648 research outputs found

    Enhancing a Neurosurgical Imaging System with a PC-based Video Processing Solution

    Get PDF
    This work presents a PC-based prototype video processing application developed to be used with a specific neurosurgical imaging device, the OPMI® PenteroTM operating microscope, in the Department of Neurosurgery of Helsinki University Central Hospital at Töölö, Helsinki. The motivation for implementing the software was the lack of some clinically important features in the imaging system provided by the microscope. The imaging system is used as an online diagnostic aid during surgery. The microscope has two internal video cameras; one for regular white light imaging and one for near-infrared fluorescence imaging, used for indocyanine green videoangiography. The footage of the microscope’s current imaging mode is accessed via the composite auxiliary output of the device. The microscope also has an external high resolution white light video camera, accessed via a composite output of a separate video hub. The PC was chosen as the video processing platform for its unparalleled combination of prototyping and high-throughput video processing capabilities. A thorough analysis of the platform and efficient video processing methods was conducted in the thesis and the results were used in the design of the imaging station. The features found feasible during the project were incorporated into a video processing application running on a GNU/Linux distribution Ubuntu. The clinical usefulness of the implemented features was ensured beforehand by consulting the neurosurgeons using the original system. The most significant shortcomings of the original imaging system were mended in this work. The key features of the developed application include: live streaming, simultaneous streaming and recording, and playing back of upto two video streams. The playback mode provides full media player controls, with a frame-by-frame precision rewinding, in an intuitive and responsive interface. A single view and a side-by-side comparison mode are provided for the streams. The former gives more detail, while the latter can be used, for example, for before-after and anatomic-angiographic comparisons.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces

    Survey on Deduplication Techniques in Flash-Based Storage

    Get PDF
    Data deduplication importance is growing with the growth of data volumes. The domain of data deduplication is in active development. Recently it was influenced by appearance of Solid State Drive. This new type of disk has significant differences from random access memory and hard disk drives and is widely used now. In this paper we propose a novel taxonomy which reflects the main issues related to deduplication in Solid State Drive. We present a survey on deduplication techniques focusing on flash-based storage. We also describe several Open Source tools implementing data deduplication and briefly describe open research problems related to data deduplication in flash-based storage systems

    Accelerating Foreign-Key Joins using Asymmetric Memory Channels

    Get PDF
    Indexed Foreign-Key Joins expose a very asymmetric access pattern: the Foreign-Key Index is sequentially scanned whilst the Primary-Key table is target of many quasi-random lookups which is the dominant cost factor. To reduce the costs of the random lookups the fact-table can be (re-) partitioned at runtime to increase access locality on the dimension table, and thus limit the random memory access to inside the CPU's cache. However, this is very hard to optimize and the performance impact on recent architectures is limited because the partitioning costs consume most of the achievable join improvement. GPGPUs on the other hand have an architecture that is well suited for this operation: a relatively slow connection to the large system memory and a very fast connection to the smaller internal device memory. We show how to accelerate Foreign-Key Joins by executing the random table lookups on the GPU's VRAM while sequentially streaming the Foreign- Key-Index through the PCI-E Bus. We also experimentally study the memory access costs on GPU and CPU to provide estimations of the benefit of this technique
    • …
    corecore