5,177 research outputs found

    Measuring quantitative effects of methylation on transcription factor-DNA binding affinity

    Get PDF
    We describe a new method for measuring the effects of epigenetic marks on protein-DNA interactions.</jats:p

    Impaired DNA-binding affinity of novel PAX6 mutations

    Get PDF
    Mutations in human PAX6 gene are associated with various congenital eye malformations including aniridia, foveal hypoplasia, and congenital nystagmus. These various phenotypes may depend on the mutation spectrums that can affect DNA-binding affinity, although this hypothesis is debatable. We screened PAX6 mutations in two unrelated patients with congenital nystagmus, and measured DNA-binding affinity through isothermal titration calorimetry (ITC). To elucidate phenotypic differences according to DNA-binding affinity, we also compared DNA-binding affinity among the previously reported PAX6 missense mutations within the linker region between two subdomains of the paired domain (PD). We identified two novel mutations of PAX6 gene: c.214G &gt;T (p.Gly72Cys) and c.249_250delinsCGC (p.Val84Alafs*8). Both were located within the linker region between the two subdomains of the PD. ITC measurement revealed that the mutation p.Val84Alafs*8 had no DNA-binding affinity, while the p.Gly72Cys mutation showed a decreased binding affinity (Kd = 0.58 mu M) by approximately 1.4 times compared to the wild type-PAX6 (Kd = 0.41 mu M). We also found that there was no close relationship between DNA-binding affinity and phenotypic differences. Our results suggest that the DNA-binding affinity alone might be insufficient to determine PAX6-related phenotypes, and that other modifier genes or environmental factors might affect phenotypes of the PAX6 gene

    Molecular basis for modulation of the p53 target selectivity by KLF4

    Get PDF
    The tumour suppressor p53 controls transcription of various genes involved in apoptosis, cell-cycle arrest, DNA repair and metabolism. However, its DNA-recognition specificity is not nearly sufficient to explain binding to specific locations in vivo. Here, we present evidence that KLF4 increases the DNA-binding affinity of p53 through the formation of a loosely arranged ternary complex on DNA. This effect depends on the distance between the response elements of KLF4 and p53. Using nuclear magnetic resonance and fluorescence techniques, we found that the amino-terminal domain of p53 interacts with the KLF4 zinc fingers and mapped the interaction site. The strength of this interaction was increased by phosphorylation of the p53 N-terminus, particularly on residues associated with regulation of cell-cycle arrest genes. Taken together, the cooperative binding of KLF4 and p53 to DNA exemplifies a regulatory mechanism that contributes to p53 target selectivity

    Survey of variation in human transcription factors reveals prevalent DNA binding changes

    Full text link
    Published in final edited form as: Science. 2016 Mar 25; 351(6280): 1450–1454. Published online 2016 Mar 24. doi: 10.1126/science.aad2257Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.National Institutes of Health; NHGRI R01 HG003985; P50 HG004233; A*STAR National Science Scholarship; National Science Foundatio

    Grafting Miniature DNA Binding Proteins

    Get PDF
    AbstractMiniature proteins serve as leads for biological and medicinal applications by positioning all amino acids necessary for biomolecular recognition on a compact protein structure. Protein grafting was recently used to create miniature helical proteins with high DNA binding affinity and specificity

    Characterization of small molecules inhibiting the pro-angiogenic activity of the zinc finger transcription factor Vezf1

    Get PDF
    Discovery of inhibitors for endothelial-related transcription factors can contribute to the development of anti-angiogenic therapies that treat various diseases, including cancer. The role of transcription factor Vezf1 in vascular development and regulation of angiogenesis has been defined by several earlier studies. Through construction of a computational model for Vezf1, work here has identified a novel small molecule drug capable of inhibiting Vezf1 from binding to its cognate DNA binding site. Using structure-based design and virtual screening of the NCI Diversity Compound Library, 12 shortlisted compounds were tested for their ability to interfere with the binding of Vezf1 to DNA using electrophoretic gel mobility shift assays. We identified one compound, T4, which has an IC50 of 20 &mu;M. Using murine endothelial cells, MSS31, we tested the effect of T4 on endothelial cell viability and angiogenesis by using tube formation assay. Our data show that addition of T4 in cell culture medium does not affect cell viability at concentrations lower or equal to its IC 50 but strongly inhibits the network formation by MSS31 in the tube formation assays. Given its potential efficacy, this inhibitor has significant therapeutic potential in several human diseases

    Evaluation of molecular descriptors for antitumor drugs with respect to noncovalent binding to DNA and antiproliferative activity

    Get PDF
    34 pages, 6 additional files, 5 tables, 4 figures.[Background ] Small molecules that bind reversibly to DNA are among the antitumor drugs currently used in chemotherapy. In the pursuit of a more rational approach to cancer chemotherapy based upon these molecules, it is necessary to exploit the interdependency between DNA-binding affinity, sequence selectivity and cytotoxicity. For drugs binding noncovalently to DNA, it is worth exploring whether molecular descriptors, such as their molecular weight or the number of potential hydrogen acceptors/donors, can account for their DNA-binding affinity and cytotoxicity.[Results] Fifteen antitumor agents, which are in clinical use or being evaluated as part of the National Cancer Institute’s drug screening effort, were analyzed in silico to assess the contribution of various molecular descriptors to their DNA-binding affinity, and the capacity of the descriptors and DNA-binding constants for predicting cell cytotoxicity. Equations to predict drug-DNA binding constants and growth-inhibitory concentrations were obtained by multiple regression following rigorous statistical procedures.[Conclusions] For drugs binding reversibly to DNA, both their strength of binding and their cytoxicity are fairly predicted from molecular descriptors by using multiple regression methods. The equations derived may be useful for rational drug design. The results obtained agree with that compounds more active across the National Cancer Institute’s 60-cell line data set tend to have common structural features.Supported by a grant from the former Spanish Ministry of Education and Science (BFU2007-60998) and the FEDER program of the European Community.Peer reviewe

    DNA sequence correlations shape nonspecific transcription factor-DNA binding affinity

    Get PDF
    Transcription factors (TFs) are regulatory proteins that bind DNA in promoter regions of the genome and either promote or repress gene expression. Here we predict analytically that enhanced homo-oligonucleotide sequence correlations, such as poly(dA:dT) and poly(dC:dG) tracts, statistically enhance non-specific TF-DNA binding affinity. This prediction is generic and qualitatively independent of microscopic parameters of the model. We show that non-specific TF binding affinity is universally controlled by the strength and symmetry of DNA sequence correlations. We perform correlation analysis of the yeast genome and show that DNA regions highly occupied by TFs exhibit stronger homo-oligonucleotide sequence correlations, and thus higher propensity for non-specific binding, as compared with poorly occupied regions. We suggest that this effect plays the role of an effective localization potential enhancing the quasi-one-dimensional diffusion of TFs in the vicinity of DNA, speeding up the stochastic search process for specific TF binding sites. The predicted effect also imposes an upper bound on the size of TF-DNA binding motifs

    Enhanced DNA binding affinity of RecA protein from Deinococcus radiodurans

    Get PDF
    © 2015 Elsevier B.V. Deinococcus radiodurans (Dr) has a significantly more robust DNA repair response than Escherichia coli (Ec), which helps it survive extremely high doses of ionizing radiation and prolonged periods of desiccation. DrRecA protein plays an essential part in this DNA repair capability. In this study we directly compare the binding of DrRecA and EcRecA to the same set of short, defined single (ss) and double stranded (ds) DNA oligomers. In the absence of cofactors (ATPγS or ADP), DrRecA binds to dsDNA oligomers more than 20 fold tighter than EcRecA, and binds ssDNA up to 9 fold tighter. Binding to dsDNA oligomers in the absence of cofactor presumably predominantly monitors DNA end binding, and thus suggests a significantly higher affinity of DrRecA for ds breaks. Upon addition of ATPγS, this species-specific affinity difference is nearly abolished, as ATPγS significantly decreases the affinity of DrRecA for DNA. Other findings include that: (1) both proteins exhibit a dependence of binding affinity on the length of the ssDNA oligomer, but not the dsDNA oligomer; (2) the salt dependence of binding is modest for both species of RecA, and (3) in the absence of DNA, DrRecA produces significantly shorter and/or fewer free-filaments in solution than does EcRecA. The results suggest intrinsic biothermodynamic properties of DrRecA contribute directly to the more robust DNA repair capabilities of D. radiodurans
    corecore