13 research outputs found

    Heavy-traffic limits for Discriminatory Processor Sharing models with joint batch arrivals

    Get PDF
    We study the performance of Discriminatory Processor Sharing (DPS) systems, with exponential service times and in which batches of customers of different types may arrive simultaneously according to a Poisson process. We show that the stationary joint queue-length distribution exhibits state-space collapse in heavy traffic: as the load ρ tends to 1, the scaled joint queue-length vector (1−ρ)Q converges in distribution to the product of a determin

    Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues

    Get PDF
    We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing (PS) models. In particular, for an egalitarian PS queue with KK customer classes, we show that the marginal queue length distribution for class kk factorizes over the number of other customer types. The factorizing coefficients equal the queue length probabilities of a PS queue for type kk in isolation, in which the customers of the other types reside \textit{ permanently} in the system. Similarly, the (conditional) mean sojourn time for class kk can be obtained by conditioning on the number of permanent customers of the other types. The decomposition result implies linear relations between the marginal queue length probabilities, which also hold for other PS models such as the egalitarian processor-sharing models with state-dependent system capacity that only depends on the total number of customers in the system. Based on the exact decomposition result for egalitarian PS queues, we propose a similar decomposition for discriminatory processor-sharing (DPS) models, and numerically show that the approximation is accurate for moderate differences in service weights. \u

    Bandwidth-sharing networks under a diffusion scaling

    Get PDF
    This paper considers networks operating under alpha-fair bandwidth sharing. When imposing a peak rate (i.e., an upper bound on the users' transmission rates, which could be thought of as access rates), the equilibrium point of the fluid limit is explicitly identified, for both the single-node network as well as the linear network. More specifically, a criterion is derived that indicates, for each specific class, whether or not it is essentially transmitting at peak rate. Knowing the equilibrium point of the fluid limit, the steady-state behavior under a diffusion scaling is determined. This allows an explicit characterization of the correlations between the number of flows of the various classes

    A versatile model for TCP bandwidth sharing in networks with heterogeneous users.

    Get PDF
    Enabled by the emergence of various access technologies (such as ADSL and wireless LAN), the number of users with high-speed access to the Internet is growing rapidly, and their expectation with respect to the quality-of-service of the applications has been increasing accordingly. With TCP being the ubiquitous underlying end-to-end control, this motivates the interest in easy-to-evaluate, yet accurate, performance models for a TCP-based network shared by multiple classes of users. Building on the vast body of existing models, we develop a novel versatile model that explicitly captures user heterogeneity, and takes into consideration dynamics at both the packet level and the flow level. It is described how the resulting multiple time-scale model can be numerically evaluated. Validation is done by using NS2 simulations as a benchmark. In extensive numerical experiments, we study the impact of heterogeneity in the round-trip times on user-level characteristics such as throughputs and flow transmission times, thus quantifying the resulting bias. We also investigate to what extent this bias is affected by the networks' `packet-level parameters', such as buffer sizes. We conclude by extending the single-link model in a straightforward way to a general network setting. Also in this network setting the impact of heterogeneity in round-trip times is numerically assesse

    Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

    Get PDF
    We analyze a generalization of the Discriminatory Processor Sharing (DPS) queue in a heavy-traffic setting. Customers present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers have phase-type distributed service requirements and allow that customers have different weights in various phases of their service. In our main result we establish a state-space collapse for the queue length vector in heavy traffic. The result shows that in the limit, the queue length vector is the product of an exponentially distributed random variable and a deterministic vector. This generalizes a previous result by Rege and Sengupta (1996) who considered a DPS queue with exponentially distributed service requirements. Their analysis was based on obtaining all moments of the queue length distributions by solving systems of linear equations. We undertake a more direct approach by showing that the probability generating function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically i.i.d. according to the forward recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with a higher value for d_k/E(B_k^fwd) obtain a larger share of the capacity, where d_k is the cost associated to class k, and E(B_k^fwd) is the forward recurrence time of the class-k service requirement. The applicability of this result for a moderately loaded system is investigated by numerical experiments

    Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

    Get PDF
    We analyze a generalization of the Discriminatory Processor Sharing (DPS) queue in a heavy-traffic setting. Customers present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers have phase-type distributed service requirements and allow that customers have different weights in various phases of their service. In our main result we establish a state-space collapse for the queue length vector in heavy traffic. The result shows that in the limit, the queue length vector is the product of an exponentially distributed random variable and a deterministic vector. This generalizes a previous result by Rege and Sengupta (1996) who considered a DPS queue with exponentially distributed service requirements. Their analysis was based on obtaining all moments of the queue length distributions by solving systems of linear equations. We undertake a more direct approach by showing that the probability generating function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically i.i.d. according to the forward recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with a higher value for d_k/E(B_k^fwd) obtain a larger share of the capacity, where d_k is the cost associated to class k, and E(B_k^fwd) is the forward recurrence time of the class-k service requirement. The applicability of this result for a moderately loaded system is investigated by numerical experiments

    Interpolation approximations for the steady-state distribution in multi-class resource-sharing systems

    Get PDF
    International audienceWe consider a single-server multi-class queue that implements relative priorities among customers of the various classes. The discipline might serve one customer at a time in a non-preemptive way, or serve all customers simultaneously. The analysis of the steady-state distribution of the queue-length and the waiting time in such systems is complex and closed-form results are available only in particular cases. We therefore set out to develop approximations for the steady-state distribution of these performance metrics. We first analyze the performance in light traffic. Using known results in the heavy-traffic regime, we then show how to develop an interpolation-based approximation that is valid for any load in the system. An advantage of the approach taken is that it is not model dependent and hence could potentially be applied to other complex queueing models. We numerically assess the accuracy of the interpolation approximation through the first and second moments
    corecore