25 research outputs found

    Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry

    Get PDF
    The Daguangbao mega-landslide (China), induced by the 2008 Wenchuan earthquake (Mw = 7.9), with an area of approximately 8 km2, is one of the largest landslides in the world. Experts predicted that the potential risk and instability of the landslide might remain for many decades, or even longer. Monitoring the activity of such a large landslide is hence critical. Terrain Observation by Progressive Scans (TOPS) mode from the Sentinel-1 satellite provides us with up-to-date high-quality Synthetic Aperture Radar (SAR) images over a wide ground coverage (250 × 250 km), enabling full exploitation of various InSAR applications. However, the TOPS mode introduces azimuth-dependent Doppler variations to radar signals, which requires an additional processing step especially for SAR interferometry. Sentinel-1 TOPS data have been widely applied to earthquakes, but the performance of TOPS data-based time series analysis requires further exploitation. In this study, Sentinel-1 TOPS data were employed to investigate landslide post-seismic activities for the first time. To deal with the azimuth-dependent Doppler variations, a processing chain of TOPS time series interferometry approach was developed. Since the Daguangbao landslide is as a result of the collapse of a whole mountain caused by the 2008 Mw 7.9 Wenchuan earthquake, the existing Digital Elevation Models (DEMs, e.g. SRTM and ASTER) exhibit height differences of up to approximately 500 m. Tandem-X images acquired after the earthquake were used to generate a high resolution post-seismic DEM. The high gradient topographic errors of the SRTM DEM (i.e. the differences between the pre-seismic SRTM and the actual post-seismic elevation), together with low coherence in mountainous areas make it difficult to derive a precise DEM using the traditional InSAR processing procedure. A re-flattening iterative method was hence developed to generate a precise TanDEM-X DEM in this study. The volume of the coseismic Daguangbao landslide was estimated to be of 1.189 ± 0.110 × 109 m3 by comparing the postseismic Tandem-X DEM with the preseismic SRTM DEM, which is consistent with the engineering geological survey result. The time-series results from Sentinel-1 show that some sectors of the Daguangbao landslide are still active (and displaying four sliding zones) and exhibiting a maximum displacement rate of 8 cm/year, even eight years after the Wenchuan earthquake. The good performance of TOPS in this time series analysis indicates that up-to-date high-quality TOPS data with spatiotemporal baselines offer significant potential in terms of future InSAR applications.This work was supported by the National Natural Science Foundation of China under Grant No. 41474003. The research stay of Dr. Tomás at Newcastle University was funded by the Ministry of Education, Culture and Sport within the framework of Project PRX14/00100. Additional funding was obtained from the Spanish Government under projects TIN2014-55413-C2-2-P and ESP2013-47780-C2-2-R. Part of this work is also supported by the UK Natural Environmental Research Council (NERC) through the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET, ref.: come30001) and the LICS and CEDRRiC projects (ref. NE/K010794/1 and NE/N012151/1, respectively), the ESA-MOST DRAGON-3 projects (ref. 10607 and 10665), the ESA-MOST DRAGON-4 project (ref. 32244) and the Open Fund from the Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources (ref.: gla2013001)

    Stability and Run-out Analysis of Earthquake-induced Landslides

    Get PDF

    Stability risk assessment of slopes using logistic model tree based on updated case histories

    Get PDF
    A new logistic model tree (LMT) model is developed to predict slope stability status based on an updated database including 627 slope stability cases with input parameters of unit weight, cohesion, angle of internal friction, slope angle, slope height and pore pressure ratio. The performance of the LMT model was assessed using statistical metrics, including accuracy (Acc), Matthews correlation coefficient (Mcc), area under the receiver operating characteristic curve (AUC) and F-score. The analysis of the Acc together with Mcc, AUC and F-score values for the slope stability suggests that the proposed LMT achieved better prediction results (Acc = 85.6%, Mcc = 0.713, AUC = 0.907, F-score for stable state = 0.967 and F-score for failed state = 0.923) as compared to other methods previously employed in the literature. Two case studies with ten slope stability events were used to verify the proposed LMT. It was found that the prediction results are completely consistent with the actual situation at the site. Finally, risk analysis was carried out, and the result also agrees with the actual conditions. Such probability results can be incorporated into risk analysis with the corresponding failure cost assessment later

    Numerical analysis of evaluation methods and influencing factors for dynamic stability of bedding rock slope

    Get PDF
    As the inclination of a bedding surface is consistent with the inclination of a slope, the stability of a bedding rock slope is relatively poor, especially under dynamic loads such as earthquake and blasting. In the dynamic stability analysis of slope, the evaluation methods and influence factors of slope stability are two important concerns. Therefore, two typical bedding rock slopes are respectively established by FLAC3D to study the above concerns. The pseudo-static method, dynamic time-history method and dynamic strength reduction method is used to evaluate the dynamic stability of the model slope, and the applicability of the three methods is compared. The influence of five parameters including dynamic load frequency, slope angle, slope height, strata inclination and strata thickness on the dynamic stability is considered in the model slope with a set of bedding planes. The results show that the dynamic strength reduction method has good suitability for the stability evaluation of a bedding rock slope due to its good solution in the instability judgment and evaluation index. The dynamic stability of a slope becomes worse when the load frequency is close to the natural frequency of the slope. Due to the “elevation effect” and “bedding surface effect” in the dynamic slope response, the slope stability decreases with the increase of slope height and the reduction of strata thickness. The slope stability decreases with the increase of strata inclination and slope angle, and the strata inclination is the most sensitive parameter influencing the slope stability. When the slope angle and height increase to a certain value, the downward trend of slope stability gradually become gentle. For the model slope in this paper, when the slope angle reaches 55° and the slope height reaches 200 m, the reduction of slope stability will be no longer obvious with the increase of a slope angle and slope height

    Earthquake-Induced Stress Amplification and Rock Fragmentation within a Deep-Seated Bedding Fault: Case Study of the Daguangbao Landslide Triggered by the 2008 Wenchuan Earthquake (Ms=8.0)

    Get PDF
    AbstractThe 2008 Wenchuan Ms 8.0 earthquake triggered the Daguangbao (DGB) landslide, of which the shear surface belongs to a thrust bedding fault 400 m below the carbonate slope. After the landslide, a 1.8 km-long inclined sliding face (0.3 km2) was exposed in the south source area. By using shaking table test, the contributions of the fault to the landslide sliding have been studied in this paper. The bedding fault in the test model is simplified as a weak layer with small elasticity and the carbonate layers as a hard layer with high elastic modulus, which is 296 times the weak one. The test records larger displacement amplitude in the upper hard layer than that in the lower one and larger pressure amplitude in the weak layer than that in the hard ones. We ascribed the stress amplification in the weak layer to time delay of shaking wave as wave velocity in the weak layer is only 1/15 of that in the hard layers. Such time delay gives rise to phase differences between the hard layers during shaking. The compressive stress amplification occurs in the weak layer when the upper hard layer moves downwards relative to the lower one; otherwise, tensile stress amplification occurs. It is suggested that this kind of stress amplification triggered an extensive fragmentation of the bedding fault rock mass during the Wenchuan earthquake, which can be verified by a good deal of gentle-dip and steep-dip cracks observed on site. It is proposed that stress amplification had caused a fast dropping of shear strength in the bedding fault to enhance the suddenness of DGB landslide initiation

    The landslide story

    Get PDF
    The catastrophic Wenchuan earthquake induced an unprecedented number of geohazards. The risk of heightened landslide frequency after a quake, with potential secondary effects such as river damming and subsequent floods, needs more focused attention

    Earthquake Engineering

    Get PDF
    The book Earthquake Engineering - From Engineering Seismology to Optimal Seismic Design of Engineering Structures contains fifteen chapters written by researchers and experts in the fields of earthquake and structural engineering. This book provides the state-of-the-art on recent progress in the field of seimology, earthquake engineering and structural engineering. The book should be useful to graduate students, researchers and practicing structural engineers. It deals with seismicity, seismic hazard assessment and system oriented emergency response for abrupt earthquake disaster, the nature and the components of strong ground motions and several other interesting topics, such as dam-induced earthquakes, seismic stability of slopes and landslides. The book also tackles the dynamic response of underground pipes to blast loads, the optimal seismic design of RC multi-storey buildings, the finite-element analysis of cable-stayed bridges under strong ground motions and the acute psychiatric trauma intervention due to earthquakes

    Discussion of “Probabilistic seismic slope stability analysis and design”

    Get PDF
    The discussers welcome the paper by Burgess et al. (2019) and appreciate their efforts to develop, presumably, the first probabilistic seismic slope stability design aids using the “random finite element method” (RFEM). Although they conducted a parametric study, their charts provide geotechnical engineers with a preliminary estimate of failure probability of simple slopes subjected to seismic excitations. However, some considerations need to be pointed out that may affect the results achieved in the paper under discussion
    corecore