17,208 research outputs found

    Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    Get PDF
    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP (HADCP) data in a tidal river. In the deterministic part, single-depth velocity data are converted to specific discharge by applying the law of the wall, which requires knowledge of local values of the bed roughness length (z0). A new filtration technique was developed to infer cross-river profiles of z0 from moving boat ADCP measurements. Width-averaged values of z0 were shown to be predominantly constant in time but differed between ebb and flood. In the stochastic part of the method, specific discharge was converted to total discharge on the basis of a model that accounts for the time lag between flow variation in the central part of the river and flow variation near the banks. Model coefficients were derived using moving boat ADCP data. The consistency of mutually independent discharge estimates from HADCP measurements was investigated to validate the method, analyzing river discharge and tidal discharge separately. Inaccuracy of the method is attributed primarily to mechanisms controlling transverse exchange of momentum, which produce temporal variation in the discharge distribution over the cross section. Specifically, development of river dunes may influence the portion of the discharge concentrated within the range of the HADC

    Short course on principles and applications of beach nourishment

    Get PDF
    Covers the engineering aspects of beach nourishment. (Document is 192 pages

    Nearshore oblique sand bars

    Get PDF
    The coupling between hydrodynamics and the evolving topography in the surf zone has been theoretically examined for oblique wave incidence. It is shown that positive feedback can lead to the initial growth of several types of rhythmic systems of sand bars. The bars can be down-current oriented or up-current oriented, which means that the offshore end of the bar is shifted down-current or up-current with respect to the shore attachment. In the limit of strong current compared to wave orbital motion, very oblique down-current oriented bars are obtained with a spacing of several times the surf zone width. When wave orbital motions are dominant, systems of up-current oriented bars and crescentic/down-current oriented bars appear with spacings of the order of the surf zone width. The latter feature consists of alternating shoals and troughs at both sides of the break line with the inner shoals being bar-shaped and oblique to the coast. The growth (e-folding) time of the bars ranges from a few hours to a few days and it is favored by constant wave conditions. The range of model parameters leading to growth corresponds to intermediate beach states in between the fully dissipative and the fully reflective situations. Preliminary comparison with field observations shows qualitative agreement.Peer ReviewedPostprint (published version

    Some considerations on coastal processes relevant to sea level rise

    Get PDF
    The effects of potential sea level rise on the shoreline and shore environment have been briefly examined by considering the interactions between sea level rise and relevant coastal processes. These interactions have been reviewed beginning with a discussion of the need to reanalyze previous estimates of eustatic sea level rise and compaction effects in water level measurement. This is followed by considerations on sea level effects on coastal and estuarine tidal ranges, storm surge and water level response, and interaction with natural and constructed shoreline features. The desirability to reevaluate the well known Bruun Rule for estimating shoreline recession has been noted. The mechanics of ground and surface water intrusion with reference to sea level rise are then reviewed. This is followed by sedimentary processes in the estuaries including wetland response. Finally comments are included on some probable effects of sea level rise on coastal ecosystems. These interactions are complex and lead to shoreline evolution (under a sea level rise) which is highly site-specific. Models which determine shoreline change on the basis of inundation of terrestrial topography without considering relevant coastal processes are likely to lead to erroneous shoreline scenarios, particularly where the shoreline is composed of erodible sedimentary material. With some exceptions, present day knowledge of shoreline response to hydrodynamic forcing is inadequate for long-term quantitative predictions. A series of interrelated basic and applied research issues must be addressed in the coming decades to determine shoreline response to sea level change with an acceptable degree of confidence. (PDF contains 189 pages.

    Side-looking radar in urban research - A case study

    Get PDF
    Capabilities of side-looking radar in urban researc

    The use of lasers for hydrographic studies

    Get PDF
    The utilization of remote laser sensors in water pollution detection and identification, coastal environmental monitoring, and bathymetric depth sounding, is discussed. q

    Magnetic, electrical, and GPR waterborne surveys of moraine deposits beneath a lake: A case history from Turin, Italy

    Get PDF
    Bathymetry and bottom sediment types of inland water basins provide meaningful information to estimate water reserves and possible connections between surface and groundwater. Waterborne geophysical surveys can be used to obtain several independent physical parameters to study the sediments. We explored the possibilities of retrieving information on both shallow and deep geological structures beneath a morainic lake by means of waterborne nonseismic methods. In this respect, we discuss simultaneous magnetic, electrical, and groundpenetrating radar (GPR) waterborne surveys on the Candia morainic lake in northerly Turin (Italy).We used waterborne GPR to obtain information on the bottom sediment and the bathymetry needed to constrain the magnetic and electrical inversions. We obtained a map of the total magnetic field (TMF) over the lake from which we computed a 2D constrained compact magnetic inversion for selected profiles, along with a laterally constrained inversion for one electrical profile. The magnetic survey detected some deep anomalous bodies within the subbottom moraine. The electrical profiles gave information on the more superficial layer of bottom sediments. We identify where the coarse morainic material outcrops from the bottom finer sediments from a correspondence between high GPR reflectivity, resistivity, and magnetic anomalie

    The Red Sea, Coastal Landscapes, and Hominin Dispersals

    Get PDF
    This chapter provides a critical assessment of environment, landscape and resources in the Red Sea region over the past five million years in relation to archaeological evidence of hominin settlement, and of current hypotheses about the role of the region as a pathway or obstacle to population dispersals between Africa and Asia and the possible significance of coastal colonization. The discussion assesses the impact of factors such as topography and the distribution of resources on land and on the seacoast, taking account of geographical variation and changes in geology, sea levels and palaeoclimate. The merits of northern and southern routes of movement at either end of the Red Sea are compared. All the evidence indicates that there has been no land connection at the southern end since the beginning of the Pliocene period, but that short sea crossings would have been possible at lowest sea-level stands with little or no technical aids. More important than the possibilities of crossing the southern channel is the nature of the resources available in the adjacent coastal zones. There were many climatic episodes wetter than today, and during these periods water draining from the Arabian escarpment provided productive conditions for large mammals and human populations in coastal regions and eastwards into the desert. During drier episodes the coastal region would have provided important refugia both in upland areas and on the emerged shelves exposed by lowered sea level, especially in the southern sector and on both sides of the Red Sea. Marine resources may have offered an added advantage in coastal areas, but evidence for their exploitation is very limited, and their role has been over-exaggerated in hypotheses of coastal colonization

    Power laws statistics of cliff failures, scaling and percolation

    Full text link
    The size of large cliff failures may be described in several ways, for instance considering the horizontal eroded area at the cliff top and the maximum local retreat of the coastline. Field studies suggest that, for large failures, the frequencies of these two quantities decrease as power laws of the respective magnitudes, defining two different decay exponents. Moreover, the horizontal area increases as a power law of the maximum local retreat, identifying a third exponent. Such observation suggests that the geometry of cliff failures are statistically similar for different magnitudes. Power laws are familiar in the physics of critical systems. The corresponding exponents satisfy precise relations and are proven to be universal features, common to very different systems. Following the approach typical of statistical physics, we propose a "scaling hypothesis" resulting in a relation between the three above exponents: there is a precise, mathematical relation between the distributions of magnitudes of erosion events and their geometry. Beyond its theoretical value, such relation could be useful for the validation of field catalogs analysis. Pushing the statistical physics approach further, we develop a numerical model of marine erosion that reproduces the observed failure statistics. Despite the minimality of the model, the exponents resulting from extensive numerical simulations fairly agree with those measured on the field. These results suggest that the mathematical theory of percolation, which lies behind our simple model, can possibly be used as a guide to decipher the physics of rocky coast erosion and could provide precise predictions to the statistics of cliff collapses.Comment: 20 pages, 13 figures, 1 table. To appear in Earth Surface Processes and Lanforms (Rocky Coast special issue

    The vorticity dynamics of coastal currents and outflows

    Get PDF
    This thesis is concerned with the interaction between an along-shore coastal current and flow driven by a jump in potential vorticity. In particular, we develop and apply idealised models for a river outflow, a potential vorticity front, and waves generated by changes in continental-shelf width. In all cases the model ocean has one active layer with piecewise-uniform potential vorticity, and analytic progress is made by assuming the flow varies slowly in the along-shore direction. The behaviour of the model depends strongly on whether the vorticity dynamics reinforce or oppose the coastal current, and on the relative strengths of these two effects. In the outflow model, vorticity is generated by stretching or squashing of fluid columns as they leave the source and adjust to the depth of the upper ocean layer. We explore how this basic mechanism affects the behaviour of the outflow plume by extending the quasi-geostrophic model of Johnson et al (2017). In chapter 2, we extend Johnson et al.'s model to order-one Rossby number using the semi-geostrophic equations, and show that the same range of behaviours occurs. In chapter 3 we allow the potential vorticity of the outflow to vary in space, and show that the behaviour of the resulting plume depends on the net contribution of vorticity at the source. Chapter 4 considers free waves on a potential vorticity front, and shows how they are affected by the presence of a coast. The evolution of the front is described by a nonlinear finite-amplitude equation including first-order dispersive effects, which is analysed using `dispersive shock-fitting’ El (2005). Chapter 5 extends this model to include the continental shelf, and shows that the flow can become hydraulically controlled when the background current opposes coastal-trapped wave propagation
    • …
    corecore