15 research outputs found

    New bounds on the edge-bandwidth of triangular grids

    Get PDF
    The edge-bandwidth of a graph G is the bandwidth of the line graph of G. Determining the edge-bandwidth B′(Tn) of triangular grids Tn is an open problem posed in 2006. Previously, an upper bound and an asymptotic lower bound were found to be 3n − 1 and 3n − o(n) respectively. In this paper we provide a lower bound 3n − ⌈ n/ 2 ⌉ and show that it gives the exact values of B′(Tn) for 1 ≤ n ≤ 8 and n = 10. Also, we show the upper bound 3n − 5 for n ≥ 10

    Related Orderings of AT-Free Graphs

    Get PDF
    An ordering of a graph G is a bijection of V(G) to {1, . . . , |V(G)|}. In this thesis, we consider the complexity of two types of ordering problems. The first type of problem we consider aims at minimizing objective functions related to an ordering of the graph. We consider the problems Cutwidth, Imbalance, and Optimal Linear Arrangement. We also consider a problem of another type: S-End-Vertex, where S is one of the following search algorithms: breadth-first search (BFS), lexicographic breadth-first search (LBFS), depth-first search (DFS), and maximal neighbourhood search (MNS). This problem asks if a specified vertex can be the last vertex in an ordering generated by S. We show that, for each type of problem, orderings for one problem may be related to orderings for another problem of that type. We show that there is always a cutwidth-minimal ordering where equivalence classes of true twins are grouped for any graph, where true twins are vertices with the same closed neighbourhood. This enables a fixed-parameter tractable (FPT) algorithm for Cutwidth on graphs parameterized by the edge clique cover number of the graph and a new parameter, the restricted twin cover number of the graph. The restricted twin cover number of the graph generalizes the vertex cover number of a graph, and is the smallest value k ≥ 0 such that there is a twin cover of the graph T and k−|T| non-trivial components of G−T. We show that there is also always an imbalance-minimal ordering where equivalence classes of true twins are grouped for any graph. We show a polynomial time algorithm for this problem on superfragile graphs and subsets of proper interval graphs, both subsets of AT-free graphs. An asteroidal triple (AT) is a triple of independent vertices x, y, z such that between every pair of vertices in the triple, there is a path that does not intersect the closed neighbourhood of the third. A graph without an asteroidal triple is said to be AT-free. We also provide closed formulas for Imbalance on some small graph classes. In the FPT setting, we improve algorithms for Imbalance parameterized by the vertex cover number of the input graph and show that the problem does not have a polynomially sized kernel for the same parameter number unless NP ⊆ coNP/poly. We show that Optimal Linear Arrangement also has a polynomial algorithm for superfragile graphs and an FPT algorithm with respect to the restricted twin cover number. Finally, we consider S-End-Vertex, for BFS, LBFS, DFS, and MNS. We perform the first systematic study of the problem on bipartite permutation graphs, a subset of AT-free graphs. We show that for BFS and MNS, the problem has a polynomial time solution. We improve previous results for LBFS, obtaining a linear time algorithm. For DFS, we establish a linear time algorithm. All the results follow from the linear structure of bipartite permutation graphs

    Optimisation of hysteretic losses in high-temperature superconducting wires

    Get PDF
    Hysteretic loss optimisations through numerical simulation and subsequent experimental confirmation in transport current and background field measurements: ferromagnetic shielding and topological geometry optimisation is used to reduce energy dissipation in HTS coated conductor geometries. Single tapes and coil geometries are investigated. A 3D model capable of taking into account contact resistances is also presented for the Twisted Stacked Tape Conductor cable

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Optimisation of hysteretic losses in high-temperature superconducting wires

    Get PDF
    Hysteretic loss optimisations through numerical simulation and subsequent experimental confirmation in transport current and background field measurements: ferromagnetic shielding and topological geometry optimisation is used to reduce energy dissipation in HTS coated conductor geometries. Single tapes and coil geometries are investigated. A 3D model capable of taking into account contact resistances is also presented for the Twisted Stacked Tape Conductor cable

    Exact and Heuristic Hybrid Approaches for Scheduling and Clustering Problems

    Get PDF
    This thesis deals with the design of exact and heuristic algorithms for scheduling and clustering combinatorial optimization problems. All the works are linked by the fact that all the presented methods arebasically hybrid algorithms, that mix techniques used in the world of combinatorial optimization. The algorithms are all efficient in practice, but the one presented in Chapter 4, that has mostly theoretical interest. Chapter 2 presents practical solution algorithms based on an ILP model for an energy scheduling combinatorial problem that arises in a smart building context. Chapter 3 presents a new cutting stock problem and introduce a mathematical formulation and a heuristic solution approach based on a heuristic column generation scheme. Chapter 4 provides an exact exponential algorithm, whose importance is only theoretical so far, for a classical scheduling problem: the Single Machine Total Tardiness Problem. The relevant aspect is that the designed algorithm has the best worst case complexity for the problem, that has been studied for several decades. Furthermore, such result is based on a new technique, called Branch and Merge, that avoids the solution of several equivalent sub-problems in a branching algorithm that requires polynomial space. As a consequence, such technique embeds in a branching algorithm ideas coming from other traditional computer science techniques such as dynamic programming and memorization, but keeping the space requirement polynomial. Chapter 5 provides an exact approach based on semidefinite programming and a matheuristic approach based on a quadratic solver for a fractional clustering combinatorial optimization problem, called Max-Mean Dispersion Problem. The matheuristic approach has the peculiarity of using a non-linear MIP solver. The proposed exact approach uses a general semidefinite programming relaxation and it is likely to be extended to other combinatorial problems with a fractional formulation. Chapter 6 proposes practical solution methods for a real world clustering problem arising in a smart city context. The solution algorithm is based on the solution of a Set Cover model via a commercial ILP solver. As a conclusion, the main contribution of this thesis is given by several approaches of practical or theoretical interest, for two classes of important combinatorial problems: clustering and scheduling. All the practical methods presented in the thesis are validated by extensive computational experiments, that compare the proposed methods with the ones available in the state of the art

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore