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Abstract: Prototype-based approaches generally provide better explainability and are widely used for 

classification. However, the majority of them suffer from system obesity and lack transparency on complex 

problems. In this paper, a novel classification approach with a multi-layered system structure self-organized from 

data is proposed. This approach is able to identify local peaks of multi-modal density derived from static data and 

filter out more representative ones at multiple levels of granularity acting as prototypes. These prototypes are then 

optimized to their locally optimal positions in the data space and arranged in layers with meaningful dense links 

in-between to form pyramidal hierarchies based on the respective levels of granularity accordingly. After being 

primed offline, the constructed classification model is capable of self-developing continuously from streaming 

data to self-expend its knowledge base. The proposed approach offers higher transparency and is convenient for 

visualization thanks to the hierarchical nested architecture. Its system identification process is objective, data-

driven and free from prior assumptions on data generation model with user- and problem- specific parameters. Its 

decision-making process follows the “nearest prototype” principle, and is highly explainable and traceable. 

Numerical examples on a wide range of benchmark problems demonstrate its high performance. 

Keywords: local optimality; multi-granularity; prototype-based; pyramidal hierarchy. 

1. Introduction 
Classification is a hot topic centred in the machine learning and statistic domains. Many classification techniques 

have been developed and successfully applied in various disciplines of science and technology. 

In recent years, deep neural networks (DNNs) have gained enormous popularity among researchers as well as the 

general public thanks to the state-of-the-art performance they demonstrated on many practical applications [25]. 

Despite their success, research communities and industries start calling for explainable artificial intelligence [10] 

due to the increasing concerns on the issues of understandability and trustability of intelligent systems. Compared 

with DNNs and other mainstream classification algorithms such as decision tree (DT) [27] and random forests [4], 

prototype-based approaches (e.g., support vector machines (SVMs) [7], k-nearest neighbour (KNN) [8], learning 

vector quantization (LVQ) [23],[35] and evolving intelligent systems (EISs) [1],[34]) are more popular in the 

application scenarios where the model interpretability plays an important role. Nonetheless, it is also observed 

that prototype-based systems learned from high-dimensional, large-scale, complex problems can be over-sized 

and extremely difficult to interpret [10]. 

To further enhance the interpretability and explainability of prototype-based systems, a feasible way is to organize 

the identified prototypes in layers according to their descriptive abilities [19]. In addition, one may need to 

consider both the objectiveness of the prototype identification process and the local optimality of the learned 

solutions from data in system design because they both determine the effectiveness and validity of prototype-

based approaches. In other words, the learning model should objectively disclose the underlying data patterns 

while providing users with the currently best-fitted solutions from empirically observed data. 

In this paper, a novel multi-granularity locally optimal prototype-based (MLOP) approach with such 

characteristics is proposed for classification. The proposed approach is capable of building a multi-layered 

recognition model with locally optimal prototypes representing local peaks of multi-modal density. In the 

proposed approach, prototypes are firstly identified from data as the most representative samples at multiple levels 

of specificity. Then, they are optimized iteratively to the locally optimal positions to guarantee both the 

effectiveness and validity of the learned solutions. After this, these locally optimal prototypes are arranged 

naturally in a pyramidally hierarchical form according to the respective levels of granularity. In contrast with the 
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classification approach presented in [19], the MLOP classifier is an approach designed for learning locally optimal 

prototypes from static data with the capability of self-determining its model structure. The proposed model builds 

much denser connections between locally optimal prototypes of successive layers based on their spatial scattering, 

resulting in more robust performance across a wide variety of different problems. Despite of being an offline 

learning model, the proposed MLOP classifier is also capable of continuously self-learning from streaming data 

in  a recursive manner after being primed with static data. This further allows the proposed approach to quickly 

self-adapt to new data patterns and makes it suitable for online application scenarios.  

Instead of being a “black box” model, the learning process of the proposed MLOP approach is driven by data 

without involving any prior assumption on data generation model. Any decisions made during the learning and 

decision-making processes are directly based on empirically observed training data, and thus, rationales behind 

the decisions can be explained clearly to humans. The learned prototypes can be visualized in a human-

understandable form objectively reflecting the underlying data patterns.  

Key features of the proposed algorithm are: (1) self-organization of a multi-layered recognition model for 

classification in a fully autonomous, data-driven manner; (2) self-determination of the system structure based on 

the ensemble properties and mutual distribution of data; (3) maximization of the information mined from data by 

iteratively optimizing the obtained solutions; (4) perception of complex problems with multiple levels of 

specificity simultaneously. 

The reminder of this paper is organized as follows. Section 2 provides a review of related works. The algorithmic 

procedure of the MLOP classifier is described in detail in Section 3. Computational complexity of the proposed 

approach is analysed in Section 4. Numerical examples are provided in Section 5 as the proof of the concept. 

Section 6 concludes this paper and points out directions for future work.  

2. Related Works 
Currently, there have been a wide variety of successful classification approaches developed. Due to the limited 

space of this paper, it is practically impossible to cover all of them. The review of related works in this paper is 

focused on mainstream approaches of the two most relevant categories, namely, (1) multi-layered and (2) 

prototype-based.  

DNNs (or artificial neural networks, ANNs) are currently the best-known multi-layered approaches for 

classification. They have achieved great success in many complex recognition tasks involving visual and speech 

information [24],[28],[38], which leads to the recent hot wave of deep learning [25]. Although DNNs are very 

powerful, they suffer from several deficiencies as follows [17],[20],[47]. Firstly, it is well known that the training 

process of DNNs is data- and computational resource- hungry. Without a huge amount of labelled training data 

and powerful computational facilities, it would be very difficult for individuals to fully exploit the learning ability 

and build a well-performing model. Secondly, DNNs are highly complicated models with typically millions of 

hyper-parameters. Their performance depends heavily on careful tuning, and their training and decision-making 

processes lack transparency and are not human-interpretable because of too many interfering factors with almost 

infinite configurational combinations [49]. Thirdly, the performance of DNNs is fragile to new observations with 

unfamiliar patterns, and DNNs can be easily fooled to produce high confidence predictions for images that are 

unrecognizable to humans [29].  

Recent researches have demonstrated that both transfer learning and semi-supervised learning can substantially 

reduce the amount of labelled data needed for DNN training. To be more specific, transfer learning [50] aims to 

train a DNN to solve new problems better and faster using limited labelled training data by utilizing the previously 

learned knowledge from different but related problems. Meanwhile, semi-supervised learning [3],[42] attempts to 

build a strong recognition model by involving a great amount of unlabelled data with a limited amount of labelled 

ones together. Both approaches have demonstrated great success in addressing the data-hunger issue, but other 

issues inherent in DNNs, such as lack of transparency and explainability, remain open.  

There are some alternative multi-layered learning models introduced recently attempting to achieve high-level 

performance competitive to DNNs but with less aforementioned deficiencies. For example, a deep forest 

framework was proposed in [49] by constructing a multi-layered model using random forests as its building blocks. 

Essentially, this approach employs a cascade structure with each level formed by an ensemble of random forests. 

Input information is processed level-by-level in the deep forest model resembling DNNs. A similar multi-layered 

model with gradient boosting DTs as base units was presented in [9]. Nonetheless, both models are complicated, 
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and their transparency and explainability might still be limited depending on the nature of problem. In addition, 

they both are limited to numerical and simple image classification problems. 

By integrating a zero-order EIS [1],[18] with a multi-layer image-processing architecture, deep rule-based (DRB) 

classifiers proposed in [17] serve as a strong alternative to DNNs for image classification problems by offering 

both human-level precision and high model transparency. Same as conventional zero-order EISs [1],[18], DRB 

classifiers are based on prototypes. Prototypes are the most representative samples in the data space. They play 

an instrumental role in prototype-based systems by summarizing the empirically observed data and preserving the 

data structure and class distribution [2],[6],[16],[37]. Compared with DNNs, prototype-based systems have the 

advantages of intuitive model understanding and sparse representation [12]. They are more popular in the 

application scenarios where model interpretability plays an important role. On the other hand, the performance, 

efficiency, system transparency and interpretability of prototype-based systems may vary a lot due to the 

differences in the computational processes for prototype identification.  

KNN classifier is one of the most used and powerful prototype-based classifiers [8]. KNN treats all the training 

samples as prototypes and uses them to classify unlabelled samples by the “nearest neighbours” principle. 

However, this simple operating mechanism also has several weaknesses, such as higher storage requirement, 

lower tolerance to noise, lower computational efficiency for decision-making and lower system interpretability 

[12]. SVM is another most used prototype-based classifier. SVM performs classification based on support vectors 

(namely, prototypes) obtained from data by identifying the maximum-margin hyperplanes in the data space 

through an iterative computational process. Compared with KNN, SVM is far more sophisticated and is 

considered as a typical type of “black box” models. Learning vector quantization (LVQ) [23] and generalized 

learning vector quantization (GLVQ) [35] are also popular prototype-based systems for classification. Both 

algorithms iteratively update a predefined number of prototypes within the data space searching for locally optimal 

solutions based on the principle of competitive learning. However, LVQ and GLVQ are ANNs and their learning 

processes are opaque due to the iterative parameter optimization. In contrast, zero-order EISs are popular for 

streaming data classification thanks to their higher transparency, computational efficiency and human-

interpretability [39], but they, including the aforementioned DRB classifiers, suffer from the problem of system 

obesity when applied to large-scale complex problems [20]. In such cases, the computational efficiency and 

system interpretability of zero-order EISs can be significantly reduced. 

There are a few recently proposed prototype-based approaches worth mentioning. For example, a selective 

prototype-based learning (SPL) algorithm is proposed in [6] for nonstationary streaming data classification. SPL 

learns a set of highly representative samples from streaming data as prototypes for classification and 

simultaneously maintains a separate set of misclassified samples for concept drift detection. However, despite that 

SPL has better capability of handling uncertainties in data streams, its model size as well as a few other parameters 

have to be fixed a priori by users. As a result, the performance of SPL is very much depending on the externally 

controlled parameter setting. An ensemble prototype selection approach is presented in [5] for selecting a set of 

prototypes from training data to achieve the maximum classification accuracy rate by following the “nearest 

neighbours” principle. This approach considers not only the frequencies of data samples that are selected as 

prototypes by the ensemble prototype selectors and but also the relationships between these selected prototypes. 

Nevertheless, this approach would select a very large number of data samples as prototypes from large-scale, 

high-dimensional datasets, making the constructed classification model uninterpretable.  

To address the system obesity problem of prototype-based systems and improve the model transparency, one 

possible solution is to further aggregate the identified prototypes into a smaller number of more descriptive ones 

and organize them into pyramidal hierarchies according to their descriptive abilities. An example of this is the 

two-level approach for streaming data classification, named SyncStream [37]. SyncStream dynamically maintains 

a two-level data structure with the first level storing raw prototypes representing the current data pattern and the 

second level storing highly summarized prototypes representing historical data patterns. Raw prototypes at the 

first level of SyncStream are directly extracted from data and are updated all the time to better capture the current 

data pattern. Once a new data pattern is detected, these raw prototypes that represent the previous data pattern will 

be clustered into more descriptive ones and inserted into the second level, and the first level will then be occupied 

by new raw prototypes. The main issue with SyncStream is that its model size is not self-adjustable from data but 

has to be predetermined by users based on the prior knowledge. If the scale of prototype exceeds the pre-set 

maximum numbers, parts of them have to be either discarded or merged together to save spaces for new prototypes. 

This places a restriction on its applicability in real world applications concerning large-scale data streams with 
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complex structure. In contrast, the hierarchical prototype-based (HP) classifier proposed in [19] is very suitable 

for solving such problems with very high prediction precision and computational efficiency. The HP classifier is 

capable of self-organizing a pyramidical structure composed of meaningful prototypes identified at multiple levels 

of granularity from streaming data and continuously self-evolving to capture the new data patterns. Nevertheless, 

prototypes identified by the HP classifier lacks optimality due to its “one pass” learning mechanism, which may 

adversely influence its prediction precision. Another issue with the HP approach is that its model depth in terms 

of layer number has to be predetermined by users, which may have a great impact on both the precision and 

computational efficiency of the learning model. In addition, the HP classifier will require a full re-training if extra 

layers are added into the system structure.  

3. Proposed Approach 
In this section, the general architecture and computational process of the proposed approach are presented in detail. 

 

Table 1. A summary of key notations and the respective definitions  

Notations Definitions 

𝐑𝑁 Real metric space  

𝑁 Dimensionality of 𝐑𝑁 

{𝒙}𝐾 Dataset 

𝐾 Cardinality of {𝒙}𝐾 

𝒙𝑘 The data sample observed at the 𝑘th time instance 

𝐶 Number of classes 

{𝒙}
𝐾𝑖
𝑖  Subset of {𝒙}𝐾 belonging to the 𝑖th class 

𝐾𝑖 Cardinality of {𝒙}
𝐾𝑖
𝑖  

𝝁
𝐾𝑖
𝑖  Mean of {𝒙}

𝐾𝑖
𝑖  

𝑋
𝐾𝑖
𝑖  Mean of {‖𝒙‖2}

𝐾𝑖
𝑖  

{𝒖}
𝐿𝑖
𝑖  Set of unique data samples of the 𝑖th class 

{𝑓}
𝐿𝑖
𝑖  Occurrence frequencies of {𝒖}

𝐿𝑖
𝑖  

𝐿𝑖 Cardinality of {𝒖}
𝐿𝑖
𝑖  

𝒖𝑘
𝑖  The 𝑘th unique data sample of the 𝑖th class 

𝑓𝑘
𝑖 Occurrence frequency of 𝒖𝑘

𝑖  

𝐷𝑀𝑀(𝒙) Multimodal density of 𝒙 

𝐻𝑖  Layer number of the 𝑖th prototype-based hierarchy 

𝑀ℎ
𝑖  Number of prototypes at the ℎth layer of the 𝑖th prototype-based hierarchy 

{𝒖}𝑖∗ Collection of local maxima of the 𝑖th class 

𝒖𝑘
𝑖∗ The 𝑘th local maximum of the 𝑖th class 

{𝐂}𝑖 Clusters formed around local maxima of the 𝑖th class 

𝐂𝑘
𝑖  Cluster formed around 𝒖𝑘

𝑖∗ 

𝑆𝑘
𝑖  Cardinality of 𝐂𝑘

𝑖  

𝒒𝑘
𝑖  Centre of 𝐂𝑘

𝑖  

𝐐ℎ,𝑘
𝑖  Collection of neighbouring cluster centres around 𝒒𝑘

𝑖  at the hth level of 

granularity 

𝛾ℎ
𝑖  Average radius of area of influence around each prototype at the ℎth layer of the 

𝑖th prototype-based hierarchy 

𝐏ℎ
𝑖  Collection of prototypes at the ℎth layer of the 𝑖th prototype-based hierarchy 

𝒑ℎ,𝑘
𝑖  The 𝑘th prototypes at the ℎth layer of the 𝑖th prototype-based hierarchy 

𝑆ℎ,𝑘
𝑖  Number of data samples associated with 𝒑ℎ,𝑘

𝑖  

𝓛ℎ,𝑘
𝑖  Collection of subordinates of 𝒑ℎ,𝑘

𝑖  

𝜆𝑖(𝒙) Score of confidence on 𝒙 given by the 𝑖th prototype-based hierarchy 
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First of all, let {𝒙}𝐾 = {𝒙1, 𝒙2, … , 𝒙𝑘, … , 𝒙𝐾} (𝒙𝑘 = [𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑁]
𝑇

∈ 𝐑𝑁) be a particular dataset in a real 

metric space, 𝐑𝑁 with the dimensionality of 𝑁; 𝐾 is the cardinality of {𝒙}𝐾; the subscript 𝑘 indicates the time 

instance at which 𝒙𝑘 is observed. It is assumed that {𝒙}𝐾 is composed of data samples of 𝐶 different classes. Thus, 

{𝒙}𝐾  can be divided into 𝐶  subsets, denoted by {𝒙}
𝐾𝑖
𝑖 = {𝒙1

𝑖 , 𝒙2
𝑖 , … , 𝒙

𝐾𝑖
𝑖 }  ( 𝑖 = 1,2, … , 𝐶 ), based on the 

corresponding class labels, where the superscript 𝑖 denotes the ith class and there is ∑ 𝐾𝑖𝐶
𝑖=1 = 𝐾. For each subset 

{𝒙}
𝐾𝑖
𝑖 , some samples may share the same values, for example, 𝒙𝑚

𝑖 = 𝒙𝑛
𝑖  and 𝑚 ≠ 𝑛. The set of unique data 

samples of the ith class is denoted as {𝒖}
𝐿𝑖
𝑖 = {𝒖1

𝑖 , 𝒖2
𝑖 , … , 𝒖

𝐿𝑖
𝑖 } ({𝒖}

𝐿𝑖
𝑖 ⊆ {𝒙}

𝐾𝑖
𝑖 ), and the corresponding occurrence 

frequencies are denoted as {𝑓}
𝐿𝑖
𝑖 = {𝑓1

𝑖 , 𝑓2
𝑖, … , 𝑓

𝐿𝑖
𝑖 } , where 𝑓𝑘

𝑖  is the occurrence frequency of 𝒖𝑘
𝑖 ; 𝐿𝑖  is the 

cardinality of {𝒖}
𝐿𝑖
𝑖 ; ∑ 𝑓𝑘

𝑖𝐿𝑖

𝑘=1 = 𝐾𝑖 . Without loss of generality, in this paper, Euclidean distance is used for 

derivation by default. For clarity, key notations and the respective definitions used in this paper are summarized 

in Table 1. 

3.1. General architecture 

The general architecture of the MLOP classifier is given in Fig. 1, where one can see that the proposed approach 

consists of 𝐶  different prototype-based hierarchies (one hierarchy per class). In Fig. 1, 𝒑ℎ,𝑘
𝑖  denotes the kth 

prototype at the hth layer of the ith hierarchy; ℎ = 1,2, … , 𝐻𝑖 ; 𝑘 = 1,2, … , 𝑀ℎ
𝑖 ; 𝐻𝑖  is the layer number, which 

would be different for each hierarchy and is determined by data;  𝑀ℎ
𝑖  is the total number of prototypes at the hth 

layer of the ith hierarchy; 𝑖 = 1,2, … , 𝐶. 

 

Fig. 1. General architecture of the proposed approach (1 ≤ 𝑚1 ≤ 𝑀2
1; 1 ≤ 𝑚2 ≤ 𝑀𝐻1

1 ; 1 ≤ 𝑚3 ≤ 𝑀2
𝐶; and 1 ≤

𝑚4 ≤ 𝑀
𝐻𝐶
𝐶 ) 

 

Each hierarchy is composed of meaningful prototypes identified from data samples of the corresponding class at 

multiple levels of granularity from low to high. Each prototype (except for leaf prototypes at the bottom layer) is 

connected to one or multiple subordinate prototypes at the next layer. At the same time, each prototype (except 

for apex prototypes at the top layer) is linked with one or more superior prototypes at the layer above. However, 

unlike the artificial neurons of adjacent layers in neural networks that are fully connected, links between 

prototypes at the successive layers of the hierarchies within the MLOP classifier are established only when they 

are physically neighbouring in the data space. Note that there is no connection between prototypes at the same 

layer or prototypes of different hierarchies.  

Very importantly, the prototype-based hierarchies can be easily visualized in an easy-to-interpret form, allowing 

users to perceive a problem at multiple levels of granularity. The top layers of the hierarchies usually have only a 
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very small amount of highly descriptive prototypes representing global patterns of data, which can help users to 

quickly capture the big picture. Meanwhile, the lower layers may have a larger number of prototypes, which are 

closer to the raw data samples. These prototypes represent the local patterns of data and can provide lots of fine 

details, but users may have to spend more times to interpret them. In addition, the links between prototypes of 

successive layers provide users very important information regarding the relationships between these global and 

local patterns, which can help users to gain a better understanding of the problem. 

In the next three subsections, the learning and decision-making processes of the MLOP classifier are described in 

detail. 

3.2. Learning process from static data 

In this subsection, the algorithmic procedure for the proposed approach to self-organize a hierarchical structure 

from static data is described in detail. Since the learning process of the proposed approach is performed class-

wise, the ith hierarchy is used as an example for illustration (𝑖 = 1,2, … , 𝐶). The same principles can be applied 

to all other hierarchies within the MLOP classifier. 

Stage 1. Voronoi tessellation formation [18] 

In this stage, the multimodal density value at each unique data sample, 𝒖𝑘
𝑖  (𝒖𝑘

𝑖 ∈ {𝒖}
𝐿𝑖
𝑖 ) of the ith class is firstly 

calculated using equation (1) [2]: 

𝐷𝑀𝑀(𝒖𝑘
𝑖 ) = 𝑓𝑘

𝑖 1

1+
‖𝒖𝑘

𝑖 −𝝁
𝐾𝑖
𝑖 ‖

2

𝑋
𝐾𝑖
𝑖 −‖𝝁

𝐾𝑖
𝑖 ‖

2

                                                                                                                          (1) 

where 𝝁
𝐾𝑖
𝑖  and 𝑋

𝐾𝑖
𝑖  are the respective means of {𝒙}

𝐾𝑖
𝑖  and {‖𝒙‖2}

𝐾𝑖
𝑖 , which can be calculated by following 

expression: 

𝝁
𝐾𝑖
𝑖 =

1

𝐾𝑖
∑ 𝒙𝑘

𝑖𝐾𝑖

𝑘=1 ; 𝑋
𝐾𝑖
𝑖 =

1

𝐾𝑖
∑ ‖𝒙𝑘

𝑖 ‖
2𝐾𝑖

𝑘=1                                                                                                         (2) 

and ‖𝒙𝑘‖ = √∑ 𝑥𝑘,𝑗
2𝑁

𝑗=1  denotes the Euclidean norm of 𝒙𝑘.  

Multimodal density behaves like the multimodal discrete probability density function by considering both 

occurrence frequencies and mutual distances of data. It also has multiple local peaks representing the local models 

of data distribution [2],[16]. Data samples with locally maximum multimodal density values can better represent 

the local models of data distribution and thus, are used as prototypes for classification. 

 

 

(a) Class 1                                                                     (b) Class 2 

Fig. 2. Multimodal density obtained from the BA dataset 
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To better deliver the concept, the banknote authentication (BA) dataset1 is employed for visual illustration. BA 

dataset is a binary classification problem very suitable for visualization thanks to its smaller scale and simpler 

structure (2 classes with 1372 data samples in total; each sample has 4 attributes). Here, principal component 

analysis (PCA) is applied to further reduce the dimensionality of data to two for visual clarity. The multimodal 

density values calculated at data samples of classes 1 and 2 using equation (1) are depicted in Figs. 2(a) and 2(b), 

respectively. 

To identify the local peaks of multimodal density, firstly, all the unique data samples, {𝒖}
𝐿𝑖
𝑖  are arranged in an 

indexing list, denoted by {𝒓}𝑖, with regard to their mutual distances and ensemble properties. The unique data 

sample with the highest multimodal density value is selected as the first element, 𝒓1
𝑖  of {𝒓}𝑖 [16]: 

𝒓1
𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝒖𝑘
𝑖 ∈{𝒖}

𝐿𝑖
𝑖 (𝐷𝑀𝑀(𝒖𝑘

𝑖 )) ; {𝒖}
𝐿𝑖
𝑖 ← {𝒖}

𝐿𝑖
𝑖 {𝒓1

𝑖 }⁄                                                                                         (3) 

Then, remaining elements of {𝒓}𝑖 are identified one-by-one based on the following rule (𝑘 = 2,3, … , 𝐿𝑖) [16]: 

𝒓𝑘
𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝒖∈{𝒖}
𝐿𝑖
𝑖 (‖𝒓𝑘−1

𝑖 − 𝒖‖); {𝒖}
𝐿𝑖
𝑖 ← {𝒖}

𝐿𝑖
𝑖 {𝒓𝑘

𝑖 }⁄                                                                        (4) 

Once the full indexing list is built, local maxima, denoted by {𝒖}𝑖∗({𝒖}𝑖∗ ← {𝒓𝑘
1 }), of multimodal density can be 

identified by Condition 1 (𝑘 = 2,3, … , 𝐿𝑖-1) [16],[18]: 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟏:
𝐼𝑓 (𝑠𝑔𝑛 (𝐷𝑀𝑀(𝒓𝑘

𝑖 ) − 𝐷𝑀𝑀(𝒓𝑘−1
𝑖 )) = 𝑠𝑔𝑛 (𝐷𝑀𝑀(𝒓𝑘

𝑖 ) − 𝐷𝑀𝑀(𝒓𝑘+1
𝑖 )) = 1)

𝑇ℎ𝑒𝑛 ({𝒖}𝑖∗ ← {𝒖}𝑖∗ ∪ {𝒓𝑘
𝑖 })

               (5) 

where 𝑠𝑔𝑛(𝑥) = {
1, 𝑥 > 0
0, 𝑥 = 0

−1, 𝑥 < 0
 is the sign function; the cardinality of {𝒖}𝑖∗ is 𝐿𝑖∗.   

Continuing the example in Fig. 2, the ranked multimodal density values in regard to the indexing list obtained by 

equations (3) and (4) are given in Fig. 3, where the identified local maxima by Condition 1 are marked by black 

circles, “○”. In addition, the positions of local maxima in the data space are given in Fig. 4, where dots “•” 

represent data samples. 

 

 

(a) Class 1                                                                     (b) Class 2 

Fig. 3. Ranked multimodal density and local maxima identified using Condition 1 (local maxima are marked by 

black circles, “○”) 

 

 
1 Available at: https://archive.ics.uci.edu/ml/datasets/banknote+authentication. 
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After the local maxima, {𝒖}𝑖∗ have been identified, Voronoi tessellations are formed in the data space by using 

them as raw prototypes to attract nearby data samples creating a number of clusters, denoted by {𝐂}𝑖: 

𝐂𝑛∗
𝑖 ← 𝐂𝑛∗

𝑖 ∪ {𝒙𝑘
𝑖 }; 𝑛∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑗=1,2,…,𝐿𝑖∗(‖𝒖𝑗

𝑖∗ − 𝒙𝑘
𝑖 ‖)                                                                          (6) 

where 𝑘 = 1,2, … , 𝐾𝑖.  Then, multimodal density values at the centres of the clusters, {𝐂}𝑖 are calculated by the 

following equation (𝑘 = 1,2, … , 𝐿𝑖∗) [2]: 

𝐷𝑀𝑀(𝒒𝑘
𝑖 ) = 𝑆𝑘

𝑖 1

1+
‖𝒒𝑘

𝑖 −𝝁
𝐾𝑖
𝑖 ‖

2

𝑋
𝐾𝑖
𝑖 −‖𝝁

𝐾𝑖
𝑖 ‖

2

                                                                                                                             (7) 

where 𝑆𝑘
𝑖  is the cardinality of 𝐂𝑘

𝑖 ; 𝒒𝑘
𝑖  is the centre of 𝐂𝑘

𝑖  and there is 𝒒𝑘
𝑖 =

1

𝑆𝑘
𝑖 ∑ 𝒙

𝒙∈𝐂𝑘
𝑖 . After this, the learning 

algorithm enters the next stage. 

 

 

(a) Class 1                                                                     (b) Class 2 

Fig. 4. Identified local maxima in the data space (dots “•” represent data samples; local maxima are marked by 

black circles, “○”) 

 

Stage 2. Multi-granularity prototype identification 

As the local maxima identified by Condition 1 may contain some less representative ones, in this stage, these 

local maxima are filtered based on their multimodal density values and mutual distances to extract the most 

representative ones as prototypes at different levels of granularity [2],[16],[18]. The identification process starts 

from the first level, namely, ℎ = 1.  

To extract prototypes at the hth level of granularity, the neighbouring clusters of each cluster need to be identified 

in the first place using the following condition based on the mutual distances of cluster centres ( 𝑘, 𝑗 =

1,2, … , 𝐿𝑖∗; 𝑘 ≠ 𝑗) [18]: 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟐:
𝐼𝑓 (‖𝒒𝑘

𝑖 − 𝒒𝑗
𝑖 ‖

2
≤ 𝛾ℎ

𝑖 )

𝑇ℎ𝑒𝑛 (𝐐ℎ,𝑘
𝑖 ← 𝐐ℎ,𝑘

𝑖 ∪ {𝒒𝑗
𝑖 })

                                                                                           (8) 

where 𝐐ℎ,𝑘
𝑖  denotes the collection of neighbouring cluster centres surrounding 𝒒𝑘

𝑖  at the hth level of granularity; 

𝛾ℎ
𝑖  is the corresponding average radius of area of influence around each prototype and is derived by equation (9) 

(ℎ = 1,2,3, …) [18]: 

𝛾ℎ
𝑖 =

1

𝑁ℎ
𝑖 ∑ ‖𝒙 − 𝒚‖2

𝒙,𝒚∈{𝒙}
𝐾𝑖
𝑖 ;𝒙≠𝒚;‖𝒙−𝒚‖2≤𝛾ℎ−1

𝑖                                                                                                (9) 
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here 𝛾0
𝑖 = 2 (𝑋

𝐾𝑖
𝑖 − ‖𝝁

𝐾𝑖
𝑖 ‖

2
), which is the average distance between any two data samples of the ith class; 𝑁ℎ

𝑖  is 

the number of pairs of data samples within {𝒙}
𝐾𝑖
𝑖  between which the distance is smaller than 𝛾ℎ−1

𝑖 . 𝛾ℎ
𝑖  provides an 

intuitive estimation of the average distance between any two strongly connected prototypes at the hth level of 

granularity by condensing the mutual distribution information extracted from data. Thus, 𝛾ℎ
𝑖  is guaranteed to be 

valid all the time. Thus, Condition 2 and equation (9) together define the concept of closeness at  multiple levels 

of granularity in a meaningful, data-driven way.  

Then, the following principle is used for identifying prototypes as the most representative local maxima (𝑘 =

1,2, … , 𝐿𝑖∗) [18]: 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟑:
𝐼𝑓 (𝐷𝑀𝑀(𝒒𝑘

𝑖 ) > 𝑚𝑎𝑥
𝒒∈𝐐ℎ,𝑘

𝑖 (𝐷𝑀𝑀(𝒒)))

𝑇ℎ𝑒𝑛 (𝐏ℎ
𝑖 ← 𝐏ℎ

𝑖 ∪ {𝒒𝑘
𝑖 })

                                                                           (10) 

where 𝐏ℎ
𝑖  denotes the collection of prototypes of the ith class identified at the hth level of granularity; 𝑀ℎ

𝑖  is the 

cardinality of 𝐏ℎ
𝑖 . After the prototypes have been extracted, the algorithm enters the next stage to optimize them 

to their locally optimal positions in the data space. 

Stage 3. Prototype optimization 

The local optimality of the obtained prototypes plays a critical role in determining the overall performance of the 

proposed classifier due to its prototype-based nature [18]. Therefore, in this stage, the algorithm optimizes the 

solution obtained in Stage 2, namely, 𝐏ℎ
𝑖  by iteratively minimizing the following objective function [36]: 

𝐽1(𝐏ℎ
𝑖 ) =

∑ ∑ 𝑤𝑗,𝑘‖𝒑ℎ,𝑗
𝑖  −𝒙𝑘

𝑖 ‖
2𝑀ℎ

𝑖  

𝑗=1
𝐾𝑖
𝑘=1

𝐾𝑖𝛾0
𝑖                                                                                                                 (11) 

where  𝑤𝑗,𝑘 = {
1, 𝑖𝑓 ‖𝒑ℎ,𝑗

𝑖  − 𝒙𝑘
𝑖 ‖

2
= 𝑚𝑖𝑛

𝑡=1,2,…,𝑀ℎ
𝑖 (‖𝒑ℎ,𝑡

𝑖  − 𝒙𝑘
𝑖 ‖

2
)

0, 𝑒𝑙𝑠𝑒
                                                                   (12) 

Essentially, equation (11) calculates the intra-cluster variance of the partitioning results. To minimize 𝐽1(𝐏ℎ
𝑖 ), the 

following two steps are repeated until 𝐽1(𝐏ℎ
𝑖 ) converges to the (locally) minimum value [18],[40]: 

Step 1. Create Voronoi tessellations in the data space by using 𝐏ℎ
𝑖  to attract nearby data samples and form new 

clusters (namely, equation (6)). 

Step 2. Update 𝐏ℎ
𝑖  as the centres of the newly formed clusters and recalculate the objective function, 𝐽1(𝐏ℎ

𝑖 ) 

(namely, equation (11)). 

Once 𝐽1(𝐏ℎ
𝑖 ) has converges to the (locally) minimum value, the optimization process is completed and 𝐏ℎ

𝑖  have 

been adjusted to the locally optimal positions. Then, the algorithm enters the next stage. 

Stage 4. Stopping criterion inspection 

In this stage, the learning algorithm uses the following objective function (equation (13)) to assess whether the 

prototypes identified at the hth level of granularity, namely, 𝐏ℎ
𝑖  have sufficiently partitioned the data space and 

disclosed fine details of the underlying data patterns to build a well-performing recognition model altogether with 

𝐏1
𝑖 ,  𝐏2

𝑖 ,…,  𝐏ℎ−1
𝑖 .   

𝐽2(𝐏ℎ
𝑖 ) = 𝐽1(𝐏ℎ

𝑖 ) + 𝜌
𝑀ℎ

𝑖

𝐾𝑖 =
∑ ∑ 𝑤𝑗,𝑘‖𝒑ℎ,𝑗

𝑖  −𝒙𝑘
𝑖 ‖

2𝑀ℎ
𝑖  

𝑗=1
𝐾𝑖
𝑘=1

𝐾𝑖𝛾0
𝑖 + 𝜌

𝑀ℎ
𝑖

𝐾𝑖                                                                                            (13) 

where 𝜌 is the regularization parameter (𝜌 ≥ 0); 
𝑀ℎ

𝑖

𝐾𝑖  is the penalty in terms of number of prototypes. 𝜌 controls 

the trade-off between the intra-cluster variance and the number of prototypes (layers). 

Condition 4 is used for the MLOP classifier to automatically self-determine the most appropriate level of 

granularity: 
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𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟒:

𝐼𝑓 (𝑠𝑔𝑛 (𝐽2(𝐏ℎ
𝑖 ) − 𝐽2(𝐏ℎ−1

𝑖 )) = 𝑠𝑔𝑛 (𝐽2(𝐏ℎ
𝑖 ) − 𝐽2(𝐏ℎ+1

𝑖 )) = 1)

 𝑂𝑟 (𝑠𝑔𝑛 (𝐽2(𝐏ℎ
𝑖 ) − 𝐽2(𝐏ℎ+1

𝑖 )) = 0)

𝑇ℎ𝑒𝑛 (𝑇ℎ𝑒 ℎ𝑡ℎ 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑖𝑠 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛)

               (14) 

Condition 4 is based on the elbow method [22], which is the oldest method for determining the number of clusters 

in the dataset. The elbow method treats the intra-cluster variance of the partitioning results as a function of the 

number of clusters. The appropriate number of clusters is determined when adding extra clusters does not 

significantly reduce the intra-cluster variance of the results. Nonetheless, the elbow method requires visual 

inspection by human experts and is sometimes ambiguous. Condition 4, on the other hand, replaces the human 

inspection process by introducing a penalty term based on the number of prototypes at the corresponding level of 

the hierarchical prototype-based structure.  

If Condition 4 is satisfied, the algorithm proceeds to Stage 5 to form the hierarchical prototype-based structure 

with the identified prototypes 𝐏1
𝑖 ,  𝐏2

𝑖 ,…,  𝐏ℎ−1
𝑖  and 𝐏ℎ

𝑖 . Otherwise, the algorithm goes back to Stage 2 to extract 

prototypes from data at a higher level of granularity (ℎ ← ℎ + 1). 

An illustrative example is provided in Fig. 5 showing how the value of 𝜌 determines the appropriate level of 

granularity for the proposed MLOP classifier by Condition 4, where the blue curve is the relationship between 

the value of the objective function 𝐽2(𝐏ℎ
𝑖 ) and the layer number/level of granularity, ℎ; black diamonds “◊” are 

the knee points on the curves where Condition 4 is satisfied given a specific 𝜌. In general, it can be observed 

from Fig. 5, the MLOP classifier tends to self-organize hierarchies with more layers given a smaller 𝜌. 

 

 

Fig. 5. Appropriate layer number, ℎ determined by Condition 4 given different values of 𝜌 

 

Following the visual examples given by Figs. 2-4, Condition 4 is satisfied for data samples of both classes with 

ℎ = 3 given  𝜌 = 0.9. In total, there are two, five and 12 prototypes identified from data samples of class 1 at the 

first, second and third levels of granularity by Conditions 2 and 3, respectively. Meanwhile, there are three, five 

and nine prototypes identified from data samples of class 2 correspondingly at the respective three different levels 

of granularity. The obtained locally optimal prototypes by the algorithm at the three levels of granularity from the 

BA dataset are given in Fig. 6, where asterisks “*” represent the prototypes identified at the first level of 

granularity; squares “□” represent the prototypes of the second level; triangles “∆” represent prototypes of the 

third level. 
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(a) ℎ = 1, class 1                                                                   (b)  ℎ = 1, class 2 

 

(c) ℎ = 2, class 1                                                                   (d) ℎ = 2, class 2 

 

(e) ℎ = 3, class 1                                                                   (b) ℎ = 3, class 2 

Fig. 6. Locally optimal prototypes obtained by Conditions 2 and 3 at different levels of granularity (asterisks 

“*” represent the prototypes identified at the first level of granularity; squares “□” represent the prototypes at the 

second level of granularity; triangles “∆” represent prototypes at the third level of granularity) 

 

Stage 5. Prototype-based hierarchy assembly 
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The final stage of the algorithm starts by aggregating prototypes in a multi-layered hierarchical structure based on 

their corresponding levels of granularity. Assuming that Condition 4 is satisfied by prototypes identified at the 

𝐻𝑖th level of granularity, the algorithm will build a 𝐻𝑖-layer hierarchy with 𝐏1
𝑖  as the first layer prototypes, 𝐏2

𝑖  as 

the second layer prototypes, 𝐏3
𝑖  as the third layer prototypes, etc.  

Then, the links (superior-subordinate relationships) between prototypes at successive layers are established based 

on Conditions 5a and 5b: 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟓𝐚:
𝐼𝑓 (‖𝒑ℎ,𝑗

𝑖 − 𝒑ℎ−1,𝑘
𝑖  ‖

2
= 𝑚𝑖𝑛

𝑡=1,2,…𝑀ℎ−1
𝑖 (‖𝒑ℎ,𝑗

𝑖 − 𝒑ℎ−1,𝑡
𝑖 ‖

2
))

𝑇ℎ𝑒𝑛 (𝓛ℎ−1,𝑘
𝑖 ← 𝓛ℎ−1,𝑘

𝑖 ∪ {𝒑ℎ,𝑗
𝑖 })

                                        (15) 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟓𝐛:
𝐼𝑓 (‖𝒑ℎ,𝑡

𝑖 − 𝒑ℎ,𝑗
𝑖  ‖

2
< 𝛼𝑜 ∙ 𝛾ℎ

𝑖 )

𝑇ℎ𝑒𝑛 (𝓛ℎ−1,𝑘
𝑖 ← 𝓛ℎ−1,𝑘

𝑖 ∪ {𝒑ℎ,𝑡
𝑖 })

                                                                                      (16) 

where 𝓛ℎ−1,𝑘
𝑖  denotes the collection of subordinates of 𝒑ℎ−1,𝑘

𝑖 ; ℎ = 2,3, … , 𝐻𝑖 ; 𝑘 = 1,2, … , 𝑀ℎ−1
𝑖 ; 𝑗, 𝑡 =

1,2, … , 𝑀ℎ
𝑖 , 𝑗 ≠ 𝑡; 𝛼𝑜 = 4. Condition 5a indicates that 𝒑ℎ,𝑗

𝑖  is recognized as one of the subordinates of 𝒑ℎ−1,𝑘
𝑖  if 

its distance to 𝒑ℎ−1,𝑘
𝑖  is smaller than its distances to other prototypes at the upper layer. Condition 5b further adds 

neighbouring prototypes of 𝒑ℎ,𝑗
𝑖   at the same layer into 𝓛ℎ−1,𝑘

𝑖 . Prototypes that satisfy Condition 5b are highly 

likely to be associated with 𝒑ℎ−1,𝑘
𝑖  because they are spatially close to 𝒑ℎ−1,𝑘

𝑖 . By establishing links between these 

prototypes and 𝒑ℎ−1,𝑘
𝑖 , the robustness of the decision-making process, which will be detailed in the next subsection, 

will be significantly enhanced at the price of very little extra computation. Note that all prototypes at the bottom 

layer have no subordinates and they are the leaf prototypes of the hierarchy, namely, 𝓛
𝐻𝑖,𝑘
𝑖 = ∅, 𝑘 = 1,2, … , 𝑀

𝐻𝑖
𝑖 .  

Once the links between all prototypes at adjacent layers have been built, the learning process of the ith hierarchy 

is completed. The system is ready for classifying unlabelled testing samples after all prototype-based hierarchies 

have been constructed. 

The final three-layer prototype-based hierarchies built by the proposed algorithm from the BA dataset are 

visualized in Fig. 7 following the illustrative example given by Fig. 6, where lines in different colours stand for 

the links between prototypes of successive layers. 

The main procedure of the prototype-based hierarchy identification process is summarized in the following pseudo 

code. 

Input: {𝒙}
𝐾𝑖
𝑖  

Algorithm begins 

i. Calculate 𝐷𝑀𝑀 at {𝒖}
𝐿𝑖
𝑖  by (1) and (2); 

ii. Reorder {𝒖}
𝐿𝑖
𝑖  into {𝒓}𝑖 by (3) and (4); 

iii. Identify {𝒖}𝑖∗ by Condition 1; 

iv. Form Voronoi tessellation and obtain {𝐂}𝑖 by (6); 

v. Calculate 𝐷𝑀𝑀 at centres of {𝐂}𝑖 by (7); 

vi. ℎ ← 0; 
vii. While (Condition 4 is not satisfied) 

a. ℎ ← ℎ + 1; 
b. Identify 𝐏ℎ

𝑖  by Conditions 2 and 3; 

c. Optimize 𝐏ℎ
𝑖  by iteratively minimizing 𝐽(𝐏ℎ

𝑖 ); 

viii. End while 

ix. Initialize the multi-layered structure with 𝐏1
𝑖 ,  𝐏2

𝑖 ,…, 𝐏ℎ−1
𝑖  and 

𝐏ℎ
𝑖 ; 

x. Build links between prototypes by Conditions 5a and 5b; 

Algorithm ends 

Output: the ith prototype-based hierarchy 
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(a) Class 1 

  

(b) Class 2 

Fig. 7. Prototype-based hierarchies obtained from the BA dataset using the proposed algorithm (asterisks “*” 

represent the prototypes identified at the first level of granularity; squares “□” represent the prototypes at the 

second level of granularity; triangles “∆” represent prototypes at the third level of granularity; lines in different 

colours stand for the links between prototypes of successive layers) 

 

3.3. Learning process from streaming data 

After the MLOP classifier has self-organized its system structure and meta-parameters from static training data, 

it can be expected that more training samples become available in the form of data streams. In this subsection, an 

online learning extension is introduced to the proposed approach, which allows the learning model to continuously 

self-develop from streaming data on a sample-by-sample basis.  

The algorithmic procedure of the online learning process of the MLOP classifier is detailed as follows. Note that, 

the online learning process is also performed class-wise. During this stage, the classifier will not add new layers, 

and prototypes may not be at their optimal positions anymore due to the “one pass” updating process. 

For each newly available data sample of the ith class denoted by 𝒙
𝐾𝑖+1
𝑖 , the model updating process is performed 

in a top-down layer-by-layer manner. The average radii of area of influence of prototypes at all 𝐻𝑖  layers are 

firstly updated using equation (17) [18]: 
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𝛾ℎ
𝑖 ←

𝑋
𝐾𝑖+1

𝑖 −‖𝝁
𝐾𝑖+1

𝑖 ‖
2

𝑋
𝐾𝑖
𝑖 −‖𝝁

𝐾𝑖
𝑖 ‖

2 𝛾ℎ
𝑖                                                                                                                                  (17) 

where ℎ = 1,2, … , 𝐻𝑖 ;  𝝁
𝐾𝑖+1
𝑖 = 𝝁

𝐾𝑖
𝑖 +

𝒙
𝐾𝑖+1

𝑖 −𝝁
𝐾𝑖
𝑖

𝐾𝑖+1
 and  𝑋

𝐾𝑖+1
𝑖 = 𝑋

𝐾𝑖
𝑖 +

‖𝒙
𝐾𝑖+1

𝑖 ‖
2

−𝑋
𝐾𝑖
𝑖

𝐾𝑖+1
.   

Then, 𝒙
𝐾𝑖+1
𝑖  is compared with the nearest prototype at the hth layer (starting with ℎ = 1), namely, 𝒑ℎ,𝑛∗

𝑖  by 

Condition 6 to see whether  𝒙
𝐾𝑖+1
𝑖  has the potential to become a new prototype at this layer [19]: 

𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝟔:
𝐼𝑓 (‖𝒑ℎ,𝑛∗

𝑖 − 𝒙
𝐾𝑖+1
𝑖 ‖

2
> 𝛾ℎ

𝑖 )

𝑇ℎ𝑒𝑛 (𝒙
𝐾𝑖+1
𝑖  𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑎 𝑛𝑒𝑤 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒)

                                                                           (18) 

where 𝒑ℎ,𝑛ℎ
∗

𝑖 = {
𝑎𝑟𝑔𝑚𝑖𝑛

𝒑∈𝐏1
𝑖 (‖𝒑 − 𝒙‖) 𝑖𝑓 ℎ = 1

𝑎𝑟𝑔𝑚𝑖𝑛
𝒑∈𝓛

ℎ−1,𝑛ℎ−1
∗

𝑖 (‖𝒑 − 𝒙‖) 𝑒𝑙𝑠𝑒                                                                                       (19) 

The key idea of equation (19) is that, instead of directly searching the nearest one from all leaf prototypes, which 

can be highly computationally expensive, the classifier searches the nearest prototype layer-by-layer in a top-

down manner by only checking the subordinates of the nearest prototype at the next layer. This significantly 

improves the computational efficiency of the nearest prototype searching process because the searching range is 

limited to a small group of subordinate prototypes instead of the entire data space. Such searching strategy 

effectively avoids the waste of computational resources since the majority of prototypes, especially at lower layers, 

are actually far away from 𝒙 in the data space and should not be considered for nearest neighbour searching. On 

the other hand, compared with the similar approach used in [19], the searching strategy proposed in this paper is 

more robust thanks to the denser connections between prototypes built by Condition 5b. 

If Condition 6 is not satisfied, 𝒙
𝐾𝑖+1
𝑖  is used for updating 𝒑ℎ,𝑛∗

𝑖  [1]: 

𝑆ℎ,𝑛∗
𝑖 ← 𝑆ℎ,𝑛∗

𝑖 + 1; 𝒑ℎ,𝑛∗
𝑖 ← 𝒑ℎ,𝑛∗

𝑖 +
𝒙

𝐾𝑖+1

𝑖 −𝒑ℎ,𝑛∗
𝑖

𝑆ℎ,𝑛∗
𝑖                                                                                             (20) 

where 𝑆ℎ,𝑛∗
𝑖  is the number of data samples associated with 𝒑ℎ,𝑛∗

𝑖 . After this, 𝒙
𝐾𝑖+1
𝑖  is passed to the next layer (ℎ ←

ℎ + 1) and compared with the subordinates of 𝒑ℎ,𝑛∗
𝑖  to see whether 𝒙

𝐾𝑖+1
𝑖  can be a new prototype at the next layer. 

The same process will be repeated until Condition 6 is satisfied or 𝒙
𝐾𝑖+1
𝑖  reaches the bottom layer (namely, ℎ =

𝐻𝑖). 

If 𝒙
𝐾𝑖+1
𝑖  meets Condition 6, it initializes a new prototype at the hth layer and all the layers below using equation  

(21) (𝑘 = ℎ, ℎ + 1, … , 𝐻𝑖): 

𝑀𝑘
𝑖 ← 𝑀𝑘

𝑖 + 1; 𝒑
𝑘,𝑀𝑘

𝑖
𝑖 ← 𝒙

𝐾𝑖+1
𝑖 ; 𝑆

𝑘,𝑀𝑘
𝑖

𝑖 ← 1; 𝐏𝑘
𝑖 ← 𝐏𝑘

𝑖 ∪ {𝒑
𝑘,𝑀𝑘

𝑖
𝑖 }                                                     (21) 

After the existing prototypes have been updated and/or new prototypes have been added, links between these 

prototypes and other prototypes within this hierarchy are updated and/or established using Condition 5a and 5b. 

The current updating cycle is then completed, and the classifier will move on to learn from the next available data 

sample following the same algorithmic procedure (𝐾𝑖 ← 𝐾𝑖 + 1).  

The online prototype-based hierarchy updating process is summarized in the following pseudo code. 

Input: 𝒙
𝐾𝑖+1
𝑖 , 𝒙

𝐾𝑖+2
𝑖 , 𝒙

𝐾𝑖+3
𝑖 , … 

Algorithm begins 

While (𝒙
𝐾𝑖+1
𝑖  is available) 

i. For 𝑘 = 1 to 𝐻𝑖: 
a. Update 𝛾ℎ

𝑖  using (17); 

ii. End for 

iii. For ℎ = 1 to 𝐻𝑖: 

a. Identify 𝒑ℎ,𝑛∗
𝑖  using (19); 
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b. If (Condition 6 is satisfied) 

1. For 𝑘 = ℎ to 𝐻𝑖: 

- 𝑀𝑘
𝑖 ← 𝑀𝑘

𝑖 + 1; 

- Initialize 𝒑
𝑘,𝑀𝑘

𝑖
𝑖  and 𝑆

𝑘,𝑀𝑘
𝑖

𝑖 , expand 𝐏𝑘
𝑖  using (21); 

- Build links of 𝒑
𝑘,𝑀𝑘

𝑖
𝑖  by Conditions 5a and 5b; 

2. End for 

3. Break for loop; 

c. Else 

1. Update 𝒑ℎ,𝑛∗
𝑖  and 𝑆ℎ,𝑛∗

𝑖  using (20); 

2. Update links of 𝒑ℎ,𝑛∗
𝑖  by Conditions 5a and 5b; 

d. End if 

iv. End for 

v. 𝐾𝑖 ← 𝐾𝑖 + 1; 

End while 

Algorithm ends 

Output: the ith prototype-based hierarchy 

 

3.4. Decision-making process 

In this subsection, the algorithmic procedure for decision-making is presented. For an unlabelled sample 𝒙, the 

local decision-maker of each prototype-based hierarchy will produce a score of confidence based on the distance 

between 𝒙 and the nearest leaf prototype. The score of confidence produced by the 𝑖th prototype-based hierarchy 

is calculated by equation (22): 

𝜆𝑖(𝒙) = 𝑒
−‖𝒑

𝐻𝑖,𝑛
𝐻𝑖
∗

𝑖 −𝒙‖

2

                                                                                                                                       (22) 

where 𝒑
𝐻𝑖,𝑛

𝐻𝑖
∗

𝑖  is the nearest leaf prototype to 𝒙 identified by equation (19) in a top-down, layer-by-layer manner. 

A visual example of the decision-making process is given by Fig. 8 for better illustration.    

 

Fig. 8. Illustrative example of the decision-making process (the orange arrows are the exploited paths during the 

searching process; the nearest prototype at each layer is marked by red circle) 

 

Based on the 𝐶 scores of confidence (one per class), the global decision-maker of the MLOP classifier determines 

the class label of 𝒙 following the “winner takes all” principle: 

𝑙𝑎𝑏𝑒𝑙(𝒙) ← 𝑐𝑙𝑎𝑠𝑠 𝑖∗ 𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,2,…,𝐶 (𝜆𝑖(𝒙))                                                                            (23) 
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It is worth noting that the decision-making process of the proposed algorithm follows the “nearest prototype” 

principle, and scores of confidence are directly calculated from the dissimilarities between data samples and the 

most similar leaf prototypes. Therefore, there is no randomness existing during this process and one can easily 

trace back any decisions by examining the exploited paths (see Fig. 8 as example). This allows users to gain a 

straightforward understanding about the rationales behind the decisions made by the MLOP classifier.  

In the next section, computational complexity of the proposed approach will be analysed. 

4. Computational Complexity Analysis 

4.1. Learning process from statistic data 

Since the learning process of the MLOP classifier is conducted class-wise, the ith hierarchy is used as an example. 

In Stage 1 of the learning process, the complexity of calculating multimodal density values at all unique data 

samples is 𝑂(𝑁𝐿𝑖); the complexity of ranking unique data samples based on their mutual distances is 𝑂(𝑁(𝐿𝑖)2); 

and the complexity of forming Voronoi tessellation and calculating multimodal density values at local maxima 

are 𝑂(𝑁𝐾𝑖𝐿𝑖∗) and 𝑂(𝑁𝐿𝑖∗), respectively. During Stage 2, the overall computational complexity for estimating 

the average radius of area of influence and identifying prototypes is 𝑂(𝑁(𝐾𝑖)2). The computational complexity 

of the prototype optimization process in Stage 3 is 𝑂(𝑁𝐾𝑖𝑇ℎ
𝑖𝑀ℎ

𝑖 ), where 𝑇ℎ
𝑖  is the number of iterations for the 

prototypes converge to the locally optimal positions in the data space; the subscript ℎ stands for the current level 

of granularity. Computational complexity of Stage 4 is negligible comparing with other stages. Assuming that 

Stages 2-4 are repeated for  𝐻𝑖  times (the level of granularity increases from 1 to 𝐻𝑖) until Condition 4 is satisfied 

finally, the overall computational complexity of this process is 𝑂 (𝑁 (𝐾𝑖 ∑ 𝑇ℎ
𝑖𝑀ℎ

𝑖 𝐻𝑖

ℎ=1 + 𝐻𝑖(𝐾𝑖)2)). Stage 5 is for 

building connections between prototypes at adjacent layers and the computational complexity for this process is 

𝑂 (𝑁 (∑ 𝑀ℎ
𝑖 𝑀ℎ+1

𝑖𝐻𝑖−1
ℎ=1 + ∑ (𝑀ℎ

𝑖 )
2𝐻𝑖

ℎ=2 )) . Therefore, the overall computational complex of the entire learning 

process to build a recognition model from data by the proposed MLOP approach is 𝑂 (𝑁 ∑ (𝐾𝑖 ∑ 𝑇ℎ
𝑖𝑀ℎ

𝑖 𝐻𝑖

ℎ=1 +𝐶
𝑖=1

𝐻𝑖(𝐾𝑖)2 + ∑ 𝑀ℎ
𝑖 𝑀ℎ+1

𝑖𝐻𝑖−1
ℎ=1 + ∑ (𝑀ℎ

𝑖 )
2𝐻𝑖

ℎ=2 )). 

4.2. Learning process from streaming data 

The online updating process of the classifier is also conducted class-wise but on a sample-by-sample basis, 

therefore, the complexity analysis is performed on a particular updating cycle of the ith hierarchy. During the 

updating cycle, the classifier firstly updates the average radii of area of influence of prototypes at all 𝐻𝑖  layers 

with the newly available data sample, 𝒙
𝐾𝑖+1
𝑖  , and the computational complexity is 𝑂(𝑁𝐻𝑖). However, depending 

on the mutual distances between 𝒙
𝐾𝑖+1
𝑖  and prototypes at different layers, the minimum computational complexity 

of the system updating process is reached if 𝒙
𝐾𝑖+1
𝑖  meets Condition 6 at the top layer and is added to the prototype-

based hierarchy as a new prototype at every layer. In this case, the computational complexity is 𝑂 (𝑁(𝑀1
𝑖)). The 

maximum computational complexity of the updating process is reached if 𝒙
𝐾𝑖+1
𝑖  fails to satisfy Condition 6 and 

is used for updating the nearest prototypes layer-by-layer. In this situation, the computational complexity is 

𝑂 (𝑁 (𝑀1
𝑖 + ∑ |𝓛ℎ,𝑛ℎ

∗
𝑖 |𝐻𝑖−1

ℎ=1 )), where |𝓛ℎ,𝑛ℎ
∗

𝑖 | denotes the cardinality of 𝓛ℎ,𝑛ℎ
∗

𝑖 . In both cases, the computational 

complexity for updating/initializing the links of these prototypes with other prototypes within the hierarchy is  

𝑂 (𝑁 (∑ 𝑀ℎ
𝑖𝐻𝑖−1

ℎ=1 + ∑ 𝑀ℎ
𝑖𝐻𝑖

ℎ=2 )). Therefore, the computational complexity of a particular online updating cycle is 

between  𝑂 (𝑁 (2 ∑ 𝑀ℎ
𝑖𝐻𝑖−1

ℎ=1 + 𝑀
𝐻𝑖
𝑖 )) and 𝑂 (𝑁 (2 ∑ 𝑀ℎ

𝑖𝐻𝑖−1
ℎ=1 + 𝑀

𝐻𝑖
𝑖 + ∑ |𝓛ℎ,𝑛ℎ

∗
𝑖 |𝐻𝑖−1

ℎ=1 )). 

4.3. Decision-making process 

During the decision-making process, the complexity of the computational process for each hierarchy to produce 

a score of confidence on an unlabelled data sample is 𝑂 (𝑁 (𝑀1
𝑖 + ∑ |𝓛ℎ,𝑛ℎ

∗
𝑖 |𝐻𝑖−1

ℎ=1 )) , where 𝑖 = 1,2, … , 𝐶 . 

Therefore, the overall computational complexity of the decision-making process for a particular data sample is 

𝑂 (𝑁 ∑ (𝑀1
𝑖 + ∑ |𝓛ℎ,𝑛ℎ

∗
𝑖 |𝐻𝑖−1

ℎ=1 )𝐶
𝑖=1 ). 
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5. Experimental Investigation 
In this section, numerical examples are presented to justify the effectiveness and validity of the proposed approach. 

The performance of the MLOP classifier is evaluated on a variety of widely used benchmark datasets and 

compared with a number of state-of-the-art approaches. The algorithms were developed on MATLAB2018a 

platform, and the performance was evaluated on a desktop with dual core i7 processer 3.60𝐺𝐻𝑧 × 2 and 16𝐺𝐵 

RAM. In the numerical examples presented in this section, by default, the MLOP classifier is trained with static 

data in offline scenarios, and the reported numerical results are obtained after 10 Monte Carlo experiments unless 

specifically declared otherwise. 

5.1. Performance demonstration on numerical datasets  

The following eight benchmark datasets are involved in numerical experiments for demonstrating the performance 

of the proposed approach. 

(1) Wilt (WI) dataset2; 

(2) Semeion handwritten digit (SH) dataset3; 

(3) Occupancy detection (OD) dataset4; 

(4) Letter recognition (LR) dataset5; 

(5) Optical recognition of handwritten digits (OR) dataset6; 

(6) Pen-based recognition of handwritten digits (PR) dataset7; 

(7) Phishing websites (PW) dataset8; and, 

(8) Epileptic seizure recognition (ES) dataset9. 

Details of the eight datasets are summarized in Table 2.  

 

Table 2. Details of benchmark numerical datasets for demonstration 

Dataset # Samples # Attributes # Classes 

WI Training set 4339 5 + 1 label 2 

Testing set  500 

SH 1593 256 + 1 label 10 

OD a Training 8143 5 + 1 label 2 

Testing set 1 2664 

Testing set 2 9752 

LR 20000 16 + 1 label 26 

OR 5620 62 + 1 label 10 

PR 10996 16 + 1 label 10 

PW 10550 30 + 1 label 2 

ES 11500 178 + 1 label 2 
                                                                                   a Time stamps of the original dataset have been removed. 

 

In the first numerical example, the influence of 𝜌 on performance and computational complexity of the MLOP 

classifier is investigated. Four benchmark datasets, namely, WI, SH, OD and LR are involved for investigation. 

 
2 Available at: http://archive.ics.uci.edu/ml/datasets/wilt. 
3 Available at: https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit. 
4 Available at: https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+. 
5 Available at: https://archive.ics.uci.edu/ml/datasets/letter+recognition. 
6 Available at: https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits. 
7 Available at: https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits. 
8 Available at: https://archive.ics.uci.edu/ml/datasets/phishing+websites. 
9 Available at: https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition. 
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For SH and LR datasets, 50% of data samples are randomly selected out to form the training sets and the remaining 

samples are used to form the testing sets. For WI and OD datasets, the original split is adopted, and the order of 

the training samples is randomly scrambled for each experiment. During the experiment, the value of 𝜌 varies 

from 0 to 0.3. Numerical results including the average layer number (# Layer), classification accuracy, training 

and testing time consumptions (in seconds) are reported in Table 3 in the form of 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛. 

To gain a better picture regarding the system complexity, numbers of prototypes at different layers of the two 

hierarchies identified from the training set of the OD dataset (with 𝜌 = 0.05) during a particular experiment are 

reported in Fig. 9.  

As one can see from Table 3, generally, the performance of the proposed approach in terms of classification 

accuracy is stronger with a smaller value of 𝜌. However, this will inevitably increase the system complexity 

because there will be more layers and more prototypes (see Fig. 9) in the system structure. On the other hand, 

Table 3 also shows that the computational complexity of the training and testing processes is only slightly 

increased with the system structure going deeper. Therefore, in the following numerical examples presented in 

this paper, 𝜌 = 0.05 is used by default to pursue higher classification precision. 

 

Table 3. Influence of different values of 𝜌 on the performance of the MLOP classifier 

Dataset 𝜌 # Layer Accuracy Training time, s Testing time, s 

WI 0.00 9.0 0.7440±0.0000 3.42±0.17 0.60±0.08 

0.05 5.5 0.7760±0.0000 1.86±0.11 0.32±0.06 

0.10 5.0 0.7880±0.0000 1.73±0.06 0.28±0.03 

0.15 4.0 0.7860±0.0000 1.47±0.03 0.20±0.01 

0.20 4.0 0.7860±0.0000 1.44±0.01 0.21±0.04 

0.25 4.0 0.7860±0.0000 1.47±0.04 0.20±0.02 

0.30 4.0 0.7860±0.0000 1.44±0.01 0.20±0.01 

SH 0.00 4.3 0.8601±0.0101 0.08±0.05 1.85±0.54 

0.05 4.3 0.8601±0.0101 0.06±0.01 1.83±0.54 

0.10 4.3 0.8601±0.0101 0.06±0.01 1.79±0.51 

0.15 4.3 0.8601±0.0101 0.06±0.01 1.79±0.53 

0.20 4.2 0.8600±0.0101 0.06±0.01 1.94±0.63 

0.25 4.2 0.8599±0.0101 0.06±0.02 1.89±0.61 

0.30 4.2 0.8596±0.0099 0.06±0.01 1.80±0.47 

OD 0.00 14.0 0.9435±0.0000 2.10±0.12 16.17±0.12 

0.05 5.0 0.9441±0.0000 2.01±0.02 5.57±0.07 

0.10 4.5 0.9300±0.0000 2.01±0.04 4.95±0.02 

0.15 4.0 0.9290±0.0000 2.04±0.04 4.42±0.05 

0.20 3.5 0.9079±0.0000 2.61±0.04 3.81±0.02 

0.25 3.5 0.9079±0.0000 2.62±0.07 3.81±0.02 

0.30 3.0 0.9075±0.0000 2.59±0.08 3.28±0.20 

LR 0.00 8.7 0.9283±0.0035 0.81±0.09 122.13±2.14 

0.05 7.6 0.9281±0.0034 0.74±0.03 107.67±1.92 

0.10 6.1 0.9273±0.0035 0.67±0.04 102.03±4.36 

0.15 5.4 0.9253±0.0036 0.63±0.03 93.22±1.75 

0.20 5.0 0.9234±0.0051 0.56±0.01 77.55±2.11 

0.25 4.7 0.9187±0.0034 0.53±0.01 71.44±1.48 

0.30 4.4 0.9144±0.0036 0.50±0.02 65.91±2.42 
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Fig. 9. Number of prototypes at different hierarchies identified from training data with 𝜌 = 0.05 

 

In the following numerical example, the online learning ability of the proposed MLOP classifier is demonstrated 

based on eight benchmark datasets as listed in Table 1, namely, WI, SH, OD, LR, OR, PR, FW and ES. In 

particular, for SH, LR, FW and ES datasets, 50% of data samples are randomly selected out to form the training 

sets and the remaining samples are used to form the testing sets. For WI, OD, PR and OR datasets, the original 

splits are kept but the orders of training samples are randomly scrambled for each experiment. During the 

experiments, the MLOP classifier is firstly trained with half of the training set in an offline scenario and, then, the 

classifier continues to self-update based on the remaining 10%, 20%, 30%, 40% and 50% training data on a 

sample-by-sample basis online. The classification accuracy rates of the classifier on the testing sets are reported 

in Table 4. The performance of the MLOP classifier trained with the entire training set offline is given in the same 

table as baseline. From Table 4 one can conclude that the MLOP classifier can effectively learn from new 

streaming data samples online after being primed with static data and maintain very high classification precision. 

 

Table 4. Classification accuracy rates of the MLOP classifier trained in a hybrid manner with different amounts 

of data for online training 

Dataset Offline Online Training Baseline 

50% 10% 20% 30% 40% 50% 

WI 0.7482 0.7602 0.7734 0.7798 0.7856 0.7884 0.7760 

SH 0.8318 0.8367 0.8389 0.8449 0.8477 0.8511 0.8601 

OD 0.9455 0.9368 0.9359 0.9336 0.9320 0.9288 0.9441 

LR 0.8843 0.9001 0.9123 0.9202 0.9269 0.9326 0.9281 

OR 0.9716 0.9735 0.9743 0.9762 0.9765 0.9778 0.9850 

PR 0.9673 0.9692 0.9709 0.9732 0.9734 0.9744 0.9757 

PW 0.9155 0.9177 0.9216 0.9259 0.9295 0.9334 0.9371 

ES 0.9008 0.9079 0.9079 0.9198 0.9237 0.9268 0.9204 

 

Furthermore, the impact of different amounts of offline training data on the overall performance of the MLOP 

classifier trained in a hybrid manner (namely, offline training first followed by online training) is further 

investigated. In this example, the MLOP classifier is firstly trained with 30%, 40%, 50%, 60%, 70% and 80% of 

the training data offline, and then continues to learn from the remaining data on a sample-by-sample basis online. 

Classification accuracy rates of the classifier obtained on the testing sets are presented in Table 5. The performance 

of the MLOP classifier trained with the entire training set offline is also given here as baseline. It can be seen from 

Table 5 that, in general, the overall performance of the MLOP classifier trained in a hybrid manner is less 

influenced by the available amount of offline training data. This further demonstrates the effectiveness of the 

online learning mechanism of the proposed approach.  
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Table 5. Classification accuracy rates of the MLOP classifier trained in a hybrid manner with different amounts 

of offline training data 

Dataset Offline Training Baseline 

30% 40% 50% 60% 70% 80% 

WI 0.7476 0.7652 0.7884 0.7882 0.7914 0.7806 0.7760 

SH 0.8576 0.8525 0.8511 0.8545 0.8551 0.8599 0.8601 

OD 0.9270 0.9304 0.9288 0.9288 0.9295 0.9296 0.9441 

LR 0.9329 0.9335 0.9326 0.9312 0.9309 0.9291 0.9281 

OR 0.9720 0.9737 0.9778 0.9767 0.9774 0.9786 0.9850 

PR 0.9746 0.9749 0.9744 0.9752 0.9742 0.9730 0.9757 

PW 0.9355 0.9357 0.9334 0.9356 0.9364 0.9339 0.9371 

ES 0.9260 0.9266 0.9268 0.9246 0.9240 0.9225 0.9204 

 

For better demonstration, statistical performance (classification accuracy and training time consumption, in 

seconds) of the MLOP classifier on the eight benchmark problems, namely, WI, SH, OD, LR, OR, PR, PW and 

ES, in offline scenarios is reported in Table 6 in the form of 𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 . During the 

experiments, the same training-testing splits of the eight datasets used in the previous examples are considered. 

In addition, statistical performance of the MLOP classifier trained in a hybrid manner (denoted by MLOP-H) is 

also reported in this table. During the experiments, the MLOP-H classifier is firstly primed with 50% of training 

samples offline and continuously trained with the remaining 50% training samples online.  

The performance of the proposed approach is further compared with the following algorithms: 

(1) SVM classifier with linear kernel [7]; 

(2) DT classifier [27]; 

(3) KNN classifier with 𝑘 = 5 [8]; 

(4) Sequence-dictionary-based KNN  (SDKNN) classifier with 𝑘 = 5 [32]; 

(5) Sequence classifier (SC) [32]; 

(6) Extreme learning machine (ELM) classifier with maximum 200 neurons [21]; 

(7) Multi-layer perceptron (MLP) network with three hidden layers and 20 neurons in each hidden layer; 

(8) GLVQ with 25 reference vectors per class and the gain factor set as 𝛼 = 0.005 [35]; 

(9) Extended sequential adaptive fuzzy inference system (ESAFIS) [34]; 

(10) Zero-order autonomous learning multiple-model system (ALMMo0) [1]; 

(11) Self-organising neuro-fuzzy inference system (SONFIS) with the level of granularity set as 𝐺 = 5 [18]; 

(12) Hierarchical prototype-based (HP) classifier with six layers (𝐻 = 6) [19]. 

SVM, DT and KNN are the most used generic approaches for classification. MLP uses the well-known resilient 

back propagation algorithm for parameter optimization. GLVQ is a prototype-based ANN popular for multi-class 

classification. ELM is a single-layer feedforward neural network for classification. SC and SDKNN are two 

recently introduced dictionary-based approaches for classification. ESAFIS is a first-order EIS designed for 

regression and classification. SONFIS and ALMMo0 are both zero-order EISs with a prototype-based nature. HP 

classifier is prototype-based approach with a multi-layered structure, which is of the same type as the proposed 

MLOP classifier. Nonetheless, the layer number of the HP classifier is predefined by users instead of being 

determined by data and it employs cosine dissimilarity as the distance measure. During the experiments, the 

externally controlled parameters for the involved classification approaches are determined by the commonly used 

experimental protocols and are fixed across different problems due to insufficient prior knowledge. The numerical 

results obtained by the 12 comparative approaches on the eight benchmark datasets are also reported in Table 6 
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following the same experimental protocols, where the training time consumptions of KNN are not reported 

because it literally requires no training.  

For better demonstration, the comparative algorithms are ranked from best to worst on each dataset in terms of 

classification accuracy, and the ranks are given in Table 7. The overall ranks of the algorithms across the eight 

datasets are given in the same table as well. One can see from Table 7 that the overall performance of the proposed 

MLOP classifier is in the second place among the involved classification methods for comparison while the HP 

classifier ranks the top, but the performance of the proposed MLOP approach is relatively more stable. 

 

Table 6. Performance comparison between the 14 classification approaches in terms of classification accuracy 

and training time consumption on the eight benchmark datasets (the best accuracy rates are bolded) 

Dataset WI SH 

Algorithm Accuracy Training time, s Accuracy Training time, s 

MLOP 0.7760±0.0000 1.86±0.11 0.8601±0.0101 0.06±0.01 

MLOP-H 0.7884±0.0346 4.03±0.09 0.8511±0.0091 0.69±0.03 

SVM 0.7150±0.0017 54.58±1.73 0.9174±0.0096 0.49±0.29 

DT 0.8140±0.0000 0.04 ± 0.06 0.7103±0.0227 0.12±0.21 

KNN 0.7260±0.0000  0.8767±0.0139  

SDKNN 0.3980±0.0000 4.52±0.26 0.8242±0.0255 2.05±0.10 

SC 0.6720±0.0000 5.27±0.27 0.8927±0.0109 3.45±0.13 

ELM 0.8574±0.0044 0.06±0.03 0.3923±0.1212 0.04±0.03 

MLP 0.7008±0.0874 0.73±0.25 0.5933±0.0455 0.40±0.22 

GLVQ 0.6260±0.0000 19.70±0.06 0.8313±0.0142 28.07±1.29 

ESAFIS 0.6258±0.0018 5.53±3.09 0.6736±0.0427 87.58±5.08 

ALMMo0 0.7728±0.0129 0.39±0.08 0.8934±0.0090 0.09±0.03 

SONFIS 0.7960±0.0000 1.12 ± 0.04 0.8680±0.0113 0.04±0.05 

HP 0.8046±0.0166 2.85±0.17 0.8951±0.0097 0.35±0.03 

Dataset OD LR 

Algorithm Accuracy Training time, s Accuracy Training time, s 

MLOP 0.9441±0.0000 2.01±0.02 0.9281±0.0034 0.74±0.03 

MLOP-H 0.9288±0.0045 4.19±0.27 0.9326±0.0018 4.83±0.11 

SVM 0.6787±0.2118 164.24±10.28 0.8540±0.0030 15.77±0.54 

DT 0.9314±0.0000 0.04±0.05 0.8235±0.0068 0.12±0.05 

KNN 0.9580±0.0000  0.9325±0.0020  

SDKNN 0.7576±0.0000 7.83±0.22 0.8339±0.0050 12.02±0.49 

SC 0.8984±0.0000 22.00±0.73 0.8561±0.0028 27.71±1.09 

ELM 0.9895±0.0002 0.13±0.03 0.5001±0.0585 0.16±0.04 

MLP 0.9152±0.0268 1.05±0.58 0.5160±0.0306 2.24±0.32 

GLVQ 0.9314±0.0000 25.86±1.37 0.7606±0.0089 56.30±0.94 

ESAFIS 0.9586±0.0237 15.26±6.71 0.8251±0.0077 66.85±2.31 

ALMMo0 0.9404±0.0040 0.63±0.11 0.9179±0.0029 0.76±0.19 

SONFIS 0.9382±0.0000 2.51±0.07 0.9223±0.0052 0.27±0.15 

HP 0.7873±0.0116 3.91±0.70 0.9414±0.0011 5.31±0.26 

Dataset OR PR 

Algorithm Accuracy Training time, s Accuracy Training time, s 

MLOP 0.9850±0.0000 0.52±0.02 0.9757±0.0000 0.93±0.03 

MLOP-H 0.9786±0.0023 2.62±0.05 0.9744±0.0026 5.07±0.24 

SVM 0.9627±0.0000 0.75±0.31 0.9551±0.0000 58.65±0.90 

DT 0.8525±0.0000 0.06±0.03 0.9122±0.0003 0.04±0.03 

KNN 0.9794±0.0000  0.9760±0.0000  

SDKNN 0.9627±0.0000 5.08±0.45 0.9531±0.0000 8.33±0.38 

SC 0.9549±0.0000 8.41±0.69 0.9511±0.0000 12.50±0.45 

ELM 0.9053±0.0096 0.07±0.03 0.9086±0.1622 0.10±0.03 

MLP 0.9304±0.0077 0.92±0.14 0.9459±0.0078 1.13±0.29 

GLVQ 0.9199±0.0000 34.25±1.01 0.8453±0.0000 33.56±0.62 
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ESAFIS 0.9538±0.0067 32.24±10.36 0.9197±0.0134 38.80±5.93 

ALMMo0 0.9789±0.0000 0.33±0.09 0.9752±0.0023 0.56±0.05 

SONFIS 0.9766±0.0000 0.09±0.06 0.9763±0.0000 0.39±0.03 

HP 0.9772±0.0000 1.56±0.21 0.9782±0.0001 3.87±0.07 

Dataset PW ES 

Algorithm Accuracy Training time, s Accuracy Training time, s 

MLOP 0.9371±0.0047 1.85±0.08 0.9204±0.0071 41.77±3.43 

MLOP-H 0.9334±0.0052 6.17±0.43 0.9268±0.0119 72.22±16.21 

SVM 0.9262±0.0027 4.76±1.46 0.1921±0.0319 96.19±2.41 

DT 0.9466±0.0030 0.09±0.16 0.9351±0.0036 0.57±0.08 

KNN 0.9314±0.0045  0.9146±0.0072  

SDKNN 0.9107±0.0048 5.64±0.40 0.9198±0.0050 15.04±0.52 

SC 0.9456±0.0029 13.71±0.59 0.9452±0.0028 36.29±1.47 

ELM 0.9100±0.0064 0.09±0.03 0.2719±0.2317 0.12±0.03 

MLP 0.9386±0.0066 0.57±0.34 0.9408±0.0493 1.05±0.40 

GLVQ 0.9099±0.0050 24.65±0.90 0.6983±0.2589 35.53±0.94 

ESAFIS 0.9413±0.0027 244.20±69.50 0.9044±0.0123 909.64±89.66 

ALMMo0 0.9436±0.0044 0.93±0.08 0.8937±0.0025 25.77±3.19 

SONFIS 0.9138±0.0038 0.66±0.09 0.8884±0.0140 2.24±0.07 

HP 0.9450±0.0050 1.92±0.39 0.8941±0.0026 3.23±0.37 

 

Table 7. Overall classification accuracy ranks of comparative algorithms 

Algorithm Rank 

WI SH OD LR OR PR PW ES Overall 

MLOP 6 7 4 4 1 4 7 5 4.8±2.0 

MLOP-H 5 8 9 2 4 6 8 4 5.8±2.4 

SVM 9 1 14 8 7 7 10 14 8.8±4.2 

DT 2 11 7 11 14 12 1 3 7.6±5.1 

KNN 8 5 3 3 2 3 9 7 5.0±2.7 

SDKNN 14 10 13 9 8 8 12 6 10.0±2.8 

SC 11 4 11 7 9 9 2 1 6.8±4.0 

ELM 1 14 1 14 13 13 13 13 10.3±5.7 

MLP 10 13 10 13 11 10 6 2 9.4±3.7 

GLVQ 12 9 8 12 12 14 14 12 11.6±2.1 

ESAFIS 13 12 2 10 10 11 5 8 8.9±3.7 

ALMMo0 7 3 5 6 3 5 4 10 5.4±2.3 

SONFIS 4 6 6 5 6 2 11 11 6.4±3.2 

HP 3 2 12 1 5 1 3 9 4.5±4.0 

 

In addition, confusion matrices obtained by the MLOP classifier and the 12 comparative algorithms on the four 

binary classification problems, namely, WI, OD, PW and ES are reported in Table 8 for better comparison. 

 

Table 8. Confusion matrices obtained by the MLOP and 12 comparative classifiers on the four binary 

classification problems (the best results are bolded) 

Dataset Algorithm True 

positive 

False 

negative 

False 

positive 

True 

negative 

WI MLOP 79.0 108.0 4.0 309.0 

SVM 66.2 120.8 21.7 291.3 

DT 107.0 80.0 13.0 300.0 

KNN 51.0 136.0 1.0 312.0 

SDKNN 38.0 149.0 15.0 298.0 

SC 187.0 0.0 301.0 12.0 

ELM 125.5 61.5 9.8 303.2 
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MLP 44.5 142.5 7.1 305.9 

GLVQ 0.0 187.0  0.0 313.0 

ESAFIS 0.2 186.8 0.3 312.7 

ALMMo0 83.1 103.9 9.7 303.3 

SONFIS 111.0 76.0 26.0 287.0 

HP 117.6 69.4 28.3 284.7 

OD MLOP 9098.0 298.0 396.0 2625.0 

SVM 7189.9 2206.1 1784.1 1236.9 

DT 9048.0 348.0 504.0 2517.0 

KNN 9030.0 366.0 156.0 2865.0 

SDKNN 8755.0 641.0 620.0 2401.0 

SC 9394.0 2.0 3008.0 13.0 

ELM 9281.8 114.2 16.3 3004.7 

MLP 8697.7 698.3 354.2 2666.8 

GLVQ 8724.0  672.0 180.0 2841.0 

ESAFIS 9073.6 322.4 191.7 2829.3 

ALMMo0 9100.5 295.5 444.8 2576.2 

SONFIS 9207.0 189.0 578.0 2443.0 

HP 7647.3 1748.7 893.0 2128.0 

PW MLOP 2893.6 184.9 162.9 2287.1 

SVM 2913.4 165.1 242.9 2207.1 

DT 2939.0 139.5 155.8 2294.2 

KNN 2898.6 179.9 199.4 2250.6 

SDKNN 2968.4 110.1 190.8 2259.2 

SC 2831.0 247.5 246.3 2203.7 

ELM 2935.4 143.1 354.3 2095.7 

MLP 2925.4 153.1 186.2 2263.8 

GLVQ 2886.9  191.6 306.4 2143.6 

ESAFIS 2950.3 128.2 196.3 2253.7 

ALMMo0 2936.3 142.2 169.6 2280.4 

SONFIS 2894.5 184.0 292.5 2157.5 

HP 2982.9 95.6 208.4 2241.6 

ES MLOP 710.1 437.2 18.9 4583.8 

SVM 779.0 368.3 4277.2 325.5 

DT 955.7 191.6 181.7 4421.0 

KNN 662.5 484.8 6.0 4596.7 

SDKNN 843.1 304.2 11.0 4591.7 

SC 692.9 454.4 6.6 4596.1 

ELM 1131.1 16.2 4170.5 432.2 

MLP 878.9 268.4 72.1 4530.6 

GLVQ 323.5 823.8  911.0 3691.7 

ESAFIS 690.6 456.7 93.0 4509.7 

ALMMo0 795.8 351.5 259.9 4342.8 

SONFIS 604.9 542.4 99.5 4503.2 

HP 795.5 351.8 257.3 4345.4 

 

5.2. Performance demonstration on benchmark image sets 

In this subsection, the following four challenging image recognition problems are involved for evaluating the 

performance of the proposed approach on large-scale, high-dimensional, complex problems. 

(1) MNIST dataset10; 

(2) Fashion MNIST dataset11; 

 
10 Available at http://yann.lecun.com/exdb/mnist/. 
11 Available at https://github.com/zalandoresearch/fashion-mnist. 
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(3) Caltech101 dataset12, and; 

(4) Caltech256 dataset13; 

Example images of the four datasets are given in Fig. 10. 

 

 

(a) MNIST 

 

(b) Fashion MNIST 

 

(c) Caltech101 

 

(d) Caltech256 

Fig. 10. Example images of the four benchmark image sets for performance evaluation. 

 

Firstly, the performance of the MLOP classifier for image classification is evaluated on MNIST and Fashion 

MNIST datasets. In this example, for both datasets, all the training and testing images are converted into 784×1 

dimensional vectors and, then, directly used to train and test the proposed algorithm. The classification accuracy 

rates of the proposed approach on testing images of the two problems are reported in Table 9. For better evaluation, 

 
12 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech101/. 
13 Available at: http://www.vision.caltech.edu/Image_Datasets/Caltech256/. 
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10 comparative algorithms used in previous experiments are involved in this numerical example under the same 

experimental protocol, and their performances in terms of classification accuracy rates are reported in Table 9 for 

visual clarity. Note that, in this example, a MLP with three hidden layers, 200 neurons in each (in total, 600 

neurons) is used instead due to the much larger problem size. 

Table 9. Classification accuracy comparison between the MLOP classifier and comparative algorithms on 

MNIST and Fashion MNIST datasets (the best accuracy rates are bolded) 

Algorithm MNIST Fashion MNIST 

Original Gist Original Gist 

MLOP 0.9696 0.9835 0.8496 0.8886 

SVM 0.9438 0.9857 0.8497 0.8871 

DT 0.8779 0.9010 0.7934 0.8142 

KNN 0.9684 0.9875 0.8554 0.8957 

SDKNN 0.9555 0.9802 0.8660 0.8876 

SC 0.9646 0.9762 0.8738 0.8817 

ELM 0.1453 0.9122 0.3557 0.8045 

MLP 0.8781 0.9577 0.7637 0.8869 

ALMMo0 0.9683 0.9864 0.8589 0.8862 

SONFIS 0.9681 0.9865 0.8610 0.8876 

HP 0.9652 0.9864 0.8557  0.8845 

 

Furthermore, the Gist feature descriptor [30] is used to extract 512×1 dimensional feature vectors from the original 

training/testing images of the two problems. Experiments are repeated by training and testing the algorithms with 

the Gist features of the images. The obtained results by the 11 approaches are reported in Table 9 as well. The 

average layer numbers of the prototype-based hierarchies that the MLOP classifier self-organized from the 

training images during the experiments are presented in Fig. 11.  

Finally, the performance of the MLOP classifier is evaluated on Caltech101 and Caltech256 datasets. A ensemble 

feature descriptor formed by pretrained AlexNet [24] and VGG-VD-16 [38] models is employed for feature 

extraction, which extracts a 9192×1 dimensional discriminative representation, denoted by 𝒙 from each image, 𝐈: 

𝒙 = 𝐹(𝐈) = [
𝐴𝑁(𝒙)

‖𝐴𝑁(𝒙)‖
,

𝑉𝑁(𝒙)

‖𝑉𝑁(𝒙)‖
]

𝑇

                                                                                                                      (24) 

where 𝐹(𝐈)  is the 9192×1 dimensional discriminative representation of 𝐈  obtained by the ensemble feature 

descriptor; 𝐴𝑁(𝒙) and 𝑉𝑁(𝒙) are the 1×4096 dimensional activations extracted from the first fully connected 

layer of the AlexNet and VGG-VD-16 models, respectively.  

Following the common practice [41], for Caltech101 image set, 15 and 30 images are randomly selected out from 

each category for training, respectively, and the rest of the dataset are used for testing. For Caltech256 image set, 

15, 30, 45 and 60 images are randomly selected from each category for training, respectively, and the rest images 

are used for testing. The classification accuracy rates achieved by the MLOP classifier and four comparative 

approaches, namely, SVM, KNN, ALMMo0 and HP, on the testing sets of the two datasets are tabulated in Tables 

10 and 11, respectively. In addition, selected state-of-the-art results reported by recent publications are given in 

the same tables for better evaluation. The average layer numbers of the prototype-based hierarchies that MLOP 

classifier self-organized from the training sets of Caltech101 and Caltech256 are presented in Fig. 11 as well. 

Furthermore, three prototype-based hierarchies that the MLOP classifier identifies from training images of the 

“airplane”, “llama” and “snoopy” classes (30 images per class) in the Caltech101 dataset during a particular 

experiment are visualized in Fig. 12. However, as both the learning and classification processes of the MLOP 

classifier are conducted based on the feature vectors instead of raw images during numerical experiments, the 

training images with feature vectors that are the most similar to the identified prototypes are used for visualization 

in the depicted hierarchies. 
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Table 10. Classification accuracy comparison between the MLOP classifier and comparative algorithms on 

Caltech101 dataset (the best accuracy rates are bolded) 

Algorithm 
Accuracy 

15 Training Images 30 Training Images 

MLOP 0.9037±0.0047 0.9272±0.0043 

SVM 0.8729±0.0104 0.9027±0.0087 

KNN 0.8721±0.0079 0.9100±0.0042 

ALMMo0 0.8491±0.0062 0.8864±0.0047 

HP 0.8863±0.0060 0.9224±0.0040 

ICAC [44] 0.7148±0.0056 0.7663±0.0079 

CASE-LLC-SVM  [28] 0.6400±0.0040 0.7140±0.0120 

DEFEATnet [11] 0.7128±0.0061 0.7760±0.0096 

RNPCANet [33] - 0.7227±0.0102 

VLAD-LLC [26] - 0.8923 

LEFSI  [31] 0.7721±0.0061 0.8578±0.0037 

ESRO-BoW [13] 0.8052 0.8535 

DEL-BoW [14] 0.8269 0.8691 

 

Table 11. Classification accuracy comparison between the MLOP classifier and comparative algorithms on 

Caltech256 dataset (the best accuracy rates are bolded) 

Algorithm 

Accuracy 

15 Training 

Images 

30 Training 

Images 

45 Training 

Images 

60 Training 

Images 

MLOP 0.6854±0.0033 0.7144±0.0032 0.7265±0.0030 0.7376±0.0027 

SVM Out of System Memory 

KNN 0.6251±0.0031 0.6805±0.0029 0.7091±0.0035 0.7310±0.0024 

ALMMo0 0.6239±0.0033 0.6711±0.0026 0.6976±0.0034 0.7187±0.0029 

HP 0.6353±0.0045 0.6908±0.0029 0.7172±0.0034 0.7347±0.0030 

DEFEATnet  [11] 0.3507±0.0038 0.4206±0.0025 0.4598±0.0026 0.4852±0.0032 

VLAD-LLC [26] - - - 0.7425 

LEFSI [31] 0.3657±0.0056 0.4721±0.0069 0.5081 ± 0.0041 0.5290 ± 0.0048 

DEL-BoW [14] 0.6122 0.6925 - 0.7257 

LSC-LG [43] 0.4314±0.0063 0.5062±0.0053 0.5327±0.0056 0.5576±0.0048 

OCB-FV [47] 0.4403±0.0046 0.5315±0.0044 0.5784±0.0040 0.5903±0.0045 

SWSS-DeCAF [45] 0.6152±0.0039 0.6768±0.0065 0.6977±0.0053 0.7283±0.0044 

SWSS-FV [45] 0.4246±0.0038 0.4985±0.0042 0.5466±0.0047 0.5652±0.0041 

SC2-CNN [46] 0.4758±0.0062 0.5542±0.0056 0.5912±0.0051 0.6174±0.0050 

ResNet101-COMO-2 [48] - 0.4466 - 0.6707 

 

 

Fig. 11. Average layer numbers of the prototype-based hierarchies identified by the MLOP classifier during 

numerical experiments on benchmark image sets 
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(a)Airplane                                                                   (b) Llama 

 

(c) Snoopy 

Fig. 12. Three prototype-based hierarchies that the MLOP classifier identifies from the respective training 

images of three different classes of the Caltech101 dataset 

 

5.3. Discussions 

From Tables 6-11 one can see that the proposed approach demonstrates very high classification performance on 

all benchmark problems surpassing or, at least, on par with the state-of-the-art approaches. In addition, despite 

that the MLOP classifier learns from static data offline, Table 6 shows that in many cases, its computational 

efficiency is higher than the majority of alternative prototype-based approaches involved in the experiments. It is 

demonstrated by Tables 4, 5 and 6 that the MLOP classifier can continue to self-learn and self-update from 

streaming data online to incorporate newly observed data patterns. In addition, one interesting feature of the 

MLOP classifier is that its multi-layered system structure and meta-parameters are derived from data based on the 

ensemble properties and mutual distribution in a straightforward way. The user-controlled parameter, 𝜌 only 

controls the trade-off between the intra-cluster variance and the number of prototypes in the constructed model 

without influencing the objectiveness of the prototype identification process. Therefore, the MLOP classifier 

keeps the advantage of objectiveness of data-driven approaches, and the effectiveness and validity of its learning 

results are always guaranteed for different problems. 
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On the other hand, it needs to be kept in mind that a classifier might behave very differently depending on the 

nature of data. The proposed MLOP classifier categorizes unlabelled samples based on the “nearest prototype” 

principle. This decision-making mechanism is similar to the “nearest neighbour” principle used by the KNN 

classifier and would become less effective when data is not linearly separable. Therefore, one may notice from 

Table 6 that MLOP generally performs less well on nonlinear problems such as the WI, PW and ES dataset. The 

same problem can be observed from the KNN, ALMMo0 and HP classifiers as well. Meanwhile, DT, MLP, SC 

and ELM usually perform better on such types of problems because they are nonlinear classifiers. To further 

improve the ability of the MLOP classifier on nonlinear problems, one may use the kernel trick to transform the 

observed data samples into higher dimensions and make them linearly separable.  

Furthermore, the MLOP classifier in this paper uses the Euclidean distance as the default distance measure. 

However, it has been widely recognized that different distance measures have different focuses on disclosing the 

ensemble properties of data. The differences can be even more significant in higher dimensional data spaces. For 

example, many commonly used distance metrics, including Euclidean distance, city block distance and 

Mahalanobis distance, suffer from the so-called “curse of dimensionality”. In contrast, cosine dissimilarity is more 

frequently used for handling high-dimensional problems. Therefore, it is of great importance for a classifier to use 

a suitable distance measure for a particular problem. Otherwise, this might have an adverse impact on the 

performance of the system. As another direction for improvement, it would be valuable to introduce some 

modifications to the MLOP classifier, enabling it to work with various types of distance measures.  

It also has to be admitted that the proposed MLOP classifier might not be suitable for extremely large-scale 

problems. Its operating mechanism requires a time-consuming iterative searching process to identify the locally 

optimal prototypes for classification. This would become a huge computation burden if there is a huge amount of 

training samples or a locally optimal solution cannot be easily found due to the very high dimensionality and/or 

complex structure of data. Therefore, it can be observed that the computation efficiency of the MLOP classifier 

is surpassed by a number of comparative approaches on WI, OD, PW and ES datasets. Although the MLOP 

classifier can continuously self-learn from new data sample-by-sample after being primed offline, the 

computational efficiency of the online learning process is lower than ALMMo0 and HP classifiers due to its multi-

layered structure and denser links in-between. One feasible way to address this issue is to introduce some 

alternative online learning mechanism to the MLOP classifier. 

Last but not least, it needs to be clarified that the model transparency and explainability offered by the hierarchical 

prototype-based structure and the traceable inference mechanism of the MLOP classifier are mostly for machine 

learning experts/specialists to perform model diagnostics rather than for end users. To further enhance the end-

user explainability, one possible solution is to provide users with local explanation in terms of attribute importance 

based on the model topology. However, this is beyond the scope of this paper.  

6. Conclusion and Future Work 
This paper presents a novel approach named MLOP for classification. The proposed MLOP approach identifies 

locally optimal prototypes from data at multiple levels of granularity and self-organizes a multi-layered system 

structure by aggregating these prototypes in a pyramidally hierarchical form in regard to the respective levels of 

granularity. Unlike alternative mainstream algorithms, i.e., DNNs, the inner structure of the MLOP classifier is 

highly transparent and interpretable. In addition, it can continuously self-update with new data samples. Its 

decision-making process is fully explainable and traceable by following the “nearest prototype” principle, which 

is of great importance for financial and safety-critical applications. Most importantly, the learned knowledge by 

the proposed approach from data can be visualized in a human-interpretable form of prototype-based hierarchies. 

A much smaller number of highly abstract prototypes at the top layers of the hierarchies can provide users a 

general picture of the problem by summarizing key information. Meanwhile, a larger number of low-level 

prototypes can provide users fine details of the problem. Numerical examples demonstrated the efficacy of the 

proposed MLOP approach, showing its strong potential in real-world applications by offering both high predictive 

precision and explainablity.  

There are several considerations for future work. Firstly, the MLOP classifier requires one user-controlled 

parameter to control the trade-off between the intra-cluster variance and the number of prototypes in the system 

(equation (13)). Although this parameter can be determined without prior knowledge of the problem, involving a 

new mechanism to automatically self-adjust its value based on the observed data can further enhance the autonomy 

and robustness of the proposed approach. Secondly, some modifications are needed to enable the MLOP classifier 
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to work with different types of distance measures, enhancing its ability to handle data of different natures. Thirdly, 

the online learning scheme of the proposed approach needs to be improved to speed up the overall computational 

process for handling large-scale problems. In addition, introducing a semi-supervised learning mechanism to the 

proposed MLOP approach can be very helpful considering the very small ratios between labelled and unlabelled 

samples in many real-world applications. Finally, as aforementioned, it will be very useful to further improve the 

end-user explainability of the proposed approach by explaining the importance of different attributes during 

decision-making, such that users can better understand the inner relationships between input attribute values and 

model outputs.   
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