family is that 

they do not forecast from historical data. Unfortunately due to insufficient  data, accurate 

implementation of an end-user model was not possible. 

Over the past decade, the majority of the forecasting research and literature has focussed on 

Artificial Intelligence methods in particular, Artificial Neural Networks. ANNs are chosen for 

the analysis because of the following: 

They are most widely used ANN method 

They enable a multivariate implementation of the relationship 

The process infers a non-parametric regression between the explanatory variables and 

the load 

Fuzzy logic forecasters were also considered however, they require large-scale models and are 

discrete resulting in reduced accuracy outside the boundary of the training space. ANN-Fuzzy 

hybrid systems would be very effective, but due to limited data they are omitted. 

Regression models have the advantage of transparency and are capable of representing the 

dynamic factors within the forecasting model. The different types of regression were considered. 

It was decided to opt for MLR for the comparative analysis to determine whether a simple 

straight-line approximation would be good enough to predict demand at the BSP. Additionally 

they are the most widely used short-term forecasting method. Transformations were considered, 

however it was decided that as ANNs would be used in the analysis, mathematical transformation 

of the MLR would not represent a distinctly different class to warrant separate comparison. Non-

parametric regressions are a unique class with different derivation from other regression methods. 

Its flexible regression shape is potentially more mathematically representative of the relationship 

than parametric models. However, they are not selected because neural networks perform non-

parametric regressions and are more easily implemented. 

5.7 Summary 

The price of volumetric risk under NETA could seriously damage Suppliers financially and, as a 

consequence they will need to have demand forecasting methods in place to provide the system 

operator with FPN's each half-hour for every BSP they operate. The accuracy of the forecasts 

will aid risk management activities and determine the exposure to imbalance prices. 
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This chapter focussed on the subject of accurate demand forecasting from a Suppliers perspective 

with a view to selecting the most appropriate forecasting methods for comparative analysis. 

Firstly, the fundamental factors affecting demand: economic activity; time factors; weather and 

random influences were discussed. This was because they have a large effect on demand and are 

as such essential inputs into any forecast model. 

This was followed by a description of forecasting time horizons: short; medium and long; and the 

fundamental demand drivers over each horizon. To facilitate the choice of the most appropriate 

short-term forecasting method, a detailed description, followed by a discussion of the most 

commonly used forecasting methods was presented. The generic classes considered were; 

regressions, time-series, end-user and artificial intelligence methods. 

From the discussion, Multiple Linear Regressions and Artificial Neural Networks were chosen as 

the most appropriate for comparative analysis in the next chapter. 
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6. Data issues and selection of forecast inputs 

6.1 Overview 

It is essential that Suppliers and other market participants choose the most effective short-term 

forecasting method because of the value of volumetric risk brought on by New Electricity 

Trading Arrangements (NETA). In the previous Chapter, electricity demand forecasting was 

discussed and the complexities involved were presented. Two short-term forecasting models, 

Artificial Neural Networks (ANN) and Multiple Linear Regressions (MLR) were chosen for the 

comparison. A forecasting model can only aspire to be as good as the quality of the data from 

which it infers relationships and predicts demand. 

In this chapter the data issues involved in forecasting demand at BSP level are discussed. SHE, 

the first-tier Supplier in the area considered in this study, is the largest user of demand-side 

management in the UK and this heavily biases the data. This bias has serious implications for 

any forecasting model. This chapter discusses the data issues involved in modelling and 

forecasting demand at a BSP in SHE's region. 

The chapter starts with a discussion of the data requirements of the model. This is followed by an 

introduction and discussion of the teleswitch system used by SHE and the implications to short-

term forecasting. The forecast configuration of the models is discussed next, followed by a 

statistical analysis of the data to select the most relevant inputs for the forecasting model. 

6.2 	Data Selection 

As was mentioned in previous sections, domestic demand causes the greatest variability within 

Suppliers demand portfolios, so this demand segment represents the highest source of volumetric 

risk. To examine fully the limitations of the present techniques, it was decided to select a BSP 

supplying a predominantly domestic load, since the higher demand variation will pose greater 

challenges to the model's ability to infer relationships. 

6.2.1 Demand data 

Several locations within SHE's first tier supply area were considered. The Grampian region was 

chosen for closer examination, because it contained majority of SHE's domestic load in the 

Aberdeenshire area. Efficient half-hourly metering at the BSP level had only started in most 
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places after 1995 but even with this, there were still large gaps in the data sets of most of the Bulk 

Supply Points (BSP) observed because the majority of the metering systems needed time to bed-

in. 

The 33kV BSP at Dyce, near the Aberdeen airport was chosen because it had a robust data set 

and supplied a predominantly domestic load of some 13131 customers. The magnitude of the 

load at this BSP had stayed the same over the preceding four years, implying there had been no 

significant load growths or reductions. As the data set was fairly stable, inferences  about the 

future demand based on historic trends and cycles would be valid. Half-hourly metered data at 

this BSP was collected from 1St  January 1995 till 31St  March 1999. 

6.2.2 Weather data 

Due to the strong reliance of demand on the weather, it was decided to use hourly temperature 

and wind-speed and direction since they have the most tangible effect on demand. These were 

purchased from the Meteorological Office in Glasgow for the period from 
1St  January 1995 till 

3 1" March 1999. The data was measured at the Dyce weather station near Aberdeen airport. 

The Dyce weather station was selected because it was close to the BSP and because the variables 

at this station gave an accurate measurement of the weather variables affecting the demand at the 

BSP. Research shows that the further away the weather station from the demand, the lower the 

influence of the measured variables on demand. Notably, the influence of wind speed 

measurements on demand is greatly reduced with increasing proximity of the measuring station to 

the demand. This is often due to many factors including the effect of numerous barriers such as 

buildings and trees. 

6.2.3 Time horizon 

The time horizon over which the models are trained and used to perform the forecast depended on 

firstly, data availability and secondly, on the relevance of the information contained within the 

data. A 3.5-year horizon was chosen because it was long enough to contain any possible trends 

and short enough to exclude obsolete ones. 

6.2.4 Software choice 

Computational power was needed to build the forecast models and to perform the statistical and 

mathematical analysis required for the input data selection and result comparisons. The most 

appropriate software for the project was chosen to meet the following computational 

requirements: 
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Ability to handle and manipulate large time series database 

Strong programming capabilities for modelling 

Interfacing capabilities with C 

Speed 

Good library of statistical and mathematical functions 

Powerful graphics 

Version 5.3 of MATLAB by Mathworks, was selected. 

MATLAB is a language based on C and FORTRAN. Its strongest advantage is its ability to 

perform advanced matrix manipulations using very simple commands. There are hundreds of 

predefined commands and functions that can be enlarged by user-defined functions. Such 

features were very desirable, because the demand and weather time series data were compiled as 

large matrices. MATLAB also has very powerful graphing and visualisation capabilities that is 

useful for visual comparison and result presentations and it can be interfaced with other 

programmes. 	FORTRAN and C routines can be called from MATLAB and vice versa, 

increasing its power and flexibility. 

6.2.4.1 	Artificial Neural Network 
There are numerous ANN packages available with their own advantages and disadvantages. 

Several such packages were compared. 

Neural Works: This package is produced by NeuralWare, it is very user friendly and has 

good graphics. Its major disadvantage is that it is slow and rather cumbersome 

Neural Network toolbox: This is part of the MATLAB package. It is a well-designed 

toolkit with good instructions, it is faster and more powerful than Neural Works, and has 

more features. Its major drawbacks are slow speed and difficulty of implementation. 

In house MLP: Dr Peter Edwards, a former PhD student and Lecturer at Edinburgh 

university, designed this ANN. It was written in C for the UNIX network. Though it is 

not as user friendly as the previous networks, it is faster and more powerful than the other 

packages and has very few commands. 

It was decided to use Dr Edwards Neural Network because it was much faster and more stable 

than the other methods considered. Added to this, Dr Peter Edwards was at hand to give advice 

and to offer suggestions. 
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6.3 	Characteristics of the load 

Until recently SHE was a vertically integrated entity generation, transmission, distribution and 

supply were all managed centrally. The most efficient way to operate a vertically integrated 

entity is to tailor supply to optimise generation. This allows generation to operate with a high 

load factor but requires demand to be shifted into the daily troughs. 

The majority of SHE customers use electricity as their main source of space and water heating. 

This demand makes up the majority of the domestic consumption with, in some cases, over 75% 

of the total demand. For the reasons given above, SHE had decided to adopt 'valley filling', i.e., 

to shift heating demand to fill the demand troughs. These troughs occurred overnight, 

midmorning and early afternoon. 

The demand side management was achieved by radio teleswitching. 

6.3.1 Radio Teleswitching 

Radio teleswitching, where load control is achieved via a radio-controlled switch on the 

customer's premises is the most commonly used method of demand side management in the UK 

and SHE is the biggest user of this system. 

After extensive trials the Electricity Association approved the radio teleswitching system in 

1979 0. In operation, Regional Electricity Companies (REC) submit their load control request to 

the Central Teleswitch Control Unit (CTCU), situated at the UK National Control Centre which 

in turn passes these messages on to the BBC Message Assembler (MA) at Broadcasting house. 

The data is then transmitted on the BBC radio 4 service at 198 kHz via transmitters at Droitwich 

Westerglen and Burghead and is received by the radio teleswitch on the premises of the customer. 

The radio teleswitch is a simple low cost device with four contactors to control the customer's 

total electricity consumption. It consists of a 198kHz radio receiver, decoder, memory and four 

switches, each allowing up to 4 switch ON-OFF times over a 24-hour period. The contactors are 

connected to the domestic electrical circuitry as follows: 

Contactors A and B are rated between 2 and 4A and determine the charging rate for all 

electricity consumed within the premises apart from water and space heating. 

Contactor C is rated 25A and controls the water-heating appliance. 

Contactor D is rated 80/I00A and controls the space heating. 

Two types of user messages are sent down the teleswitch 
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Programme instructions: These designate the switching times and the duration and are set 

up to 24 hours in advance. Once programmed, the system will operate on that regime 

until instructed otherwise. The programme instruction each teleswitch receives is 

determined in accordance with the customer's tariff structure. 

Command instructions take immediate effect and will override the programme message. 

This instruction is not remembered by the receiver and is cancelled when 

The programme reaches a switching boundary for contactor C and D or 

Another immediate command is received or 

24 hours have elapsed since the previous instruction. 

6.3.2 Dynamic load control 

For load control, SHE's customers are divided into four geographical areas determined by 

postcode. Each geographical zone has its own switch ON-OFF times for customers on dynamic 

heating tariffs. The purpose of having four zones is to stagger the heating demand across the total 

system's demand troughs. The geographical zones are as follows 

Central highlands 

West and Southern highlands, Islands and Dundee 

North East 

Caithness, Sutherland, Orkney and Shetland 

Each demand group has a separate water and space-heating regime with different switch ON and 

OFF times. Having received day-ahead temperature, wind speed and snow conditions from the 

Meteorological office, the loading engineer refers to a look-up table to determine the duration of 

the day-ahead heating blocks. The switch ON and OFF times for the day-ahead blocks are sent 

out 24 hours ahead via Broadcasting House to the individual teleswitches. In the case of 

unexpected circumstances, immediate messages can be sent a few minutes in advance to over-ride 

the original message. 

6.3.3 Customer heating tariffs 

For the purpose of this discussion, only customers in the North-eastern demand zone will be 

considered. SHE offers each of their domestic customers a choice of heating tariffs based on 

price. These tariffs are outlined below. 
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Total Heat Total Control (TL-ITC): On this tariff, customer water and storage heaters are 

dynamically controlled. There are 3 daily space heating blocks, and two water-heating 

blocks. The switch ON-OFF times for the water heating are 04:15 to 07:45 and 13:30 to 

15:30, whereas the duration of the space heating blocks are determined by the forecast 

day ahead temperature. The switch ON-OFF times for customers on this tariff in North-

Eastern Scotland are shown in Table 6.1. 

All other heating appliances, for example convector heaters can be connected to, and 

served by the space heating contactor. 

Economy tariff: Customers are supplied a fixed 8-hour space heating block regardless of 

the temperature. The heating block is from 23:00 to 07:00 in the winter and from 00:00 

and 08:00 in the summer. 

Restricted Heating Tariff (RHT): This is a hybrid of the two systems. The customer is 

offered the economy tariff and a choice of one of the THTC heating blocks. 

Temperature 

range 

First block Second block Third block Total supply 

hours ON OFF ON OFF ON OFF 

<-7 00:00 06:00 10:30 13:30 18:00 21:00 12 

-6 00:00 06:00 10:30 13:30 19:00 21:00 ii 

-5 to -4 01:00 06:00 10:30 13:30 19:00 21:00 10 

-3to-2 01:00 05:00 10:30 13:30 19:00 21:00 9 

-1 to 1 01:00 04:30 10:30 13:00 19:00 21:00 8 

2 to 4 01:00 04:30 10:30 12:30 1900 21:00 7.5 

5 to 7 01:00 04:00 10:30 12:30 18:30 20:30 7 

8 	t 10 01:00 04:00 10:30 12:00 18:30 20:00 6 

7 	t 11 01:00 04:00 10:30 11:30 18:30 19:30 5 

Table 6.1. Total Heat Total Control space heating switch ON-OFF times for customers in 
North Eastern Scotland. 
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Demand 
Economy tariff 	Total heat total control 

space heating 	
Total heat total control 
water heating 

23 0 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Time 

Figure 6.1 .Example of daily switch ON-OFF times 

It is impossible to determine with any certainty the numbers of customers on each tariff at a given 

time. This is because customers change tariffs frequently and information about the customer 

numbers on each tariff is not accessible. Figure 6.1 gives an example of the switch ON-OFF 

times of the heating demand in the Grampian region. The example uses a forecast minimum day-

ahead temperature of 1°C. The heights of the heating blocks in the graph are approximations. 

6.3.4.1 	Real-time example of the effect of switch ON, on BSP demand 

Dyce BSP 01-Feb-99 

5 

E 
w 

27 

26 

25 

24 

23 

22 

21 

20 

Time 

Figure 6.2. Real-time demand at BSP showing the ramping up of the first THTC demand 
block 

The teleswitch operating system allows a switch closing time to be specified 8 times each hour as 

follows; on the hour or 7.5, 15, 22.5, 30, 37.5, 45 or 52.5 minutes past the hour. Each individual 
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teleswitch applies a random offset of between -3.5 and +3.5 minutes to the programmed opening 

and closing time. This causes a 7 minute rising and decaying ramp when the teleswitch Group is 

switched ON or OFF, effectively dampening the effect on the system. A real-time example is 

shown in figure 6.2. The graph shows the real-time demand at the BSP during switch ON for the 

first THTC demand block on 1st  February 1999. The minimum forecast day-ahead temperature 

was 1°C corresponding to a switch ON time at 01:00. Due to the random —3.5 and +3.5 minute 

offset, the ramp starts at 00:57 and ends at 01:03:30. In this example, customers on this demand 

tariff added an extra 4MW to the total demand. 

6.3.5 Complexities of forecasting teleswitching demand 

The extensive use of teleswitching adds additional nonlinearity into the demand data set, biasing 

the data and presenting added complexity to the forecasting model. The extra nonlinearity arises 

from the following sources. 

Heating demand makes up to 75% of the domestic customer demand. As the heating 

demand has been shifted to specific half-hours, the temperature and wind-speed demand 

relationship will be particularly strong across these half-hours. This increases the 

variations of the weather-demand relationship across the daily 24 hours, by confining the 

majority of the heating demand to specific half-hours. For example, the weather demand 

sensitivity is greater overnight because most of the heating demand is shifted to this 

period. This phenomenon is discussed further in the section on model input selection. 

Another source of nonlinearity occurs across the marginal half-hours. These are the half 

hours that are not always covered by THTC or RHT. For example, the half-hour between 

12:30 and 13:00. This is covered when the forecast day-ahead temperature is less than 1° 

C. If there is a one-degree increase to 2° C, this half-hour is not covered. This anomaly 

will be very difficult to model within the forecast. There are 8 such marginal half-hours. 

When the forecast wind speed is greater than force 4, equivalent to between 5.66 metres 

per second (m/s) and 8.23 m/s, two degrees are deducted from the forecast day-ahead 

temperature. For example, if the forecast day-ahead temperature is 3°C, equivalent to 

7.5 hours THTC and RHT daily teleswitched demand with moderate winds of 7.72 m/s 

forecast, this will be interpreted as 1°C translating into 8 hours heating demand. 

Ordinarily, the wind speed would be expected to increase the weather demand 

relationship, thus increasing the height of the demand block. However in the above 

example, the height as well as the duration of the heating block would increase. 

110 



Chapter 6. Data issues and selection of forecast inputs 

The height of the teleswitched blocks is not linearly  proportional to the temperature and 

wind-speed, it depends on the factors outlined in section 5.3.4. Added to this, customers 

constantly change tariff, this adds a random element to the numbers on the different 

tariffs hence the numbers of customers switched on the heating blocks. 

The forecast day ahead temperature determines the duration of the heating blocks. Any 

errors in the forecast will mean that the heating period will not correspond to the actual 

temperature. For example, the weather models on which the Meteorological Office bases 

its forecasts do not have a feedback mechanism to recalibrate the model. Over time, the 

weather forecasts could become biased, increasing the likelihood that the teleswitched 

heating duration will not correspond to the actual temperature. Forecast models use 

historical demand and weather data to infer relationships and not the historical forecast 

temperatures on which the teleswitch regime is based. This indicates that even if the 

forecast models are able to model teleswitching effectively, it may be different to the 

actual switching regime on the day. 

From the discussion above, teleswitching adds a high degree of nonlinearity to the relationship 

between the demand and its explanatory variables. This will present the forecasting model with 

the arduous task of inferring robust relationships from contaminated data to perform accurate 

predictions. So far, attempts to predict accurately teleswitched demand have been unsuccessful. 

Demand forecasting at SHE's BSPs will pose greater challenges to forecasting than the majority 

of the BSP's in the UK and these should expose any limitations in the modelling ability of the 

chosen models, MLR and ANN. 

6.4 	Forecast configuration 

The problem of short-term demand forecasting is far too complex to be solved by a single model. 

The two most commonly used methods either assign a model to learn and predict the demand 

pattern for each day of the week or each half-hour or hour of the day. For the purposes of this 

discussion these are known as Serial or linear and parallel forecasting respectively. 

6.4.1 Parallel forecasts 

In this method forecasts are performed according the time of day. Every half-hour of the day is 

assigned an individual forecast model to learn and predict the demand in the specified half-hour. 

This method uses 48 separate models to learn and predict the demand. 

The implicit assumption in this method is that the time of the day variations are much greater than 

the day of week variations. By presenting each model with a specific half-hour, the model is 
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able to extrapolate the intricacies of the half-hour without noise from other half-hours. Parallel 

forecasting requires 48 models for each half-hour of the day. An example of the model 

configuration is given in figure 6.3. 

Outputs 

Forecast 1 Forecast 2 Forecast 3 Forecast 48 

Forecast Forecast Forecast Forecast 
model model model 	-  	-- — — — — — — — - 	model 

Half hour 1 Half hour 2 Half hour 3 Half hour 48 

Inputs 

Figure 6.3 Schematic diagram of a parallel forecasting model 

6.4.2 Serial (Linear) forecasting 

With serial or linear forecasting it is assumed that the day of week variations are greater than the 

time of day variations. Forecasting is done according to the day of the week. A model is 

assigned for each day of the week. It is trained and used to forecast demand on the specified day. 

Serial forecasting requires seven models for each day of the week. An example of a serial 

forecasting model is illustrated in figure 6.4. 

Forecast 
Day I 	jo model 	 jo Forecast 1 

Forecast 
Day 2 	10 model 	 Forecast 2 

Inputs 	
Outputs 

Forecast 
Day 7 	10 model 	 Forecast 7 

Figure 64 Schematic diagram of a serial forecasting model 
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6.4.3 Choice of the most appropriate configuration 

For the purpose of the analytical comparison between the Multiple Linear Regression model and 

Artificial Neural Network models, it was decided to use a parallel forecasting configuration. This 

is because, 

Demand Side management, notably teleswitching, used extensively by SHE, introduces 

a high degree of nonlinearity. The nonlinearity is confined to specific half-hours, 

because teleswitching is used across specified half-hours of the day. This will increase 

the time of the day variation because the teleswitched half-hour will contain most of the 

weather sensitive load. The characteristics and demand drivers over these half-hours 

will be very different from those without heating demand. Added to this, the marginal 

teleswitched half-hours will present additional modelling challenges that will require the 

focussed application of an individual model to extrapolate and perform accurate 

predictions. Forecast models generalise from the data they are presented and it is 

assumed that they will make better inference from a purer data set, which parallel 

methods provide. 

The MLR represents its extrapolations as a straight line, as there are substantial time of 

day variations within the data set, a single MLR might have difficulty making 

meaningful inferences from which to base its forecast. With parallel forecasting the 

model should be capable of making much better extrapolations because the day is 

divided into 48 segments. There will be 48 half-hourly regression lines for each day. 

The combination of the individual half hourly regression lines could be viewed 

conceptually as a continuous flexible nonlinear regression line. 

The assumption that the parallel forecast is the more appropriate configuration is investigated in 

later chapters, but for the purpose of the comparison, this assumption was adopted. 

As parallel forecasting is the preferred model configuration, day-of-week identifiers were 

included in the models so as to classify the day of week variation within the data set. 

6.5 	Choice of appropriate inputs for the forecast model 

In forecasting, the models considered learn to predict the future by drawing inferences from a 

training data set, usually historical data. The accuracy of the predictions is based upon the quality 

of the data presented to the forecast model so the choice of inputs from which the model learns, 

plays a crucial role in determining the accuracy of the model. 
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In this section statistical analysis is performed on the variables known to influence demand, also 

referred to as explanatory variables, to determine the most efficient predictors of demand. As 

stated in earlier chapters, the fundamental demand drivers are the weather, time variables and 

random factors. These will be considered as explanatory variables. Additional information may 

be contained in previous demand data and this also is considered. 

Correlation analyses as well as graphical observations are used to perform the statistical analysis 

in this section. 

6.5.1 Correlation analysis 

Correlation is used to describe the strength of a linear relationship between two variables, by 

computing the correlation coefficient. The correlation coefficient has the following properties 

Its value is computed as a number between +1 and —1, a positive correlation coefficient 

implies a direct relationship while a negative coefficient implies an inverse relationship 

Values of +1 and —1 signify an exact direct and inverse relationship between the 

variables. A correlation of zero indicates the absence of a linear relationship between the 

two variables. 

e The correlation coefficient measures only the strength of a linear relationship so a 

correlation of zero implies no linear  relationship but not the absence of any other 

relationship. 

Correlation analysis was performed between the demand and its most likely predictors, previous 

demand and weather variables. The results from this analysis were used to determine the most 

appropriate inputs to the forecast model. 

6.5.2 Statistical analysis on weather variables 

From the previous discussions, it was suggested that there is a strong inverse relationship between 

the demand and the temperature. This is confirmed in Figure 6.5, which shows a scatter plot of 

the average daily demand against average daily temperature. There are two distinct and separate 

clusters: encircled in green, the lower less dense cluster represents the weekend demand: 

encircled in red, the higher cluster shows the weekdays. 

From the graph, the weekday demand is of greater magnitude, on average, than the weekend 

demand. This is probably because of the inclusion of the industrial and commercial load. 
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A simple linear regression was computed separately for the weekday and weekend demand using 

the temperature as the only explanatory variable, to determine whether the temperature-demand 

relationship is affected by the day of the week. The regression equation is presented below. 

y(t) = a0  +a1 x(t) 	 Equation 6.1 

Y(t) 	 = Electrical demand at time 1 

X, (t) 	= Temperature variable correlated with demand 

a0  (t) 	= Intercept term 

a1 	 = Regression coefficient 

During working days, the coefficients of the regression line were found to be 

y(t) = 32.1138-0.6194x(t) 

and at the weekends it was found to be 

y(/) = 24.9672 - 0.559x(t) 
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Figure 6.5. Scatter plot of the average daily temperature against the average daily demand 
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The slope for the weekday demand is slightly steeper than that of the weekend demand, implying 

that the temperature-demand relationship at weekends is different to that in weekdays. The 

relationship is less steep at the weekends, indicating marginally less sensitivity. 

Identifying the reasons for the difference in relationship between weekdays and weekends is 

beyond the scope of the present work and the analysis is by no means a conclusive representation 

of the temperature-demand relationship, only of the linear component. However, it is apparent 

that the lines suggest a day of week effect and this will be investigated more thoroughly in the 

next section. 

From the discussions in section 5.3.4 wind speed is expected to have an effect on demand. Figure 

6.6 shows the average daily wind speed against the average daily demand: wind direction was 

not used in the analysis because of the added complexity. 

Graph of the Daily average demand against wind speeds 
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Figure 6.6. Scatter plot of the average daily wind speed against the average daily demand 

Unlike the temperature-demand scatter plot, there is no noticeable pattern or relationship between 

the average daily wind speed and demand but it should be remembered that absence of a 

recognisable pattern does not imply the absence of a relationship with demand. Indeed, 

experience is that high wind speeds have a marked effect on demand, when combined with low 

temperatures. 	This is possibly because high wind speed increases rate of the airflow around 
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dwellings, which increases the rate of heat loss so more energy is consumed to maintain the same 

level of thermal comfort. 

SHE have, to some extent, quantified this effect, in that standard practice is for the teleswtich 

operator to deduct 2°C from the temperature forecasts when the wind speed exceeds 5.66 m/s. Its 

inclusion within the forecasting model will help the model make more accurate inferences about 

the teleswitch regime leading to better predictions. 

6.5.2.1 	Correlation analysis on weather variables 
Teleswitched demand-side management used by SHE concentrates the weather-demand 

sensitivity over specific half-hours. Correlation analysis is used to investigate the relationship of 

temperature and wind-speed with demand across the day to give an indication of the variation of 

the relationships across the day. 

Figure 6.7 shows the correlation between the demand and the temperature and wind speed over 

24 hours. The correlation was performed over 3.5 years data, from January 1995 to March 1999. 
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Figure 6.7. Correlation between the temperature and wind speed with demand over 24 
hours 

From the graph, there is a small positive correlation between wind-speed and demand during the 

nights, the correlation coefficient increases from zero at 18:00 hours, peaking at 0.3 around 

117 



Chapter 6. Data issues and selection of forecast inputs 

midnight, then decreasing to zero by 0700 hours. This coincides with the heating blocks from 

the customers on the economy tariff and the evening and overnight THTC and RHT load blocks. 

The temperature-demand correlation exhibits similar time variation to the wind speed. The 

correlation is always negative, confirming the inverse  relationship between temperature and 

demand and is much stronger than that with wind speed. The negative correlation is especially 

strong overnight, when majority of the weather-sensitive load is switched ON. The temperature-

demand correlation is lowest during the morning peak, between 0700 and 0900, suggesting that 

demand over this period is least temperature and wind-speed sensitive. 

Due to the relationship between the weather and demand, it was decided to include half-hourly 

temperatures and wind speeds within the forecast models. The temperature has a lag effect on 

demand because it takes a period of time for building surfaces to adjust to external temperature. 

To account for this, the average temperature from the previous day is included as an input 

variable. 

It should be noted that the correlation analysis captures only the linear component of the weather-

demand relationship. As this relationship is very complex, the analysis does not account for the 

nonlinear component. 

6.5.3 Correlation analysis on week day effect 

Analysis of historical data, in Figure 6.5, suggested a day of week effect. It follows that demand 

patterns on similar days from the previous week might contain predictive information. This 

hypothesis is investigated in this section. 

Over a period of one year, the dataset was divided into up according to the day of the week, 

yielding seven groups. For example, demands on all Sundays would be in the Sunday group and 

so on. These day-of-the week groups were correlated with each other. For simplicity, only the 

graph of the correlation between Wednesday's demand group and the demand groups on the other 

days of the week is illustrated in figure 6.8: correlations between the other demand groups 

showed similar patterns. 
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Correlation between Wednesday demand and the demand on other days 
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Figure 6.8. Correlation between Wednesdays demand and demand on other days 
of the week. 

Wednesdays show a high positive correlation with themselves over all the half-hours of the day, 

suggesting a very strong relationship between demand patterns on Wednesdays. The correlation 

with other days gets less the further away from Wednesdays, with Tuesdays and Thursdays 

reasonably well correlated but Saturdays and Sundays poorly correlates. 

Additionally the correlation coefficient between Wednesdays demand and the other days of the 

week vary considerably across the day, with strong positive correlation from midnight till 0600. 

This is probably because the demand over this period is dominated by the domestic overnight 

heating load, a load that is largely independent of the day of the week. 

During the day, from 0700 to 1700, the relationship between Wednesdays demand and demands 

on Mondays, Fridays, Saturdays and Sundays is generally uncorrelated. 

In summary, the above analysis highlighted a strong day of the week effect; demand on a 

specified day from a given week will contain information about demand on the same day, a week 

later. In other words, the previous week's demand is a good predictor of the following week's 

demand and for this reason, it was decided that, for each half-hour, the half-hourly demand from 

the previous week would be included as one of the explanatory variable. 
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Demand from the previous day was considered, but because the correlations vaned considerably 

across the day, the predictive power of the previous day's demand was limited. 

6.5.4 Correlation analysis on the effect of previous half-hourly demand 

It is important to determine whether demand from a given half-hour has any relation with demand 

in a later half-hour and to check if previous demand information might contain information about 

the future demand. For example, it could contain information about random factors, such as 

Industrial action, which would affect demand in future half-hours. 

Correlation analysis was performed between each half-hour of the day and each of the preceding 

48 half hours to determine the relevant previous half-hours to be included as explanatory 

variables in the forecast model. The results are shown in Figure 6.9. For clarity, correlation 

coefficients are shown on six graphs, each representing 8 half-hours. 

The correlation coefficient between the half-hour 0230 and the other half-hours of the day is very 

low (Figure 6.9(a)). The reason for the sudden demand reduction over this half-hour is not 

known but does not correspond to the switch-OFF times of any of the heating loads. 
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Figure 6.9 a,b,c,d,e,f. Correlations of each half-hour with each preceding 48 half-hour 
the x-axis are the preceding half-hours and the y-axis the correlation coefficient 

It can be seen that the correlation reduces as the half-hour considered moves in time from the 

reference half-hour. 

This confirms the suggestion that the half-hours immediately preceding the half-hour in question 

will contain relevant information about the demand. As such they will be used within the forecast 

model as explanatory variables. For the purpose of the model comparison, it was decided to use 

the four preceding half-hours, because they have the highest correlation with the demand. 
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NETA's balancing market requires Suppliers to submit their demand requirements at BSP level to 

the system operator, 4 hours before the scheduled half-hour. This will mean that, at the time of 

Gate Closure, the forecaster will have to provide demand predictions 4 hours in advance and that 

inputs to the model will indeed represent forecasts. For simplicity, actual historic demand from 

the 4 preceding half-hours after the scheduled period will be used for the purpose of the 

comparisons. These will be replaced by forecast inputs for the optimisation of the preferred 

method. 

6.5.5 Model Inputs 

The analysis in the previous section indicates that the most influential explanatory variables to 

predict the demand are 

Forecasting will be done according to the half-hour of the day; therefore day of the week 

indicators will be used. 

Half-hourly temperature and wind-speed data will be used to represent the relevant 

weather conditions during the forecast period 

Mean temperature from the previous day will represent the lagged temperature effect 

The previous demand variables will be demand from the four immediately preceding 

half-hours 

Day of we 
identifier 

Half-hourly 
temperature 

Half-hour 
wind speec 

Mean previous 
day tern peratun 

Previous 2 hc 
demand 

Demand 
forecast 

Figure 6.10. Schematic diagram of the forecast model inputs 

The schematic diagram of the forecast model is shown in Figure 6.10. Though the previous 

week's demand on the specified half-hour is a relevant predictor, it was omitted from the first 

stage of the analysis to as it was felt that it was the weakest of the previous demand predictors. 
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6.6 Summary 

In Summary. the data requirements are essential to a correctly specified model. It was decided to 

select a BSP in the Aberdeenshire region because firstly, it supplied a predominantly domestic 

load, secondly, an uninterrupted data set form January 1995 to March 1999 was available and 

thirdly, there was a weather station within its area as such the weather data was relevant to the 

demand. The models would be trained with historic data from a 3.5-year period, deemed to be 

optimal. 

SHE use demand-side management extensively, notably teleswitching, to control the domestic 

heating demand. This adds extra nonlinearity into the demand, which complicated and model's 

ability to infer robust relationships from which to perform accurate forecasts. 

The two most commonly used forecasting methods, parallel and linear forecasting were 

compared. It was decided to use parallel forecasting as the preferred configuration because it is 

assumed that the time of day variation was greater than the day of week variation. 

Correlation analysis and visual inspection of data were used to determine the most appropriate 

inputs: these were found to be the preceding 2 hours demand, previous week's half-hourly 

demand, half-hourly temperature and wind-speed and mean temperature from the previous day. 
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7. Model construction and comparison 

7.1 Overview 

The requirement for accurate demand forecasting imposed by NETA has led to the present 

examination of the most effective short-term forecasting methods to meet Suppliers requirements. 

The methods selected for comparative analysis were Multiple Linear Regressions and the 

Artificial Neural Networks. The data requirements for the forecasts models were considered in 

the previous chapter and the best inputs for predicting demand at the Dyce BSP were determined 

from statistical analysis. 

In this chapter the model construction is discussed and predictions made. initially the forecast 

evaluation method used in the assessment is described followed by an outline of the issues 

considered in the construction of a correctly specified Multiple Linear Regression forecasting 

model. Details are given of the model construction and validation prior to discussing the 

Artificial Neural Network data pre-processing, training and construction. The most commonly 

used methodology within the ESI for performing naïve forecasts is presented and is used to 

illustrate the superiority of mathematical forecasting models over intuitive methods. Finally the 

results of the comparisons are presented and discussed: the chosen model is optimised in the next 

chapter. 

7.2 	Forecast evaluation 

There are numerous methods for validating a forecast model. The majority of these involve the 

comparison of ex-post forecasts and historical data. Formal test procedures use either a Mean 

Absolute Percentage Error (MAPE) or a Mean Squared Error (MSE). The advantage is that 

deviations of a given magnitude have the same error, independent of the inputs and errors on 

other outputs. They give a standard measure of error, enabling different forecasts over the same 

time period to be compared. 

MSE = I I Y (L jgj  Lt,,recast )2 	Equation 7.1 
NT  NT 1 

NT = Number of data points 

L11101 = Actual demand at each data point 

Ljorecast = Forecast demand at each data point 
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MSE is used during the ANN training procedure to select the optimally trained model. The most 

serious disadvantage of MSE measurements is that they fail to distinguish between minor and 

serious errors and consequently larger errors weight the MSE calculations. 

The Mean Absolute Percentage Error, (MAPE) technique eliminates this bias. It is identical to 

MSE except the individual errors are not squared, rather their absolute values are taken. MAPE is 

used for the model comparison and the choice of the most appropriate ANN configuration in 

chapter 8, because the errors are represented as absolute percentage values. MAPE is outlined 

below. 

Firstly, the Absolute Percentage Error (APE) is computed as 

La c ai  - L recat  
APE= 	 xlOO 

Lactual 

The MAPE is derived from APE as: 

MARE =---APE 	 Equation 7.2 
NT  Nr 

7.3 	Multiple Linear Regression 

The MLR method represents the relationship between the demand and its explanatory variables as 

a straight line for each half-hour. It was chosen for the comparison because of its simplicity and 

wide applicability within the ESI. 

7.3.1 Modelling issues 

Before commencing on the specification of the regression model, it was necessary to investigate 

some of the factors and techniques that need to be considered in the construction of a correctly 

specified model. These factors are discussed in the following sub-sections 

7.3.1.1 	Dummy variables 
The explanatory variables for demand fall into two categories; quantitative values such as 

temperature, wind speed and previous demand, and qualitative or symbolic values such as day-of-

week. Qualitative inputs indicate the presence or absence of an effect' and cannot be defined 

quantitatively. They are also known as categorical inputs. 
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One method of 'quantifying' these qualitative inputs is to construct artificial variables that take on 

values of 1 or 0, 0 indicating the absence of the attribute and 1 indicating its presence. These are 

known as dummy explanatory variables, and an example of an MLR model with dummy 

variables is presented in equation 7.3 

fl0 +/3.x, + D1  x, + D1x +e 	 Equation 	7.3 

= Electrical demand at time 1 

X t 	 Explanatory variable correlated with demand 

= A random error term with zero mean and constant variance 

= Regression coefficients 

D 	= Dummy variables 

An important consideration to make when using dummy variables is the dummy variable trap. 

This occurs when there is a perfect linear relationship between the dummy variables. For 

example, if the dummies in equation 7.3 'quantify' two qualitative variables. In that case 

= (1 - D2 ) or D2 = (1 - D1  ) suggesting that D1  and D2  have a perfect linear relationship. 

Consequentially, it would not be possible to obtain unique estimates of these qualitative 

parameters in such instances. A general rule of thumb when using dummy variables is to use (m-

1) dummy variables where m is the number of qualitative variables. In theory, dummy variables 

can alter either the intercept term or the slope of the regression line, or both. 

7.3.1.2 Multicollinearity 
Classical multiple regression models use the method of Ordinary Least Squares (OLS) to estimate 

regression coefficients. One of the key assumptions within OLS estimations is that there should 

be no exact linear relationship between two explanatory variables. Multicollinearity exists if this 

assumption is violated, for example, the dummy trap example. In such cases, unique estimates of 

all parameters cannot be obtained and statistical inferences cannot be drawn about each 

parameter's influence on the regression line. 

In practice, there is usually a varying degree of correlation between the explanatory variables. If 

this correlation is very high, it is known as imperfect multicollinearity. The object of a forecast 

is predictive and not a reliable estimation of the individual contribution of each parameter to the 

regression line. The inclusion of a specific explanatory variable could introduce imperfect 

multicollinearity, however if it increases the predictive capability of the model, then its inclusion 

is desirable. 
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7.3.1.3 	Hetroscedasticity 
Another assumption of the OLS method is homoscedasticty, that is, the variance of the error term 

s is constant and has zero mean. Hetroscedasticity occurs when there is uneven or unequal 

variance among the error terms of the various observations. This could bias the confidence 

interval measurements thus affecting hypothesis tests based on the F and t statistics. 

Research has shown that hetroscedasticity is usually found in cross-sectional data and not in time-

series data. In cross sectional data, the members of a population are observed at a given point in 

time, unequal variance usually results because some members of the population tend to have 

larger variation in magnitude. With time series data, variables tend to be of similar orders of 

magnitude because data is collected for the same entity over a period of time. Short-term demand 

forecasts fall under the time-series banner, as such hetroscedasticity is not a particular problem. 

7.3.1.4 Autocorrelation 
The final assumption for the OLS method states that no correlation exists between the error terms. 

This means that the disturbance term relating to any observation is not related to or influenced by 

the error term relating to any other observation. For example, the error on the OLS estimation of 

Monday's demand should not necessarily be related to the error on Tuesday's demand nor the 

demand on the following Monday. Auto correlation exists when, for example, lower demand 

caused by high temperature on Monday affects demand for the remainder of the week. 

Just as hetroscedasticity is generally associated with cross-sectional data, autocorrelation is 

usually associated with time series data. The consequences of autocorrelation are very similar to 

hetroscedasticity. Standard formulas underestimate the true variance and standard errors, thereby 

inflating the t-statistic. This gives the impression that a particular coefficient is statistically 

different from zero, whereas in fact that might not be the case. 	As a consequence the 

computation of R2 , a measure of the overall goodness-of-fit of the regression line,  may be 

unreliable. This will affect the efficiency of the computed variance and standard error of the 

forecast. 

For the MLR forecast model, it is very important to check for autocorrelation to determine the 

validity of the statistics associated with the regression line. The simplest approach is a visual 

examination of the OLS residuals against time. 

7.3.2 Model construction 

The previous section presented the issues considered when building a robust Multiple Linear 

Regression forecasting model using, most notably Hetroscedasity, Autocorrelation, 

Multicollinearity and dummy variables. This section considers the construction of the model and 

assesses its validity. 
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To summarise the discussion in the previous chapter, a parallel forecasting configuration will be 

used because of the assumption that the time of day variations at the Dyce BSP are greater than 

the day of week variations. This forecasting configuration will require 48 identical models, each 

assigned to learn and forecast the demand on a specified half-hour of the day. The explanatory 

variables for the demand are half-hourly temperature and wind-speed, mean temperature from the 

previous day, previous 2 hours demand and day-of week identifiers. 

Dummy variables are used to encode the symbolic day-of-week inputs. Since there are seven 

days of the week, six dummy variables would be used to avoid the dummy trap. The MLR model 

is illustrated below in equation 7.4 

fl0 +fl1x +fl2x+p1y1  +p2y 2  +p3 y 3  +p4y, 4  +D 1 x +D 2x +D3 x1  + 

DA + D 5  x1  + D6 x + fl3 Z f  + 61 

Equation7.4 

= Independent variable, future demand 

= Intercept term or base demand 

fl1 = Regression coefficient for the half-hourly temperature 

fl2 = Regression coefficient for the previous day's mean temperature 

fl3 = Regression coefficient for half-hourly wind speed 

X, = Temperature during the specified half-hour 

x 	Previous 24 hours mean temperature 

Half-hourly demand from previous 2 hours 

z = Wind speed during the specified half-hour 

p. ........ p4  = Regression coefficients for the half-hourly demand over the previous 2 hours. 

D.........=  Dummy variables for the day of the week 

= Error term 

MLR models have the advantage of transparency because the regression coefficients, which give 

an indication of the contribution of the explanatory variables to the model, are discretely 

expressed. 80  the intercept term, shows the contribution of the base demand, fi.....fl3 the 

temperature and wind speed variables, D. ...... D6  the day of the week effects and p ......... p4 , the 

contribution of the previous demand. 
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The 3.5-year data set was divided into a training and test data set. Equation 7.4 was programmed 

and a training data set containing the explanatory variables as inputs and the corresponding 

demand as output over a three-year period was applied to the model to derive the regression 

coefficients. The MLR equation for the first half-hourly period of the day is shown below. 

4.9553 - 0.0252x + 0.2545x + 0.2423yt-I  - 0.0692y,-2  + 0.427 ly,3  —0. 1768)), 4  

—0.0266x —0.00726x-0.0347x — 0.0169x —0.0183x —0.0069x +0.0021z, 

To perform a prediction over this half-hour, the explanatory variables are used in the equation 

above. 

7.3.3 Model validation 

Before the model is used to predict the demand, it has to be validated to ensure that it has been 

correctly specified. The model validation is discussed in this section starting with the test 

statistics. 

7.3.3.1 	Test statistics 
The MLR represents the demand relationship as a straight-line. It is important to determine how 

well the regression line  models this relationship, in other words its 'goodness of fit'. This is 

done by measuring the R2  statistic, also known as the coefficient of multiple correlation. The 

R2  statistic indicates the level of influence of the explanatory variables on the dependent 

variable. 

R2  is always a positive number between 0 and 1: a value of 1 means that all the variation in the 

regression line is explained by the explanatory variables while very high values suggest that the 

regression model is correctly specified. For the model derived in the previous section 

the R 2  measure is 0.9175, indicating that the explanatory variables represent 91.75% of the 

variation in demand 

However, the R2  statistic does not show the influence of individual explanatory variables on 

demand. To determine whether an individual explanatory variable is significant, the estimated 

standard deviation from the variance-covariance matrix is observed. As a rule of thumb, an 

explanatory variable is deleted from the model if it is less than 2 standard deviations away from 

zero because it has a negligible effect on demand. 

The variance-covariance matrix is computed as 

yt =wt , 8+gt  
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= (w'w) 1 w'y 

var()= a 2 (w' w) 1  

i n 
2 = 	e 	e, =y, -  W8 	Equation 7.5 

n—k j=1 

vector of demand variables 

W =  matrix of regression coefficients 

W 8 = vector of least squared estimators 

standard deviation of the variance covariance matrix 

The next step in the model validation was to determine whether each of the estimated regressors 

are relevant within the forecast model from the varience-covarience matrix. The estimated 

standard deviations of the explanatory variables were observed and all the regressors were more 

than 2 standard deviations away from zero. This means that the chosen explanatory variables are 

all relevant within the model. 

7.3.3.2 	Test for autocorrelation 
Short-term demand forecasts were made from time-series data and could therefore be susceptible 

to autocorrelation. In other words the error on one observation might be related to, or influenced 

by the error on another observation. Autocorrelation would cause estimates of R2  to be 

unreliable thus the validity of the regression's test statistics would be compromised. 

A visual inspection of the regression's residuals was used as a preliminary test for autocorrelation 

and the residuals from the derivation of the MLR in period 1 were computed over the entire 

training period, 1095 days, see Figure 7.1. 
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Figure 7.1. Regression residual plot over the training period 

Visual inspection shows slight periodicity during the first year, from day 1 to day 365 beyond 

which the residuals arc evenly distributed around zero. This suggests an initial small degree of 

autocorrelation that disappears over time. The amount of autocorrelation present in the training 

data set was considered negligible and the R2  estimate of 91.75% was taken as a reliable measure 

of the goodness of fit. These tests suggest that the model is correctly specified. 

The analysis detailed in this section is relevant to the forecasting model for period 1 only and 

similar validation had to be performed for the other 47 half-hourly models. 

7.4 	Artificial Neural Network 

A brief outline was given in Chapter 5, of the basic structure of an Artificial Neural Network 

(ANN). Artificial Neural Networks were selected for the comparison because they are the most 

popular Artificial hitelligence method that may be used for short-term forecasting and are the 

most powerful tools for modelling multivariate 'cause and effect' relationships. 

This section discusses the data preparation, learning algorithm, training and the final architecture 

of the ANN. 
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7.4.1 ANN data preparation 

Numerical conditioning is one of the most fundamental and important  concepts in neural network 

implementation because it affects the speed and accuracy of the learning algorithm. For this 

reason the input data is pre-processed to encode the qualitative day-of-week 'inputs and to present 

the inputs to the network so as to maximise its inference potential. 

7.4.1.1 	Encoding categorical information 
With MLR models, dummy variables were used to encode qualitative or categorical day of the 

week information. Several approaches exist to do this and at the time of writing, there was none 

universally acknowledged as the best. 

One approach assigns numbers 1 to 7 for each day of the week. This method's major advantage 

is that it requires only one input to represent the qualitative information. Its disadvantage is that 

the ANN will attach higher weighting to the days with higher numbers. For example, if Saturday 

is labelled day 7, and Sunday, day 1, the network might give undue weighting to Saturday's 

demand pattern although it is no more valid than Sunday's. This method was discarded to ensure 

that encoding of categorical information did not introduce any unwanted meaning. 

Another family uses binary codes to represent the categorical information. The simplest approach 

would be to use one bit per day. Though this method is effective, it requires a 7-bit code 

corresponding to 7 designated input neurons. This approach was rejected because it uses an 

excessive number of inputs. At the opposite extreme, the optimal binary coding method, as 

shown in Table 7. 1, uses 3 bits to encode all seven categorical inputs. 

Day of week Binary Codes 

Sunday 0 0 0 

Monday 0 0 1 

Tuesday 0 1 0 

Wednesday 0 1 1 

Thursday 1 0 0 

Friday 1 0 1 

Saturday 1 1 

Table 7.1. Optimal binary encoding for categorical inputs 

Though this method gives a binary representation of the data using the minimal number of inputs, 

it will not represent the optimal solution91. This is because Monday, Tuesday and Thursday 

identifiers switch one-bit, whereas Sunday switches none, whilst the others switch two bits. The 
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unequal number of switched input neurons could potentially favour the demand patterns on 

certain days. 

The optimal solution is to combine both binary methods using a code with minimum inputs that 

switches the same number of input neurons for each day of the week. In other words, the lowest 

bit code with the same number of ones for each categorical input. For the 7-category day of the 

week case, a 5-bit code with 2 of the inputs nodes always switched is the most effective. This is 

shown in Table 7.2, there are 3 spare codes. This method should eliminate all possible bias 

towards any of the day of week categories. 

Day of week Binary Codes 

Sunday 0 0 0 1 1 

Monday 0 0 1 0 1 

Tuesday 0 0 1 1 0 

Wednesday 0 1 0 0 1 

Thursday 0 1 0 1 0 

Friday 0 1 1 0 0 

Saturday 1 0 0 0 1 

Spare codes 1 0 0 1 0 

10100 

1 10 0 0 

Table 7.2. 5-bit day of week code 

7.4.1.2 	Input data pre-processing 
Since neural networks can perform arbitrary non-linear functional mapping between sets of 

variables, a neural network can, in principle map raw data directly onto required final output 

values. Nevertheless, in most practical applications the choice of pre-processing will be one of 

the most significant factors in determining the performance of the final network. 

One of the most common forms of pre-processing requires simple linear resealing of the input 

variables92. This is particularly useful if the explanatory variables have typical values that differ 

significantly in magnitude from each other. For example, temperature, wind speed and previous 

demand are each expressed in different units and also have significant variations in magnitude. In 

such cases the typical sizes of the inputs may not reflect their relative importance in the 

determination of the required outputs. Applying a linear transformation to each input 

independently can solve this problem by equalising all the input values to fit a similar range. 

One simple transformation is normalisation based on the mean and standard deviation. For each 

explanatory variable x, the mean x and variance a2  is calculated using. 
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where n 1......... N labels the patterns numbers. The resealed values for each explanatory 

variable are calculated using the equation given below. 

_X 
i 	 Equation 7.7 

a1  

	

The transformed values given by 	have zero mean and unit standard deviation over the 

transformed data set. This removes all effects of offset and measurement scale. 

Table 7.3a and 7.3b show a cross-section of the data file before and after pre-processing. They 

present the input-output patterns for period 6 on three separate days. Columns 1-12 contain the 

input data and are presented to the input of the neural network whilst column 13 contains the 

output data and is presented to the network's output. Table 7.3b shows the data after it has been 

pre-processed; the output data is not pre-processed. 

5-bit day of the week 

categories 

Mean temp 

°C 

Temp 

°C 

Wind 

Knots 

Previous 2 hour demand 

MW 

Demand 

o 1 0 1 0 13.4 12.6 6 18 18 20 17 17 

1 0 0 0 1 12.5 12.6 5 18 18 19 16 16 

0 0 1 0 1 11.8 13.2 10 15 16 17 15 15 

Table 7.3a. Neural Network data before pre-processing 

5-bit day of week category Mean 

T °C 

T °C Wind 

Knots 

Previous 2 hour demand Demand 

-0.4 1.14 -0.8 1.14 -1.14 1.46 1.35 -0.4 -0.8 -0.99 -0.7 -0.99 17 

2.5 -0.87 -0.8 -0.87 0.87 1.23 1.35 -0.6 -0.8 -0.99 -0.9 -1.2 16 

-0.4 -0.87 1.2 -0.87 0.87 1.1 1.48 -0.17 -1.8 -1.65 -1.6 -1.5 15 

Table 7.3b. Neural Network data after pre-processing 

In summary, the inputs to each network are shown in the schematic diagram in figure 7.2 
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5-bit day of 
week 
categories 

Half-hourly temperature 

Half-hour wind speed 

Mean previous day temperature 

Previous 2 
hours 
demand 

Artificial 
Neural 

Network 
Forecasting 

model 

Demand 
forecast 

Figure 7.2. Schematic diagram of the ANN's inputs 

7.4.2 Training the network 

The development of the back-propagation algorithm in the mid-1980s represented a landmark in 

neural computations because it provided an efficient method for training multi-layered 

networks93. Once trained these networks have the ability to learn' from examples and generalise 

beyond the training data set. 

As a training algorithm, the purpose of back-propagation is to adjust the network weights so the 

network produces the desired output in response to the input pattern from a predetermined set of 

training patterns. It is a supervised algorithm, for every input pattern, there is an externally 

specified 'correct' output which acts as a target for the network to imitate. Training is done off-

line'; the network is used afterwards in normal operation, no further learning occurs after the 

training phase. 

To tram a network, a set of input patterns and corresponding desired outputs is used along with an 

error function to measure the differences between the neural network's outputs and the desired 

values. The most commonly used error function is the Mean squared Error (MSE). Its major 

advantage is the ease of differentiability and the fact that the error calculation depends on its 

magnitude only. As such a deviation of a given magnitude has the same error independent of the 

input pattern and errors on other outputs. 

The basic training steps of the back-propagation algorithm are summarised below. 
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A training input pattern is presented to the network, and propagated through to obtain 

outputs. 

Compare the outputs with the desired values and calculate the error. 

Calculate the derivatives öE/öw of the error E with respect to the weights w 

Adjust the weights to minimise the error 

Repeat until the error is acceptably small or the maximum number of epochs specified at 

the beginning has been exceeded. 

A flow diagram of the training process is illustrated in Figure 7.3. One such pass through the 

network resulting  in updating of the network's weights is called an epoch. 

Training data 

Input 	 Desired output 

Target 

Network 

In 	Out 

Weight 
changes 

Back propagation 
error function 

Figure 7.3. Flow diagram of the training process using a back-propagation algorithm 

In practical applications of the back-propagation algorithm, learning results after many epochs. 

There are two types of learning; Pattern and Batch mode training. For the purpose of this 

discussion, Pattern mode training is favoured because the start point or seed of the input-output 

patterns is chosen at random as such the network is less likely to get trapped in a local minimum. 

Once adequately trained, the network should be capable of performing forecast from an input data 

set it has never 'seen'. This is known as generalisation. The learning process could be viewed as 

a curve-fitting problem, where the network performs a non-linear interpolation of the input data. 
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Output data 
Nonlinear 
mapping 	 Output data 

Generalization 

Training data 

Training data 

Nonlinear  
mapping 'S 

Generalization 

Input data 	 Input data 

Figure 7.4a. Properly fitted data 	 Figure 7.4b Over fitted data 

A well trained neural-network will have good generalisation and is capable of producing correct 

input-output mapping even when the input differs from the training data. A properly trained 

network with good generalisation is shown in figure 7.4a. However, when a neural network 

learns too many specific input-output relations, the network may memorize the training data and 

is less able to generalise between slightly different input-output patterns. This is known as over 

training and is illustrated in figure 7.4b. In this example the neural network has memorised the 

data, when forecasting, the neural network acts as a lookup table and will perform poorly on data 

it has never seen. It is therefore very important to prevent over training. 

The reverse is under training, which occurs when the network does not have sufficient input-

output pairs to infer effective relationships. Under training is avoided by presenting the network 

with a large number of input-output parings. 

74.3 Designing a well trained model: Cross validation 

The next question is how to optimise the network so as to avoid over training and achieve good 

generalisation. One of the simplest approaches is cross-validation. The data set is randomly 

partitioned into a training set and a test set. The training set is further partitioned into two subsets 

A subset used to train the network known as the training data set. 

A subset used to evaluate the performance of the model during training, known as the 

validation data set. 

Whilst training, the Mean-Squared Error (MSE) of the network decreases as the number of 

epochs increases. To assess the models generalisation performance, the network is tested after 

each epoch on data it has 'never seen', the validation data set. The validation error also 

decreases at the start of training. Training is continued until the validation error starts to rise. 

With this method the performance of the network is monitored during training until the best 
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performance is attained, known as the optimal training point. Cross-validation avoids over 

training. An example of cross-validation is shown in figure 7.5 

Training data set 	 Validation data set 

Mean-squared \ 	 / 
error in 	 ..- 
generalisation 	 / 

e 	
- 	Optimal training 

point 

Number of epochs n 

Figure 7.5. cross-validating the models during training 

During training the validation error occasionally decreases past its initial minimum. For this 

reason training is continued well beyond the optimal training point. After this the model is then 

retrained starting from the seed of the previous run until the optimal training point. The model's 

generalisation performance is finally tested on the test data set. A flow diagram of the training 

process is shown in figure 7.6 

Pre-processing 

Training 

No 

Optimal training 
point 

Yes I 

Go to seed 

Re-train network until 
optimal training point 

Figure 7.6. Flow diagram of the training process 
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With the back-propagation algorithm training starts from a random initialisation point in the 

training data set. As such, the optimal training point for any two networks will be different 

because they have different start points. Thus networks trained  on the same data set will have 

slightly different accuracies. it is common practice to train many different candidate networks 

and select the best, based on their performance on the independent test data set. A reasonable 

number of candidate networks are about 10. This is known as the hold-out method. 

7.4.4 Network architecture 

The network architecture involves selecting the optimal number of hidden layers and the number 

of neurons within each hidden layer. In multiple-layer feed-forward networks, the number of 

hidden neurons can make the difference between a well-specified network. There are no hard-

and-fast formulas for doing this, simply general suggestions. 

Generally, there are no real benefits for using more than one hidden layer because ANN training 

slows down dramatically due to the following effects. 

The additional layer through which errors must propagate makes the network unstable. 

The number of local minima increases, and can trap the network. When this happens, 

training has to be restarted. 

For the purpose of short-term demand forecasting it was decided to use one hidden layer. 

Choosing the appropriate number of hidden neurons is extremely important. Using too few 

neurons will starve the network of the resources it needs to infer relationships between the 

explanatory variables and demand and also increases training time. An excessive number of 

hidden neurons could cause over fitting. 

The best approach to finding the optimal number of hidden neurons is by experimentation with 

various sizes, starting from the least number. Five architectures were compared; 3 neuron, 5 

neuron, 7 neuron, 10 neuron and 15 neurons. For each architecture, 10 networks were built for 

both half-hours. The networks with the lowest MSE for each architecture are presented in Table 

7.4 

During training there was a noticeable convergence time difference, with the 3-neuron version 

taking the longest. From the results and the trade-off with training time, it was decided to use the 

5 hidden neuron architecture. 
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Architecture Period 1 Period 25 

3 neurons 0.39 0.36 

5 neurons 0.21 0.24 

7 neurons 0.27 0.25 

10 neurons 0.25 0.24 

15 neurons 0.25 0.26 

Table 7.4. Comparison of various hidden neuron architecture 

7.5 Naive forecasting 

For its day-ahead forecasting, NGC uses a forecasting method based on demand from the 

previous three days, a method very commonly used in the ES!. For the purpose of this discussion 

it is referred to as a naïve forecast. This method calculates present demand as the sum of the 

weightings of the demand from the previous 3 days. The results from a naïve forecast over the 

time period concerned are presented to demonstrate the superiority of both methods to the 

industry's average. The weighting is as follows: 

1-y, 3  +.y 2  +y 1 	 Equation 7.8 

where y, is the forecast demand. 

7.6 Results and discussion 

The complete forecasting model would require the construction and training of 48 models for 

both ANN and MLR methods, totalling 102 models. Such a large number of models would be 

unnecessarily excessive for the comparison. Instead it was decided to perform the comparison 

over selected half-hours that characterised the demand at the Dyce BSP. This would shorten the 

time taken without diminishing the validity of the comparison. 

The chosen half-hours were period 1, 00:00-00:30 and period 25, 12:30-13:00. Period 1 was 

chosen because it reflected the over night demand. It contained a high proportion of the heating 

load and had very limited day of the week variation. Period 25 was chosen because it was one of 

the marginal half-hours, from the discussion in section 6.3.5, the nonlinearity across such periods 

presented the greatest challenge to forecasting models. 
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The same data set was used for both models. The training set consisted of three years of data, 

from January 1996 to December 1998. The forecasting capability of both models was determined 

over the test period, from January 1999 to March 1999. 

The MAPE for both models together with the naïve forecast for both periods 1 and 25 are 

presented over the 90 day forecast horizon in Table 7.5. 

Model Period 1 Period 2 

Naïve forecast 4.6746 17.6287 

Multiple Linear Regression 2.8442 4.0101 

Artificial Neural Network 1.8630 1.0314 

Table 7.5. MAPE for all the models 

The forecasts from both models are superior to the naïve forecast notably during period 25. This 

shows that a mathematical forecast model reduces Suppliers volumetric risk considerably. The 

ANN outperforms the MLR over both half-hours. However, there is not much difference 

between the predictive capabilities of both models for the first half-hour, this is because Period 1 

has fewer nonlinearities. Demand over this time period is not affected much by day of week 

variations, its primary driver is the weather because of the large element of stable heating 

demand. The MLR is thus capable of making fairly accurate inferences. 

The situation is rather different during the second half-hour. The ANN performs better whereas 

the quality of the MLR forecasts worsens. This suggests that the ANN is very capable of 

modelling and predicting the nonlinearity imposed by teleswitching. As the MLR is only capable 

of representing the relationship linearly, it is incapable of capturing the nonlinearity imposed by 

the teleswitch block that is switched ON for minimum forecast day ahead temperatures below 1. 

Type of forecast Period 1 Period 25 

Naïve 94.82MW 498.6MW 

MLR 60MW 128.5MW 

ANN 38MW 29.2MW 

Table 7.6 Forecast error in MW terms over 90 day period 

The forecast error expressed in demand terms is shown in Table 7.6. The error is the out-of-

balance quantity Suppliers using the different forecasting methods will be penalised for by the 

System Operator (SO). The numbers show the superiority of the ANN method over MLR and 

the virtues of mathematical forecast. 
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The forecast from both models are presented graphically in figures 7.5 and 7.6. Figure 7.5 shows 

the actual demand and the forecasts for period 1 whilst Figure 7.6 presents period 25 over the 90-

day time horizon. 

Graph of actual demand and predicted demand from the models 
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Figure 7.5. Actual demand and forecast demand during period I for a 90-day horizon 
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Figure 7.6. Actual demand and forecast demand during period 25 for a 90-day horizon 
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Both graphs show a cyclical pattern, the peaks represent the weekday demand and the troughs, 

the weekends. In Figure 7.5 both models occasionally over predict the demand with the MLR 

indicating slightly greater overpredictions. 

Over period 25, in figure 7.6, the ANN prediction is much improved and closely follows the 

actual demand. On the other hand, the MLR's predictions deteriorate. The MLR model 

consistently under predicts the weekday demand. It is probable that this occurs because the MLR 

model is unable to represent the wide demand discrepancies between the weekday and weekend 

demand as such, the predicted weekday demand is reduced by a constant magnitude. The 

phenomenon can be partially corrected by scaling up the weekday demand. However, this was 

not considered appropriate, as the analysis was intended to be a straight comparison between both 

models. 

Next, it was decided to observe the performance of both models across the temperature range they 

were forecasting during the 90-day period. This is to assess whether the temperature affects the 

predictive accuracy of either model. Table 7.6 shows the MAPE for both models for 3 

temperature ranges. 

Model Period 1 Period 25 

T<00 0°CT:!~50C T>5°C T<00 0°C:!~T:!~50C T>5°C 

MLR 5.5151 3.0701 1.4519 2.2093 3.8007 4.2285 

ANN 1.94987 1.9438 1.4999 1.4071 0.8754 1.0771 

Table 7.7. The MAPE of both models over the forecast temperature range 

From the results in the Table 7.7, the MLR makes inaccurate predictions at temperatures below 0 

degrees during the first period, where temperature is the primary driver of demand because the 

majority of the over-night space-heating demand is active over this half-hour. Because the 

temperature-demand relationship from the discussion in section 5.3.4.1 follows an inverse 

parabolic curve, the MLR' s straight-line approximation will not account for data points at the 

ends of the curve. The MLR represents demand at the upper temperature range better because it 

is closer to the mean of the training data set. On the other hand because the errors from the ANN 

model are consistent over the temperature range, this illustrates that the ANN is capable of 

representing the parabolic nature of the temperature-demand relationship. 

For period 25, the ANN performs particularly well over the temperature range between 0 and 5 

degrees where it was expected the most modelling complexity would exist because the teleswitch 

demand block is arranged to be ON for temperatures below 1 degree and OFF for temperatures 
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above. However, the ANN is capable of modelling this non-linearity, because predictions over 

this temperature range have the lowest errors. 

During period 25 the MLR's errors are fairly large especially for temperatures above 5 degrees. 

This could be because the nonlinearities induced by teleswitching weights the regression line in 

favour of lower temperatures, biasing the forecast against higher temperatures. As such the 

magnitudes of the error increases as the temperature increases. 

The ANN model is superior for forecasting demand at this BSP, adequately modelling both 

nonlinearities within the temperature-demand relationships and teleswitching. The straight-line 

approximation of the Multiple Linear Regression model is not capable of representing these 

nonlinearitics, as such the accuracy of its predictions are compromised. However, the MLR 

model has the advantage of transparency over the Neural Network model, since contributions of 

the individual explanatory variables on the demand are easily observed. 

As an experiment seasonal dummies were introduced into both models to account for the time of 

year effect. These did not make any difference to the forecast accuracy, because there was no 

seasonal change over the forecast period and the lighting peak does not occur during either 

periods 1 and 25. 

7.7 Conclusions 

This chapter was primarily concerned with the analytical comparison of the forecasting models 

selected in chapter 5. Following a brief discussion of the forecast evaluation method which 

covered several issues involved in the correct specification of a MLR forecasting model, notably 

autoregression and the representation of the day of week variables, a forecasting model for the 

first period of the day was constructed and validated. 

ANN is the most popular Artificial Intelligence tool used in short-term demand forecasting and 

the requirement was emphasised to encode data pre-processing of categorical information and 

scaling of inputs. 

The need to achieve a well-trained neural network to achieve optimal performance was discussed. 

The back-propagation training algorithm used in the network was outlined together with the 

optimisation methodology, cross-validation, to select the best trained network and this section 

concluded with a discussion on the network's architecture. 
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A brief outline of naïve forecasting was given followed by the equation of the most commonly 

used method. Naïve forecasts were used as a benchmark to assess the merit of using either of the 

formal forecasting approaches. 

The final section of this chapter presented and discussed the results of the forecasts from both 

models. A 90-day forecast period was used and the comparison was made using demand over 

two half-hours, periods 1 and 25 that sufficiently characterised the load. From the comparisons, 

the ANN outperformed the MLR in all categories assessed. The ANN was capable of modelling 

the nonlinearities within the demand whereas the MLR attempted to model the relationship as a 

straight line. Both models were superior to the naïve forecast, confirming the value of proper 

short-term forecasting under NETA. 

The final chapter discusses and analyses various optimisation methodologies to further improve 

the accuracy of the ANN followed by the construction of models for each of the 48 half-hours 

and a comparison of linear and parallel forecasting. 
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8. Neural network forecast optimisation 

8.1 Overview 

The ultimate object of forecasting is to try, as far as possible, to insulate the Supplier from 

unwanted out of balance costs. 	Artificial Neural Networks were chosen from the preceding 

discussion as the most appropriate method for predicting half-hourly demand at the Dyce BSP in 

Aberdeenshire. This chapter initially focuses on optimising the efficiency of the ANN, followed 

by the complete construction and analysis of the 48 half-hourly models and comparison of linear 

and parallel methods. 

The first step in the optimisation is to compare forecast accuracy of binary encoding methodology 

with an alternative. In an attempt to shorten the training time whilst improving the accuracy, the 

length of the training window and forecast horizon were re-examined. Before building the 

complete model, the validity of the chosen input architecture was assessed by constructing a 

model for the first six hours of the day. This revealed some inherent flaws. The input variables 

were re-evaluated and a revised model configured, optimised and then construction for each of 

the 48 half-hours was carried out. 

In Chapter 6, it was assumed that parallel methods were superior to linear methods at forecasting 

demand at this BSP. A comparison of the performance of the completed parallel method with a 

linear equivalent is used to illustrate this. This chapter ends with a case study using real NETA 

balancing mechanism prices to confirm the validity of the forecast methods developed. 

8.2 	Assessing an alternative encoding method 

The purpose of encoding the categorical inputs was discussed in the previous chapter. The 

preferred method was chosen as a 5-bit binary code utilising minimal inputs with the same 

number of input neurons switched for each day of the week. To determine its effectiveness, it 

was decided to contrast this method with an alternative approach known as the sine-cosine 

method94. 

With the alternative approach, day of the week information is encoded as sine and cosine 

functions. Each day of the week is uniquely specified by a periodic measure defined by the 

trigonometric functions shown below. 
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sin' 
7 	

cosi 
7 

I 	Equation 8.1 
) 	 ) 

Both functions are used to encode the categorical information by assigning a number from 1 to 7, 

d, for each day of the week in both equations. Graphical representation of the day of the week 

information is shown in Figure 8.1 

Figure 8.1. Graphical representation of the sine-cosine function 

The day of week identifiers are encoded and presented at the two designated inputs of the ANN. 

The forecast results using the 5-bit binary code and then the sine-cosine functions are compared 

and the MAPE of both methods shown in Table 8.1 

Model Period 1 Period 2 

5 -bit binary input 1.8630 1.0314 

Sine-cosine function 2.2593 1.4296 

Table 8.1. Results from the comparison of the encoding methods 

From the comparison, the binary method showed better results, suggesting that it is better at 

encoding categorical day of week information. As a possible explanation for the inadequacy of 

the sine-cosine method, the day-of-week is not specified as discretely as in the binary method and 

as such, the days are not classified as accurately. 
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8.3 Training period 

The training period used thus far has been three years. This length of time was deemed long 

enough to represent most probable trends and short enough to exclude obsolete ones. Once 

trained, the model was used effectively over a three-month forecast horizon. The major draw 

back with this method was the time taken to train and verify the model. It was decided to 

experiment with shortening the length of the training period to determine whether similar or 

better forecasts could be made, whilst reducing the training time. 

An alternative method was considered that involved using a considerably shorter training window 

length. Simply shortening the window and forecasting over the same time horizon (3 months) 

was considered inadequate, as the training data set would not contain enough information to 

predict accurately. Instead, the shorter training window was used to forecasting for a week ahead 

then moved along one week, retrained and the same process repeated. For the purpose of this 

discussion, this method is known as the moving training window. A three-month training 

window was chosen arbitrarily for the comparison with the previous static three-year training 

period. The assumption behind this method was that all the relevant information for predicting 

was contained within the most recent weeks and months. 

The comparison of the forecast from both models was done over the 12-week period and the 

MAPE for both methods shown in Table 8.2 

Model Period 1 Period 2 

3 -year training period 1.8630 1.0314 

Moving window 1.0310 0.990 

Table 8.2. MAPE of the comparison between the moving window and static three-year 
window 

The moving window method improved the forecasting accuracy as well as greatly reducing the 

training time. The improved accuracy is because the models are trained on a cleaner data set 

without the influence of unwanted noise from past trends. The graphs of the predictions from 

both models during periods 1 and 25 are shown in figure 8.2a and 8.2b. 
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Graph of actual demand and predicted demand from the models 
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Figure 8.2a. Graphs of the predictions from both models for period I over 12-weeks 
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Figure 8.2b. Graphs of the predictions from both models for period 25 over 12-weeks 

These graphs show that both models predict demand accurately with the moving window method 

marginally better for both half-hours. It was thus decided to opt for the moving training window 

as opposed to the static method. 

The next step was to experiment with various window sizes to find the optimal length. However, 

before doing this, it was decided to modify the inputs to the ANN to make them reflect more 

realistic NETA balancing mechanism conditions. 

8.3.1 Realistic input re-evaluation 

From the previous discussions, Suppliers are required to provide the System Operator with final 

demand notifications at gate closure, which is 4 hours before the scheduled half-hour. This 

Demand 
in MW 
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means that, in practice, demand from the previous 2 hours would not be known at the time of gate 

closure. Using this method, the model would be required to use forecast data from the previous 2 

hours as inputs. If these inputs contain any error, which is highly likely, they would be 

propagated through subsequent half-hourly forecasts. The complete 48 half-hourly forecasting 

model would become unstable the further into the future it goes. It was therefore decided to 

reduce the vulnerability to such errors by decreasing the model's heavy reliance on previous 

forecast. Instead, the demand forecast from the past hour together with actual demand at gate 

closure and from the previous week is used. Demand at gate closure was selected because it is 

the most recent actual demand figure whilst previous week's demand was on the basis of the high 

day of week correlation discussed in section 6.5.3. For example, the demand at 12:30pm on a 

given Wednesday will show a strong relationship with demand at 12:30 the previous Wednesday. 

Though this modification reduces the model's susceptibility to previous forecast error, it is not 

entirely eliminated. 

The predictions over periods 1 and 25 from the revised model were compared with forecasts from 

the previous example over the first 4 weeks of the 12-week test period and the MAPE from both 

models presented in Table 8.3. 

Previous demand Period I Period 25 

Previous 2 hours 1.1504 1.4714 

Previous Y2, 1, 4 hours and week 1.1770 1.8090 

Table 8.3. MAPE of model using previous 2-hour demand and MAPE using previous 1, 4 

hour and previous week as lagged demand inputs. 

From the Table, the original model outperforms the modified model especially over the marginal 

period 25. This suggested that during uncertain periods, the ANN requires high quality 

information nearer to the scheduled half-hour. In spite of this, it was decided to sacrifice 

accuracy for susceptibility to forecast error. The discussion will be revived in future sections. 

Contrary to the trends from the previous ANN analysis, the accuracy of both models during 

period 25 was lower than that for period 1. It was decided to investigate this observation by 

examining the minimum  temperature trend, shown in Figure 8.2 over the 12-week test period. It 

was noticed that the minimum daily temperature seems to decrease over time. Since the forecast 

day-ahead minimum temperature determines the teleswitching regime, it might be suggested that 

over the marginal half-hours, the ANN's predications are better at lower temperatures. 
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II 
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Figure 8.2. Minimum daily temperature over the 12-week period 

8.3.2 Optimising the length of the training window 

The discussion on training window length digressed in the previous section because it was 

necessary to define realistic inputs before proceeding with further analysis. In this section 

various window sizes are experimented with to determine the optimal training length for the 

neural network. 	Window sizes ranging from three to six months were compared. Shorter 

window lengths were disregarded on grounds that they would not contain enough information on 

a wide range of outcomes. The comparisons were made during periods 1 and 25 over the month 

used for the previous comparison, the MAPE for the model using various window sizes are 

shown in Table 8.3. 

Window length Period 1 Period 25 

3 month 1.1770 1.8090 

4 month 1.0170 1.7122 

5 month 1.3790 1.7422 

[ 	
6month 1.0461 1.6622 

Table 8.3. MAPE of the model using different training window lengths 

The four-month window length produced the best results for the first half-hour whilst the six- 

month model produced the best results over period 25. 	Though the 4-month period required 

shorter training time, a third half-hour was chosen for a more conclusive comparison. The half-

hour chosen was between 18:00-18:30, period 36, because its characteristics are different from all 
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the others compared in that, it coincides  with the evening peak and is also a marginal half-hour. 

The MAPE are shown in table 8.4 

Window length Period 36 

4 month 1.5452 

6 month 1.7426 

Table 8.4. MAPE of the model using the four and six month windows over period 36 

The 4-month window size performs better over period 36 and was chosen as the optimal training 

period for the complete forecasting model. 

8.4 Complete forecasting model 

Up to now, this chapter has focussed on optimising the inputs, reducing the reliance on previous 

forecast and shortening training window size. This section concentrates on the construction of 

the complete model for all 48 half-hours of the day. 

The training and test procedure used up until now was firstly to divide the data into separate 

training and validation sets, and an independent test set. After training 10 candidate networks 

with the training and validation data sets, the best is chosen according to its performance on the 

test data set. This method might not be appropriate in real-life applications, because the model 

would be required to be trained as close to gate closure as possible. It is therefore preferable not 

to set aside a separate test set. Additionally, the most effective candidate network should not be 

chosen according to its performance on the validation data set. This is because generalising 

performance on the validation data set has a random component due to the noise in the data. The 

network with the lowest validation error might not produce the best performance on an 

independent data set. 

Various methods exist for choosing the best network, among which is the committee method. 

Ten candidate networks were trained and validated on the training and validation data sets. All 

ten models are used to predict demand, the final half-hourly forecast is determined as the average 

prediction from all the candidate networks. To build the complete forecasts model using this 

method, 480 such networks had to be trained. 

Due to the large number of networks, it was decided to train and test models for the first six hours 

to determine the validity of this method before proceeding to construct the complete 24 hour 

version. Figure 8.3 shows the schematic diagram for the first four half-hourly periods of the day 

it shows that in this method, forecast from the previous two half-hours are used as inputs. 
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A graph of the forecast is shown in Figure 8.4. 
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Figure 8.3. Schematic diagram of the first four half-hours of the complete 
forecasting model 
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Figure 8.4. Actual and forecast demand for the first 6 hours of the day 

The MAPE over the six-hour forecast period is 9.0929. Interestingly, the model follows but 

under predicts the demand until period 7, after which point the ANN model predicts a steady 

demand rise, the opposite occurs in reality. From previous discussions, the overnight demand is 

the most predictable and should thus have the lowest errors. The forecast's inability to follow the 
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demand beyond period 7 indicates inherent flaws in the model. A possible explanation is given 

below. 

During training, the back-propagation algorithm assigns weights to the input neurons based on 

their relative importance to the output. The demand from the previous hour would have the 

highest correlation with the present demand and would thus be assigned the largest weights. 

This will mean that any errors in the previous demand forecasts will lead to pronounced errors in 

the forecast. These errors become multiplicative as they propagate through each half-hourly 

period. Thus the forecast will diverge further away from the actual demand as it moves into the 

future. Error compensation methods were considered but discarded because of the complexity in 

attempting to predict the error. Another important point is that once the model is in operation, 

there is no process by which it can be recalibrated, so the model will have to be reset. It will not 

be advisable to use this model on line. 

It was decided that though this method would reduce susceptibility to the forecast error, it is still 

nonetheless vulnerable. Therefore it is inadequate for the purpose of short-term forecasting under 

NETA due to its susceptibility to errors from previous forecasts. 

8.5 Alternative forecasting approach 

As the previous approach proved to be inadequate, it was decided to experiment with an 

alternative method that did not require previous forecasts as input variables. This was done by 

substituting the previous hour's demand for actual values from the three half-hours prior to gate 

closure, that is 4, 4 Yz and 5 hours before the scheduled half-hour. Though from the discussion in 

section 6.5.4, these half-hours will have lower correlation with demand, it was felt that this was a 

less hazardous trade-off than the uncertainty introduced from previous forecast errors. Though 

the accuracy of the individual models is sacrificed further, the problem of input errors will be 

avoided. Figure 8.5 shows a schematic diagram of the inputs to the alternative model. 
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Figure 8.5. Half-hourly forecasting with revised inputs 

Since three of the primary explanatory inputs to the model have been revised, it was decided to 

revisit the analysis on the optimal training  window length, to ascertain whether the conclusions 

drawn in section 8.3.2 still hold. The four and six month window  sizes were compared, as they 

were the optimal from the previous analysis. It was decided not to repeat the comparison of the 

day of week encoding methods because their information is independent of the other explanatory 

variables. 

The MAPE from both models are presented in table 8.4. Period 12 is included here because it 

covers the beginning of the morning peak. 

Training window size Period 1 Period 12 Period 25 Period 36 

4 month 2.7561 4.8285 3.5264 3.3345 

6month 3.1191 5.2164 3.1908 3.1587 

Table 8.4. Comparison of the four and six month window sizes with the alternative model 

The 4-month training window was found to be superior in periods 1 and 12 and the 6-month 

training window superior over periods 25 and 36. The 4-month window was chosen because it 

was quicker to train. As might be expected, the alternative method shows a noticeable reduction 

in accuracy. 
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85.1 Network selection: Comparison of the committee and holdout 
methods 

For the six-hour forecasting model in section 8.4, the committee method was used to determine 

the predictions of each half-hour by averaging the output from ten candidate networks. This 

method is compared with a variation on the hold-out method discussed in the previous chapter to 

investigate the relative merits and demerits of both methods for network selection. To select the 

best candidate network in the hold-out method, the ten models are trained up until one week 

before the beginning of the intended forecast period. Data from the week preceding the forecast 

period is used as a test data set from which the best out of the ten candidate networks is selected 

and used to perform the forecast. 

The forecast are performed over a two-week period and the MAPE of the comparison from both 

models are presented in Table 8.5. 

Network selection method Period 1 Period 12 Period 25 Period 36 

Hold-out 3.9449 4.9593 3.4203 2.8645 

Committee of networks 3.5267 4.8892 3.3481 2.5639 

Table 8.5. Comparison of the committee and holdout method for network selection 

The committee method outperformed the hold-out method in all the categories assessed. The 

higher accuracy with this method can be viewed as arising from the reduced variance due to 

averaging over many solutions. 

After verification of the optimal training length and selection of the best network, it was decided 

to proceed with the construction of the complete alternative forecasting model. The schematic 

diagram for the first four half-hours of the complete model is shown in Figure 8.6. 
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Figure 8.6. First four half-hourly model of the alternative complete forecasting model 

48 half-hourly models consisting of 480 candidate networks were built and trained. 

8.5.2 Serial (linear) versus parallel forecasting 

In section 6.4, where forecasting configuration was discussed, parallel forecasting was chosen as 

the preferred configuration on the premise that in SHE's Supply area, the time-of-day variations 

were greater than the day-of-week differences. It was assumed that better predictions could be 

achieved by assigning dedicated models to learn and predict the demand over each half-hour. To 

investigate this assumption a complete serial forecasting model was built and the results 

compared with the parallel forecasting model. 

Seven models for each day of the week are built. The inputs to each model are identical to those 

in the parallel configuration except that the day of week codes are replaced by time of day 

identifiers. The same binary encoding methodology is used yielding an 8-bit code with three 

inputs neurons always switched. The schematic diagram for the serial forecasting method is 

shown in Figure 8.6. 
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Figure 8.6. Schematic diagram of the serial forecasting for each day 

In the linear or serial method the four-month training window is divided among 7 models whereas 

in the parallel configuration, it is divided among 48 models. A single serial model will thus 

require more time to train than an equivalent half-hourly parallel model. However, because of the 

large volume, the complete 48 half-hourly parallel model requires longer for construction and 

training. 

8.6 Results and discussion 

Forecasts were performed by both configurations over one week, the predictions from each day 

are presented and discussed in the following sections. 

8.6.1 Monday 

Figure 8.7 shows the actual and forecast demand on Monday. From midnight until 18:00 the 

serial forecast follows the same pattern as the actual demand, albeit raised by a constant 

magnitude. Beyond 18:00 the forecast is realigned with the actual demand. The parallel method 

predicts the overnight demand very well. However, between 06:00 and 09:30, the model over-

predicts the rate of increase of the morning pick up. This could be because the model assumes 

that the demand follows the typical weekday morning pattern. Four hours from the start of the 
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morning pick-up, the model realises that this day is atypical and attempts to correct itself. As 

such, the predictions are fairly reasonable beyond 11:00. 

Graph of actual demand and predicted demand from the models on monday 
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Figure 8.7. Actual and predicted demand for Monday 

8.6.2 Tuesday 

Figure 8.8 shows the graphs of the predictions from both models for Tuesday. The linear model 

matches the demand very well on this day. The parallel method produces better forecasts than it 

did on the previous day, exhibiting comparable performance to the serial method. The improved 

performance over the morning period could be because Tuesday's demand follows a more typical 

weekday profile. 

Graph of actual demand and predicted demand from the models on tuesday 
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Figure 8.8. Actual and predicted demand for Tuesday 
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8.6.3 Wednesday 

Figure 8.9 shows Wednesday's demand and the forecast from both models. The serial forecast 

predicts Wednesday's demand fairly well however its accuracy is lower than on Tuesday. The 

parallel forecast follows the demand very closely because Wednesday's demand shows a very 

typical profile. 

Graph of actual demand and predicted demand from the models on wednesday 
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Figure 8.9. Actual and predicted demand for Wednesday 

8.6.4 Thursday 

Figure 8.10 shows Thursdays demand. 	The serial model's performance is worse than on 

Wednesday. It under predicts the demand with exception of the first five hours of the day. The 

parallel method forecast's the demand very well, but it under predicts between 0900 and 1800. 
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Graph of actual demand and predicted demand from the models on thursday 
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Figure 8.10. Actual and predicted demand for Thursday 

86.5 Friday 

Figure 8.11 shows the demand and predictions on Friday. The demand on Friday is atypical, in 

that it remains flat for majority of the day with exception of a midmorning demand trough. The 

performance of both models on this day is of particular interest because the irregular demand 

pattern examines their generalisation ability to the full. 

The serial model predicts the demand fairly well. It replicates the flat demand pattern except 

between 13:00 and 17:00 where it anticipates a demand peak. Parallel forecasting performs 

poorly on this day. Similarly to Monday, the model over predicts the demand between 06:00 and 

09:30 because it anticipates the morning demand pickup. Once the model is fed with real-

information, it attempts to compensate. The forecast becomes aligned to the actual demand 

between 13:30 and 14:30 and after this point it under predicts. The forecast demand pattern does 

not resemble the actual profile except after 21:30. 
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Graph of actual demand and predicted demand from the models on friday 
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Figure 8.11. Actual and predicted demand for Friday 

8.6.6 Saturday 

Figure 8.12 shows Saturday's predictions from both models. The actual demand pattern on this 

day resembles Monday's demand. Though the serial model is less accurate than the parallel 

model, its demand pattern is closer to the real profile. The parallel model is fairly accurate and 

gives a good representation of the demand profile. 

Graph of actual demand and predicted demand from the models on Saturday 
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Figure 8.12. Actual and predicted demand for Saturday 
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8.6.7 Sunday 

Figure 8.12 shows the demand on Sunday. Both methods perform very well over Sunday because 

it is historically very stable, thus predictable. 

Graph of actual demand and predicted demand from the models on sunday 
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Figure 8.12. Actual and predicted demand for Sunday 

8.7 Further discussion 

The analysis in the previous section shows that both models are capable of forecasting demand 

fairly effectively. 	This section assesses the merits and demerits of both methods by firstly 

analysing their errors and the predictability of these errors. Predictable errors are less hazardous 

to Suppliers. Examining the variance of the errors from both models assesses these errors. 

8.7.1 Accuracy of models 

To examine the accuracy of both models, MAPE is firstly calculated according to the day of the 

week. This gives an insight into the models ability at forecasting the different daily demand 

patterns. Secondly, to determine  the performance of both models over each half-hour, the MAPE 

for each of the 48 half-hours is also computed. 

8.7.1.1 	Accuracy of the day of week predictions 
Starting from Friday, the accuracy of both models for each day of the week is presented in Figure 

8.13. 
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Graph of the MAPE for each day of the week 
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Figure 8.13. MAPE from both models on each day of the week starting from Friday 

With exception of Friday and to a lesser extent Tuesday, the parallel method is consistently more 

accurate. The parallel method's performance on Friday, suggesting poorer generalisation, may 

imply that the serial model is better at predicting atypical demand patterns. 

8.7.1.2 Accuracy of time of day predictions 
The MAPE for each half-hour was compiled and presented in Figure 8.14. The parallel model's 

predictions are generally the more accurate with the notable exception of the morning demand. 

From the discussion in section 6.5.2.1, the correlation between the temperature, wind-speed and 

demand is lowest during this period. Thus their explanatory power will be diminished. 

Additionally, the relevant previous demand inputs are the overnight demand. As is explained in 

the discussion in section 6.5.3, the overnight demand has little or no relation to the demand 

during the rest of the day. 
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Figure 8.14. MAPE across the 48 half-hours for both models 

The combination  of these factors means that the models will have difficulty making strong 

inferences during the mornings. This is especially evident in parallel methods because the 

models are trained with data from the half-hour they are assigned only. As a result, the network 

generalises poorly and its behaviour resembles a lookup table. This means that it predicts well 

when the demand is similar to the typical training set and poorly if there are any deviations. The 

serial model generalises better over this period possibly because the individual models are trained 

on a wider, 24-hour data set. 

From the previous discussions, each of the seven serial models is trained with a greater number of 

data points than the 48 parallel equivalents. However, it is not thought that increasing the training 

window of the parallel forecasting models would improve  its generalisation capability because, 

from the comparison, the four-month outperformed the six-month training window. It could be 

concluded that window length is not a limitation. 

There was no noticeable reduction in MAPE over the teleswitched periods for either model. 

Thus, it could be assumed that teleswitching is not a major obstacle for either model. 

8.7.2 Predictability of the errors 

In reality, forecasts are never completely error free, but it is desirable to have predictable errors 

because they are easily hedged. A simple measure to assess the degree of error predictability is to 
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compute its variance. Lower variance implies greater predictability and are calculated and 

assessed for both models in this section. 

8.7.2.1 	Predictability of the demand shape 
Tailoring a hedge to cover the risk of the error is fairly simple if the demand shape is effectively 

predicted. Both methods ability to predict the demand shape is calculated as the variance of the 

error for each day of the week over the forecast period, starting from Friday in Figure 8.14. The 

parallel model's error has higher variance on five out of the seven days with widely differing 

magnitudes across the week. The serial model's variance was lower on average and stayed fairly 

constant. These findings imply that the serial model offers better predictions of the demand 

shape. 

Graph of the variance of the error for each day of the week 
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Figure 8.14. Variance of the error for each day of the week starting from Friday 

8.7.2.2 	Predictability of the error on each half-hour of the day 
To assess the predictability of the time of day error, Figure 8.15 shows the variance of the errors 

for both models across the day. The variance of the error from the parallel method is much lower 

overall except between 07:00 and 11:00, for reasons discussed in the previous section. On the 

contrary, the variance of the error from the serial model is more variable across the day. This 

suggests that with the exception of mornings, the parallel model's time of day errors are much 

more predictable. 

These findings confirm the strengths of both modelling configurations, discussed in section 6.4. 
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Graph of the variance of the forecast error for both models 
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Figure 8.15. Variance of the error for each half-hour over the forecast period 

To summarise, the parallel model is more accurate than the linear model, but the serial model is 

better at predicting the demand shape especially when the demand profile is atypical. It also has 

the added advantage of being easier to conceptualise and faster to train. Neither model can be 

said to offer complete advantage over the other. 

8.7.3 A simple risk management strategy 

From the preceding discussions, both methods have their unique strengths and weaknesses. As a 

conclusion to this section a simple risk management strategy is presented for each model to 

demonstrate their application in practice. 

8.7.3.1 	Risk management strategy using the parallel method 
The weaknesses of the parallel method lay in its inability to predict the day of week demand 

pattern, especially the morning demand. A possible risk management strategy would be to buy 

Electricity Forwards Agreements (EFA) as discussed in section 4.8.2, to cover the morning 

demand strip. This will insulate the Supplier during the parallel model's most uncertain period. 

It is believed that once the morning uncertainty has been hedged against,  this model's day of 

week variations will pose less of a risk to the user. 
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8.7.3.2 Risk management strategy using the serial method 
Though the serial method has higher errors on average, its strength lies in its ability to predict the 

demand shape. A likely risk management strategy would be to use demand driven swing options 

as discussed in section 4.8.3.2, in conjunction with the model. Suppliers could inform the option 

counterparty of the demand shape at gate closure, this would be nominated either upward or 

downward to compensate for over or under predictions of the demand shape only. 

8.8 Case study 

In this final section, a case study using real balancing market prices is provided to demonstrate 

the financial implications of both models. These are contrasted with the fortunes of the naïve 

forecast described in 7.5, to illustrate the potential savings attainable by using effective predictive 

tools. The balancing and settlement procedure is very complex. This analysis aims to provide a 

simple illustration only and is by no means definitive. It was performed using the one-week 

forecasts from the models. 

It is assumed that forecast demand is perfectly hedged as such, for an under prediction, the 

Supplier is charged System Buy Price (SBP) for shortfalls between the predictions and the actual 

demand. Conversely, it is assumed that Suppliers can sell the difference between any over 

prediction and actual demand into the market at System Selling Price (SSP). 	The models 

performances are summed up at the end of every day and shown in table 8.6. All the values are 

expressed in Pounds Sterling. A negative sign represents a payment to the System Operator (SO) 

and a positive sign represents cash receipt from the SO. The data used to train and test the 

models was acquired before NETA's inception and as such, the half-hourly SSP and SBP used in 

this example are taken from an arbitrary week, between Friday 14th  September 2001 and 

Thursday 20th  September 2001. These half-hourly prices are shown in Appendix 2. 

Model Friday Saturday Sunday Monday Tuesday Wednesday Thursday TOTAL 

Serial +1270 +1080 +245 +514 -777 -6178 -4896 -8742 

Parallel -765 -740 -45 -978 -747 -2230 -1002 -6507 

Naive +3593 +469 -453 -3187 -9643 -9598 -3475 -22294 

Table 8.6. Imbalance prices from the three models over the one week forecast period 

The results show that the users of all three models lose varying amounts of money. The Serial 

model makes money for the Supplier between Friday and Monday, however its overall losses sum 

up to £8742 over the week, compared to £6507 from the parallel model. In the broader context, 

assuming that the losses are consistent over the course of the year, then exposure to imbalance 

prices will be 52 multiplied by the weekly sums of money at one BSP. Multiplied across all the 

BSPs controlled by a Supplier is a significant reduction in exposure over a year. For example the 
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losses a Supplier controlling 15 BSPs will incur  using each of the three methods are shown in 

Table 8.7. This calculation illustrates the financial benefits to Suppliers of effective forecasting 

methods. 

Model Losses incurred over 1 year 

Serial model 6.82 million 

Parallel model 5.08 million 

Naïve forecast 17.4 million 

Table 8.7. Losses over one year from the three models of a Supplier controlling 15 BSPs 

So far NETA's participants have been shielded from the total cost of their imbalances. Instead, 

real imbalance charges have been calculated as an industrial average weighting of the reported 

SBP and SSP. This means that in practice, participants are charged much less than the quoted 

prices. At present participants are rewarded for achieving better predictions than the industrial 

average, this is no mean feat, considering the performance of the naïve forecast. 

The volatility of the Balancing Mechanisms prices has been on the increase since NETA's 

inception and is expected to increase further towards the end of the year, as the margins between 

supply and demand tighten because of the winter demand. This would transpire into higher more 

volatile imbalance prices. 

It is the author's opinion that either of the forecast configurations discussed would provide 

substantial financial benefits to their users. The choice of forecast configuration should be based 

on the trade-offs between accuracy and man-hours used to construct both models. 

8.9 Conclusions 

This thesis describes the development of a risk management strategy for Suppliers under NETA. 

As at the time of writing, the markets were still in their embryonic phase so it was decided to 

focus on the facet of risk that stayed constant regardless of the market structure i.e. volumetric 

risk. 	Consequently the author concentrated on building the most effective forecasting 

methodology to quantify volumetric risk to help insulate Suppliers from imbalance charges. 

Neural Networks emerged as the most effective approach for forecasting short-term demand, 

because they were capable of representing the nonlmearities within the demand. However, after 

the Neural Network had been optimised and configured to fit a realistic NETA environment, the 

accuracy fell, though, the reduction was considered not to be a of a sufficient magnitude to merit 

a rethink of the approach. 
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Serial and parallel forecasting methods were compared to determine the most effective 

configuration for forecasting. Neither method was conclusively superior to the other. Though the 

parallel method was more accurate, it had difficulty predicting morning demand especially on 

atypical days such as holidays. This difficulty was due to the weak correlation between 

temperature, wind speed, overnight demand and demand during the morning. It meant that the 

network functioned as a lookup table during this period. This highlighted a limitation of the 

approach in that it produced a poor forecast on atypical days. The serial method, on the other 

hand, required less time to build and train, predicted the demand shape better and also produced 

better generalisations on atypical days. This was probably because the constituent models were 

trained over a wider data set. Using this model, Suppliers would find it easier to tailor hedges 

because the predicted demand shape is closer to that in practice and requires less time to build 

and operate. Using a case study it was demonstrated that the forecasting approaches would bring 

substantial financial benefits to their users. 

The first part of the thesis of this study was satisfied because the project demonstrated that it was 

possible to forecast accurately at a BSP supplying a load contaminated by active demand side-

management to suit NETA's requirements using an ANN with weather variables among the 

predictors. The second part of the thesis, which stated that predicting according to the time-of-

day should be more desirable than according to the day-of-week, was not proven. 

8.10 Summary 

This chapter concentrated on completing the analysis and discussion of this thesis by optimising, 

then building and testing 48 complete forecasting models for NETA. The first half concentrated 

on improving the efficiency of the ANN method recommended in previous chapter as well as 

tailoring the models to NETA's requirements. The second part focussed on building 48 complete 

half-hourly models and performing a case study to illustrate the practical application of the 

methods developed. 

The first section started by comparing the 5-bit encoding methodology employed for categorising 

the day of the week with an alternative sine-cosine approach. The former method was found to 

be superior because it did not attach unnecessary weights to any of the days. Next the static three 

year training period was compared with a dynamic moving training window in an attempt to 

reduce the training time whilst increasing accuracy. Both goals were achieved and the optimal 

window length was found to be four months. 

Under NETA, gate closure is four hours before the scheduled half-hour, this meant that the 

models required previous forecasts as their lagged demand inputs. This could introduce errors 
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with potentially savaging consequences into the model. It was decided to reduce the model's 

dependency on previous forecasts by substituting the 2 and 2 '/2 hour lagged demand inputs with 

actual values from the demand at gate closure and the previous week. To test the validity of these 

inputs, a shorter six-hour version was constructed. Forecast error was shown to still be a problem 

and it was therefore decided to sacrifice accuracy for certainty by substituting the lagged 1 and 1 

V2 hour demand inputs with real demand data from the three half-hours prior to gate closure. 

In the second part of the chapter, a complete model for the 48 half-hours is constructed. To test 

the assumption that parallel methods are more effective, the results were compared with those 

from a complete serial model constructed with the similar inputs. The forecasts were performed 

over a one—week period. The parallel method proved to be the more accurate of the two however 

it performed worse during the mornings and whenever demand deviated from its typical value. 

This suggested that the neural networks linear method made better generalisations. The errors 

from the linear model were also less variable suggesting better predictions of the daily demand 

profile. Next, simple risk management strategies were presented to demonstrate the application 

of either model in reality. 

In the final section a case study was performed to illustrate the financial benefits of the methods 

developed. This was done using balancing market SSP and SBP from an arbitrary week in 

September 2001. These were contrasted with the fortunes of a naïve forecast. The results 

revealed that the methods developed reduced the financial risk exposure dramatically, with the 

parallel method producing superior performance. 

Though the parallel method has the advantage of higher accuracy and more predictable time of 

day errors, it is very labour intensive because it requires 480 candidate networks to be built and 

trained to forecast the demand every week as opposed to 70 from the serial equivalent. The serial 

method also offered the advantage of better generalisations and more accurate day of week 

demand profile predictions, making hedging easier. It is the author's opinion that the choice of 

model should be based on the trade-off between fewer man-hours and greater hedging flexibility 

against accuracy, which the Supplier finds acceptable. 
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9. Conclusion and Summary 

	

9.1 	Overview 

The challenges facing the industry have changed since the era of privatisation. This has been 

accompanied by a shift of emphasis from technical to commercial. This project has focussed on 

the commercial risk within the ESI under the New Electricity Trading Arrangements (NETA). 

NETA is aimed to encourage a more competitive and efficient trading arena necessitating 

participants to evolve more sophisticated risk measurement and management techniques to 

survive. This chapter concludes the discussion on commercial risk management in the ESI by 

presenting the main arguments in this thesis. 

	

9.2 	Implications of NETA 

In 1997, it was decided that the electricity trading arrangements centred on the Pool, had not 

succeeded in delivering lower prices and improving efficiency. The government instructed the 

Electricity Regulator to come up with new proposals for electricity trading and these were 

subsequently introduced in March 2001. The aims of these proposals are to increase the 

efficiency of the industry whilst delivering lower prices to the consumer. To achieve these, the 

system of trading was changed from a centralised marginal pricing system to a series of bilateral 

markets known as NETA. 

In the NETA's bilateral markets, supply and demand will be matched closer to operating time. 

This coupled with the abolition of capacity payments could potentially increase price volatility. 

The introduction of the balancing markets was aimed at rewarding flexible capacity and 

penalising ineffective participants through punitive imbalance prices. 

	

9.3 	Risk and its management under NETA 

The nature of ESI risk will evolve under NETA. Credit risk might increase as participants could 

be expected to experience more volatile income flows. This risk was not a major problem under 

the previous system because the Pool acted as counterparty to all trades. At present it is difficult 

to predict the evolution of its management as the markets are still in their infancy  and major 

credit problems have not yet become apparent. 

Basis risk is expected to increase, as there will be a wider array of products for participants to 

choose from, increasing the scope for product mismatches. Time basis should stay the same as it 
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is at present. Locational basis could become a big problem if balancing mechanism prices evolve 

to reflect local demand constraints. Operational risk is expected to increase in the early days of 

NETA as companies adjust their systems to the new trading arrangements. It is also expected that 

the price volatility in the new markets would result in greater price risk. On the other hand, 

volumetric risk should stay the same regardless of the market structure, however its financial 

implications are expected to increase because of the introduction of punitive imbalance prices for 

out-of-balance market participants. 

Previously there was no great need to quantify volumetric risk because its financial implications 

were negligible. Accurate demand forecasts will be essential to quantify volumetric risk under 

NETA so as to help avoid imbalance charges. Supplier's previous functions had been primarily 

billing and metering so they would require a swift evolution in order survive NETA's 

uncertainties. It was decided to develop an effective short-term forecasting methodology to fit 

NETA' s requirements. 

Risk measurement and management are expected to evolve from the instruments available at 

present. Currently, it is impossible to envisage the long-term nature of price risk because of the 

limited data. Basis risk will also be difficult to quantify until the true nature of the markets 

become apparent. 

94 	Forecasting Approaches 

The system operator, National Grid Company (NGC) had traditionally performed the forecasting 

function within the ES! for scheduling, maintenance and long-term system planning. Suppliers 

forecasting requirements under NETA will be very different as they are required to provide 

accurate demand positions, Final Physical Notifications (FPN), for every BSP they service, 4 

hours before every scheduled half-hour. This will shift the industry's forecasting requirements 

from long and medium term to short-term. Additionally instead of forecasting centrally at a 

national level, they will be performed by individual companies for specific locations. 

Before accurate demand forecasts are made, the demand has to be understood together with the 

factors influencing its behaviour. These are referred to as the fundamental demand drivers and 

were found to be weather variables, time factors, economic, and random factors. From previous 

studies it was found that the most influential weather variables on demand were temperature and 

wind-speed. They affected the level of the space and water-heating load, which in some cases 

contributed to over 75% of the total domestic electricity demand. The time factors included the 

time-of-day, day-of-week and season. As work patterns influence both domestic and commercial 

demand, they in turn affect the time of use and the demand on the different days of the week. 
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Economic and random factors are omitted from short-term forecasting models because of the long 

time periods over which they occur and then unpredictability. 

Once the fundamental drivers of short-term forecasting had been identified, it was decided to 

investigate the various forecasting methodologies available to select the most appropriate for 

analytical comparisons. The methods compared were Regressions (parametric and non-

parametric), time-series methods, end-user models and Artificial intelligence methods. 

Regression, notably the Multiple Linear version and Artificial Neural Networks, from the 

Artificial Intelligence family were chosen. The reason for selecting these are: MLR's are the 

most widely used forecasting method and their simple linear  representation of the demand 

relationship provides a contrast to ANN, the most popular Al method and also the most effective 

for modelling a 'cause-effect relationship. 

9.5 	Data issues 

To minimise risk across BSPs Suppliers will have to go with data that exists. The data selection 

is considered to be very important because the forecast is only as good as the quality of its inputs. 

The location for the analysis was chosen as Scottish Hydro-Electric's (SHE) 33kV Bulk Supply 

Point (BSP) at Dyce, in the Aberdeenshire area, servicing a predominantly domestic load. 

Domestic demand causes the most variability to Suppliers and as such, a domestic load will be 

more difficult to predict and would provide a more stringent test of the model's capabilities. 

Additionally, Dyce was chosen because a robust demand data set was easily available and its 

proximity to the weather station serving the Grampian region suggested that the weather variables 

obtained would be an accurate measurement of those influencing the demand. SHE had installed 

active demand-side management, operated by radio teleswitches, to control the heating load. The 

majority of the heating load was served on an overnight economy tariff and the rest was 

controlled at various points in the day by teleswitching, the forecast day-ahead temperature 

determined the duration of these load blocks. The demand side management added additional 

non-linearity into the relationship between the demand and the weather variables, temperature 

and wind speed. As a result, this BSP will pose greater challenges to the forecasting models than 

most in the UK and should expose any limitations in the modelling ability of the chosen models. 

Short-term forecasting is far too complex to be performed by a single model. In practice it is 

either performed by assigning an individual model to learn and predict the demand for each half-

hour of the day or each day of the week. For the purpose of this thesis, these are known as 

parallel and serial or linear forecasting with the former requiring 48 half-hour models and latter, 

seven day of week models. Parallel forecasting assumes that the intra day variations are greater 

than the inter day variation whereas linear forecasting assumes the opposite. There had been no 

definitive studies done to determine the most appropriate method. The majority of examples 
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identified utilised the parallel approach. 	For the purpose of the model comparisons, it was 

decided to use parallel forecasting because the intra day variations seemed greater than the inter 

day variations. This assumption was to be tested after the preliminary comparisons had been 

made. 

To increase the quality of the inputs, it was decided to use statistical methods to assist in their 

selection. 	The weather variables, notably temperature and wind speed were correlated with 

demand. It was found that the demand exhibited a strong inverse  relationship with temperature. 

Though wind-speed alone did not show a strong relationship, it is acknowledged that wind speed 

has a marked effect when combined with low temperatures. SHE has quantified this effect within 

the calculation of the duration of the heating teleswitched blocks. Correlation analysis showed 

that there was a strong relationship between present demand and demand from the previous two 

hours. These, combined with the forecast half-hourly temperature, wind-speed and average 

temperature from the previous day, were selected as inputs to the forecasting model. As it had 

been decided to forecast according to the time-of-day, it was important to include day-of-week 

identifiers within the models to categonse the inter day patterns. 

9.6 	Most effective approach 

Using the inputs specified in the previous section, the MLR model was constructed using dummy 

explanatory variables to categorise the different days of the week. For the ANN, a three layered 

Multi-layer perceptron was trained using a back propagation algorithm. Both models were 

trained over a three-year period and used to forecast over a 90-day horizon. Instead of 

constructing models for each half-hour, periods 1 and 25 were selected because they characterised 

the load. The results showed the ANN to be superior to the MLR especially over period 25. This 

was because it was capable of representing the nonlinearities within the demand. The predictions 

from both models were compared with those from a naïve model (representing the industry 

standard). Both showed superior improvements suggesting that mathematical forecasting models 

are much better than the average methods in use at present. Seasonal variables did not seem to 

make a difference to the forecast accuracy. 

9.7 	Optimising the ANN 

After the comparison, it was decided to optimise the chosen method, the ANN, to achieve greater 

accuracy whilst shortening the training time. This was done by comparing the model's 

performance using different approaches for encoding the inter day inputs; using an alternative 

method for the training window size and; comparing two approaches for selecting the best 

candidate network. It was found that a binary  method using the lowest bit code with the same 

number of bits switched for each day of the week was the most effective encoding method. The 
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shorter training window size (with forecast performed over a week, then the window moved 

along one week) was found to be the most effective because it reduced training time and 

produced more accurate results, as the model was trained on a purer data set. The optimal 

training window length was found to be 4 months. For candidate network selection, the more 

effective approach was found to be the committee method. Ten candidates were trained for each 

half-hour and the forecast was determined as the average of their predictions. 

One of the principal predictor variables used for the comparisons was lagged 2-hour demand. In 

practice, demand expectations will be submitted to the System Operator at Gate Closure, 4 hours 

before the scheduled half-hour. This will mean that the lagged demand will be forecasts because 

the actual values are not known four hours in advance. Any errors, which are highly likely, 

would be propagated through the subsequent forecast. This is highly undesirable, as it would 

make the model very unstable. It was decided to reduce this vulnerability by using 1 hour lagged 

demand, the demand at gate closure and the previous week's demand. In spite of this, the model 

still showed instability. It was decided that the stability was more desirable than the reduced 

accuracy and as a result, the 1-hour lagged demand variables were replaced with actual demand 

values from the three half-hours prior to gate closure as well as the demand from the previous 

week. 

	

9.8 	Parallel versus serial (linear) forecasting 

A forty-eight half-hour parallel model had been constructed as it was assumed that this was the 

most effective configuration for forecasting demand at the BSP. Comparing the forecasts with 

those from a serial forecast tested this assumption. This was done over a week in March 1999. 

Neither method was conclusively superior. The parallel method was more accurate but it had 

difficulty predicting morning demand especially on atypical days. The difficulty in generalising 

was due to the weak correlation between the temperatures, wind-speed, overnight demand and 

demand over this period. This meant that during this period, the network functioned as a lookup 

table, highlighting a limitation of the approach. The serial method, on the other hand, required 

less time to build and train, predicted the demand shape better and also produced better 

generalisations on atypical days. This was probably because the constituent models were trained 

over a wider data set. It is the author's opinion that the choice of configuration should be based 

on the trade-off the Supplier finds acceptable. 

	

9.9 	Application of approach 

Both the linear and parallel models have their relative strengths. Either could be applied in 

conjunction with a risk management strategy to measure and manage the exposure to imbalance 

prices. An example of risk management strategies using either model is presented below. 
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Parallel model: The Supplier could buy Electricity Forward Agreements to cover the 

morning demand strip. 

Serial model: It could be used in conjunction with demand driven swing options that 

could be adjusted up or down to compensate for over or under predictions. 

It was decided to compare both approaches with the naïve forecast in a case study with real 

balancing market prices to demonstrate the financial advantage they would bring their users. 

Paying Suppliers System Selling Price (SSP) for any over predictions and charging System Buy 

Price (SBP) for demand shortfalls performed the calculation. The parallel model recorded the 

smallest losses, £6507, followed by the serial model £8742, with the naïve forecast losing 

£22294. These findings confirm the superiority of the approaches developed to the industry 

standard. This provided confirmation for the achievement of the first project aim; to develop 

effective forecasting methods for NETA. 

9.10 	Suggestions for future work 

This study was concerned with the development of commercial risk management in the 

Electricity Supply Industry. It focussed primarily on the development of an accurate demand 

forecasting methodology to help avoid imbalance charges. The work described in this thesis, 

although complete in itself, has a number of possible avenues for expansion that the limited 

period of study under NETA did not allow. The scope for future work is extensive as the market 

is still in its embryonic stage, further applications of the model could become apparent over time. 

9.10.1 	Managing the volumetric risk 

The forecasting model measures volumetric risk. Combining the forecasting methodologies with 

risk management tools could be used to assess the most appropriate risk management strategy to 

use in conjunction with each of the forecasting methods. 

9.10.2 	Predicting and managing the risk of forecast error 

From the discussion, it is apparent that no forecast is completely free from errors. A suggestion 

for future work would be to investigate the forecast errors further by attempting to predict them. 

This could be done by forecasting from both models over a much longer time period, calculating 

the errors and using a separate ANN to learn and forecast the error. If this method is successful, 

it could increase the accuracy of the forecast even further. 

Following on from this, would be to manage the risk of forecast error using external hedges. 

There are a variety of hedging tools available in the market place. A hedged position could be 
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stimulated using several examples of hedges and their performance compared over a period of 

time to determine the most appropriate external hedge for managing the risk of forecast error. 

9.10.3 	Application of models to Generator forecasting 

A third suggestion would be to apply the model to forecasting generator demand. Generators also 

need better forecasting procedures to optimise their dispatch schedule. 

9.10.4 	Hybrid forecasting 

A fourth suggestion would be to use a genetic algorithm to select optimal inputs and outputs to 

train the ANN. The ANN might be able to make stronger inferences from more optimal inputs 

and outputs. 

9.11 	Final conclusions 

The volatility of the Balancing Mechanisms prices increased continually since NETA's inception 

and is expected to increase further towards the end of the year, as the margins between supply and 

demand tighten because of the winter demand. This could lead to higher and more volatile 

imbalance prices. It is the author's opinion that either of the forecast configurations discussed 

could provide substantial financial benefits to their users. The choice of forecast configuration 

should be based on the trade-offs between accuracy and man-hours used to construct both 

models. The choice of either forecasting method would help to insulate Suppliers from 

prohibitive imbalance prices. Though this discussion focused on Suppliers, Generators could 

utilise the models developed to improve the efficiency of their scheduling. 

This thesis confirmed that ANNs are the most accurate method for predicting short-term 

electricity demand. It achieved its first aim of designing a neural network methodology to 

forecast demand at a bulk supply point contaminated by demand-side management to suit 

NETA's requirements. The results from forecasting according to the time of day were not 

conclusive enough to prove the thesis's second aim to demonstrate that time of day were superior 

to day of week predictions. 
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ASSESSING THE EFFECT OF WEATHER VARIABLES ON CUSTOMER DEMAND 

D. AdjeponYamoah*. H.W. Whittington* .A.Birch** 

Department of Electrical Engineering. University of Edinburgh*. Scottish and Southern Energy Plc** 

ABSTRACT 

The introduction of the new wholesale trading arrangements in autumn 2000 will pose a different set of 
challenges to the UK electricity industry. With no uniform reference price, as is the case at present, and the 
lack of historical data, market participants face greater uncertainty over the electricity price volatility. A 
thorough understanding of the effects of the market fundamentals on demand and generation is needed to 
give an indication of electricity fair price. 
This paper considers the impact of the weather variables on customer demand by comparing the different 
available methods for determining this relationship. The models are currently being developed. 

1. INTRODUCTION 
at the margins the Value of Lost Load (VOLL) 

The complete deregulation of the electricity 	 ' 	- 
supply industry last year, and the impending, 
proposed trading mechanism to be introduced in 
autumn 2000, will result in increased uncertainty 
for participants in the England and Wales 
Electricity Supply Industry (ESI). 

With the present market mechanism of marginal 
pricing, all generators receive Pool Purchase 
Price (PPP) and Suppliers pay Pool Selling Price 
(PSP). The PPP consists of the System Marginal 
Price (SMP) and a capacity element, which is the 
opportunity cost of insufficient capacity. The 
PSP is made up of PPP and a component for 
transmission losses and sundry expenses. Under 
this mechanism, the cost of, and incentive to 
make excess capacity available are rewarded 
through capacity payments. 

1.1. New trading arrangements 
In contrast, the new proposed trading 
arrangements will be based on an auction market 
supported by longer-term bilateral contracts. 
This has several advantages over marginal 
pricing, including Demand Side Participation 
(DSP) which is more economically efficient, but 
introduces higher price volatility. 

One main reason for the increased volatility is 
that, there is no provision for making extra 
capacity available. In some cases there is an 
incentive for Generators to tighten margins, so as 
to increase the cost of Contracts-for-Difference 
(CID)(l). The Australia Pools have a very 
similar structure to the new proposals. The 
Victoria pool price averaged $22 per MWh, but 

was about $22,000 per MWfl. These are Known 
as 'needle peaks' (2). 

Because the impending changes in the England 
and Wales Pool will cause much higher 
uncertainty, resulting in greater risk for market 
participants, players will need to have an 
accurate understanding of their consumer 
consumption patterns to stay competitive. 

1.2. Domestic demand 
This paper concentrates on the domestic segment 
of the market, because it is the most variable 
demand segment. For example, on a given day, 
no two households will have identical half 
hourly demand and even within a household 
consumption patterns vary from day-to-day. 

1.3 Fundamental drivers 
The fundamental drivers of electricity demand 
are 

Economic trends 
Timefactor (e.g. weekly, seasonal, holidays) 
Weather factors 
Random effects 

Experience shows that weather effects on 
residential demand are the source of the greatest 
variability. Certainly, needle peaks in demand, 
caused by weather effects, have been 
experienced in the past; usually associated with a 
cold snap. For this reason the relationship 
between the weather and electricity demand has 
been selected as the basis of this study. 
It considers four approaches for defining this 
relationship. 
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2. EFFECT OF THE WEATHER ON 
RESIDENTIAL DEMAND 

This study identifies as the major uses of 
electricity in domestic households, the following: 

space heating 
water heating 
cooking 
dishwashing 
refrigeration/freezer 
television/hi-fl 
others(e.g. kettles, vacuum cleaners) 

2.1 Weather variables affecting demand 
The weather effects found to affect demand are 
as follows 

temperature 
wind speed 
illumination effects 
precipitation. 

The temperature and wind speed affect the level 
of heating demand: Heat demand depends on 
the following; 

desired level of thermal comfort 
rate of heat loss from dwelling. 

The rate of heat loss from a building in turn 
depends on the following: 

Quality of insulation 
Wind speed 
Duration of the cold/hot spell 
Rate of heat build-up (dependent on the 

density of buildings) 

Temperature and wind speeds also have an 
effect on the electricity consumption of freezers 
and refrigeration. Illumination affects the 
lighting load and precipitation has the effect of 
keeping people indoors and so increasing the 
demand for electricity. 

3. FACTORS TO BE TAKEN INTO 
ACCOUNT IN THE MODEL DESIGN 

The following factors were taken into account 
in the development of a model for the 
relationship between demand and weather. 

1) Time-of-use: The relationship between 
electricity and demand will vary according 
to the time-of-day and day-of-the-week. 
On weekdays, the effect of the weather will 
be particularly noticeable around the peaks, 
as people arrive home from work. This is 
more pronounced during winter as it 
coincides with the lighting -up peak. At 

the weekends. the demand is spread more 
evenly throughout the day. 

Seasonalities: Electricity demand varies 
considerably across seasons. Lighting 
loads shift with number of daylight hours. 
The space-heating load disappears, and is 
replaced by an insignificant cooling load. 

Nonlinearly: The relationship between the 
weather variables and demand is non-linear 

Demand growth: The load changes over 
time as a result of the economic growth, 
efficiency increases and environmental 
factors. 

FIGURE 1. Estimated load shape for base 
household 

Figure 1 shows the base household demand for 
customers of the Boston Edison Company, in 
1981 (4). From the figure, it may be seen that 
household demand is particularly volatile, 
during the winter months; this is thought to be 
due mainly to weather effects. 

4. MODELS 

This section reviews the different options for 
assessing the relationship between weather and 
domestic demand. 

4.1 Multiple Linear Regression (MLR) 
This is the most commonly used method in 
practice because of its ease of application and 
flexibility. MLR is used either as a stand-alone 
method for load forecasting or to define the 
transfer function in a time-series load forecasting 
model. 

There are several MLR methods for determining 
the relationship between weather and demand. 
The method described in this paper is based on 
reference 3 and uses the degree-day concept. 

HDD = heat degree day 
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CDD = cooling degree day 
A threshold temperature is chosen above which 
it is assumed there is a negligible effect on 
demand. 

I-IDD= threshold temp - actual temp 
CDD= actual temp - threshold temp 

For simplicity only the relationship of weather to 
temperature is defined. In the UK there is a 
minimal cooling load, so the cooling load is 

12 
D=a+bHDD+c+dHDD*NBD+ 	e S 

fl fl 
fl = I 

Y 
a=base demand 
b=business day demand 
c=%change in demand growth 
NBD= 1 if non business day; 0 if business day 
b+d=weekend demand 

e.....e12  =monthly dummy variables 

S..... 12  =monthly effects 

y = error function 
To represent better the non-linear relationship, 
two regression models can be used with different 
threshold temperature (4). A MLR can be 
performed with most statistical packages. The 
main drawback of this method is that it does not 
represent anomalous events. 	For example 
unusually cold spells, to which companies are 
most vulnerable. 

4.2. Polynomial regression model 
Polynomial models can represent higher order 
functions in the relationship between dependent 
and independent variable. 	Given that the 
relationship between temperature and electricity 
demand is not linear, a polynomial model may 
provide a significant improvement over a linear 
relationship in terms of goodness of fit (5). 

Unfortunately, polynomial functions may 
provide unreliable descriptions at either end of 
the temperature range (cold spells). This is 
because the shape of the polynomial is more 
heavily influenced by data at the dense part of 
the temperature distribution close to the mean. 
Hence this method cannot best represent 
anomalous weather. 

4.3 Nonparametric regression 
This method was not used much in the past 
because of the lack of adequate computing 
power. Nonparametric regression allows the 
weather-demand relationship to be calculated 
directly from historical data. The properties of 

the relationship are described in terms of a 
multivariate probability density function (PDF) 
of demand, time, and weather variables. 

Nonparametric methods are highly graphical. 
For the specific application required, they 
provide an accurate representation of 
temperatures at the edges of the range. This 
method represents anomalous weather events. 
The non-parametric kernel smoothing regression 
is generally used, because of its simplicity (6). 

4.4 Neural network with fuzzy logic 
Thus far we have discussed econometric 
methods. The method, which has attracted 
increased interest over the past decade, is 
Artificial Neural Networks (ANN). The basic 
principles of an ANN are that it learns patterns 
from the input, weather variables and output, 
demand, it then creates its own non-linear model. 
With the addition of a fuzzy classifier, the 
different classes of ANN can be used. 

The ANN input data is subdivided into different 
classes, by the fuzzy set, based on the weather 
conditions. Figure 1. Shows the flow diagram of 
fuzzy set data classification where N represents 
the total number of weather condition classes. 

FIGURE 1,Flow diagram of the proposed 
technique 

The classifications are done based on the season, 
day-of-the-week, and public holidays. The 
temperature, wind-speed and precipitation are 
selected as criteria for historical data 
classification. 

Temperature is sorted into eight categories and 
labelled as Extremely Cold (ExC), Very Cold 
(VC), Cold (C), Normal (N), Warm (W), Hot 
(H), Very Hot (VH) and Extremely Hot (ExH). 
Wind-speed is sorted into four categories, 
Extremely Windy (ExW), Very Windy (VW), 
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Windy (W) and Normal (N). Precipitation is 
sorted into two classes, Wet (W) and dry (D). 
The categories of temperature and wind speed 
are then used to form 64 possible classes of 
weather, 32 for wet , and another 32 for dry 
weather conditions. The numbers 1 to 64 are 
assigned to the 64 classes. 

The ANN will be assigned to each data class, in 
order to learn from historical data, the effect of 
the weather condition on the demand. This 
method will adequately represent each weather 
condition. However, the wrong number of 
hidden neurons would result in under or over 
learning. This would affect the accuracy of the 
prediction. 

5. DATA REQUIREMENTS 

The data requirements of this exercise are 
extensive, because it is trying to extrapolate 
accurate relationships from historical data. Both 
electricity demand and weather variable data are 
required. 

5.1 Location 
The specified city for this investigation is 
Aberdeen, since robust weather and electricity 
demand data are readily available for the 
analysis. 
5.2 Data specification 
Average daily demand as well as peak daily 
demand will be used. Daily maximum and 
minimum temperatures for this time period are 
compiled. The average and maximum daily 
wind speeds together with precipitation data are 
also collected. 
5.3 Time horizon 
A time horizon of six years has been chosen, as 
it is long enough to depict all the possible trends, 
but short enough to exclude obsolete trends. 

6. TEST PROCEDURE 

The following test procedures will be used to 
compare the performance of the outlined 
methods. 

6.1 Historical 
The models will be tested on the most recent 
year's historic weather data. The outputs will be 
compared to the actual demand. 
6.2 Scenario Analysis 
Various scenarios will be simulated and the 
models performances compared. 

6.3 Monte-Carlo 
Synthetic weather data will be simulated. The 
performance of the various models will be 
compared with the inputed data. 

7. CONCLUSION 

Increased competition in the Electricity industry 
has resulted in tighter margins for participants. 
Understanding the relationship between the 
fundamental demand driver -weather- and 
electricity demand is crucial. Three standard 
econometric techniques and a fuzzy neural 
network approach are introduced to solve the 
relationship. 	The implementation of these 
models is currently underway, strengths and 
weaknesses of each approach will be compared 
and reported in future papers. 
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Determining the weather uncertainties in domestic electricity consumption 

D. AdjeponYarnoah*, H.W. Whittington* .A.Birch** 

Department of Electrical Engineering, University of Edinburgh*. Scottish and Southern Energy Plc**  

The new bilateral markets proposed by NETA (New Electricity Trading Arrangements) will increase 
income volatility for Suppliers, because of the replacement of the centralized 'clearing system', the Pool, 
with bilateral auction-based markets. Added to this, stiffer penalties for out-of-balance market participants 
will increase supplier volumetric risk. With no historical NETA market data and no singular market price, 
managing the volumetric exposure to the fundamental electricity demand drivers is imperative. For this 
reason as complete as possible an understanding of the effects of market fundamentals on demand is 
required. 
One identifiable component of volumetric risk is that of weather dependence. This paper compares two 

standard models for determining weather uncertainties. 

I Introduction 
The introduction of NETA in Autumn 2000 
followed by the STA (Scottish Trading 
Arrangements) due in the next few years will 
pose a new set of increasingly complex 
challenges to participants in the Electricity 
Supply Industry (ESI). 

The bilateral markets of NETA will have the 
following implications for Suppliers 

Higher volatility 
Higher contract prices 
Greater role in the price setting 
mechanism 
Higher imbalance charges 
No single reference price 

The above reasons will lead to greater 
uncertainty for Suppliers [6]. This in turn, will 
increase the need for much better understanding 
of customer habits, to be used in managing 
demand-side volumetric risk. From such studies 
should emerge more sophisticated risk 
management strategies. 

1.1 Customer demand 
For purposes of this paper, customers are divided 
into 

Industrial customers 
Domestic/commercial customers 

1.1.1 Industrial Customers 
Since the bulk of the industrial customer load is 
made up of industrial processes, the demand 
curve tends to follow similar daily patterns. 
Excluding anomalies, this demand segment does 
not cause much uncertainty for suppliers, 
because it is not very variable. 

1. 1.2 Domestic/Commercial  

Customer consumption is much more variable. 
For example, on a given day no two households 
will have identical demand. and even within a 
given household consumption patterns vary from 
day-to-day 	causing much uncertainty for 
suppliers. For this reason this paper uses the 
domestic demand segment as the focus for the 
analysis. 

1.2 Fundamental drivers 
The fundamental drivers of electricity demand 
include 

Economic trends 
Timefactors(e.g.weekly,seasOflal, 
holidays) 
Weather factors 
Random effects 

Experience shows that weather is the largest 
single driver of electricity demand [8] (see 
Figure. 1). It follows that an understanding of 
the relationship between weather and demand 
will help Suppliers predict their long- and short-
term exposure to the weather. 

1.3 Weather-demand models 
In this paper, the two common but generically 
different models for determining the 
relationship/effect of the weather on demand are 
compared. 

They are: - 
Multiple Linear Regression 
Artificial Neural Networks 
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2 Effects of the weather on domestic 
demand and other related issues 

This section describes the weather sensitive 
components of domestic demand, and outlines 
the weather factors which directly influence 
demand. Also covered are related variables 
which have a bearing on the weather-demand 
relationship. 

2.1 Weather sensitive components of 
domestic demand 
The major weather dependent uses of electricity 
in domestic households are identified as 

Space heating 
Water heating 
Refrigeration/freezer 
Others (e.g. kettles, audio visual etc) 

Of the above factors , space heating makes up 
over 75% of the weather sensitive component of 
demand [10]. 

2.2 Weather factors affecting demand 
The weather effects found to affect demand are: 

Temperature 
Wind speed 
Precipitation 

The temperature and wind speed affect the space 
and water heating demand. During winter or 
when the weather is bad, all three weather 
variables have the effect of keeping people 
indoors, increasing their overall consumption 

Figure. 1 below shows the correlation between 
demand and temperature. The analysis was 
performed on data from a location in the North-
east of Scotland. It shows broadly, an inverse 
relationship between the temperature and 
demand. There are two temperature-demand 
clusters, the denser cluster is the weekday 
demand, and the other is the weekend demand. 
Though both clusters have roughly the same 
shape, the graph shows that the average daily 
demand is less at weekends. 

Graph ofthn Daily nnngo do,nand against ton,pe,ntre 

' 

-5 	 0 	 5 	 10 	 15 	 ZO 

0iIy ,non tn,npnlntoro in dnqrnen (oC) 

Fig. 1 daily average demand v temp 

2.3 Other related factors which affect the 
weather-demand relationship 

On a local level, the weather-demand 
relationship is also directly influenced by the 
following factors: 

Desired level of thermal comfort 
Duration of cold/hot spell 
Rate of heat build-up (dependent on the 
density of buildings) 

For example, a two bedroom house in the 
country will be more exposed to the natural 
elements than a similar same sized property in a 
densely built up area, resulting in a stronger 
weather-demand relationship. 

3 Data requirements and practical 
considerations 

The data requirements for both weather and 
electricity demand are extensive if a reasonably 
accurate model is to be developed. 

3.1 Data specification 
For electricity demand, the daily half-hourly 
demand form a 33kV Bulk Supply Point (BSP) 
supplying a predominantly domestic load was 
used. Hourly temperatures together with wind 
speeds and direction were obtained from the 
Met. Office's nearest weather station to the 
BSP. 

3.2 Time horizon 
The time-horizon chosen for this study was three 
and a half years to ensure robust and continuous 
data. We considered that this time-period is long 
enough to depict most possible trends and short 
enough to exclude most extreme events. 

3.3 Active demand management 
For the chosen location the first-tier electricity 
Supplier had installed active Demand Side 
Management (DSM) to fit better the space and 
water heating loads to the generating profile [3]. 
The DSM methods used are tele- and time-
switching and a combination of both systems. 
The daily switch-on and off times for the time-
switched customers is fixed but the teleswitched 
customer load varies according to the forecast 
minimum day-ahead temperature. This dynamic 
load management alters the daily half-hourly 
sensitivities to the weather by shifting the 
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heating load across half-hours according to the 
forecast temperature. 

3.4 Influence of teleswitched data 
The use of teleswitching dynamically affects 
demand by introducing a bias into the demand-
weather relationship. 

To dampen the effect of this bias an algorithm 
was developed which removed the base effect of 
the teleswitch load, leaving the weather sensitive 
component of the load. To determine the base 
teleswitched load, real-time data is used. The 
base effect is calculated as the mean of the 
teleswitched demand block on days with a 
minimum temperature greater than 11 degrees 
over the autumn/winter period. 	Because 
teleswitching is used mainly during the winter 
months, the days were selected from the months 
October till April. 

When applying the algorithm, we were aware 
that the number of customers on the different 
tariffs is very variable. 	This means that 
extrapolations may only be valid for a few 
months, but it was considered a worthwhile 
exercise, despite this reservation. 

4 Model philosophy and construction 

This section summarizes the reasons for the 
model choice and discusses the model 
construction. 

4.1 	Model choice 

Traditionally various classes of models have 
been used to forecast electricity; these are 
mainly grouped into Time-series, Regression 
based and Artificial Intelligence (Al) models. 
For extrapolation the latter two are most 
commonly used [9]. 	The regression-based 
methods cover the classes 

Multiple Linear regression 
Polynomial regression 
Non-parametric regression 

The Al models include 
Artificial Neural Network (ANN). 
Fuzzy Neural Networks (FNN) 

In this paper we compare the two generic classes. 
A multiple linear regression was used because 
of the following:- 

It is the most commonly used classical 
model 

it is also very flexible and easily 
implemented. 

The Artificial Neural Network (ANN) was 
chosen as the Al method because it is 

The most widely used Al method in 
demand forecasting. 

The ANN performs a non-parametric regression 
on the data. The model choices could be 
effectively viewed as a comparison between a 
linear parametric method and a non-linear 
non-parametric method. 

4.2 	Model Construction 

The next two sections will give a brief 
description of the model design and construction 

4.2.1 Data considerations 
Several considerations have to be made in the 
data preparation for the model design. These are 
outlined below 

Time-of-use The relationship between 
the demand and the weather will change 
according to the time of day. It was 
decided to assign and train a model for 
each half-hour because this will capture 
the time-of-day effects better. 	This 
method uses 48 models to establish the 
weather-demand relationship over a day 
Day-of-week Demand varies according 
to the day of the week. For example, on 
business days, the domestic demand is 
concentrated at the morning and 
evening peaks, during the weekends or 
for non-business days, the demand is 
more evenly spread across the day. This 
is represented in the model design by 
day-of-the-week dummy variables 
Seasonalites Electricity demand varies 
considerably across seasons, for 
example, the heating load disappears 
during the summer. Using winter and 
summer dummies in the models 
accounts for this effect. 
Demand growth Demand changes with 
time. for various reasons, lifestyle 
changes, economic trends etc. For this 
reason an incremental 
demand coefficient was considered. 

4.2.2 Multiple linear regression 
The MLR used in this project is defined below. 
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Y, =fl0 +flx +fl1 x+fl3 Z f  +11 +P2Yt2 + 

,03y3 +p4y 4  +Dx + 61 

where 
y = demand 
x=temperature 
Y =mean lagged 24-hour temperature 
z''wind speed 

fl0 =the base demand 

,8 1 =the temperature coefficient 

fl2 =the mean of the previous 24 hour temp 

/13  =the wind-speed coefficient 

= the lagged previous 2 hour demand 

coefficients 

D =the dummy variables for six day-of-week. 
The Sunday dummy was left out because it is 
assumed that Sunday has the highest domestic 
demand. 

s =the error term 

To perform a forecast, the regression coefficients 
are obtained by applying the equation to the 
training dataset and these coefficients are used to 
obtain the forecast demand. 

4.2.2 Artificial Neural Network 
The ANN is effectively a black box that learns 
patterns from a given set of inputs and an output. 
The network used in this project was a Multi- 
Layered 	Perceptron(MLP) 	with 	a 
backpropagation algorithm. 

In this exercise a three-layered network was 
used , that is , an input , hidden and an output 
layer. There were 13 inputs and one output. The 
optimal number of neurons in the hidden layer 
varied according to the half-hour period under 
consideration. 

The inputs to the ANN were as follows 
day-of-week, represented as a five digit 
binary number 
winter/summer dummy 
temperature 
wind-speed 
mean 24 hour lagged temperature  

2 hour lagged demand 
The output to the neural-network was the 
historical demand. 

5 Analysis and discussion of results 

The models were constructed and used to 
forecast on a test data set. For the preliminary 
analysis, models for two half hours only were 
built. The half-hours were: 

00hr-00:30hr 
12:30hr-13:00hr 

The first half-hour was chosen because the time-
switches are 'on' during this period, implying the 
timeswitched load. The second half hour was 
selected because, on very cold days (<1 degree 
minimum day-ahead forecast temperature) the 
teleswitches are 'on' during this period. The two 
half-hours were consider adequate for the 
comparison because they reflect the demand-
side management used in the area. The training 
data set had 1095 days and the test set had 90. 

5.1 Test method 
The analysis could be interpreted as a scenario 
analysis over a 90 day period on the chosen half- 
hours. 	The forecasting accuracy of the 
technique was evaluated by the average of 
absolute percentage errors of the half-hours. The 
absolute percentage error is 

APE = 
Actual  - Dforecat 

* 100 
Dactia1 

where Dacai  and D recast  are the actual and 

forecast demand. The mean absolute percentage 
error (MAPE) is 

MAPE=-1— TAPE 
N 

where Nh  is the number of half-hours in the 

forecast period. 

5.2 Results 
The MAPE for the MLR and the ANN for both 
half-hours were calculated and presented in 
table 1. 

T1L1 	r,'cfina reii1tc in terms of MAIPE 
MAPE % 00hr-00:30hr 12:30-13:00hr 
MLR 2.8442 4.0101 
ANN 1.8630 1.0314 
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The results in table 1 indicate that the ANN 
outperforms the MLR for both half-hour periods. 
While the ANN performs better for the second 
half-hour than the first, the MLR gives worse 
results for this half-hour. This is the case 
because the teleswitch introduces greater non-
linearity into the relationship. As the MLR is a 
linear approximation of the relationship, the 
errors increase. 

To determine the performance of the models at 
different temperatures, the half-hour 00hr-
00:30hr was used. This is because it does not 
have the added non-linearity induced by the 
teleswitch. 

Table 2 shows the MAPE for both models for the 
temperature ranges: - 

I 	0 degrees 

0 t:~5degrees 

1 > 5 degrees 

Table 2. MAPE of the models for temperature 

MAPE% t!!~O 0:!~t 	5 1>5 

MLR 5.5151 3.0701 1.4519 

ANN 1.9487 1.9438 1.4999 

From table2, the ANN performs much better 
than the MLR at lower temperatures. For 
temperatures above 5 degrees, the performance 

	

of both models is very similar. 	Figure 2 
illustrates a similar trend by plotting the %APE 
of both models against the temperature. 

Graph of the APE against troop Er the MLR and ANN torn 00hr.0030Irr 
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Fig 2. %APE v temperature for both models 

5.3 Discussion 
From the analysis in the previous section, the 
ANN outperforms the MLR in all the categories 
assessed. This is because the weather-demand 
relationship is a non-linear relationship and the 

ANN gives a better approximation of non-
linearity than the MLR. Also the ANN is able to 
account for the additional non-linearity caused 
by the teleswitch. The MLR has several 
advantages over the ANN. These are listed 
below:- 

Easier implementation ancl greater 
flexibility. 
Model coefficients are visible enabling 
easier inference 

6 Application of the models 
This final section gives a brief summary of the 
short to long term applicability of these models 
in Suppliers risk management activities. Firstly 
the issue of accuracy and calibration are 
considered. 

6.1 Accuracy and calibration 
Over time the accuracy of the chosen model will 
decrease because, the weather demand 
relationship is dynamic. These changes are 
caused by appliance efficiency increases, 
customers changing heating fuel source and 
demand growth. The chosen model has to be re-
trained fairly regularly to maintain a reasonable 
accuracy 

6.2 Application 
Short-term:- The model could be used 
to determine a suppliers day—ahead 
exposure to weather, given forecasts. 
From this the volumetric imbalance 
caused by the weather is obtained. 
Medium-term:- A supplier could 
calculate its weather exposure for a 
period of over a few months for risk 
management purposes. 

7 Conclusion 
Increased competition in the Electricity industry 
has resulted in tighter margins for participants. 
Understanding the relationship between the one 
important domestic fundamental demand driver - 
weather- and electricity is crucial. 	Two 
generically different models for determining the 
relationship - Multiple Linear Regressions 
(MLR) and Artificial Neural Networks (ANN) - 
were compared. Increased non-linearity had 
been introduced into the data set by active 
Demand-Side Management (DSM) in the area. 
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From the analysis, the ANN outperforms the 	13) 

MLR. This is because the ANN is capable of 	14) 
modelling the non-linearity induced by the DSM 
and that in the weather—demand relationship. The 
MLR has the advantages of transparency and 
easy implementation. 	

15) 

In choosing the best model for practical 	17) 

application, not just performance, but all other 
factors have to be considered. 	 18) 
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Appendix 2 

Half-hourly Balancing Mechanism System Buy Price and System 
Sell Price from 14th - 20th  September 2001 
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Balancing Mechanism prices on Friday 14th September 2001 
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Balancing Mechanism prices on Sunday 16th September 2001 

150 

100 

Price in 	50 
£/MWh 

0 

-50 

-100 

Th 	I 	 I 

- System Sell Price 
System Buy pJ 

5 10 15 20 25 30 35 40 45 

half-hour of day 

Balancing Mechanism prices on Monday 17th September 2001 

150 

100 

Price in 	50 

£/MWh 

0 

-50 

-100 

5 10 15 20 25 30 35 40 45 

half-hour of day 

197 



Appendix 2 

Balancing Mechanism prices on Tuesday 18th September 2001 
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Balancing Mechanism prices on Thursday 20th September 2001 
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