167 research outputs found

    Secure secondary utilization system of genomic data using quantum secure cloud

    Get PDF
    量子セキュアクラウドによる高速安全なゲノム解析システムの開発に成功 --従来不可能だった情報理論的安全で高速な処理を実現--. 京都大学プレスリリース. 2022-11-24.Secure storage and secondary use of individual human genome data is increasingly important for genome research and personalized medicine. Currently, it is necessary to store the whole genome sequencing information (FASTQ data), which enables detections of de novo mutations and structural variations in the analysis of hereditary diseases and cancer. Furthermore, bioinformatics tools to analyze FASTQ data are frequently updated to improve the precision and recall of detected variants. However, existing secure secondary use of data, such as multi-party computation or homomorphic encryption, can handle only a limited algorithms and usually requires huge computational resources. Here, we developed a high-performance one-stop system for large-scale genome data analysis with secure secondary use of the data by the data owner and multiple users with different levels of data access control. Our quantum secure cloud system is a distributed secure genomic data analysis system (DSGD) with a “trusted server” built on a quantum secure cloud, the information-theoretically secure Tokyo QKD Network. The trusted server will be capable of deploying and running a variety of sequencing analysis hardware, such as GPUs and FPGAs, as well as CPU-based software. We demonstrated that DSGD achieved comparable throughput with and without encryption on the trusted server Therefore, our system is ready to be installed at research institutes and hospitals that make diagnoses based on whole genome sequencing on a daily basis

    Information Hiding Based on DNA Sequences

    Get PDF
    يعد أمن المعلومات مصدر قلق رئيسي، خاصة في ضوء التوسع السريع في استخدام الإنترنت في السنوات الأخيرة. نتيجة لهذا التوسع، كانت هناك حالات وصول غير قانوني، والتي تم تخفيفها من خلال اعتماد مجموعة متنوعة من بروتوكولات الاتصال الآمن، بما في ذلك التشفير وإخفاء البيانات. في السنوات الأخيرة، كانت هناك زيادة في استخدام الحمض النووي للتشفير وإخفاء البيانات كناقل، مع الاستفادة من قدراته الجزيئية الحيوية. في إخفاء البيانات. نتيجة لذلك، في نهج إخفاء البيانات، يتم استخدام قواعد الحمض النووي كناقل للمعلومات لتعزيز الأمن. يندمج علم إخفاء المعلومات والتشفير المستند إلى الحمض النووي بين السمات البيولوجية والتقنيات التقليدية من أجل تحقيق خوارزمية مؤمنة جيدًا تستغلها. لذلك، توفر تسلسلات الحمض النووي قدرة عالية على البيانات بما في ذلك الحفاظ على الخصائص الكيميائية والبيولوجية لتسلسل الحمض النووي.Information security is a major source of worry, especially in light of the rapid expansion of internet use in recent years. As a result of this expansion, there have been incidences of illegal access, which have been mitigated by the adoption of a variety of secure communication protocols, including encryption and data concealment. DNA's bio-molecular properties have seen an uptick in popularity as a carrier for cryptography and data hiding in recent years. when information needs to be hidden. Therefore, DNA bases are utilized as information carriers in the data concealing strategy to increase safety. DNA-based steganography and cryptography combine a biological property with conventional methods to provide an algorithm with increased security. Because of their ability to maintain their chemical and biological characteristics, DNA sequences also have a high data capacity

    Recent Advancements on Symmetric Cryptography Techniques -A Comprehensive Case Study

    Get PDF
    Now a day2019;s Cryptography is one of the broad areas for researchers; because of the conventional block cipher has lost its potency due to the sophistication of modern systems that can break it by brute force. Due to its importance, several cryptography techniques and algorithms are adopted by many authors to secure the data, but still there is a scope to improve the previous approaches. For this necessity, we provide the comprehensive survey which will help the researchers to provide better techniques

    SSO Based Fingerprint Authentication of Cloud Services for Organizations

    Get PDF
    Access to a pool of programmable resources, such as storage space, applications, services, and on-demand networks, is made possible by cloud computing technology. Involving the cloud with the organization reduces its efforts to meet the needs of its customers. The Single Sign-On (SSO) method, which enables users to access various application services using a single user credential, is one of the key benefits of cloud computing. There are numerous problems and difficulties with cloud computing that need to be highlighted. However, protecting user agent privacy against security assaults is far more challenging. To combat security and privacy assaults, this study suggests SSO-based biometric authentication architecture for cloud computing services. Since end devices are computationally inefficient for processing user information during authentication, biometric authentication is effective for resources controlled by end devices at the time of accessing cloud services. As a result, the proposed design minimizes security attacks in cloud computing. An innovative strategy that establishes a one-to-one interaction between the user agent and the service provider is also included in the suggested design. In this case, user agents can use their fingerprint to access various cloud application services and seek registration. The highlights of the suggested architecture have been offered based on comparison analysis with a number of existing architectures

    Enhanced DNA Encoding Scheme in Honey Encryption

    Get PDF
    Nowadays, Security plays a vital role in protecting sensitive data from attackers in many organizations. Many researchers have developed security research to prevent attacks. Password-based encryption (PBE) is used to prevent an attacker from attempting to break into the password file. However, the current PBE is vulnerable because attackers can easily access keys by attempting again and again. The use of weak passwords in PBE is an ongoing problem. At present, Honey Encryption (HE) is an encryption method that overcomes (PBE) vulnerabilities. It is resistant to brute force attacks and allows encryption of data using minimal keys. HE generates a plausible message that looks real when the attacker decrypts with an incorrect key. Deoxyribo Nucleic Acid (DNA) is a new way of computing used in medical research. In this paper, DNA sequences are generated as the key distribution of Honey Encryption. The main idea of the paper is five random data lookup tables in the DNA encoding scheme in order to be more secure. It will be shown as the experimental results the same message encryption with the different passwords and the encryption of the different messages with the same password. In this system, diagnosis symptoms such as Influenza, Toothpaste, etc., will be used as the input messages of the DNA scheme. Compared to the results of only one data lookup table, it can be seen that the result of five data lookup tables in the key generation of DNA encoding sequence is more secure and less execution time. According to the experimental results, the proposed method is more secure than the existing method

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    A COMPREHENSIVE STUDY OF CRYPTOGRAPHY AND KEY MANAGEMENT BASED SECURITY IN CLOUD COMPUTING

    Get PDF
    Cloud computing is a cost effective flexible and proven delivery platform for providing consumer IT services or business services over internet. It has an ability to provide many services over internet. It not only provides computing services but additional computing resources. To interact with various services in the cloud and to store retrieve data from cloud several security mechanism is required. Cryptography and key management mechanism are one of the import services in the cloud to secure data. In this context, this paper investigates the basic problem of cloud computing with cryptography and key management system for enabling support of interoperability between cloud cryptography client and key management services

    Authentication and password storing improvement using SXR algorithm with a hash function

    Get PDF
    Secure password storing is essential in systems working based on password authentication. In this paper, SXR algorithm (Split, Exclusive OR, and Replace) was proposed to improve secure password storing and could also be applied to current authentication systems. SXR algorithm consisted of four steps. First, the received password from users was hashed through a general hash function. Second, the ratio and the number of iterations from the secret key (username and password) were calculated. Third, the hashed password and ratio were computed, and the hashed password was divided based on the ratio (Split) into two values. Both the values were applied to XOR equation according to the number of iterations, resulting in two new values. Last, the obtained values were concatenated and stored in the database (Replace). On evaluating, complexity analyses and comparisons has shown that SXR algorithm could provide attack resistance with a stronger hashed password against the aforementioned attacks. Consequently, even if the hackers hacked the hashed password, it would be challenging and would consume more time to decrypt the actual one, because the pattern of the stored password is the same as the one that has been hashed through the general hash function
    corecore