366 research outputs found

    On Salem numbers, expansive polynomials and Stieltjes continued fractions

    Get PDF
    A converse method to the Construction of Salem (1945) of convergent families of Salem numbers is investigated in terms of an association between Salem polynomials and Hurwitz quotients via expansive polynomials of small Mahler measure. This association makes use of Bertin-Boyd's Theorem A (1995) of interlacing of conjugates on the unit circle; in this context, a Salem number β\beta is produced and coded by an m-tuple of positive rational numbers characterizing the (SITZ) Stieltjes continued fraction of the corresponding Hurwitz quotient (alternant). The subset of Stieltjes continued fractions over a Salem polynomial having simple roots, not cancelling at ±1\pm 1, coming from monic expansive polynomials of constant term equal to their Mahler measure, has a semigroup structure. The sets of corresponding generalized Garsia numbers inherit this semi-group structure.Comment: 35 pages, Journal de Th{\'e}orie des nombres de Bordeaux, Soumissio

    Polynomials with symmetric zeros

    Get PDF
    Polynomials whose zeros are symmetric either to the real line or to the unit circle are very important in mathematics and physics. We can classify them into three main classes: the self-conjugate polynomials, whose zeros are symmetric to the real line; the self-inversive polynomials, whose zeros are symmetric to the unit circle; and the self-reciprocal polynomials, whose zeros are symmetric by an inversion with respect to the unit circle followed by a reflection in the real line. Real self-reciprocal polynomials are simultaneously self-conjugate and self-inversive so that their zeros are symmetric to both the real line and the unit circle. In this survey, we present a short review of these polynomials, focusing on the distribution of their zeros.Comment: Keywords: Self-inversive polynomials, self-reciprocal polynomials, Pisot and Salem polynomials, M\"obius transformations, knot theory, Bethe equation

    Integer symmetric matrices having all their eigenvalues in the interval [-2,2]

    Get PDF
    We completely describe all integer symmetric matrices that have all their eigenvalues in the interval [-2,2]. Along the way we classify all signed graphs, and then all charged signed graphs, having all their eigenvalues in this same interval. We then classify subsets of the above for which the integer symmetric matrices, signed graphs and charged signed graphs have all their eigenvalues in the open interval (-2,2).Comment: 33 pages, 18 figure

    Abstract algebra, projective geometry and time encoding of quantum information

    Full text link
    Algebraic geometrical concepts are playing an increasing role in quantum applications such as coding, cryptography, tomography and computing. We point out here the prominent role played by Galois fields viewed as cyclotomic extensions of the integers modulo a prime characteristic pp. They can be used to generate efficient cyclic encoding, for transmitting secrete quantum keys, for quantum state recovery and for error correction in quantum computing. Finite projective planes and their generalization are the geometric counterpart to cyclotomic concepts, their coordinatization involves Galois fields, and they have been used repetitively for enciphering and coding. Finally the characters over Galois fields are fundamental for generating complete sets of mutually unbiased bases, a generic concept of quantum information processing and quantum entanglement. Gauss sums over Galois fields ensure minimum uncertainty under such protocols. Some Galois rings which are cyclotomic extensions of the integers modulo 4 are also becoming fashionable for their role in time encoding and mutual unbiasedness.Comment: To appear in R. Buccheri, A.C. Elitzur and M. Saniga (eds.), "Endophysics, Time, Quantum and the Subjective," World Scientific, Singapore. 16 page

    Algebraic techniques in designing quantum synchronizable codes

    Get PDF
    Quantum synchronizable codes are quantum error-correcting codes that can correct the effects of quantum noise as well as block synchronization errors. We improve the previously known general framework for designing quantum synchronizable codes through more extensive use of the theory of finite fields. This makes it possible to widen the range of tolerable magnitude of block synchronization errors while giving mathematical insight into the algebraic mechanism of synchronization recovery. Also given are families of quantum synchronizable codes based on punctured Reed-Muller codes and their ambient spaces.Comment: 9 pages, no figures. The framework presented in this article supersedes the one given in arXiv:1206.0260 by the first autho

    New Quantum Codes from Evaluation and Matrix-Product Codes

    Get PDF
    Stabilizer codes obtained via CSS code construction and Steane's enlargement of subfield-subcodes and matrix-product codes coming from generalized Reed-Muller, hyperbolic and affine variety codes are studied. Stabilizer codes with good quantum parameters are supplied, in particular, some binary codes of lengths 127 and 128 improve the parameters of the codes in http://www.codetables.de. Moreover, non-binary codes are presented either with parameters better than or equal to the quantum codes obtained from BCH codes by La Guardia or with lengths that can not be reached by them

    Indicator function and complex coding for mixed fractional factorial designs

    Full text link
    In a general fractional factorial design, the nn-levels of a factor are coded by the nn-th roots of the unity. This device allows a full generalization to mixed-level designs of the theory of the polynomial indicator function which has already been introduced for two level designs by Fontana and the Authors (2000). the properties of orthogonal arrays and regular fractions are discussed
    • …
    corecore