970 research outputs found

    Computer-Assisted Characterization of Prostate Cancer on Magnetic Resonance Imaging

    Get PDF
    Prostate cancer (PCa) is one of the most prevalent cancers among men. Early diagnosis can improve survival and reduce treatment costs. Current inter-radiologist variability for detection of PCa is high. The use of multi-parametric magnetic resonance imaging (mpMRI) with machine learning algorithms has been investigated both for improving PCa detection and for PCa diagnosis. Widespread clinical implementation of computer-assisted PCa lesion characterization remains elusive; critically needed is a model that is validated against a histologic reference standard that is densely sampled in an unbiased fashion. We address this using our technique for highly accurate fusion of mpMRI with whole-mount digitized histology of the surgical specimen. In this thesis, we present models for characterization of malignant, benign and confounding tissue and aggressiveness of PCa. Further validation on a larger dataset could enable improved characterization performance, improving survival rates and enabling a more personalized treatment plan

    Computer-Assisted Algorithms for Ultrasound Imaging Systems

    Get PDF
    Ultrasound imaging works on the principle of transmitting ultrasound waves into the body and reconstructs the images of internal organs based on the strength of the echoes. Ultrasound imaging is considered to be safer, economical and can image the organs in real-time, which makes it widely used diagnostic imaging modality in health-care. Ultrasound imaging covers the broad spectrum of medical diagnostics; these include diagnosis of kidney, liver, pancreas, fetal monitoring, etc. Currently, the diagnosis through ultrasound scanning is clinic-centered, and the patients who are in need of ultrasound scanning has to visit the hospitals for getting the diagnosis. The services of an ultrasound system are constrained to hospitals and did not translate to its potential in remote health-care and point-of-care diagnostics due to its high form factor, shortage of sonographers, low signal to noise ratio, high diagnostic subjectivity, etc. In this thesis, we address these issues with an objective of making ultrasound imaging more reliable to use in point-of-care and remote health-care applications. To achieve the goal, we propose (i) computer-assisted algorithms to improve diagnostic accuracy and assist semi-skilled persons in scanning, (ii) speckle suppression algorithms to improve the diagnostic quality of ultrasound image, (iii) a reliable telesonography framework to address the shortage of sonographers, and (iv) a programmable portable ultrasound scanner to operate in point-of-care and remote health-care applications

    Doctor of Philosophy

    Get PDF
    dissertationStochastic methods, dense free-form mapping, atlas construction, and total variation are examples of advanced image processing techniques which are robust but computationally demanding. These algorithms often require a large amount of computational power as well as massive memory bandwidth. These requirements used to be ful lled only by supercomputers. The development of heterogeneous parallel subsystems and computation-specialized devices such as Graphic Processing Units (GPUs) has brought the requisite power to commodity hardware, opening up opportunities for scientists to experiment and evaluate the in uence of these techniques on their research and practical applications. However, harnessing the processing power from modern hardware is challenging. The di fferences between multicore parallel processing systems and conventional models are signi ficant, often requiring algorithms and data structures to be redesigned signi ficantly for efficiency. It also demands in-depth knowledge about modern hardware architectures to optimize these implementations, sometimes on a per-architecture basis. The goal of this dissertation is to introduce a solution for this problem based on a 3D image processing framework, using high performance APIs at the core level to utilize parallel processing power of the GPUs. The design of the framework facilitates an efficient application development process, which does not require scientists to have extensive knowledge about GPU systems, and encourages them to harness this power to solve their computationally challenging problems. To present the development of this framework, four main problems are described, and the solutions are discussed and evaluated: (1) essential components of a general 3D image processing library: data structures and algorithms, as well as how to implement these building blocks on the GPU architecture for optimal performance; (2) an implementation of unbiased atlas construction algorithms|an illustration of how to solve a highly complex and computationally expensive algorithm using this framework; (3) an extension of the framework to account for geometry descriptors to solve registration challenges with large scale shape changes and high intensity-contrast di fferences; and (4) an out-of-core streaming model, which enables developers to implement multi-image processing techniques on commodity hardware

    Automated Segmentation of Cerebral Aneurysm Using a Novel Statistical Multiresolution Approach

    Get PDF
    Cerebral Aneurysm (CA) is a vascular disease that threatens the lives of many adults. It a ects almost 1:5 - 5% of the general population. Sub- Arachnoid Hemorrhage (SAH), resulted by a ruptured CA, has high rates of morbidity and mortality. Therefore, radiologists aim to detect it and diagnose it at an early stage, by analyzing the medical images, to prevent or reduce its damages. The analysis process is traditionally done manually. However, with the emerging of the technology, Computer-Aided Diagnosis (CAD) algorithms are adopted in the clinics to overcome the traditional process disadvantages, as the dependency of the radiologist's experience, the inter and intra observation variability, the increase in the probability of error which increases consequently with the growing number of medical images to be analyzed, and the artifacts added by the medical images' acquisition methods (i.e., MRA, CTA, PET, RA, etc.) which impedes the radiologist' s work. Due to the aforementioned reasons, many research works propose di erent segmentation approaches to automate the analysis process of detecting a CA using complementary segmentation techniques; but due to the challenging task of developing a robust reproducible reliable algorithm to detect CA regardless of its shape, size, and location from a variety of the acquisition methods, a diversity of proposed and developed approaches exist which still su er from some limitations. This thesis aims to contribute in this research area by adopting two promising techniques based on the multiresolution and statistical approaches in the Two-Dimensional (2D) domain. The rst technique is the Contourlet Transform (CT), which empowers the segmentation by extracting features not apparent in the normal image scale. While the second technique is the Hidden Markov Random Field model with Expectation Maximization (HMRF-EM), which segments the image based on the relationship of the neighboring pixels in the contourlet domain. The developed algorithm reveals promising results on the four tested Three- Dimensional Rotational Angiography (3D RA) datasets, where an objective and a subjective evaluation are carried out. For the objective evaluation, six performance metrics are adopted which are: accuracy, Dice Similarity Index (DSI), False Positive Ratio (FPR), False Negative Ratio (FNR), speci city, and sensitivity. As for the subjective evaluation, one expert and four observers with some medical background are involved to assess the segmentation visually. Both evaluations compare the segmented volumes against the ground truth data

    The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    Get PDF
    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low-and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource

    Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Get PDF
    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed

    Validation Strategies Supporting Clinical Integration of Prostate Segmentation Algorithms for Magnetic Resonance Imaging

    Get PDF
    Segmentation of the prostate in medical images is useful for prostate cancer diagnosis and therapy guidance. However, manual segmentation of the prostate is laborious and time-consuming, with inter-observer variability. The focus of this thesis was on accuracy, reproducibility and procedure time measurement for prostate segmentation on T2-weighted endorectal magnetic resonance imaging, and assessment of the potential of a computer-assisted segmentation technique to be translated to clinical practice for prostate cancer management. We collected an image data set from prostate cancer patients with manually-delineated prostate borders by one observer on all the images and by two other observers on a subset of images. We used a complementary set of error metrics to measure the different types of observed segmentation errors. We compared expert manual segmentation as well as semi-automatic and automatic segmentation approaches before and after manual editing by expert physicians. We recorded the time needed for user interaction to initialize the semi-automatic algorithm, algorithm execution, and manual editing as necessary. Comparing to manual segmentation, the measured errors for the algorithms compared favourably with observed differences between manual segmentations. The measured average editing times for the computer-assisted segmentation were lower than fully manual segmentation time, and the algorithms reduced the inter-observer variability as compared to manual segmentation. The accuracy of the computer-assisted approaches was near to or within the range of observed variability in manual segmentation. The recorded procedure time for prostate segmentation was reduced using computer-assisted segmentation followed by manual editing, compared to the time required for fully manual segmentation

    Artificial Intelligence, Mathematical Modeling and Magnetic Resonance Imaging for Precision Medicine in Neurology and Neuroradiology

    Get PDF
    La tesi affronta la possibilità di utilizzare metodi matematici, tecniche di simulazione, teorie fisiche riadattate e algoritmi di intelligenza artificiale per soddisfare le esigenze cliniche in neuroradiologia e neurologia al fine di descrivere e prevedere i patterns e l’evoluzione temporale di una malattia, nonché di supportare il processo decisionale clinico. La tesi è suddivisa in tre parti. La prima parte riguarda lo sviluppo di un workflow radiomico combinato con algoritmi di Machine Learning al fine di prevedere parametri che favoriscono la descrizione quantitativa dei cambiamenti anatomici e del coinvolgimento muscolare nei disordini neuromuscolari, con particolare attenzione alla distrofia facioscapolo-omerale. Il workflow proposto si basa su sequenze di risonanza magnetica convenzionali disponibili nella maggior parte dei centri neuromuscolari e, dunque, può essere utilizzato come strumento non invasivo per monitorare anche i più piccoli cambiamenti nei disturbi neuromuscolari oltre che per la valutazione della progressione della malattia nel tempo. La seconda parte riguarda l’utilizzo di un modello cinetico per descrivere la crescita tumorale basato sugli strumenti della meccanica statistica per sistemi multi-agente e che tiene in considerazione gli effetti delle incertezze cliniche legate alla variabilità della progressione tumorale nei diversi pazienti. L'azione dei protocolli terapeutici è modellata come controllo che agisce a livello microscopico modificando la natura della distribuzione risultante. Viene mostrato come lo scenario controllato permetta di smorzare le incertezze associate alla variabilità della dinamica tumorale. Inoltre, sono stati introdotti metodi di simulazione numerica basati sulla formulazione stochastic Galerkin del modello cinetico sviluppato. La terza parte si riferisce ad un progetto ancora in corso che tenta di descrivere una porzione di cervello attraverso la teoria quantistica dei campi e di simularne il comportamento attraverso l'implementazione di una rete neurale con una funzione di attivazione costruita ad hoc e che simula la funzione di risposta del modello biologico neuronale. E’ stato ottenuto che, nelle condizioni studiate, l'attività della porzione di cervello può essere descritta fino a O(6), i.e, considerando l’interazione fino a sei campi, come un processo gaussiano. Il framework quantistico definito può essere esteso anche al caso di un processo non gaussiano, ovvero al caso di una teoria di campo quantistico interagente utilizzando l’approccio della teoria wilsoniana di campo efficace.The thesis addresses the possibility of using mathematical methods, simulation techniques, repurposed physical theories and artificial intelligence algorithms to fulfill clinical needs in neuroradiology and neurology. The aim is to describe and to predict disease patterns and its evolution over time as well as to support clinical decision-making processes. The thesis is divided into three parts. Part 1 is related to the development of a Radiomic workflow combined with Machine Learning algorithms in order to predict parameters that quantify muscular anatomical involvement in neuromuscular diseases, with special focus on Facioscapulohumeral dystrophy. The proposed workflow relies on conventional Magnetic Resonance Imaging sequences available in most neuromuscular centers and it can be used as a non-invasive tool to monitor even fine change in neuromuscular disorders and to evaluate longitudinal diseases’ progression over time. Part 2 is about the description of a kinetic model for tumor growth by means of classical tools of statistical mechanics for many-agent systems also taking into account the effects of clinical uncertainties related to patients’ variability in tumor progression. The action of therapeutic protocols is modeled as feedback control at the microscopic level. The controlled scenario allows the dumping of uncertainties associated with the variability in tumors’ dynamics. Suitable numerical methods, based on Stochastic Galerkin formulation of the derived kinetic model, are introduced. Part 3 refers to a still-on going project that attempts to describe a brain portion through a quantum field theory and to simulate its behavior through the implementation of a neural network with an ad-hoc activation function mimicking the biological neuron model response function. Under considered conditions, the brain portion activity can be expressed up to O(6), i.e., up to six fields interaction, as a Gaussian Process. The defined quantum field framework may also be extended to the case of a Non-Gaussian Process behavior, or rather to an interacting quantum field theory in a Wilsonian Effective Field theory approach

    Design, implementation and realization of an integrated platform dedicated to e-public health, for analysing health data and supporting the management control in healthcare companies.

    Get PDF
    In healthcare, the information is a fundamental aspect and the human body is the major source of every kind of data: the challenge is to benefit from this huge amount of unstructured data by applying technologic solutions, called Big Data Analysis, that allows the management of data and the extraction of information through informatic systems. This thesis aims to introduce a technologic solution made up of two open source platforms: Power BI and Knime Analytics Platform. First, the importance, the role and the processes of business intelligence and machine learning in healthcare will be discussed; secondly, the platforms will be described, particularly enhancing their feasibility and capacities. Then, the clinical specialties, where they have been applied, will be shown by highlighting the international literature that have been produced: neurology, cardiology, oncology, fetal-monitoring and others. An application in the current pandemic situation due to SARS-CoV-2 will be described by using more than 50000 records: a cascade of 3 platforms helping health facilities to deal with the current worldwide pandemic. Finally, the advantages, the disadvantages, the limitations and the future developments in this framework will be discussed while the architectural technologic solution containing a data warehouse, a platform to collect data, two platforms to analyse health and management data and the possible applications will be shown
    corecore