1,323 research outputs found

    DMC - Distributed and mobile collaboration workshop report

    Get PDF

    A Formal Framework for Concrete Reputation Systems

    Get PDF
    In a reputation-based trust-management system, agents maintain information about the past behaviour of other agents. This information is used to guide future trust-based decisions about interaction. However, while trust management is a component in security decision-making, many existing reputation-based trust-management systems provide no formal security-guarantees. In this extended abstract, we describe a mathematical framework for a class of simple reputation-based systems. In these systems, decisions about interaction are taken based on policies that are exact requirements on agents’ past histories. We present a basic declarative language, based on pure-past linear temporal logic, intended for writing simple policies. While the basic language is reasonably expressive (encoding e.g. Chinese Wall policies) we show how one can extend it with quantification and parameterized events. This allows us to encode other policies known from the literature, e.g., ‘one-out-of-k’. The problem of checking a history with respect to a policy is efficient for the basic language, and tractable for the quantified language when policies do not have too many variables

    Development of draft quality-of-governance standards for climate change mitigation and beyond: groundtruthing of developed verifiers in REDD+ pilot area, Nepal

    Get PDF
    Governance has been identified as central aspect of sustainable forest management. While all participants within the forest policy arena would agree with this observation, it has been less easy to determine how best to evaluate forest governance. Building on the work of the 1992 UN Statement of Forest Principles, and using a hierarchical framework of principles, criteria and indicators (PC&I), Dr Cadman has developed a consistent approach to evaluating forest governance at the global, regional, national and local levels. Tim and Tek applied their work to a range of global policy mechanisms, including REDD+, and has been used by the forest sector in developing countries (Nepal) to develop on-the-ground standards for evaluating REDD+ effectiveness and governance quality

    Climate Services for Resilient Development (CSRD) Partnership’s work in Latin America

    Get PDF
    The Climate Services for Resilient Development (CSRD) Partnership is a private-public collaboration led by USAID, which aims to increase resilience to climate change in developing countries through the development and dissemination of climate services. The partnership began with initial projects in three countries: Colombia, Ethiopia, and Bangladesh. The International Center for Tropical Agriculture (CIAT) was the lead organization for the Colombian CSRD efforts – which then expanded to encompass work in the whole Latin American region

    Mobile Oriented Future Internet (MOFI)

    Get PDF
    This Special Issue consists of seven papers that discuss how to enhance mobility management and its associated performance in the mobile-oriented future Internet (MOFI) environment. The first two papers deal with the architectural design and experimentation of mobility management schemes, in which new schemes are proposed and real-world testbed experimentations are performed. The subsequent three papers focus on the use of software-defined networks (SDN) for effective service provisioning in the MOFI environment, together with real-world practices and testbed experimentations. The remaining two papers discuss the network engineering issues in newly emerging mobile networks, such as flying ad-hoc networks (FANET) and connected vehicular networks

    Reasoning About a Service-oriented Programming Paradigm

    Full text link
    This paper is about a new way for programming distributed applications: the service-oriented one. It is a concept paper based upon our experience in developing a theory and a language for programming services. Both the theoretical formalization and the language interpreter showed us the evidence that a new programming paradigm exists. In this paper we illustrate the basic features it is characterized by

    A Framework for Concrete Reputation-Systems

    Get PDF
    In a reputation-based trust-management system, agents maintain information about the past behaviour of other agents. This information is used to guide future trust-based decisions about interaction. However, while trust management is a component in security decision-making, few existing reputation-based trust-management systems aim to provide any formal security-guarantees. We provide a mathematical framework for a class of simple reputation-based systems. In these systems, decisions about interaction are taken based on policies that are exact requirements on agents' past histories. We present a basic declarative language, based on pure-past linear temporal logic, intended for writing simple policies. While the basic language is reasonably expressive, we extend it to encompass more practical policies, including several known from the literature. A naturally occurring problem becomes how to efficiently re-evaluate a policy when new behavioural information is available. Efficient algorithms for the basic language are presented and analyzed, and we outline algorithms for the extended languages as well

    Storage systems for mobile-cloud applications

    Get PDF
    Mobile devices have become the major computing platform in todays world. However, some apps on mobile devices still suffer from insufficient computing and energy resources. A key solution is to offload resource-demanding computing tasks from mobile devices to the cloud. This leads to a scenario where computing tasks in the same application run concurrently on both the mobile device and the cloud. This dissertation aims to ensure that the tasks in a mobile app that employs offloading can access and share files concurrently on the mobile and the cloud in a manner that is efficient, consistent, and transparent to locations. Existing distributed file systems and network file systems do not satisfy these requirements. Furthermore, current offloading platforms either do not support efficient file access for offloaded tasks or do not offload tasks with file accesses. The first part of the dissertation addresses this issue by designing and implementing an application-level file system named Overlay File System (OFS). OFS assumes a cloud surrogate is paired with each mobile device for task and storage offloading. To achieve high efficiency, OFS maintains and buffers local copies of data sets on both the surrogate and the mobile device. OFS ensures consistency and guarantees that all the reads get the latest data. To effectively reduce the network traffic and the execution delay, OFS uses a delayed-update mechanism, which combines write-invalidate and write-update policies. To guarantee location transparency, OFS creates a unified view of file data. The research tests OFS on Android OS with a real mobile application and real mobile user traces. Extensive experiments show that OFS can effectively support consistent file accesses from computation tasks, no matter where they run. In addition, OFS can effectively reduce both file access latency and network traffic incurred by file accesses. While OFS allows offloaded tasks to access the required files in a consistent and transparent manner, file accesses by offloaded tasks can be further improved. Instead of retrieving the required files from its associated mobile device, a surrogate can discover and retrieve identical or similar file(s) from the surrogates belonging to other users to meet its needs. This is based on two observations: 1) multiple users have the same or similar files, e.g., shared files or images/videos of same object; 2) the need for a certain file content in mobile apps can usually be described by context features of the content, e.g., location, objects in an image, etc.; thus, any file with the required context features can be used to satisfy the need. Since files may be retrieved from surrogates, this solution improves latency and saves wireless bandwidth and power on mobile devices. The second part of the dissertation proposes and develops a Context-Aware File Discovery Service (CAFDS) that implements the idea described above. CAFDS uses a self-organizing map and k-means clustering to classify files into file groups based on file contexts. It then uses an enhanced decision tree to locate and retrieve files based on the file contexts defined by apps. To support diverse file discovery demands from various mobile apps, CAFDS allows apps to add new file contexts and to update existing file contexts dynamically, without affecting the discovery process. To evaluate the effectiveness of CAFDS, the research has implemented a prototype on Android and Linux. The performance of CAFDS was tested against Chord, a DHT based lookup scheme, and SPOON, a P2P file sharing system. The experiments show that CAFDS provides lower end-to-end latency for file search than Chord and SPOON, while providing similar scalability to Chord
    • 

    corecore