13,791 research outputs found

    Cyber-physical security of a chemical plant

    Get PDF
    The increasing number of cyber attacks on industries demands immediate attention for providing more secure mechanisms to safeguard industries and minimize risks. A supervisory control and data acquisition (SCADA) system employing the distributed networks of sensors and actuators that interact with the physical environment is vulnerable to attacks that target the interface between the cyber and physical subsystems. These cyber attacks are typically malicious actions that cause undesired results in the cyber physical world, for example, the Stuxnet attack that targeted Iran\u27s nuclear centrifuges. An attack that hijacks the sensors in an attempt to provide false readings to the controller can be used to feign normal system operation for the control system, while the attacker can hijack the actuators to send the system beyond its safety range. Cyber physical systems (CPS) being used in industries such as oil and gas, chemical process plants and the like are termed Industrial Control Systems (ICS). Control system security is aimed at preventing intentional or unintentional interference with the proper operation of ICS. This thesis proposes a process-aware approach with the use of invariant equations based on the physical and chemical properties of the process and a Multiple Security Domain Nondeducibility (MSDND) framework to detect when a sensor signal is being maliciously manipulated. We have taken a benzene production plant as case study to illustrate our approach and its effectiveness in determining the state of the system. A system without any MSDND secure information flows between the CPS and cyber monitors has fewer weaknesses that can be exploited --Abstract, page iii

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    An approach for formal analysis of the security of a water treatment testbed

    Get PDF
    This thesis focuses on securing critical infrastructures such as chemical plants, manufacturing units, and power generating plants against attacks that disrupt the information flow from one component to another. Such systems are controlled by an Industrial Control System (ICS) that includes controllers communicating with each other, and with physical sensors and actuators, using a communications network. Traditional security models partition the security universe into two worlds, secure and insecure, but in the real world the partitions often overlap and information is leaked even through the physical observation which makes it much harder to analyze a Cyber physical system (CPS). To overcome these, this thesis focus on the Multiple Security Domain Nondeducibility (MSDND) model to identify the vulnerable points of attack on the system that hide critical information as in the STUXNET virus rather than theft of information. It is shown how MSDND analysis, conducted on a realistic multi-stage water treatment testbed, is useful in enhancing the security of a water treatment plant. Based on the MSDND analysis, this thesis offers a thorough documentation on the vulnerable points of attack, invariants used for removing the vulnerabilities, and suggested design decisions that help in developing invariants --Abstract, page iii

    Wireless ICS Training Platform

    Get PDF
    Indiana University - Purdue University IndianapolisEssential public services, such as Electric, Water and Gas Utilities, are becoming increasingly reliant on network connected devices to control their processes. Wireless control systems are becoming more common in distributed systems, since they offer many advantages over hard wired alternatives. While cyber physical systems such as PLCs offer many advantages, they are also vulnerable to cyber-attacks. Military force readiness for defense of critical infrastructure against cyber-attacks requires state of the industry industrial control systems for cyber security training. A remote terminal unit using broad spectrum radio was integrated into an existing Water Treatment Plant SCADA system and provided to the US Army for training.Electrical Engineering Technolog

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Governance of Dual-Use Technologies: Theory and Practice

    Get PDF
    The term dual-use characterizes technologies that can have both military and civilian applications. What is the state of current efforts to control the spread of these powerful technologies—nuclear, biological, cyber—that can simultaneously advance social and economic well-being and also be harnessed for hostile purposes? What have previous efforts to govern, for example, nuclear and biological weapons taught us about the potential for the control of these dual-use technologies? What are the implications for governance when the range of actors who could cause harm with these technologies include not just national governments but also non-state actors like terrorists? These are some of the questions addressed by Governance of Dual-Use Technologies: Theory and Practice, the new publication released today by the Global Nuclear Future Initiative of the American Academy of Arts and Sciences. The publication's editor is Elisa D. Harris, Senior Research Scholar, Center for International Security Studies, University of Maryland School of Public Affairs. Governance of Dual-Use Technologies examines the similarities and differences between the strategies used for the control of nuclear technologies and those proposed for biotechnology and information technology. The publication makes clear the challenges concomitant with dual-use governance. For example, general agreement exists internationally on the need to restrict access to technologies enabling the development of nuclear weapons. However, no similar consensus exists in the bio and information technology domains. The publication also explores the limitations of military measures like deterrence, defense, and reprisal in preventing globally available biological and information technologies from being misused. Some of the other questions explored by the publication include: What types of governance measures for these dual-use technologies have already been adopted? What objectives have those measures sought to achieve? How have the technical characteristics of the technology affected governance prospects? What have been the primary obstacles to effective governance, and what gaps exist in the current governance regime? Are further governance measures feasible? In addition to a preface from Global Nuclear Future Initiative Co-Director Robert Rosner (University of Chicago) and an introduction and conclusion from Elisa Harris, Governance of Dual-Use Technologiesincludes:On the Regulation of Dual-Use Nuclear Technology by James M. Acton (Carnegie Endowment for International Peace)Dual-Use Threats: The Case of Biotechnology by Elisa D. Harris (University of Maryland)Governance of Information Technology and Cyber Weapons by Herbert Lin (Stanford University

    Evaluating Cascading Impact of Attacks on Resilience of Industrial Control Systems: A Design-Centric Modeling Approach

    Full text link
    A design-centric modeling approach was proposed to model the behaviour of the physical processes controlled by Industrial Control Systems (ICS) and study the cascading impact of data-oriented attacks. A threat model was used as input to guide the construction of the CPS model where control components which are within the adversary's intent and capabilities are extracted. The relevant control components are subsequently modeled together with their control dependencies and operational design specifications. The approach was demonstrated and validated on a water treatment testbed. Attacks were simulated on the testbed model where its resilience to attacks was evaluated using proposed metrics such as Impact Ratio and Time-to-Critical-State. From the analysis of the attacks, design strengths and weaknesses were identified and design improvements were recommended to increase the testbed's resilience to attacks
    • …
    corecore