thesis

Quantitative body shape analysis for obesity evaluation

Abstract

Obesity is a public health concern as it is associated with a number of diseases, such as diabetes mellitus type 2, cardiovascular disease, some forms of renal failure and certain types of cancers. Growing evidence suggests that it is not only the amount of fat, but also its distribution in the body that is important to predict metabolic risk factors and adverse changes in organs. In this respect, it is necessary to develop convenient and inexpensive measures to characterize human body fat distribution and to investigate the unknown linkage between intrinsic adiposity and external body shape. This dissertation research aims to improve the obesity assessment by developing new quantitative measurements that comprehensively characterize body shape, and are highly relevant to intrinsic abdominal adiposity conditions. The proposed body shape descriptors were defined based on three-dimensional body images reconstructed from a custom-made stereovision body imaging system, which is particularly suitable for clinical use as an obesity monitoring equipment for its high portability and affordability. In this study, we developed a fully-automated algorithm to process T1-weighted magnetic resonance imaging (MRI) slices for abdominal adiposity measurements. This algorithm dramatically reduces the processing time and workload compared with traditional manual or semi-automatic methods for MRI processing, and greatly improves the repeatability and objectivity of fat assessments. A new obesity categorization method was then defined based on MRI adiposity data to depict characteristics of abdominal fat distribution, and the associations between the body shape descriptors and the MRI abdominal adiposity were explored. It was shown that the proposed body shape descriptors are able to capture the body shape differences between the subjects with dissimilar internal fat distribution (i.e., different categories), and to provide excellent prediction for the category of fat distribution through an optimized support-vector-machine classifier. The predictive models established in this dissertation demonstrate that the novel body shape descriptors were also effective for prediction of the volumes of abdominal visceral fat and subcutaneous fat accumulated in male and female adults. This dissertation introduces an innovative approach to assess obesity and fat distribution based on newly defined shape descriptors, and provides new findings that reveal the associations of intrinsic fat distribution with external body shapes, which enable both qualitative and quantitative assessment of obesity from body shape measurements.Biomedical Engineerin

    Similar works