278 research outputs found

    DDoS: DeepDefence and Machine Learning for identifying attacks

    Get PDF
    Distributed Denial of Service (DDoS) attacks are very common type of computer attack in the world of internet today. Automatically detecting such type of DDoS attack packets & dropping them before passing through the network is the best prevention method. Conventional solution only monitors and provide the feedforward solution instead of the feedback machine-based learning. A Design of Deep neural network has been suggested in this work and developments have been made on proactive detection of attacks. In this approach, high level features are extracted for representation and inference of the dataset. Experiment has been conducted based on the ISCX dataset published in year 2017,2018 and CICDDoS2019 and program has been developed in Matlab R17b, utilizing Wireshark for features extraction from the datasets. Network Intrusion attacks on critical oil and gas industrial installation become common nowadays, which in turn bring down the giant industrial sites to standstill and suffer financial impacts. This has made the production companies to started investing millions of dollars revenue to protect their critical infrastructure with such attacks with the active and passive solutions available. Our thesis constitutes a contribution to such domain, focusing mainly on security of industrial network, impersonation and attacking with DDoS

    Self Organized Multi Agent Swarms (SOMAS) for Network Security Control

    Get PDF
    Computer network security is a very serious concern in many commercial, industrial, and military environments. This paper proposes a new computer network security approach defined by self-organized agent swarms (SOMAS) which provides a novel computer network security management framework based upon desired overall system behaviors. The SOMAS structure evolves based upon the partially observable Markov decision process (POMDP) formal model and the more complex Interactive-POMDP and Decentralized-POMDP models, which are augmented with a new F(*-POMDP) model. Example swarm specific and network based behaviors are formalized and simulated. This paper illustrates through various statistical testing techniques, the significance of this proposed SOMAS architecture, and the effectiveness of self-organization and entangled hierarchies

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    Denial of Service in Web-Domains: Building Defenses Against Next-Generation Attack Behavior

    Get PDF
    The existing state-of-the-art in the field of application layer Distributed Denial of Service (DDoS) protection is generally designed, and thus effective, only for static web domains. To the best of our knowledge, our work is the first that studies the problem of application layer DDoS defense in web domains of dynamic content and organization, and for next-generation bot behaviour. In the first part of this thesis, we focus on the following research tasks: 1) we identify the main weaknesses of the existing application-layer anti-DDoS solutions as proposed in research literature and in the industry, 2) we obtain a comprehensive picture of the current-day as well as the next-generation application-layer attack behaviour and 3) we propose novel techniques, based on a multidisciplinary approach that combines offline machine learning algorithms and statistical analysis, for detection of suspicious web visitors in static web domains. Then, in the second part of the thesis, we propose and evaluate a novel anti-DDoS system that detects a broad range of application-layer DDoS attacks, both in static and dynamic web domains, through the use of advanced techniques of data mining. The key advantage of our system relative to other systems that resort to the use of challenge-response tests (such as CAPTCHAs) in combating malicious bots is that our system minimizes the number of these tests that are presented to valid human visitors while succeeding in preventing most malicious attackers from accessing the web site. The results of the experimental evaluation of the proposed system demonstrate effective detection of current and future variants of application layer DDoS attacks

    Harnessing Artificial Intelligence Capabilities to Improve Cybersecurity

    Get PDF
    Cybersecurity is a fast-evolving discipline that is always in the news over the last decade, as the number of threats rises and cybercriminals constantly endeavor to stay a step ahead of law enforcement. Over the years, although the original motives for carrying out cyberattacks largely remain unchanged, cybercriminals have become increasingly sophisticated with their techniques. Traditional cybersecurity solutions are becoming inadequate at detecting and mitigating emerging cyberattacks. Advances in cryptographic and Artificial Intelligence (AI) techniques (in particular, machine learning and deep learning) show promise in enabling cybersecurity experts to counter the ever-evolving threat posed by adversaries. Here, we explore AI\u27s potential in improving cybersecurity solutions, by identifying both its strengths and weaknesses. We also discuss future research opportunities associated with the development of AI techniques in the cybersecurity field across a range of application domains

    Artificial Intelligence and Cyber Power from a Strategic Perspective

    Get PDF
    Artificial intelligence can outperform humans at narrowly defined tasks and will enable a new generation of autonomous weapon systems. Cyberspace will play a crucial role in future conflicts due to the integration of digital infrastructure in society and the expected prevalence of autonomous systems on the battlefield. AI cyber weapons create a dangerous class of persistent threats that can actively and quickly adjust tactics as they relentlessly and independently probe and attack networks
    corecore