1,225 research outputs found

    Sharing Computer Network Logs for Security and Privacy: A Motivation for New Methodologies of Anonymization

    Full text link
    Logs are one of the most fundamental resources to any security professional. It is widely recognized by the government and industry that it is both beneficial and desirable to share logs for the purpose of security research. However, the sharing is not happening or not to the degree or magnitude that is desired. Organizations are reluctant to share logs because of the risk of exposing sensitive information to potential attackers. We believe this reluctance remains high because current anonymization techniques are weak and one-size-fits-all--or better put, one size tries to fit all. We must develop standards and make anonymization available at varying levels, striking a balance between privacy and utility. Organizations have different needs and trust other organizations to different degrees. They must be able to map multiple anonymization levels with defined risks to the trust levels they share with (would-be) receivers. It is not until there are industry standards for multiple levels of anonymization that we will be able to move forward and achieve the goal of widespread sharing of logs for security researchers.Comment: 17 pages, 1 figur

    IPv6: a new security challenge

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011O Protocolo de Internet versão 6 (IPv6) foi desenvolvido com o intuito de resolver alguns dos problemas não endereçados pelo seu antecessor, o Protocolo de Internet versão 4 (IPv4), nomeadamente questões relacionadas com segurança e com o espaço de endereçamento disponível. São muitos os que na última década têm desenvolvido estudos sobre os investimentos necessários à sua adoção e sobre qual o momento certo para que o mesmo seja adotado por todos os players no mercado. Recentemente, o problema da extinção de endereçamentos públicos a ser disponibilizado pelas diversas Region Internet registry – RIRs - despertou o conjunto de entidades envolvidas para que se agilizasse o processo de migração do IPv4 para o IPv6. Ao contrário do IPv4, esta nova versão considera a segurança como um objetivo fundamental na sua implementação, nesse sentido é recomendado o uso do protocolo IPsec ao nível da camada de rede. No entanto, e devido à imaturidade do protocolo e à complexidade que este período de transição comporta, existem inúmeras implicações de segurança que devem ser consideradas neste período de migração. O objetivo principal deste trabalho é definir um conjunto de boas práticas no âmbito da segurança na implementação do IPv6 que possa ser utilizado pelos administradores de redes de dados e pelas equipas de segurança dos diversos players no mercado. Nesta fase de transição, é de todo útil e conveniente contribuir de forma eficiente na interpretação dos pontos fortes deste novo protocolo assim como nas vulnerabilidades a ele associadas.IPv6 was developed to address the exhaustion of IPv4 addresses, but has not yet seen global deployment. Recent trends are now finally changing this picture and IPv6 is expected to take off soon. Contrary to the original, this new version of the Internet Protocol has security as a design goal, for example with its mandatory support for network layer security. However, due to the immaturity of the protocol and the complexity of the transition period, there are several security implications that have to be considered when deploying IPv6. In this project, our goal is to define a set of best practices for IPv6 Security that could be used by IT staff and network administrators within an Internet Service Provider. To this end, an assessment of some of the available security techniques for IPv6 will be made by means of a set of laboratory experiments using real equipment from an Internet Service Provider in Portugal. As the transition for IPv6 seems inevitable this work can help ISPs in understanding the threats that exist in IPv6 networks and some of the prophylactic measures available, by offering recommendations to protect internal as well as customers’ networks

    An Open Management and Administration Platform for IEEE 802.11 Networks

    Get PDF
    The deployment of Wireless Local Area Network (WLAN) has greatly increased in past years. Due to the large deployment of the WLAN, the immediate need of management platforms has been recognized, which has a significant impact on the performance of a WLAN. Although there are various vendor-specific and proprietary solutions available in the market to cope with the management of wireless LAN, they have problems in interoperability and compatibility. To address this issues, IETF has come up with the interoperability standard of management of WLANs devices, Control And Provisioning of Wireless Access Points (CAPWAP) protocol, which is still in the draft phase. Commercial implementation of this draft protocol from WLAN equipment vendors is rather expensive. Open source community, therefore, tried to provide free management solutions. An open source project called openCAPWAP was initiated. However, it lacks a graphic user interface that makes it hard to implement for novice network administrators or regular customers. Therefore, the researcher designed and developed a web interface framework that encapsulates openCAPWAP at the bottom to provide user-friendly management experience. This application platform was designed to work with any remote web server in the public domain through which it can connect to access points or access controllers through a secure shell to configure them. This open platform is purely open source-based. It is operating system independent: it can be implemented on any open source environment such as regular Linux operating system or embedded operation system small form factor single board computers. The platform was designed and tested in a laboratory environment and a remote system. This development contributes to network administration in both network planning and operational management of the WLAN networks

    Towards high quality and flexible future internet architectures

    Get PDF

    Cyber-security of Cyber-Physical Systems (CPS)

    Get PDF
    This master's thesis reports on security of a Cyber-Physical System (CPS) in the department of industrial engineering at UiT campus Narvik. The CPS targets connecting distinctive robots in the laboratory in the department of industrial engineering. The ultimate objective of the department is to propose such a system for the industry. The thesis focuses on the network architecture of the CPS and the availability principle of security. This report states three research questions that are aimed to be answered. The questions are: what a secure CPS architecture for the purpose of the existing system is, how far the current state of system is from the defined secure architecture, and how to reach the proposed architecture. Among the three question, the first questions has absorbed the most attention of this project. The reason is that a secure and robust architecture would provide a touchstone that makes answering the second and third questions easier. In order to answer the questions, Cisco SAFE for IoT threat defense for manufacturing approach is chosen. The architectural approach of Cisco SAFE for IoT, with similarities to the Cisco SAFE for secure campus networks, provides a secure network architecture based on business flows/use cases and defining related security capabilities. This approach supplies examples of scenarios, business flows, and security capabilities that encouraged selecting it. It should be noted that Cisco suggests its proprietary technologies for security capabilities. According to the need of the project owners and the fact that allocating funds are not favorable for them, all the suggested security capabilities are intended to be open-source, replacing the costly Cisco-proprietary suggestions. Utilizing the approach and the computer networking fundamentals resulted in the proposed secure network architecture. The proposed architecture is used as a touchstone to evaluate the existing state of the CPS in the department of industrial engineering. Following that, the required security measures are presented to approach the system to the proposed architecture. Attempting to apply the method of Cisco SAFE, the identities using the system and their specific activities are presented as the business flow. Based on the defined business flow, the required security capabilities are selected. Finally, utilizing the provided examples of Cisco SAFE documentations, a complete network architecture is generated. The architecture consists of five zones that include the main components, security capabilities, and networking devices (such as switches and access points). Investigating the current state of the CPS and evaluating it by the proposed architecture and the computer networking fundamentals, helped identifying six important shortcomings. Developing on the noted shortcomings, and identification of open-source alternatives for the Cisco-proprietary technologies, nine security measures are proposed. The goal is to perform all the security measures. Thus, the implementations and solutions for each security measure is noted at the end of the presented results. The security measures that require purchasing a device were not considered in this project. The reasons for this decision are the time-consuming process of selecting an option among different alternatives, and the prior need for grasping the features of the network with the proposed security capabilities; features such as amount and type of traffic inside the network, and possible incidents detected using an Intrusion Detection Prevention System. The attempts to construct a secure cyber-physical system is an everlasting procedure. New threats, best practices, guidelines, and standards are introduced on a daily basis. Moreover, business needs could vary from time to time. Therefore, the selected security life-cycle is required and encouraged to be used in order to supply a robust lasting cyber-physical system

    Discovery of Malicious Attacks to Improve Mobile Collaborative Learning (MCL)

    Get PDF
    Mobile collaborative learning (MCL) is highly acknowledged and focusing paradigm in eductional institutions and several organizations across the world. It exhibits intellectual synergy of various combined minds to handle the problem and stimulate the social activity of mutual understanding. To improve and foster the baseline of MCL, several supporting architectures, frameworks including number of the mobile applications have been introduced. Limited research was reported that particularly focuses to enhance the security of those pardigms and provide secure MCL to users. The paper handles the issue of rogue DHCP server that affects and disrupts the network resources during the MCL. The rogue DHCP is unauthorized server that releases the incorrect IP address to users and sniffs the traffic illegally. The contribution specially provides the privacy to users and enhances the security aspects of mobile supported collaborative framework (MSCF). The paper introduces multi-frame signature-cum anomaly-based intrusion detection systems (MSAIDS) supported with novel algorithms through addition of new rules in IDS and mathematcal model. The major target of contribution is to detect the malicious attacks and blocks the illegal activities of rogue DHCP server. This innovative security mechanism reinforces the confidence of users, protects network from illicit intervention and restore the privacy of users. Finally, the paper validates the idea through simulation and compares the findings with other existing techniques.Comment: 20 pages and 11 figures; International Journal of Computer Networks and Communications (IJCNC) July 2012, Volume 4. Number

    Network Access Control: Disruptive Technology?

    Get PDF
    Network Access Control (NAC) implements policy-based access control to the trusted network. It regulates entry to the network by the use of health verifiers and policy control points to mitigate the introduction of malicious software. However the current versions of NAC may not be the universal remedy to endpoint security that many vendors tout. Many organizations that are evaluating the technology, but that have not yet deployed a solution, believe that NAC presents an opportunity for severe disruption of their networks. A cursory examination of the technologies used and how they are deployed in the network appears to support this argument. The addition of NAC components can make the network architecture even more complex and subject to failure. However, one recent survey of organizations that have deployed a NAC solution indicates that the \u27common wisdom\u27 about NAC may not be correct

    Web-Based Practical Exam Monitoring System (WPEMS)

    Get PDF
    The purpose of this executive summary is to give a complete view ofmy developed project, which is the Web-based Practical Exam Monitoring System (WPEMS). I developed the project for the purpose to complete my Final Year Project 1 and Final Year project 2 requisite. Thus, WPEMS is created throughout the time period. Throughout the entire period oftime, I have been exposed to a lot ofnew things ranging from various technological knowledge's, especially in manage and exploit some ofthe Simple Network Management Protocol (SNMP) functions available in Microsoft XP or Microsoft Windows 2003. I undergo my Final Year Project 1 and 2 under the supervision of Mr. Hilmi Hasan, an ICT lecturer in Universiti Teknologi Petronas. Being a student under his supervision requires me to constantly work perfectly in order to ensure the success ofmy developed project, which is the WPEMS application. WPEMS is a totally new system, where no one else in UTP has created it before, and thus it is unique in its own way. Generally, it is a web-based monitoring application for practical examination in the lab. Practical examination here is such programming examinations or tests, where students need to hard coded their own program in the lab, and thus the needs to constantly ensure the integrity ofthe examination is crucial. This is due to the availability ofthe Internet which can be used by students to cheat in the examination, because they can simply search for the examination answer or tips at the Internet during their practical examination time. WPEMS can solve that problem, by automatically monitormg^he running examination, and any cheating attempt by students will be automatically logged, ^hs can reduce number ofpersonnel usage, and also minimize the efforts ofthe lecturets to constantly walking all around the lab to make sure nobody is cheating
    • …
    corecore