10 research outputs found

    A multi-granularity locally optimal prototype-based approach for classification

    Get PDF
    Prototype-based approaches generally provide better explainability and are widely used for classification. However, the majority of them suffer from system obesity and lack transparency on complex problems. In this paper, a novel classification approach with a multi-layered system structure self-organized from data is proposed. This approach is able to identify local peaks of multi-modal density derived from static data and filter out more representative ones at multiple levels of granularity acting as prototypes. These prototypes are then optimized to their locally optimal positions in the data space and arranged in layers with meaningful dense links in-between to form pyramidal hierarchies based on the respective levels of granularity accordingly. After being primed offline, the constructed classification model is capable of self-developing continuously from streaming data to self-expend its knowledge base. The proposed approach offers higher transparency and is convenient for visualization thanks to the hierarchical nested architecture. Its system identification process is objective, data-driven and free from prior assumptions on data generation model with user- and problem- specific parameters. Its decision-making process follows the “nearest prototype” principle, and is highly explainable and traceable. Numerical examples on a wide range of benchmark problems demonstrate its high performance

    Feature learning for information-extreme classifier

    Get PDF
    The feature learning algorithm for information-extreme classifier by clustering of Fast Retina Keypoint binary descriptor, calculated for local features, and usage of spatial pyramid kernel for increasing noise immunity and informativeness of feature representation are considered. Proposed a method of parameters optimization for feature extractor and decision rules based on multi-level coarse features coding using information criterion and population-based search algorithm

    Feature learning for information-extreme classifier

    Get PDF
    The feature learning algorithm for information-extreme classifier by clustering of Fast Retina Keypoint binary descriptor, calculated for local features, and usage of spatial pyramid kernel for increasing noise immunity and informativeness of feature representation are considered. Proposed a method of parameters optimization for feature extractor and decision rules based on multi-level coarse features coding using information criterion and population-based search algorithm

    Feature learning for information-extreme classifier

    Get PDF
    The feature learning algorithm for information-extreme classifier by clustering of Fast Retina Keypoint binary descriptor, calculated for local features, and usage of spatial pyramid kernel for increasing noise immunity and informativeness of feature representation are considered. Proposed a method of parameters optimization for feature extractor and decision rules based on multi-level coarse features coding using information criterion and population-based search algorithm

    Deep rule-based classifier with human-level performance and characteristics

    Get PDF
    In this paper, a new type of multilayer rule-based classifier is proposed and applied to image classification problems. The proposed approach is entirely data-driven and fully automatic. It is generic and can be applied to various classification and prediction problems, but in this paper we focus on image processing, in particular. The core of the classifier is a fully interpretable, understandable, self-organised set of IF…THEN… fuzzy rules based on the prototypes autonomously identified by using a one-pass type training process. The classifier can self-evolve and be updated continuously without a full retraining. Due to the prototype-based nature, it is non-parametric; its training process is non-iterative, highly parallelizable and computationally efficient. At the same time, the proposed approach is able to achieve very high classification accuracy on various benchmark datasets surpassing most of the published methods, be comparable with the human abilities. In addition, it can start classification from the first image of each class in the same way as humans do, which makes the proposed classifier suitable for real-time applications. Numerical examples of benchmark image processing demonstrate the merits of the proposed approach

    Highly interpretable hierarchical deep rule-based classifier

    Get PDF
    Pioneering the traditional fuzzy rule-based (FRB) systems, deep rule-based (DRB) classifiers are able to offer both human-level performance and transparent system structure on image classification problems by integrating zero-order fuzzy rule base with a multi-layer image-processing architecture that is typical for deep learning. Nonetheless, it is frequently observed that the inner structure of DRB can become over sophisticated and not interpretable for humans when applied to large-scale, complex problems. To tackle the issue, one feasible solution is to construct a tree structural classification model by aggregating the possibly huge number of prototypes identified from data into a much smaller number of more descriptive and highly abstract ones. Therefore, in this paper, we present a novel hierarchical deep rule-based (H-DRB) approach that is capable of summarizing the less descriptive raw prototypes into highly generalized ones and self-arranging them into a hierarchical prototype-based structure according to their descriptive abilities. By doing so, H-DRB can offer high-level performance and, most importantly, full transparency and human-interpretability on various problems including large-scale ones. The proposed concept and generical principles are verified through numerical experiments based on a wide variety of popular benchmark image sets. Numerical results demonstrate that the promise of H-DRB

    A review on deep-learning-based cyberbullying detection

    Get PDF
    Bullying is described as an undesirable behavior by others that harms an individual physically, mentally, or socially. Cyberbullying is a virtual form (e.g., textual or image) of bullying or harassment, also known as online bullying. Cyberbullying detection is a pressing need in today’s world, as the prevalence of cyberbullying is continually growing, resulting in mental health issues. Conventional machine learning models were previously used to identify cyberbullying. However, current research demonstrates that deep learning surpasses traditional machine learning algorithms in identifying cyberbullying for several reasons, including handling extensive data, efficiently classifying text and images, extracting features automatically through hidden layers, and many others. This paper reviews the existing surveys and identifies the gaps in those studies. We also present a deep-learning-based defense ecosystem for cyberbullying detection, including data representation techniques and different deep-learning-based models and frameworks. We have critically analyzed the existing DL-based cyberbullying detection techniques and identified their significant contributions and the future research directions they have presented. We have also summarized the datasets being used, including the DL architecture being used and the tasks that are accomplished for each dataset. Finally, several challenges faced by the existing researchers and the open issues to be addressed in the future have been presented

    Advanced Information Systems and Technologies

    Get PDF
    This book comprises the proceedings of the V International Scientific Conference "Advanced Information Systems and Technologies, AIST-2017". The proceeding papers cover issues related to system analysis and modeling, project management, information system engineering, intelligent data processing computer networking and telecomunications. They will be useful for students, graduate students, researchers who interested in computer science

    Advanced Information Systems and Technologies

    Get PDF
    This book comprises the proceedings of the V International Scientific Conference "Advanced Information Systems and Technologies, AIST-2017". The proceeding papers cover issues related to system analysis and modeling, project management, information system engineering, intelligent data processing computer networking and telecomunications. They will be useful for students, graduate students, researchers who interested in computer science
    corecore