259 research outputs found

    Palm Print Recognition Using Curve let Transform

    Full text link
    In the era of Information Technology, openness of the information is a major concern. As the confidentiality and integrity of the information is critically important, it has to be secured from unauthorized access. Traditional security and identification are not sufficient enough; people need to find a new authentic system based on behavioral & physiological characteristics of person which is called as Biometric. Palm print recognition gives several advantages over the other biometrics such as low resolution, low cost, non-intrusiveness and stable structure features. Now a days Palm print based personal verification system is used in many security application due to its ease of acquisition, high user acceptance and reliability. Various approaches which deal with palm recognition are texture approach, line approach and appearance approach. By using texture approach it is possible to obtain texture sample with low resolution and texture is much more stable as compare to line and appearance. This paper is aimed to analyze the performance of palm print recognition systems using Curvelet features and for dimension reduction PCA is used

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    A Robust Image Hashing Algorithm Resistant Against Geometrical Attacks

    Get PDF
    This paper proposes a robust image hashing method which is robust against common image processing attacks and geometric distortion attacks. In order to resist against geometric attacks, the log-polar mapping (LPM) and contourlet transform are employed to obtain the low frequency sub-band image. Then the sub-band image is divided into some non-overlapping blocks, and low and middle frequency coefficients are selected from each block after discrete cosine transform. The singular value decomposition (SVD) is applied in each block to obtain the first digit of the maximum singular value. Finally, the features are scrambled and quantized as the safe hash bits. Experimental results show that the algorithm is not only resistant against common image processing attacks and geometric distortion attacks, but also discriminative to content changes

    Face recognition based on curvelets, invariant moments features and SVM

    Get PDF
    Recent studies highlighted on face recognition methods. In this paper, a new algorithm is proposed for face recognition by combining Fast Discrete Curvelet Transform (FDCvT) and Invariant Moments with Support vector machine (SVM), which improves rate of face recognition in various situations. The reason of using this approach depends on two things. first, Curvelet transform which is a multi-resolution method, that can efficiently represent image edge discontinuities; Second, the Invariant Moments analysis which is a statistical method that meets with the translation, rotation and scale invariance in the image. Furthermore, SVM is employed to classify the face image based on the extracted features. This process is applied on each of ORL and Yale databases to evaluate the performance of the suggested method. Experimentally, the proposed method results show that our system can compose efficient and reasonable face recognition feature, and obtain useful recognition accuracy, which is able to face and side-face states detection of persons to decrease fault rate of production

    Multiple Content Adaptive Intelligent Watermarking Schemes for the Protection of Blocks of a Document Image

    Get PDF
    Most of the documents contain different types of information such as white space, static information and dynamic information or mix of static and dynamic information. In this paper, multiple watermarking schemes are proposed for protection of the information content. The proposed approach comprises of three phases. In Phase-1, the edges of the source document image are extracted and the edge image is decomposed into blocks of uniform size. In Phase-2, GLCM features like energy, homogeneity, contrast and correlation are extracted from each block and the blocks are classified as no-information, static, dynamic and mix of static and dynamic information content blocks. The adjacent blocks of same type are merged together into a single block. Each block is watermarked in Phase-3. The type and amount of watermarking applied is decided intelligently and adaptively based on the classification of the blocks which results in improving embedding capacity and reducing time complexity incurred during watermarking. Experiments are conducted exhaustively on all the images in the corpus. The experimental evaluations exhibit better classification of segments based on information content in the block. The proposed technique also outperforms the existing watermarking schemes on document images in terms of robustness, accuracy of tamper detection and recovery
    corecore